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Owing to their complimentary characteristics, global positioning system (GPS) and inertial navigation system (INS) are integrated,
traditionally through Kalman filter (KF), to obtain improved navigational solution. To reduce the overall cost of the system,
microelectromechanical system- (MEMS-) based INS is utilized. One of the approaches is to reduce the number of low-cost
inertial sensors, decreasing their error contribution which leads to a reduced inertial sensor system (RISS). This paper uses KF
to integrate GPS and 3D RISS in a loosely coupled fashion to enhance navigational solution while further improvement is achieved
by augmenting it with map matching (MM). The 3D RISS consists of only one gyroscope and two accelerometers along with the
vehicle’s built-in odometer. MM limits the error growth during GPS outages by restricting the predicted positions to the road
networks. The performance of proposed method is compared with KF-only 3D RISS/GPS integration to demonstrate the efficacy
of the proposed technique.

1. Introduction

Low-cost navigation applications are highly dependent on
satellite navigation systems, primarily global positioning sys-
tem (GPS). It is composed of a constellation of 24 (with room
to spare for some additional) satellites covering the globe in
a manner that ensures continuous worldwide coverage. To
obtain accurate positioning data, one must be in direct line
of sight with at least four satellites. The main advantage of
the GPS is that it can determine one’s location, accurate to
within a range of 30 m when using a single point positioning
technique, and to a few centimeters when using a differential
GPS technique [1–4]. However, the satellite signal can be
blocked in GPS-denied environments such as urban canyons
and tunnels. This is a major problem because there will be
an interruption in the real-time positioning information.
To overcome this navigational data gap, GPS is usually
integrated with an inertial navigation system (INS) because

it does not rely on any external sources [1–3]. The INS is a
self-contained system consisting of three accelerometers and
three gyroscopes which is mounted on the moving platform
to monitor linear accelerations and angular velocities. Given
the initial values of navigation parameters, the measurements
from INS can be processed to determine current position,
velocity, and attitude of the moving platform with respect
to a certain frame of reference [4, 5]. Since higher-end
INS are very expensive therefore not suitable for low-cost
applications, contemporary research is focused on micro-
electromechanical system- (MEMS-) based INS [6–8]. They
are the key to the navigation applications where size,
weight, and cost are the main concern, such as land vehicle
and pedestrian navigation. However, the MEMS-based INS
sensors suffer from noise, bias, and drift errors which
are much more serious than the higher-grade sensors [9,
10]. Therefore, when MEMS-based INS works unaided,
the performance will degrade very quickly compared to
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Figure 1: The map matching problem (adapted from [31]).

higher-grade INS [11]. Since a bias in accelerometer con-
tributes to an error in position which is proportional to t2

and a bias in gyroscope causes an error in position which is
proportional to t3, this research utilizes one gyroscope and
two accelerometers along with vehicle’s built-in odometer to
get a full 3D navigational solution [12].

Integrating INS with GPS has several advantages be-
cause they possess complementary error characteristics. GPS
bounds the INS drift in the long run whereas INS fills the
GPS data gaps during GPS signal interruption. The tradi-
tional method of INS/GPS integration is Kalman filtering
(KF) which can be implemented in a loosely coupled or a
tightly coupled manner. The loosely coupled scheme of
integration requires at least four satellites for GPS mea-
surement update whereas tightly coupled integration can
benefit from GPS even when only one satellite is available.
However, tightly coupled approach is much more complex
to implement and hardly any superior when more than three
satellites are visible. Both the aforementioned approaches can
be implemented in open- and closed-loop fashion. Open-
loop filters do not use feedback; the input data does not
use corrections whereas closed-loop filters use the previous
corrections to minimize the approximation errors [13, 14].

KF uses a linearized system and measurement models.
KF techniques suffer from divergence during outages due to
approximations during the linearization process, especially
when utilizing MEMS-based inertial measurement units
(IMUs). This problem can be avoided by using particle
filter (PF) which enhances the performance of the MEMS-
based INS by including the nonlinearities in the system and
measurement models [15, 16]. Particle filtering is a nonlinear
filtering technique that does not require the system model
to be linearized. It can accommodate for arbitrary sensor
characteristics, motion dynamics, and noise distribution
because of its ability to deal with nonlinear non-Gaussian
models [17, 18]. Other methods of integration have been
investigated based on artificial intelligence (AI), also known
as neural network (NN) [6, 19–24]. The major challenge of
PF or the AI method is the fact that they are computationally
expensive and may not be useful in some applications.

