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Abstract: Spectral unmixing (SU) is a significant preprocessing task for handling hyperspectral
images (HSI), but its process is affected by nonlinearity and spectral variability (SV). Currently, SV
is considered within the framework of linear mixing models (LMM), which ignores the nonlinear
effects in the scene. To address that issue, we consider the effects of SV on SU while investigating
the nonlinear effects of hyperspectral images. Furthermore, an augmented generalized bilinear
model is proposed to address spectral variability (abbreviated AGBM-SV). First, AGBM-SV adopts a
generalized bilinear model (GBM) as the basic framework to address the nonlinear effects caused by
second-order scattering. Secondly, scaling factors and spectral variability dictionaries are introduced
to model the variability issues caused by the illumination conditions, material intrinsic variability,
and other environmental factors. Then, a data-driven learning strategy is employed to set sparse and
orthogonal bases for the abundance and spectral variability dictionaries according to the distribution
characteristics of real materials. Finally, the alternating direction method of multipliers (ADMM)
optimization method is used to split and solve the objective function, enabling the AGBM-SV
algorithm to estimate the abundance and learn the spectral variability dictionary more effectively.
The experimental results demonstrate the comparative superiority of the AGBM-SV method in
both qualitative and quantitative perspectives, which can effectively solve the problem of spectral
variability in nonlinear mixing scenes and to improve unmixing accuracy.

Keywords: linear mixing models (LMM); general bilinear model (GBM); scaling factors; spectral
variability dictionary; alternating direction method of multipliers (ADMM)

1. Introduction

Hyperspectral images (HSI) contain a large amount of spectral band information,
which is collected by specific spectral sensors in hundreds of narrow and contiguous spec-
tral bands. These bands correspond to wavelengths that span the visible range (VIS) and
near-infrared range (NIR). HSI can support various types of remote sensing applications [1],
such as classification [2], fusion [3], target detection [4], etc. However, the acquisition
process of HSI may be affected by low spatial resolution or sensor accuracy, resulting in the
mixture of multiple materials in some pixels. These so-called mixed pixels make the inter-
pretation of hyperspectral data more difficult and affect the applications of hyperspectral
imaging [5].

Spectral unmixing (SU) aims to determine the composition materials (endmembers)
and their proportion (abundance fractions) in each pixel. Due to its importance for data
interpretation and analysis, SU has become one of the main topics in hyperspectral data
analysis. In most spectral unmixing applications, the linear mixing model (LMM) is
assumed [6]. However, in actual observational scenes, nonlinear and spectral variability
problems can occur and can seriously affect the accuracy of unmixing algorithms. For
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example, in vegetation-covered areas and complex urban scenes, there are nonlinear effects
caused by multiple reflections between endmembers, i.e., materials that are spectrally
unique in the wavelength bands used to collect the image [7,8]. There is also spectral
variability due to illumination conditions, atmospheric effects and intrinsic variability in
the properties of the pure material [9–12]. This indicates that it is not sufficient to simply
generalize the use of linear models and that spectral variability must also be taken into
consideration. Therefore, it is important to incorporate the spectral variability that occurs in
practical scenarios into nonlinear spectral unmixing algorithms, which will have significant
implications for practical applications.

In order to address the nonlinear effects caused by multiple layers of reflection from dif-
ferent endmembers, a kernel function approach has been proposed [13]. The idea of the ker-
nel function approach is to transform the original nonlinear data into a higher-dimensional
space, and then apply a linear unmixing method to solve the problem. However, this
strategy is prone to becoming trapped in local minima and can lead to a poor unmixing
performance. There are also some high-order mixing models that consider second-order
or higher-order interactions, such as multilinear mixing models [14], p-linear models [15],
and multi-harmonic post-nonlinear mixing models [16]. However, interactions beyond the
second order incur a heavy computational cost. To overcome that, a classical and efficient
method based on physical models is the use of a generalized bilinear model (GBM) [17].
GBM can effectively handle the assumptions in bilinear mixing models (BMM) [18,19] and
is considered to be a generalization of LMM and FM [8,20].

Although GBM can effectively solve the nonlinearity caused by multiple scattering, it
does not take into account the spectral variability in nonlinear scenarios. In some research
papers, several theoretical models have been proposed to simulate spectral variability.
However, most of these were implemented using the LMM framework. For example, the
ELMM algorithm in [21] solves the spectral variability problem caused by illumination
factors by scaling and adding proportional factors to each endmember in each pixel. The
PLMM proposed in [22] explains variability by adding additive perturbations to endmem-
bers, which often leads to significant errors. For example, scaling factors, as the primary
source of spectral variability, should align with the spectral signatures of endmembers,
while other variabilities often exhibit inconsistencies with the spectral signatures. Therefore,
explaining spectral variability through simple additional terms is not effective. Similarly,
the superpixel-based multi-scale transform extended linear model [23] resolves spectral
variability using spatial information from HSI. This is a relatively fast processing algorithm,
but it lacks accuracy in unmixing. In [24], a strategy is proposed to consider both nonlinear
effects and spectral variability. The idea is to introduce intra-class variability of materi-
als into the quadratic linear model, and then add extended constraint conditions from
non-negative matrix factorization to the linear quadratic model for optimization. How-
ever, experimental results show that it does not give better abundance estimation results
compared with results of experiments when only endmember variability is considered.

To address the nonlinearity and spectral variability issues in hyperspectral imaging,
here we consider spectral variability fully in the proposed nonlinear unmixing model.
We propose an augmented generalized bilinear model to address spectral variability in
hyperspectral unmixing, called AGBM-SV. Specifically, the main contributions of this work
can be summarized as follows:

(1) The proposed AGBM-SV algorithm introduces scaling factors and a spectral vari-
ability dictionary into the GBM nonlinear model, which can consider the spectral variability
caused by various factors fully in the nonlinear model and alleviate the adverse effects of
spectral variability on abundance estimation.

(2) The proposed AGBM-SV algorithm adopts a data-driven strategy, setting sparse
constraints on the abundance matrix based on the distribution characteristics of real materi-
als. Simultaneously, it specifies a spectral variability dictionary composed of orthogonal
bases between low-coherent endmembers.
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(3) The AGBM-SV algorithm employs an optimization method based on the alternating
direction method of multipliers (ADMM), which decomposes the AGBM-SV objective
function into small sub-problems that can be solved efficiently.

The rest of the paper is organized as follows. Section 2 reviews related works along
with their advantages and disadvantages. It then describes the detailed steps of the
proposed AGBM-SV method and the corresponding ADMM optimization process. Section 3
presents experimental results conducted on synthetic and real datasets, accompanied by
qualitative and intuitive analyses. Finally, Section 4 presents conclusions and suggests
directions for future research.