Map matching (MM) is the process of utilizing a
digital road network map database to improve the predicted
position errors during integration [25–29]. Motivated by the
simplicity and drawbacks of KF, this research will focus on

reducing the KF integration errors by utilizing MM. The
goal of MM is to match the estimated location with the
road network map [30]. Figure 1 gives a good representation
of the MM approach [31]. The left diagram displays the
person’s actual location on the actual streets whereas the
right diagram displays the set of estimated arcs (digital road
networks) with the estimated location and the MM location.
This example uses a piecewise linear solution to estimate the
arcs in the roads.

2. RISS/GPS Integration Using KF

KF uses a linearized system model and has several limita-
tions. It requires a stochastic model of the inertial sensor
errors and a priori information about the data covariance
provided by both inertial system and GPS [6, 32]. KF
techniques suffer from divergence during outages due to
approximations during the linearization process, especially
when utilizing MEMS-based IMUs. As a result, the inertial-
based position and velocity errors could grow quite signif-
icantly. The details of traditional KF and derivation of its
equations can be found in some excellent texts such as [33–
36]. However, a brief overview of KF equations is presented.

KF operates in two distinctive stages: (1) prediction stage
and (2) update stage. In the prediction stage, a new pre-
diction of the error states (1) and error covariance (2) are
determined for the next time step. The equations for the
prediction stage are as follows [35, 36].

Prediction of error states:

x̂−k = Φk,k−1x̂
+
k−1, (1)

where x̂k is the error state vector, (−) indicates the a priori
estimate while posteriori estimate is indicated with (+).
The Φ is the state transition matrix. The predicted error
covariance is expressed as follows.

Prediction of the error covariance:

P−k = Φk,k−1P
+
k−1Φ

T
k,k−1 + Gk−1Qk−1G

T
k−1, (2)

where G is the noise distribution matrix and Q is the covari-
ance of the system noise.

In the update stage, the KF makes corrections to the pre-
dicted state estimate based on new information from the GPS
measurements. These corrections are appropriately weighed
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though Kalman gain (3) which determines if the prediction
or the measurement should be trusted more. Then the Kal-
man gain is used to update the state estimate (4) and error
covariance matrix (5) as the posteriori estimate for the next
prediction stage.

Kalman gain:

Kk =
(
P−k

)
HT

k

(
HkP

−
k H

T
k + Rk

)−1
, (3)

where R is the covariance of the measurement noise and H is
the measurement design matrix.

Updating of error states:

x̂+
k = x̂−k + Kk

(
Zk −Hk x̂

−
k

)
, (4)

where Z is the difference between the INS and GPS position
and velocity components.

Updating of error covariance matrix:

P+
k = (I − KkHk)P−k , (5)

where I is the identity matrix.
This research used a loosely coupled 3D RISS/GPS inte-

gration approach. Loosely coupled integration helps assess-
ing the map matching better because if we use the tightly
coupled integration then during the partial GPS outage there
will be two or three satellites which will help the solution as
well as the map matching. Therefore to be able to better assess
the map matching, we focus on loosely coupled integration
because in loosely coupled integration, there is no satellites
at all during the outage and enhancement contribution will
come from map matching algorithm. As mentioned earlier,
due to the complex error characteristics of MEMS-based
sensors, this paper uses a different configuration of inertial
sensors where only one gyroscope and two accelerometers
along with the vehicle’s built-in odometer are used to ob-
tain a three-dimensional navigation solution [12, 37]. This is
termed as reduced inertial sensor system (RISS) as opposed to
full IMU which uses three gyroscopes and three accelerom-
eters. The 2D RISS was first introduced in [38] where a
KF was used for 2D RISS/GPS integration, a PF for 2D
RISS/GPS integration was proposed in [39]. The 3D RISS
was first introduced in [12], together with its full derivation,
and its detailed advantages over a full-IMU-based solution
and over 2D solutions. A tightly coupled KF 3D RISS/GPS
integration solution was proposed in [37]. As explained in
the aforementioned literature, there are only three sensors
contributing to the errors versus six. A gyroscope is mounted
so that its axis is aligned with the vertical axis of the
vehicle to obtain the azimuth, and the vehicle odometer
provides the forward speed [37]. Two accelerometers, instead
of gyroscopes, are used to compute the pitch and roll angles.
They are aligned with the forward and transversal axes of the
vehicle body frame. The pitch and azimuth angles are used
to calculate the velocities and then the position components
can be calculated.