2. Materials and Methods
2.1. The Related GBM

In the LMM, each pixel yi = [yi,1, yi,2, . . . , yi,L]
T ∈ RL×1 can be written as follows:

yi = Axi + zi (1)

where A = [a1, a2, . . . , aR] ∈ RL×R represents an L × R matrix containing R pure spectral
features (endmembers), xi = [xi,1, xi,2, . . . , xi,R]

T ∈ RR×1 represents the R × 1 vector of the
fractional abundance of the corresponding endmembers, and zi = [zi,1, zi,2, . . . , zi,L]

T ∈ RL×1

represents an L × 1 vector of noise errors for each spectral band. To satisfy the physical
meaning of abundance, it is generally required that the abundance satisfy non-negativity
constraints (ANC, xi ≥ 0, i = 1, . . . R) and sum-to-one constraints (ASC, ∑R

i=1 xi = 1).
The LMM may not always hold true in many situations [25]. However, GBM is

an extended form of BMM and FM that solves non-linear phenomena through bilinear
modeling and ignores the influence of high-order terms with low contributions. The
expression of GBM mixed pixel matrix Y ∈ RL×N can be represented as:

Y = AX + MB + Z (2)

where A ∈ RL×R represents the endmember matrix, X ∈ RR×N is the corresponding
abundance matrix, M = [a1 � a2, . . . , aR−1 � aR] ∈ RL×R(R−1)/2 represents the bilinear
endmember interaction matrix, B = [γ1,2x1x2, . . . , γR−1,RxR−1xR] ∈ RR×(R−1)/2×N is the
corresponding bilinear abundance matrix, γi,j is the nonlinear coefficient controlling the
interaction between the ith and the jth endmembers in the pixel, and Z ∈ RL×N represents
the noise term.

For the GBM expressed in Equation (3), the constraint can be summarized as:

X ≥ 0, 1TX = 1
F ≥ B ≥ 0

(3)

where the matrix B is determined by the other matrices F(i,j),k = Xi,kXj,k, (k = 1, 2, . . . , N).

2.2. ALMM Addresses Spectral Variability

Inspired by the work in [26] on dealing with spectral variability, we propose here
an augmented linear mixed model (ALMM). The ALMM extends the LMM by using a
constant scale factor and an additive term defined as a dictionary of spectral variability.
This approach theoretically allows the ALMM to learn the spectral variability adaptively in
a data-driven learning process. Its model framework can be expressed as follows:

Y = AXS + WH + Z (4)

where W = [w1, . . . , wD] ∈ RL×D is the spectral variability dictionary and D is the number
of basis vectors in W. The expression H = [h1, . . . , hN ] ∈ RD×N represents the matrix
of coefficients corresponding to W. S ∈ RN×N is the diagonal matrix containing the
scaling factors for all pixels with diagonal values of Sk ≥ 0. Therefore, ALMM represents
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the spectral data as the sum of AXS scaled for each pixel and WH spectral variability
dictionary, which allows ALMM to adaptively learn spectral variability in a data-driven
learning process.

Although the ALMM algorithm is not able to handle the multiple reflections that
occur in the observed scenes, leading to significant errors in estimating the endmember and
abundance matrices, it reveals significant potential in describing spectral variability using
scaling factors and spectral variability dictionaries. Therefore, for the proposed AGBM-SV
model, we adopt a similar approach to deal with spectral variability.

2.3. The Proposed AGBM-SV Model Framework

To simultaneously address the nonlinearity in spectral unmixing and spectral vari-
ability, the augmented GBM nonlinear model to address spectral variability (AGBM-SV)
algorithm is proposed. The AGBM-SV model consists of two main components: the scaled
nonlinear module and the spectral variability module.

The scaled nonlinear module employs the GBM as the underlying framework to
handle the nonlinear effects caused by multiple scattering. It also introduces shared scaling
factors to address spectral variability resulting from illumination conditions and terrain
factors. The spectral variability module consists of a spectral variability dictionary and
corresponding coefficient matrix to handle other spectral variables and residual error terms.
Figure 1 shows the overall structure of the proposed AGBM-SV unmixing model through
the Cuprite dataset.
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2.3.1. Scaled Nonlinear Module

Terrain and lighting conditions can affect the spectral reflectance of hyperspectral
remote sensing images, resulting in changes in the proportion relationship between mixed
pixels and endmembers. This may be caused by factors such as terrain shadow effects,
variations in lighting direction, and intensity. To address these issues, scaling factors can
be used to adjust the relationship between mixed pixels and endmembers, reflecting the
influence of terrain and lighting conditions [26,27]. For example, in [28], it is assumed that
all endmembers within a pixel are constant at the observation scale. Therefore, a shared
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scaling factor is used for each endmember in the linear term of the GBM. Each pixel can be
represented as follows:

yi = Si(Axi) + zi (5)

where Si represents a scalar for the i-th pixel, which can be simply estimated through
regression between yi and Axi. Therefore, for the mixed pixel matrix Y, the GBM model
with the introduced scaling factor S in Equation (2) can be represented as:

Y = AXS + MB + Z
s.t.X ≥ 0, F ≥ B ≥ 0, S ≥ 0

(6)

where S ∈ RN×N is a diagonal matrix containing the scaling factors for all pixels, with
diagonal values denoted as Sk ≥ 0.

2.3.2. Spectral Variability Module

Although scaling factors can address some of the spectral variability caused by illumi-
nation conditions, factors such as intra-class spectral variability also fall within the scope
of spectral variability. Moreover, using scaling factors alone may introduce some minor
errors. To further overcome the difficulty of other spectral variables and error terms in the
scaled nonlinear module, the freedom of the spectral variability dictionary [26] is added to
the model to solve this problem. Adding degrees of freedom to correct for small induced
residual errors is explained in detail in [29]. In this way, we simulate spectral variability and
multiple scattering effects by adding a scaling factor and a spectral variability dictionary to
the GBM. The proposed algorithm is called augmented GBM nonlinear models to address
spectral variability (AGBM-SV). It can be written in the form with constraints as follows:

Y = AXS + MB + WH + Z
s.t.X ≥ 0, F ≥ B ≥ 0, S ≥ 0

(7)

It is worth noting that the spectral variability dictionary is composed of orthogonal
bases among low-coherent endmembers, which can better expand the variability dictionary
and improve its generality. Overall, the AGBM-SV model is based on the perspective
of nonlinear spectral unmixing and considers various types of spectral variability, such
as illumination conditions, atmospheric environment, and the intrinsic variation of the
spectral signatures of the materials. This improves the robustness of the model and the
accuracy of unmixing.

2.4. Problem Formulation of AGBM-SV

The proposed AGBM-SV model to deal with complex spectral variability and non-
linear effects can be formulated as the following constrained optimization problem:

argmin
X,S,B,W,H

1
2‖Y−AXS−MB−WH‖2

F + Φ(X) + Ψ(H) + γ(W)

s.t.X ≥ 0, F ≥ B ≥ 0, S ≥ 0
(8)

where the goal is to estimate the variables X, S, B, W, and H, while the observed hyperspec-
tral data Y and the endmember matrix X are given. For Equation (8), we assume that the
endmembers matrix A is known. First, we estimate the number of endmembers in the im-
age using HySime [30], and then use VCA [31] to extract the endmember matrix A. Because
Equation (8) is an ill-posed problem, we made reasonable prior assumptions and introduced
Φ(X), Ψ(H), γ(W) regular term. The three regularization terms are described below.