The azimuth angle is calculated by integrating the gyro-
scope measurement ωz, as shown in (6). This measurement
includes the component of the Earth rotation and rotation of

the local level frame on the Earth’s curvature, these quantities
are removed from the measurement before integration [40],

Ȧ = −
[
ωz − ωe sinϕ−

ve tanϕ

RN + h

]
, (6)

where ωe is the Earth’s rotation rate, ϕ is latitude, ve is the
east velocity, RN is the normal radius of the earth ellipsoid,
and h is altitude.

When the vehicle is moving, the forward accelerometer
measures the forward vehicle acceleration as well as the com-
ponent due to gravity. Therefore, the following relationship
is used to calculate the pitch angle:

p = sin−1

(
fy − aod

g

)
, (7)

where fy is the forward accelerometer measurement, aod is
the odometer-derived acceleration, and g is the Earth’s grav-
ity.

The transversal accelerometer measures the normal com-
ponent of the vehicle acceleration and the component due to
gravity. Therefore roll angle is computed as follows:

r = −sin−1

(
fx + vodωz

g cos p

)
, (8)

where fx is the transversal accelerometer measurement and
vod is the odometer measurements.

The three velocities (east ve, north vn, and up vu) are
calculated using A, p, and vod through the following relation-
ship:

v =

⎡
⎢⎣
ve
vn
vu

⎤
⎥⎦ =

⎡
⎢⎣
vod sinA cos p
vod cosA cos p

vod sin p

⎤
⎥⎦. (9)

Then the time rate of change of the position components can
be obtained as follows:

ṙ
l =

⎛
⎜⎝
ϕ̇

λ̇

ḣ

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
1

RM + h
0

1

(RN + h) cosϕ
0 0

0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝
ve

vn

vu

⎞
⎟⎠ = D−1

v
l,

(10)

where λ is the longitude and RM is the meridian radius of the
earth ellipsoid.

When RISS is integrated with GPS using a KF to create
a 3D position solution, the error state vector has nine er-
ror states. They are latitude, longitude, and altitude errors
(δϕ, δλ, δh), the east, north and up velocity errors (δve,
δvn, δvu), the azimuth error δA, the gyroscope error δωz, and
the error from the odometer acceleration δaod. The stochas-
tic errors associated with the gyroscope and the odometer-
derived acceleration are modeled by Gauss-Markov model
where γod is the inverse of the autocorrelation time for the
odometer-derived acceleration noise, σ2

od is the variance of
odometer-derived acceleration noise, βz is the inverse of the
autocorrelation time for the gyroscope noise, and σ2

z is the
variance of the gyroscope noise. The complete error state
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Figure 2: Loosely coupled RISS/GPS KF integration diagram.

system model is expressed as follows with complete detail
shown in (12):

δẋRISS = FRISSδxRISS + GRISSwRISS, (11)

where δẋRISS is the state vector, FRISS is the 9 × 9 dynamic
coefficient matrix, GRISS is the 9 × 1 noise coupling vector,
and wRISS is the unit variance white Gaussian noise.

δẋRISS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δϕ̇

δλ̇

δḣ
δv̇e
δv̇n
δv̇u
δȦ
δȧod

δω̇z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1

(RM + h)
0 0 0 0

0 0 0
1

(RN + h) cosϕ
0 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 aod cosA cos p sinA cos p 0
0 0 0 0 0 0 −aod sinA cos p cosA cos p 0
0 0 0 0 0 0 0 sin p 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −γod 0
0 0 0 0 0 0 0 0 −βz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δϕ
δλ
δh
δve
δvn
δvu
δA
δaod

δωz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0√

2γodσ
2
od√

2βzσ2
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wR.