(1) Abundance matrix regularization Φ(X): In reality, the mixed spectra are repre-
sented by the characteristic spectra of a limited number of materials, which are decomposed
into a small number of endmember spectral feature sets and corresponding abundance in-
formation. Therefore, we set the abundance regularization as a sparse constraint. However,
the `0 norm of the abundance matrix is a non-convex optimization problem, so we replace



Remote Sens. 2023, 15, 3205 6 of 21

it with the `1 norm. The optimization process uses ||X||1,1 = ∑N
k=1||xk||1 to approximate

the sparse term, and the penalty parameter is represented by α. Therefore, the matrix
expression can be written as

Φ(X) = α‖X‖1,1 (9)

(2) Spectral variability dictionary regularization γ(W): The spectral variability dictio-
nary is designed to better explain the variability of materials within or between classes,
which should not be attributed to the original materials, but rather to a new material or
component. Therefore, the spectral variability dictionary should have low correlation
with the endmember matrix (A). Additionally, the basis vectors in the spectral variability
dictionary (W) may be orthogonal to fully represent various potential spectral features.
Detailed explanations on this topic can be found in [26,32]. Therefore, the result expression
for the regularization of W is:

γ(W) =
γ

2
‖ATW‖2

F +
η

2
‖WTW− I‖2

F (10)

where the first term represents the low correlation between the spectral variability dictio-
nary (W) and the endmember matrix (A), while the second term represents the orthogo-
nality of the basis vectors in W. γ and η are the corresponding penalty parameters in the
constraint conditions.

(3) Regularization of spectral variability coefficients Ψ(H): The spectral variability
coefficients are generally determined by various factors in a given observation scenario. In
the ELMM model, the scaling factor (S) can be obtained by modeling with the endmember
dictionary, while the modeling process for other types of spectral variability coefficients
and scaling factors is different. In order to enhance the reliability and generalization ability
of the AGBM-SV model, the variability coefficients (H) of the spectral variability dictionary
(W) are regularized with the Frobenius norm parameterized by β:

Ψ(H) =
β

2
‖H‖2

F (11)

Moreover, it should be noted that the constraints in Equation (8) must be satisfied.
because the abundance matrix (X) and scaling factor (S) need to comply with the physical
assumptions of reality, it is necessary to ensure that X ≥ 0, S ≥ 0. Furthermore, for the
nonlinear term in the abundance matrix B, it is required to satisfy F ≥ B ≥ 0. Because the
variables X and S are bundled together in Equation (8), we use a relaxation technique to
enforce the sum-to-one constraint on X. Through these constraints, the AGBM-SV model
can better simulate nonlinear effects and spectral variations in real-world scenarios.

2.5. ADMM-Based Optimization Algorithm

The alternating direction method of multipliers (ADMM) algorithm is an iterative
method for solving optimization problems [33–35]. The main steps of ADMM involve
transforming the constrained optimization problem defined in Equation (8) into an un-
constrained expression through augmented Lagrangian, and then iteratively minimizing
the introduced auxiliary variables and Lagrange multipliers. Based on Equation (8), we
need to solve for variables X, S, B, W, H. Using the ADMM method for such multi-variable
optimization problems can expand the solution space of variables, thus enabling us to
obtain a better global minimum.

Although the objective function in Equation (8) is not simultaneously convex for
all variables, it can be transformed into a convex optimization problem for each vari-
able when the other variables are fixed. By introducing multiple auxiliary variables
V1, V2, V3, V4, V5, V6 to replace X, X+, XS, S+, B and W, and updating them alternately
during optimization, the objective function can be minimized. The augmented Lagrangian
function for Equation (8) can be written in the form of Equation (12):
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Lµ(X, S, B, W, H, V1, V2, V3, V4, V5, V6, Λ1, Λ2, Λ3, Λ4, Λ5, Λ6)

= 1
2‖Y−AV3 −MB−WH‖2

F + Φ(V1) + Ψ(H) + γ(V6) + ΛT
1 (V1 − X) + ΛT

2 (V2 − X) + ΛT
3 (V3 − XS)

+ΛT
4 (V4 − S) + ΛT

5 (V5 − B) + ΛT
6 (V6 −W) + µ

2 ‖V1 − X‖2
F +

µ
2 ‖V2 − X‖2

F +
µ
2 ‖V3 − XS‖2

F
+ µ

2 ‖V4 − S‖2
F +

µ
2 ‖V5 − B‖2

F +
µ
2 ‖V6 −W‖2

F + lR+(V2) + lR+(V4) + lRbound(V2)

(12)

where Λ1, Λ2, Λ3, Λ4, Λ5, Λ6 is the Lagrange multiplier and µ represents the penalty pa-
rameter. The overall process for solving Equation (12) is summarized in Algorithm 1, and
Appendix A provides a detailed explanation of the solution process for each sub-problem.
Algorithm 1 uses the classical multi-block ADMM optimization problem, which has been
widely applied and proven to converge to solutions. In our experiments, we randomly
selected blocks from three experimental datasets, and the convergence results for the corre-
sponding datasets are visualized in Figure 2. For theoretical proofs and applications of the
optimization problem, please refer to references [36–38].

Algorithm 1: AGBM-SV

Input: Y, A, M and parameters α, β, γ, η, maxIter
Output: X, S, B, W, H
while not converged or k > maxIter do

Vk+1
3 = (AAT + µI)

−1[
AT(Y−MBk −WkHk) + µXkSk −Λk

3

]
;

Hk+1 =
[
Wk(Wk)

T
+ βI

]−1[
(Wk)

T
(Y−AVk+1

3 −MBk)
]
;

Xk+1 =
[
µVk

1 + Λk
1 + µVk

2 + Λk
2 + µVk+1

3 (Sk)
T][

µSk(Sk)
T
+ 2µI

]−1
;

Sk+1 =
[
µ(Xk+1)

T
Xk+1 + µI

]−1[
µXk+1Vk+1

3 + (Xk+1)
T

Λk
3 + µVk

4 + Λk
4

]
;

Wk+1 =
[
(Y−AVk+1

3 −MBk)(Hk+1)
T
+ µVk

6 + Λk
6

][
Hk+1(Hk+1)

T
+ µI

]−1
;

Vk+1
6 = (γAAT + ηV6’ VT

6’ + µI)
−1

(ηV6’ + µWk+1 −Λk
6);

Vk+1
1 = max

{
0, ‖Xk+1 −Λk

1/µ‖1,1 − µ/α
}

sign(Xk+1 −Λk
1/µ);

Vk+1
2 = max

{
0, Xk+1 −Λk

2/µ
}

;

Vk+1
4 = max

{
0, Sk+1 −Λk

4/µ
}

;

Bk+1 = (MTM + µI)−1
[
MT(Y−AVk+1

3 − (WH)k+1) + µVk
5 −Λk

5

]
;

Vk+1
5 = min

{
max

{
0, Bk+1 −Λk

5/µ
}

, F
}

;
Update Lagrange multipliers by
Λk+1

1 = Λk
1 + µk(Vk+1

1 − Xk+1); Λk+1
2 = Λk

2 + µk(Vk+1
2 − Xk+1)

Λk+1
3 = Λk

3 + µk
[
Vk+1

3 − (XS)k+1
]
; Λk+1

4 = Λk
4 + µk(Vk+1

4 − Sk+1)

Λk+1
5 = Λk

5 + µk(Vk+1
5 − Bk+1); Λk+1

6 = Λk
6 + µk(Vk+1

6 −Wk+1)
end while
return X = Xk+1, S = Sk+1, B = Bk+1, W = Wk+1, H = Hk+1

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

Update Lagrange multipliers by 
1 1 1( )k k k k kμ+ + += + −1 1 1Λ Λ V X ; 1 1 1( )k k k k kμ+ + += + −2 2 2Λ Λ V X  

1 1 1( )k k k k kμ ++ +  = + −3 3 3Λ Λ V XS ; 1 1 1( )k k k k kμ+ + += + −4 4 4Λ Λ V S  

1 1 1( )k k k k kμ+ + += + −5 5 5Λ Λ V B ; 1 1 1( )k k k k kμ+ + += + −6 6 6Λ Λ V W  

end while 

return 1 1 1 1 1, , , ,k k k k k+ + + + += = = = =X X S B W H HS B W  

 

   
(a) Synthetic dataset (b) Urban data (c) Cuprite dataset 

Figure 2. Convergence analyses of AGBM-SV were experimentally performed on the Synthetic da-
taset, the Urban dataset and the Cuprite dataset. 

3. Experiments and Result 
In this section, we conduct simulation experiments on both synthetic and real HSI to 

demonstrate the unmixing performance and advantages of the proposed AGBM-SV. The 
proposed AGBM-SV algorithm is compared with several unmixing algorithms, including 
fully constrained least squares (FCLS) [39], ELMM, SUnSAL [40], SULoRA [41], ALMM, 
GBM-LRR [42], MUA-SV [23], LMM-SBD [43]. It should be noted that the GBM-LRR al-
gorithm does not consider spectral variability, and the FCLS, SCLSU, ELMM, SUnSAL, 
SULoRA, ALMM, MUA-SV and LMM-SBD algorithms are all based on the LMM frame-
work to handle spectral variability. 

As the optimization problem of variable dictionary learning is non-convex, it is im-
portant to initialize the data in the AGBM-SV algorithm. We use the SCLSU algorithm to 
initialize the abundance matrix ( )X  and use an orthogonal matrix to initialize the spectral 
variability dictionary ( )W  based on its properties [26]. For the endmember matrix, we 
first estimate the number of endmembers in the dataset using the Hysime algorithm [30], 
and then extract endmembers using VCA [31]. To ensure fair comparison, the experiments 
are conducted on the same computer with an Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz 
and 16 GB memory. 

3.1. Synthetic Dataset Experiments 
3.1.1. Synthetic Data Description 

The synthetic dataset contains 200 × 200 pixels with 224 spectral bands in the VIS and 
NIR. We randomly select five different mineral materials from the United States Geologi-
cal Survey (USGS) [31] as reference endmembers and generate a 200 × 200 abundance map 
using Gaussian fields, satisfying the ANC and ASC constraints. To make the synthetic 
data more realistic and reflect the spectral variability in real-world hyperspectral data, we 
applied scaling factors and complex noise to the spectral signature of each pixel, ensuring 
spectral variability in the provided synthetic data. Figure 3 shows a false color image of 
the synthetic data and five extracted endmembers. 

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Figure 2. Convergence analyses of AGBM-SV were experimentally performed on the Synthetic
dataset, the Urban dataset and the Cuprite dataset.



Remote Sens. 2023, 15, 3205 8 of 21

3. Experiments and Result

In this section, we conduct simulation experiments on both synthetic and real HSI to
demonstrate the unmixing performance and advantages of the proposed AGBM-SV. The
proposed AGBM-SV algorithm is compared with several unmixing algorithms, including
fully constrained least squares (FCLS) [39], ELMM, SUnSAL [40], SULoRA [41], ALMM,
GBM-LRR [42], MUA-SV [23], LMM-SBD [43]. It should be noted that the GBM-LRR
algorithm does not consider spectral variability, and the FCLS, SCLSU, ELMM, SUnSAL,
SULoRA, ALMM, MUA-SV and LMM-SBD algorithms are all based on the LMM frame-
work to handle spectral variability.

As the optimization problem of variable dictionary learning is non-convex, it is im-
portant to initialize the data in the AGBM-SV algorithm. We use the SCLSU algorithm to
initialize the abundance matrix (X) and use an orthogonal matrix to initialize the spectral
variability dictionary (W) based on its properties [26]. For the endmember matrix, we first
estimate the number of endmembers in the dataset using the Hysime algorithm [30], and
then extract endmembers using VCA [31]. To ensure fair comparison, the experiments are
conducted on the same computer with an Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz and
16 GB memory.

3.1. Synthetic Dataset Experiments
3.1.1. Synthetic Data Description

The synthetic dataset contains 200 × 200 pixels with 224 spectral bands in the VIS and
NIR. We randomly select five different mineral materials from the United States Geological
Survey (USGS) [31] as reference endmembers and generate a 200 × 200 abundance map
using Gaussian fields, satisfying the ANC and ASC constraints. To make the synthetic
data more realistic and reflect the spectral variability in real-world hyperspectral data, we
applied scaling factors and complex noise to the spectral signature of each pixel, ensuring
spectral variability in the provided synthetic data. Figure 3 shows a false color image of the
synthetic data and five extracted endmembers.
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Figure 3. (a) A false color representation of the synthetic dataset. (b) The five endmembers used for
data simulation.

The implementation steps for the synthetic dataset are as follows: First, considering
that each pixel in a real scene is unlikely to contain many endmembers, five endmembers
are set to ensure sparsity of abundance, and the spectral features of the given reference
endmembers are multiplied by spectral variability scaling factors in the range of (0.75,
1.25). Secondly, 25 dB white Gaussian noise is added to the scaled reference endmembers.
Then, nonlinear coefficients are uniformly set in the range of (0, 1) to obtain a nonlinear
abundance matrix, which is mixed for each pixel. Finally, 25 dB white Gaussian noise is
added to the generated pixels. For more details on this dataset, refer to [20]. Through
this process, a 200 × 200 × 224 simulated hyperspectral image is generated, and this
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simulated data of spectral variability can provide a more realistic experimental scenario.
The spectral variations in this simulated data will provide an appropriate scenario to verify
the proposed method.

3.1.2. Parameters Setting

Since the performance of the proposed AGBM-SV model is sensitive to the setting of
the regularization parameters α, β, γ, η and the number of basis vectors (D) in the spectral
variability dictionary (W), we tuned the above five parameters in the synthetic dataset to
determine the optimal combination of parameters for solving the objective function. In
order to accurately estimate abundances in AGBM-SV, the aRMSE is used as an important
metric for parameter tuning. Throughout the entire experimental process, a grid search
strategy is employed. Specifically, the optimal value for each parameter is evaluated while
keeping the other parameter fixed until the lowest aRMSE value is achieved.