(12)

In order to provide optimal estimation of the above error
state vector δẋRISS, observations for the above system can be
provided in the following form:

δz = HδxRISS + γ, (13)

where δz is the observations vector giving the difference
between the RISS and GPS positions and velocities, H is
the design matrix giving the ideal noiseless relationship
between the observations vector and the state vector, and
γ is the vector of observations random noise, which is
assumed to be white sequence not correlated with the
RISS system noise. For the RISS proposed in this study,
the parameters of the measurement model are given as
follows:

δz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϕRISS − ϕGPS

λRISS − λGPS

hRISS − hGPS

ve,RISS − ve,GPS

vn,RISS − vn,GPS

vu,RISS − vu,GPS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

The measurement design matrix H would be 6 × 9 for the
position and velocity error states, and can be written as
follows:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The covariance of the measurement noise matrix R would
be a 6 × 6 matrix consisting of the position and velocity
measurement error covariance. Figure 2 shows the loosely
coupled RISS/GPS KF integration scheme.

3. Map Matching

Map matching (MM) is the process of utilizing a digital road
network map database to improve the predicted position
errors during integration. Motivated by the simplicity and
drawbacks of KF, this research will focus on reducing the
KF integration errors by utilizing MM. The goal of MM is
to match the estimated location with the road network map.
There have been many different approaches and algorithms
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to the MM problem that have been researched [26, 27]. This
paper focuses on three main algorithms from [31]. These
are point-to-point matching, point-to-curve matching, and
curve-to-curve matching.

The point-to-point matching algorithm is basically like a
search problem [30]. The algorithm matches the estimated
location, P, to the closest node or point in the network. This
could take a lot of time to calculate the distance from P to
every node in the network. Therefore, the user must identify
those nodes that are within a certain distance of P, and only
calculate those distances. The distance is dependent on the
type of data being use and it is up to the user to determine it.
In this research, a distance of 1000 meters from the current
prediction solution was used, which will be discussed later in
the next section. Point-to-point matching is very simple to
implement and fast, but it does have some problems during
execution. The algorithm is very sensitive to how the network
is digitized.

The point-to-curve matching algorithm tries to identify
the curve (arc) that is closest to P, rather than the point. The
same problem arises with the amount of time to calculate the
distance from P to every arc in the network. Therefore, the
user must identify those arcs that are within a certain distance
of P, and only calculate those distances. The network uses a
piecewise linear solution to estimate the arcs in the roads,
hence the algorithm must find the minimum distance from
P to each of the line segments and select the smallest. The
method used in the research is a combination of point-to-
point matching and point-to-curve matching because of the
format of the map data used.

The final approach is curve-to-curve matching, which
considers the estimated location as a curve, P, consisting of
points P0, P1, P2, . . . , Pm. Then it matches it to the closest arc,
which requires some measure of distance between curves.
There are different ways to measure the distance between two
curves. One way is determining the minimum distance and
matching it to that curve. Another technique is measuring
the average distance between the curves.

As described above, there are many different techniques
for MM. The algorithm is heavily dependent on how the
data or network is structured. This was a very important
challenge to overcome during this research. The method used
in this paper is a combination of point-to-point matching
and point-to-curve matching, which is dictated by the format
of the map data used.

4. Development of the Augmented KF/MM for
RISS/GPS Integration for Land Vehicles

The map data used in this research is integrated with inertial
sensor measurements through KF for reliable positioning
during GPS outages. The map data was provided by the
Queen’s university, Kingston ON, which was the 2009 street
data as a part of the Arc Geographic Information System
(ArcGIS) software produced by Environmental Systems
Research Institute Incorporated (ESRI). The data was in
shape files that consisted of latitude and longitude coordi-
nates and included all types of road ways: highways, rural
roads, and urban roads. The coordinates were the start points

Actual road

Map data

Figure 3: Representation of the map data during a turn.

and end points of line segments of every road. The data used
a piecewise linear solution to estimate the arcs in the roads.
Whenever there was a turn in the road a new line segment
was started and completed. Therefore the length of the line
segments varied depending on how straight or curved the
road was. Figure 3 gives a representation of the map data.
The size of the data was limited to the area of the trajectory
that was being experimented, which was the Kingston area.
This was very important because it reduced the actual size
of the data, which would affect the process time of the MM
algorithm. The map data was a large database of street line
segments.