Figure 4 illustrates the test results for the above five parameters, showing that the
performance of the AGBM-SV method is most sensitive to parameters D and α. It also
demonstrates the positive impact of selecting appropriate parameter values on unmixing
performance. The optimal parameters D and α, β, γ, η were determined using an approx-
imate convex curve. So the parameters of the proposed AGBM-SV method are set as
α = 1 × 10−3, β = 3 × 10−6, γ = 1 × 10−2, η = 3 × 10−4 and D = 125. To fairly assess the
unmixing performance, the optimal parameters for all of the involved methods are set
and recorded as follows. For the SUnSAL, the sparsity regularization is parameterized
by (1 × 10−3). The regularization parameter for the ELMM is set as (4 × 10−1, 5 × 10−3,
1 × 10−3). The parameters for ALMM are set as (2 × 10−3, 2 × 10−3, 5 × 10−3, 5 × 10−3,
100), and the SU-LoRA’s parameters are (1 × 10−1, 1 × 10−2, 8 × 10−3). For the GBM-LRR,
the parameters are set as (1 × 10−3, 1 × 10−3). The regularization parameter for the MUA-
SV is set as (4 × 10−1, 5 × 10−3, 1 × 10−3, 1 × 10−2) and patchsize is set to 4. For the
LMM-SBD method, the parameters are set to (6 × 10−1, 5 × 10−2) and the patchsize is set
to 5.
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Figure 4. Sensitivity analysis of 5 regularization parameters using the proposed AGBM-SV algorithm
on synthetic dataset (α, β, γ, η and the number of basis vectors (D) of W).

3.1.3. Evaluation Criteria

To evaluate the overall performance of the algorithm, we use the following four metrics
to quantify the experimental results: signal reconstruction error (SRE), abundance overall
root mean square error (aRMSE), reconstruction overall root mean square error (rRMSE),
and average spectral angle mapper (aSAM).
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(1) In simulation experiments, the SRE can be used to evaluate the performance of
different hyperspectral unmixing algorithms on hyperspectral data with known ground
truth abundance maps. The SRE measures the power between the signal and the error, and
is defined as follows:

SRE = 10 log10(
‖X‖2

F

‖X− X̂‖2
F

) (13)

where X and X̂ are the reference abundance matrix and the estimated abundance matrix
obtained from the unmixing algorithm, respectively. The higher the SRE (dB) value, the
better the algorithm’s unmixing performance.

(2) Similarly, we can employ aRMSE to measure the distance between the true abun-
dance and the estimated abundance, which is defined as follows:

aRMSE =
1
N

N

∑
k=1

√√√√ 1
R

R

∑
r=1

(xkr − x̂kr)
2 (14)

where xkr and x̂kr represent the corresponding true and estimated abundances for each
pixel. Generally, the smaller the value of aRMSE, the smaller the difference between the true
and estimated abundances. This indicates a better unmixing performance of the algorithm.

(3) For some real datasets, the true abundance map is generally unknown, so another
evaluation metric can be defined from the perspective of data reconstruction to assess the
performance of the algorithm. One of the evaluation metrics is rRMSE, defined by:

rRMSE =
1
N

N

∑
k=1

√√√√ 1
L

L

∑
l=1

(ykl − ŷkl)
2 (15)

where ykl and ŷkl represent the actual spectral signals and the estimated spectral signals for
each pixel, respectively.

(4) Similarly, aSAM can be used to evaluate the difference between the actual spectral
signal and the reconstructed spectral signal, expressed as:

aSAM =
1
N

N

∑
k=1

arccos

(
yT

k ŷk

‖yk‖‖ŷk‖

)
(16)

Generally, the smaller the rRMSE and aSAM values, the better the algorithm performance.

3.1.4. Results and Analysis

Table 1 shows the quantitative evaluation results for different algorithms. In addition
to using the four evaluation metrics (aRMSE, rRMSE, aSAM, SRE) to assess the algorithms,
a classification-based evaluation strategy is employed to approximate the overall accuracy
(OA) of the abundance maps for each method. Initially, a spectral angle mapper (SAM)
is used to generate rough classification results, where positive samples are labeled using
cosine similarity and negative samples are masked with 0. For the spectral unmixing results
of all methods, a classification map is obtained by assigning each pixel to the endmember
with the highest abundance value. Finally, the OA for different methods is computed using
the SAM classification results as the ground truth.

From Table 1, it can be concluded that the classical linear unmixing model FCLSU
shows the worst results in all of the evaluation metrics (aRMSE, rRMSE, OA, aSAM, SRE).
SUnSAL methods can achieve relatively low aRMSE values and high SRE values compared
with FCLSU. However, in terms of reconstruction error metrics, the rRMSE and aSAM
values are relatively high, so the overall evaluation of the effectiveness of SUnSAL is not
ideal. The SULoRA method shows relatively high values for aRMSE, rRMSE, and aSAM
metrics, and a relatively low abundance reconstruction error (SRE) compared with SUnSAL.
Compared with the above methods, ELMM and ALMM algorithms, which consider the
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spectral variability characteristics, have better results in all indicators, but they are still
slightly inferior to the proposed AGBM-SV method. Similarly, the evaluation metrics for
the MUA-SV and LMM-SBD methods, which consider spatial features, are inferior to those
of the AGBM-SV method. The GBM-LRR method only considers the nonlinear effects in
the data, but this leads to a large aRMSE metric value. Therefore, this indicates that spectral
variability should be fully considered in nonlinear models. The proposed AGBM-SV
method can simultaneously address the issues of nonlinearity and spectral variability, and
its experimental results perform the best among all quantitative indicators (aRMSE, rRMSE,
OA, aSAM, SRE). Moreover, from Figure 5a in the visualization of the aRMSE metric, it is
also evident that the AGBM-SV method outperforms the other comparative methods. On
the other hand, the required running time is relatively long due to the additional processing
steps required by the AGBM-SV method and the influence of the adjusted parameters in
the model.

Table 1. Quantitative performance comparison with the different algorithms on the synthetic dataset.
The best algorithm is marked in bold.

Indicators

Methods
FCLS SUnSAL SULoRA ELMM GBM-LRR ALMM MUA-SV LMM-SBD AGBM-SV

aRMSE 0.0776 0.0293 0.0347 0.0349 0.0511 0.02632 0.0400 0.0549 0.02304

SRE 11.1340 20.0440 19.1039 18.4204 15.0932 21.1857 17.1271 15.2241 22.3551

OA (%) 80.38 83.38 83.38 85.51 84.46 84.46 85.51 85.48 85.51

rRMSE 0.0145 0.0402 0.0361 0.0108 0.0185 0.01136 0.0263 0.0259 0.00998

aSAM (radians) 0.0365 0.0283 0.0272 0.0291 0.0303 0.03014 0.0263 0.0259 0.02531

Time (s) 3.2265 1.979 6.5918 45.1326 88.6863 91.8320 105.1899 98.6897 106.7590
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Figure 5. Visualization of the aRMSE evaluation metric between different algorithms for the Synthetic
dataset and Urban dataset, and the OA evaluation metric for the Cuprite dataset. (a) Synthetic;
(b) Urban; (c) Cuprite.