The initial setup of the map data was a very crucial step in
this research. The data was already in latitude and longitude
coordinates which was a very good start. It was in a shape file
format, which was easily loaded into MATLAB 2009 using
the Mapping Toolbox. A shape file is a geospatial vector data
format for geographic information systems software. The
data was then converted into x and y coordinates in metres.
The x and y coordinates are the distances being travelled
along the East and North directions. This conversion had to
take into account a certain reference point, which was chosen
as the start point of the trajectory. The equations below were
used for the Easting and Northing calculations into metres:

y = Northmetres =
(
ϕ− ϕinitial

)
(RM + h), (16)

x = Eastmetres = (λ− λinitial)(RN + h) cosϕ, (17)

where ϕinitial and, λinitial are the latitude and longitude of the
point chosen to be the origin of the Cartesian coordinates
and h is the altitude.

Then the slope (m) and the y-intercept (b) for each line
segment were calculated. The slope was calculated using the
following equation:

m =

(
y2 − y1

)

(x2 − x1)
. (18)

The y-intercept was calculated using the equation of a
straight line, y = mx+b, which was rearranged to solve for b
as shown below:

b = y − (mx). (19)

All of these calculations were completed in a simple algo-
rithm with MATLAB, and once completed the results were
stored and saved in a database. A representation of how the
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Table 1: Map data setup.

Line segment start point Line segment end ooint Slope (m) Y-intercept (b)

X1 Y1 X2 Y2 m of the line segment b of the line segment

X2 Y2 X3 Y3 m of the line segment b of the line segment

X3 Y3 X4 Y4 m of the line segment b of the line segment

X4 Y4 X5 Y5 m of the line segment b of the line segment
...

...
...

...
...

...

New road begins

X1 Y1 X2 Y2 m of the line segment b of the line segment

X1, Y1

X2, Y2
X3, Y3

X4, Y4

X5, Y5

Figure 4: Road using four line segments.

data was stored is shown in Table 1. The first four rows in
Table 1 represent a road or street that contains four line
segments and five sets of coordinates as shown in Figure 4.
The database was quite large and would be used as look-up
table as part of the MM algorithm.

The MM algorithm is greatly dependent on the accuracy
of the map data. The data acquired was 2009 street data
which seems fairly new but there are more things to consider.
Highways and roads always have maintenance and construc-
tion frequently going on. An example is Highway 401 near
Kingston, ON, which is being expanded to accommodate
more lanes of traffic. Changes like this will greatly affect the
accuracy of the results of MM. However, regularly updating
the MM data would mitigate this effect.

Moreover, the size of the data is another limitation of
using map data. The size of the data for Kingston, ON,
and the surrounding area including Gananoque, ON, is
approximately 2.1 megabytes. This does not seem very large
but when it is being used as a look-up database, processing
time will be increased, especially when including larger areas
to cover.

4.1. Map Matching Algorithm. The map matching algorithm
developed during this research was the main contribution.
During GPS outages, the KF solution still had an error drift
due to the inertial sensors errors (including bias drift and
scale factor instability). The purpose for the development
of the MM algorithm was to improve this position error
drift during GPS outages. The method used in the paper is a
combination of point-to-point matching and point-to-curve
matching because of the setup of the map data used. The
results will compare the standalone KF results to the KF/MM
results.

Figure 5 is a flowchart of the MM algorithm that was
developed. The algorithm consists of five steps. Initially when
there is a GPS outage, the KF will go into the prediction
stage, and it will predict the position errors, velocity errors,
and the azimuth errors based on the dynamic error model.

Outage KF predicts the

position and azimuth

Ensure outage is within line

segment and not a

perpendicular projection

Azimuth threshold check

Determine all line
segments that have a start

or end point within 1000 m

Determine the nearest line
segment

Update position with map

matched coordinates

MM begins

Figure 5: Map matching algorithm flowchart.

The position, velocity, and azimuth components are then
obtained after removing these errors. The MM algorithm will
be then called as shown in Figure 5.

The first step is to determine all the line segments that
have a start or end point within 1000 metres from the GPS
outage, and store these line segments. The second step is the
azimuth threshold check, which stores all the remaining line
segments that pass this check. The third step is to ensure
that the GPS outage is within the line segment and does not
perpendicularly intersect the line outside of the line segment.
The fourth step is determining the nearest line segment from
the GPS outage. This step could contain many line segments
or only a few, depending on how many segments made it
through the first three steps. Final step is the map matching
step where position, latitude, and longitude are updated or
matched with the coordinates on the nearest line segment.
These five steps will be discussed in detail in the next five
sub-sections.

4.1.1. Finding All Line Segments within a Certain Distance.
The first step in the MM algorithm is to determine all the
line segments that have a start point or end point within 1000
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1000 m

(xoutage, youtage)

Figure 6: Map matching representation after step one.

metres from the GPS outage. When a line segment meets
these criteria, all the line segment information, start and end
point coordinates, slope, and y-intercept are stored in a new
database. The distance equations used are given as follows:

Distancestart =

√(
xoutage − x1

)2
+
(
youtage − y1

)2
,

Distanceend =

√(
xoutage − x2

)2
+
(
youtage − y2

)2
,

(20)

where the GPS outage latitude and longitude coordinates
are converted to xoutage and youtage using (16) and (17),
respectively.

Figure 6 is the start of a map matching example that will
be used to demonstrate the five steps of the MM algorithm.
After step one, the line segments are reduced to the segments
that have a start or end point within 1000 metres from the
GPS outage location.

As displayed in Figure 6, there is a possibility to have
many line segments that meet the criteria in step one of the
algorithm which are stored and carried over to step two.

4.1.2. Azimuth Threshold Check. The second step of the MM
algorithm is the azimuth angle threshold check. Azimuth
or heading is defined as the horizontal angle measured
clockwise from any fixed reference plane.

During this step the azimuth angle of each line segment,
carried over from step one, is calculated. The azimuth angle
is calculated as follows:

dx = x2 − x1,

dy = y2 − y1,

Azline segment = tan−1

(
dx

dy

)
.

(21)

Both directions of the line segment are compared to pre-
dicted KF azimuth angle. These two directions have heading

1000 m

(xoutage, youtage)

Figure 7: Map matching representation after step two.

(xoutage, youtage)1

2

Figure 8: Perpendicular line verification.

of Azline segment and Azline segment + 180◦. The threshold
of azimuth verification could be changed but typically a
threshold of 40◦ was used. Only the line segments below
this threshold are kept and the rest are rejected. Figure 7
indicates the line segments with dashes that are removed by
the azimuth threshold check.

4.1.3. GPS Outage Position Check. The third step of the
algorithm is to find between which line segments the GPS
outage actually lies. Figure 8 gives an excellent example of
the perpendicular line verification. The outage is closer to
line segment 2 but it is not in between the two points of
the segment. This step will remove the line segments that the
GPS outage does not fall within. However, this is done with a
tolerance so that line segments which are much closer could
also be considered.

This verification is completed by calculating the coordi-
nates where a perpendicular line from the GPS outage would
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(xoutage, youtage)

(x3, y3)

y3 = m2x3 + b2

y = mx + b

Figure 9: Representation of perpendicular intersection.

intersect the line segment. If these coordinates fall within the
line segment, that line segment is stored and carried over to
the fourth step. The following equations are used to complete
this step. We first start with calculating the normal slope of
the perpendicular line as follows:

m2 = −

(
1

mline segment

)
. (22)

This is then followed by calculating the y-intercept of the
perpendicular line with respect to the GPS outage,

b2 = youtage −
(
m2xoutage

)
. (23)

Consequently, if the two straight lines are made equal, x3 can
be solved for,

mx3 + b = m2x3 + b2,

x3 =
(b2 − b)

(m−m2)
.