As can be seen in Figure 6, the first image in the first row represents the false-color
image of the synthetic dataset, while the remaining images in the row depict the classi-
fication results obtained by all methods based on the estimated abundance values. The
second to sixth rows show the reference abundance maps and the corresponding estimated
abundance maps by different algorithms, where each row represents a specific material,
and each column represents a comparative method. We can clearly observe that the abun-
dance map estimated by FCLSU has the largest deviation from the reference abundance
map. This is because FCLSU needs to estimate the abundance within a simplex, which
leads to large errors and also confirms that FCLSU has the worst quantitative evaluation
results. GBM-LRR considers nonlinearity and sets low-rank constraints, but it treats spec-
tral variability as nonlinearity, which results in poor estimation of abundance maps. The
SUnSAL algorithm shows a noticeable improvement in unmixing performance. ELMM can
model the scaling factors with reasonable prior information, but the estimated abundance
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maps contain obvious noise. ALMM improves the unmixing performance of the algorithm
by considering both the scaling factors and other spectral variability factors. SULoRA
achieves relatively distinct abundance maps by exploiting low-rank subspace effects and
by setting sparse constraints, but the abundance of the last endmember appears too sparse.
It is evident that the abundance maps estimated by LMM-SBD are influenced by different
endmembers and deviate significantly from the ground truth abundance maps. As ex-
pected, the performance of the proposed AGBM-SV method is superior to all the compared
methods, revealing that better abundance maps can be obtained when considering both
nonlinearity and spectral variability.
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by different methods based on estimated abundance values.

3.2. Real Dataset Experiments
3.2.1. Urban Dataset

The first real dataset uses hyperspectral data, which was collected in an urban area of
Copperas Cove, TX, USA, and has been widely used in research on hyperspectral unmixing.
The version of data we used was captured by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) sensor in 1995, which includes 307 × 307 pixels and 210 spectral
bands with a spectral resolution of 10-nm, ranging from 400 to 2500 nm. As the dataset
was also affected by some water absorption and noise during acquisition, we removed
bands 1–4, 76, 87, 101–111, 136–153, and 198–210, resulting in the use of 162 bands in the
experiments. Figure 7 shows a false color image of the study scene and the endmembers
used in spectral unmixing.

Four main endmembers can be observed in the urban dataset: trees, grass, roof, and
asphalt. Likewise, Hysime and VCA are adopted to determine the number of endmembers
and build the endmember dictionary for all algorithms, respectively. Then, the endmem-
bers can be identified by calculating the spectral angle of the estimated and reference
endmembers. To fairly assess the unmixing performance, we utilize the optimal parameters
as described in the literature. For the SUnSAL, the sparsity regularization is parameterized
by (3 × 10−3). The regularization parameter for the ELMM is set as (4 × 10−1, 1 × 10−3,



Remote Sens. 2023, 15, 3205 13 of 21

3 × 10−3). The parameters for ALMM are set as (5 × 10−2, 5 × 10−2, 1 × 10−2, 1 × 10−2,
80), and the SULoRA’s parameters are (1 × 10−1, 1 × 10−2, 5 × 10−3). For the GBM-LRR,
parameters are (1 × 10−3, 5 × 10−3). For the MUA-SV, parameters are set as (5 × 10−1,
3 × 10−1, 1 × 10−4, 1 × 10−3) and patchsize is set to 4. For the LMM-SBD method pa-
rameters are set to (1 × 10−1, 1 × 10−1) and the patchsize is set to 8. To maximize the
demonstration of the algorithm’s performance, a grid search strategy is also employed to
determine the regularization parameters of the AGBM-SV model. Therefore, the optimal
parameter settings for the AGBM-SV method are determined as α = 3 × 10−4, β = 3 × 10−2,
γ = 3 × 10−2, η = 3 × 10−2, and D = 40.
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Figure 7. (a) A false color representation of the urban dataset. (b) Four endmembers extracted by
VCA in spectral unmixing.

3.2.2. Result and Analysis of the Urban Dataset

As the urban dataset comes with a ground truth abundance map, the same five
evaluation metrics (aRMSE, rRMSE, OA, aSAM, SRE) as for the synthetic data can be
calculated for quantitative evaluation of the experimental results. Table 2 presents the
quantitative evaluation results among all algorithms. From this, it can be concluded that the
evaluation metrics of FCLSU are the worst among all the compared methods. In addition,
compared with FCLSU without sparse constraint, SUnSAL shows relatively high SRE
values, indicating that the mixed pixels in hyperspectral scenes are composed of a small
number of spectral combinations of materials. SULoRA, ELMM and ALMM obtained
similar results with low aRMSE and high SRE values for abundance estimation. Meanwhile,
ELMM and ALMM showed relatively small reconstruction error values (rRMSE, aSAM).
Although MUA-SV and LMM-SBD, which consider the spatial correlation of neighboring
pixels, have lower time efficiency, their evaluation metrics are relatively poorer compared
with the results of the AGBM-SV method. The proposed AGBM-SV method uses scaling
factors and a spectral variability dictionary in nonlinear modeling to overcome spectral
variability, resulting in better quantitative evaluation results than all comparison methods.
Figure 5b visualizes the results of the aRMSE metric for different methods on this dataset,
and it can be observed that the AGBM-SV method has smaller aRMSE values compared
with all the comparative methods. Regarding the time efficiency of the algorithm, although
AGBM-SV requires a longer time, it is still much faster than ELMM and ALMM in terms
of runtime.

Figure 8 shows the reference abundance maps and the estimated abundance maps
obtained by using all of the tested methods for endmembers: trees, grass, roof, and asphalt.
Similarly, the first row shows the classification results of different methods. Visually, the
classical FCLS mixing method cannot effectively detect all endmembers and obtain accurate
abundances. SUnSAL is able to effectively detect most of the materials in the scene, but
some trees are incorrectly identified as grass components. As shown in the fifth row of
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Figure 8. SULoRA obtains a purer identification for the materials of asphalt, while there is
still room for improvement in the abundance estimation of grass, trees, and roof. Although
ELMM considers scaling factors, it is difficult to interpret all endmember regions. Therefore,
it incorrectly estimates the abundance maps of some asphalt and roof materials, as shown in
the sixth row of Figure 8. ALMM can obtain good identification results for asphalt and roof
materials, but there are errors in the identification of grassland and trees. The reason for
this is that the nonlinear effects between grassland and trees have not been fully considered.
GBM-LRR had significant errors for all four materials, as it only considers the nonlinearity
caused by the second order scattering among multiple materials, and the spectral variability
that occurs in real scenes is excessively absorbed by the nonlinear term. Additionally, it is
visually clear that MUA-SV has a small error in identifying grassland, while the LMM-SBD
method shows a significant difference between the estimated abundance of all endmembers
and the true abundance map. As shown in the last column of Figure 8, the abundance maps
estimated by our proposed AGBM-SV method are consistent with the ground truth, and
the contrast among different endmembers is clearer. Therefore, the proposed method can
effectively handle spectral variability in nonlinear models.