(24)

To solve for y3, just use the equation of a straight line,

y3 = mx3 + b. (25)

In the above equation, (x3, y3) are the coordinates where
a perpendicular line from the outage would intersect the
line segment. Figure 9 gives an illustration of the above
procedure.

Then to verify if (x3, y3) are on the line segment, the
length of the line segment is compared to the distance of the
start point to (x3, y3). The same comparison is done with
the end point of the line segment. If the length of the line
segment is greater than both, then the line segment is stored
and carried over to step four.

Figure 10 displays the line segments that are removed
(dashed line segments) by the outage position check.

4.1.4. Determine the Nearest Line Segment. The fourth step
of the algorithm is just a basic calculation to determine the

1000 m

(xoutage, youtage)

Figure 10: Map matching representation after step three.

1000 m

(xoutage, youtage)

Figure 11: Map matching representation after step four.

closest line segment to the GPS outage. The perpendicular
distance from the outage to the line segment is calculated as
shown:

dperpendicular =

∣∣∣∣∣
−mxoutage + youtage − b

√
m2 + 1

∣∣∣∣∣. (26)

This perpendicular distance is calculated for all the remain-
ing line segments and then the line segment with the smallest
perpendicular distance is selected as the match. Figure 11
displays the line segments that are removed (dashed line
segments). The solid line segment is selected for the map
matching.

4.1.5. Update the Position. The fifth step is the final step of the
proposed algorithm and provides the actual map matching.
Here the position, latitude, and longitude are updated or
matched with the perpendicular coordinates, (x3, y3), on the
nearest line segment. This is shown in Figure 12.



International Journal of Navigation and Observation 9

(xoutage, youtage)
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location

Figure 12: Map matching step.

GPS outage
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obtain integrated
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Predict position,

velocity, and

azimuth errors

KF prediction

mode

Figure 13: KF prediction stage block diagram.

The (x3, y3) coordinates must be converted to latitude
and longitude. For the latitude, this is done by rearranging
(16) as follows:

ϕ =
(

Northmetres

RM + h

)
+ ϕinitial. (27)

For the longitude, the conversion is done by rearranging (17)
as follows:

λ =

(
Eastmetres

(RN + h) cosϕ

)
+ λinitial, (28)

where Northmetres is y3 and Eastmetres is x3.

4.2. Integration of MM Algorithm with KF. The above MM
algorithm is integrated with the KF-based method of

Integrated navigation

solution

MM is performed

(update position with

new latitude and
longitude)

Sent to MM algorithm

Create GPS outage

coordinates

Figure 14: Integration of MM algorithm with KF-based solution.

Figure 15: Data collection equipment mounted inside the road test
vehicle.

RISS/GPS integration. While at least 4 GPS satellites are
visible, GPS will provide update to the KF. Initially when
there is a GPS outage, the KF will go into the prediction
stage and it will predict the position errors, velocity errors,
and the azimuth errors based on the dynamic error model.
The integrated navigated solution (position, velocity, and
azimuth components) is then obtained after removing these
errors. Thle above procedure is shown by the block diagram
in Figure 13.

The latitude and longitude from the integrated naviga-
tion solution are sent to the MM algorithm as the GPS
outage coordinates. Then the MM algorithm commences
and the integrated navigation solution is updated by the map
matched position. This is shown by the block diagram in
Figure 14.

The map matching algorithm discussed above is very
intuitive which was implemented with the KF algorithm that
was already developed by our research group. As will be
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Simulated GPS outage

Start point

End point

Trajectory direction

Figure 16: Kingston downtown trajectory, ten outages are shown by circles.
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Figure 17: Maximum error in position (m) for Kingston downtown
trajectory.

shown in the next section, the KF results could not com-
pensate all the errors caused by the inertial sensors whereas
MM algorithm mitigated most of the errors and improved
the navigational solution to a great extent which was limited
mostly by the accuracy of the map data used.

5. Experimental Results

This section introduces the equipment used and describes
the road tests performed to assess the efficacy of the MM
algorithm. The results will be shown with the different
trajectories that were examined. The focus will be on King-
ston area trajectories, including downtown, rural, and
highway driving. The results of the proposed method,
augmented KF/MM integration, will be discussed in detail
and compared to the results of the traditional method of KF-
based RISS/GPS integration for land vehicles. The developed
method was examined through real road test trajectories by
introducing GPS outage at various places encompassing the
scenarios of a typical road trajectory.