Table 2. Quantitative evaluation of unmixing results for the urban dataset. The best results are
marked in bold.

Indicators

Methods
FCLS SUnSAL SULoRA ELMM GBM-LRR ALMM MUA-SV LMM-SBD AGBM-SV

aRMSE 0.1682 0.0532 0.0672 0.0545 0.1675 0.05852 0.0522 0.1180 0.04725

SRE 5.3261 12.6243 13.7612 14.1117 4.5810 13.70243 13.5781 8.3467 14.3269

OA (%) 77.49 89.90 89.90 88.92 85.99 88.07 89.48 78.19 90.40

rRMSE 0.0714 0.0641 0.0594 0.0356 0.0413 0.04709 0.0365 0.0493 0.03442

aSAM (radians) 0.3499 0.2662 0.1616 0.1653 0.1659 0.15647 0.1311 0.1693 0.12796

Time (s) 6.0048 0.9565 12.0794 1881.3487 264.1719 604.2580 105.1899 98.6897 400.1360
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3.2.3. Cuprite Dataset

The second real dataset is a hyperspectral image of the Cuprite mining area in western
Nevada, USA, collected by the AVIRIS sensor. This mining area is composed of multiple
minerals. This instrument has 224 spectral bands, with a wavelength range of 400–2500 nm
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and a spectral resolution of 10 nm. Evaluation was undertaken of the performance of the
AGBM-SV method and the comparative methods on a sub-image of size 250 × 191 pixels.
The reflectance image of Cuprite is corrected by removing the bands that are severely
affected by water absorption, atmospheric effects, and noise. Only 188 bands are used in
the experimental data. Figure 9 shows a false color image and the endmembers extracted
by VCA of the used scene. It needs to be noted that the Cuprite dataset exhibits spectral
variability and nonlinearity. For example, there is intra-class variability in the alunite mate-
rial, which can result in multiple spectral reflections for the same endmember. Additionally,
the scattered light from a given material is reflected by other materials before reaching the
sensor, indicating the presence of nonlinear effects in the data.
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Figure 9. (a) A false color image display of the cuprite dataset. (b) The fourteen endmembers
extracted by VCA in spectral unmixing.

Likewise, the main fourteen materials in Cuprite are identified using Hysime, and
endmembers are extracted using VCA. We visually compare the estimated abundance maps
and endmember features with those recovered in [44] to confirm the materials. To fairly
assess the unmixing performance, the optimal parameters for all the involved methods are
set and recorded as follows. The sparsity regularization of the SUnSAL is parameterized
by (5 × 10−3). The regularization parameter for the ELMM is set as (6 × 10−1, 5 × 10−3,
1 × 10−2). The parameters for ALMM are set as (1 × 10−2, 5 × 10−2, 5 × 10−2, 1 × 10−2,
90), and the SULoRA’s parameters are (1 × 10−3, 1 × 10−2, 3 × 10−3). For the GBM-LRR,
the sparsity and low-rank regularizations are parameterized by (3 × 10−3, 1 × 10−2). The
regularization parameter for the MUA-SV is set as (5 × 10−1, 1 × 10−2, 5 × 10−2, 1 × 10−2)
and patchsize is set to 6. For the LMM-SBD method parameters are set to (1 × 10−1,
2 × 10−1) and the patchsize is set to 28. The parameters of the proposed AGBM-SV method
are set as α = 3 × 10−4, β = 3 × 10−3, γ = 1 × 10−6, η = 1 × 10−1 and D = 155.

3.2.4. Result and Analysis of Cuprite

Due to the high mixing effect between minerals and the lack of true abundance maps,
some endmembers are quantitatively and visually evaluated. To highlight the differences
in abundance maps, we used the abundance maps obtained by extracting endmembers
using VCA as the reference abundances [31]. For quantitative evaluation, the rRMSE and
aSAM are calculated from the perspective of signal reconstruction. In order to effectively
utilize OA for quantitative evaluation of the performance of different algorithms, we only
considered four main minerals: Alunite, Muscovite, Kaolinite, and Buddingtonite. Figure 10
shows the abundance maps of some endmembers for all of the compared algorithms, as
well as the classification results obtained based on the estimated abundance values. The
reconstruction errors, OA and running times of all the algorithms are shown in Table 3. In
terms of running time, FCLSU, SUnSAL, SULoRA and LMM-SBD algorithms are fast due
to their simple implementation. Although the running time of the AGBM-SV method is
influenced by the preprocessing steps and regularization parameters in the model, it is still
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much faster than GBM-LRR and ELMM while achieving the highest unmixing accuracy.
Furthermore, Figure 5c visually presents the results of OA for different methods on the
dataset, indicating that the AGBM-SV method has a higher OA value compared with all of
the comparative methods.
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Table 3. Quantitative evaluation of unmixing results in the Cuprite dataset. The best results are
marked in bold.

Indicators

Methods
FCLS SUnSAL SULoRA ELMM GBM-LRR ALMM MUA-SV LMM-SBD AGBM-SV

OA (%) 48.74 66.41 70.85 62.30 72.09 72.85 53.34 56.85 74.81

rRMSE 0.0762 0.0365 0.1315 0.0136 0.0143 0.0149 0.0141 0.1041 0.0132

aSAM (radians) 0.1072 0.0627 0.0305 0.0302 0.0324 0.0302 0.0293 0.0474 0.0282

Time (s) 11.2194 1.3938 9.3784 1022.2259 723.3738 290.2690 256.9823 100.0563 396.6650

Based on the other quantitative and visual results, we performed the following analysis
of algorithm performance. The FCLSU abundance map strictly follows ANC and ASC, and
does not consider spectral variability, resulting in missing parts of the Alunite material.
SUnSAL improved the visual performance by relaxing the ASC, but the evaluated rRMSE,
aSAM and OA metrics are relatively high. Although SULoRA uses low-rank subspace
to handle spectral variability, the estimated abundance maps of this method have large
errors. As shown in the fourth row of Figure 10, SULoRA underestimated the abundance of
Buddingtonite and could not correctly identify Kaolinite material. ELMM and GBM-LRR
estimated abundances are mostly consistent and the reconstruction error rRMSE evaluation
metric is relatively small compared with SULoRA. The abundance maps of Muscovite and
Kaolinite estimated by ALMM are affected by other mineral materials in the background
region. This is caused by the inability of ALMM to handle the non-linear effects that
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exist between closely spaced minerals. Moreover, it is evident that LMM-SBD fails to
accurately estimate the Kaolinite material, and that it is significantly influenced by the
background area when estimating Alunite and Muscovite materials. The proposed AGBM-
SV method achieves relatively low values in the quantitative measures of reconstruction
error (OA, rRMSE, aSAM) compared with the comparison methods, and all estimated
endmember abundance maps are more distinct and show greater contrast. These results
reveal the potential of the proposed AGBM-SV method in dealing with spectral variability
in nonlinear models.

4. Conclusions

In this paper, we proposed an augmented GBM nonlinear model to address the spectral
variability in hyperspectral unmixing. The AGBM-SV method can ensure the consideration
of spectral variability in nonlinear unmixing. The main advantage of this model is that it
solves multiple scattering effects in real-world scenarios through GBM and handles spectral
variability by introducing scaling factors and spectral variability dictionaries. Based on the
characteristics of real-world material distribution, the sparsity and orthogonality of the
abundance matrix and spectral variability dictionary are constrained to guide the nonlin-
ear unmixing. Additionally, reasonable initialization of the abundance and endmember
matrices, and optimization of the objective function using multi-block ADMM, enhance
the effectiveness and convergence of the AGBM-SV method.

In the experimental results on synthetic and real datasets, we found that the model
that considers spectral variability estimated abundances more accurately than the model
that does not. Moreover, the unmixing method that considers spectral variability during
nonlinear unmixing was found to be superior to the method that only considers spectral
variability. Therefore, the proposed AGBM-SV method can handle spectral variability well
and obtain accurate abundance estimates for endmembers in nonlinear scenarios. Overall,
this method is more effective and is superior to classical nonlinear or variability-based
unmixing methods.

Our future work will focus on improving the execution efficiency of AGBM-SV, en-
abling it to achieve not only higher accuracy in abundance estimation but also faster
processing speed. We also plan to explore automatic selection methods for regularization
parameters to be applied in the AGBM-SV model. In terms of extending the applicability of
this method, one potential direction is to incorporate prior knowledge to guide the unmix-
ing process. This can involve considering the spatial correlation between neighboring pixels
and utilizing additional data sources, such as Lidar data, to accurately estimate scaling
factors and corresponding abundances. Such an extension will enhance the adaptability of
this method to real-world scenarios and improve its performance in complex environments.
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Appendix A

The objective function in Equation (12) does not satisfy the condition of simultaneous
convexity for all variables, but it is convex for each individual variable when other variables



Remote Sens. 2023, 15, 3205 18 of 21

are fixed. Therefore, we decompose the objective function into individual subproblems and
solve them separately. The specific process for decomposing and solving each subproblem
in Equation (12) is as follows.

For the optimization of V3: The problem is transformed and solved in the follow-
ing form:

V3 = argmin
V3

1
2‖Y−AV3 −MB−WH‖2

F + ΛT
3 (V3 − XS) + µ

2 ‖V3 − XS‖2
F

= (AAT + µI)
−1
[
AT(Y−MB−WH) + µXS−Λ3

] (A1)

For the optimization of H: The objective function for the optimization of H can be
written as follows and solved:

H = argmin
H

1
2‖Y−AV3 −MB−WH‖2

F + Ψ(H)

= (WWT + βI)
−1
[
WT(Y−AV3−MB)

] (A2)

For the optimization of X: The objective function for the optimization of X can be
written as follows and solved:

X = argmin
X

ΛT
1 (V1 − X) + VT

2 (V2 − X) + ΛT
3 (V3 − XS)

+ µ
2 ‖V1 − X‖2

F +
µ
2 ‖V2 − X‖2

F +
µ
2 ‖V3 − XS‖2

F

= (µV1 + Λ1 + µV2 + Λ2 + µV3ST)(µSST + 2µI)
−1

(A3)

where to satisfy the ASC constraint required by the objective function while removing the
scaling factor, we rewrite X in the following form:

X = X./
(

1TX
)

(A4)

where ./ represents matrix element-wise division.
For the optimization of S: The objective function for the optimization of S can be

written as follows and solved:

S = argmin
S

ΛT
3 (V3 − XS) + VT

4 (V4 − S) + µ
2 ‖V3 − XS‖2

F +
µ
2 ‖V4 − S‖2

F

= (µXTX + µI)
−1

(µXV3 + XTΛ3 + µV4 + Λ4)
(A5)

For the optimization of W: The objective function for the optimization of W can be
written as follows and solved:

W = argmin
W

1
2‖Y−AV3 −MB−WH‖2

F + ΛT
6 (V6 −W) + µ

2 ‖V6 −W‖2
F

=
[
(Y−AV3 −MB)HT + µV6 + Λ6

]
(HHT + µI)−1

(A6)

For the optimization of V6: We can adopt the method proposed in [32], where we
take V6’ as a fixed matrix throughout the current iteration process and obtain it from the
previous iteration’s V6. Therefore, the optimization process of V6 can be written as follows
and solved:

V6 = argmin
V6

γ
2 ‖A

TV6‖
2
F +

η
2 ‖V

T
6’V6 − I‖2

F + ΛT
6 (V6 −W) + µ

2 ‖V6 −W‖2
F

= (γAAT + ηV6’VT
6’ + µI)

−1
(ηV6’ + µW−Λ6)

(A7)
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For the optimization of V1: We use the well-known soft thresholding method [45]:

V1 = argmin
V1

Φ(V1) + ΛT
1 (V1 − X) + µ

2 ‖V1 − X‖2
F

= max
{

0, ‖X−Λ1/µ‖1,1 − α/µ
}

sign(X−Λ1/µ
) (A8)

For the optimization of V2: The objective function for the optimization of V2 can be
written as follows and solved:

V2 = argmin
V2

ΛT
2 (V2 − X) + µ

2 ‖V2 − X‖2
F + lR+(V2)

= max{0, X−Λ2/µ}
(A9)

For the optimization of V4: The objective function for the optimization of V4 can be
written as follows and solved:

V4 = argmin
V4

ΛT
4 (V4 − S) + µ

2 ‖V4 − S‖2
F + lR+(V4)

= max{0, S−Λ4/µ}
(A10)

For the optimization of B: The objective function for the optimization of B can be
written as follows and solved:

B = argmin
B

1
2‖Y−AV3 −MB−WH‖2

F + ΛT
5 (V5 − B) + µ

2 ‖V5 − B‖2
F

= (MTM + µI)−1[MT(Y−AV3 −WH) + µV5 −Λ5
] (A11)

For the optimization of V5: The objective function for the optimization of V5 can be
written as follows and solved:

V5 = argmin
V5

ΛT
5 (V5 − B) + µ

2 ‖V5 − B‖2
F + lRbound(V5)

= min{max{0, B−Λ5/µ}, F}
(A12)

The following are updates to the Lagrangian multipliers Λ1, Λ2, Λ3, Λ4, Λ5, Λ6 in each
iteration process:

Λ1 = Λ1 + µ(V1 − X); Λ2 = Λ2 + µ(V2 − X)
Λ3 = Λ3 + µ(V3 − XS); Λ4 = Λ4 + µ(V4 − S)
Λ5 = Λ5 + µ(V5 − B); Λ6 = Λ6 + µ(V6 −W)

(A13)
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