Crossbow IMU300CC MEMS-based inertial sensors were
used for the experiments [41]. The IMU is a six-degree-of-

freedom inertial system that uses solid-state devices to
measure the angular rate and linear acceleration. This IMU
was utilized in RISS architecture, and the performance was
examined on real road data collected over various trajecto-
ries.

The reference solution used to evaluate the proposed
method is based on the Honeywell HG1700 AG11 high-
end tactical-grade IMU. This IMU was integrated with the
NovAtel GPS receiver using an off-the-shelf assembly, the
G2 Pro-Pack SPAN unit, also developed by NovAtel [42].
This integrated system provides a tightly coupled RISS/GPS
navigation solution, which was used as the reference for
comparisons of the proposed methods. The forward speed
(odometer data) was gathered from the vehicle’s built in
sensors and collected by the On-Board Diagnostics version
II (OBD II) interface using a device called CarChip [43].
The setup inside the road test vehicle is shown in Figure 15.
It may be noted that GPS used for the system is of higher
quality; however, the focus of the paper was not to see the
performance of the algorithm during inaccurate readings of
GPS but the ability of the algorithm to bridge the complete
GPS outages. Since the outages were simulated, the quality
of GPS is not a main factor to consider here, especially
when the outages simulate total blockage of the GPS
signals.

It may be noted that the trajectory figures were created
using GPS Visualizer [44] which uses Google maps and
suffers from small errors due to which even the reference tra-
jectories sometimes seems off road, especially when zoomed
in. However, for calculation purposes, reference trajectory is
considered as the best solution. Another point worth noting
is that the map data does not match perfectly with the
reference solution. One of the most obvious reasons for this is
that the map data uses a piecewise linear solution to estimate
the arcs in the roads, whereas the reference solution was
taken from the integrated RISS/GPS solution provided by
the NovAtel SPAN unit which is mounted inside the vehicle
and produces data at 100 Hz producing which is virtually
continuous. Also, the map data used one single line segment
(down the centre line) for urban and rural streets. It did not
have a line segment for both directions. Therefore, there is
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Figure 18: GPS outage three during the Kingston downtown trajectory.

Figure 19: Zoomed-in portion of MM error during GPS outage three.

already a small margin of error between the map data and
the reference solution.

5.1. Kingston Downtown Trajectory. The first trajectory ex-
amined pertained to downtown Kingston, ON. The majority
of this trajectory is urban driving. There were ten inten-
tionally introduced GPS outages of 60 seconds to examine
the performance during the outages, focusing on areas like
sharp turns and curves in the road which represent the
most demanding scenarios for the proposed MM approach.
Another challenging feature of this trajectory was its variable
speed with frequent stops and sudden accelerations. The
velocity of the vehicle was constantly changing due to traffic
lights, pedestrians, and sharp turns. Figure 16 displays the
downtown Kingston trajectory with GPS outages depicted
with circles during which the results of the proposed KF/MM
method were compared to the standalone KF and reference
solutions.

The maximum position error (meters) for all the ten
outages of the downtown Kingston trajectory are shown by
the bar graph in Figure 17. Both solutions, the KF based and
KF/MM based, were compared against the reference solution,
which is shown in Figure 16. It may be noticed that the pro-
posed KF/MM method showed an improvement over the
standalone KF method in all the ten GPS outages. Dur-
ing outage 10, the proposed KF/MM showed the most

improvement (90%) which happened to be during a turn.
The KF solution had a maximum position error of 88 m
whereas the KF/MM solution differed only 8 m from the
reference trajectory. For GPS outage seven, we observed a
maximum position error of 22 m for the KF-based solution
and only 11 m for the KF/MM solution which is an im-
provement of 50%. We will now take a closer look at three
of the GPS outages and discuss how MM greatly improved
the results.

GPS outage three is a good example of an outage oc-
curring during a turn at a higher speed which is depicted
in Figure 18. The trend of KF solution is similar to GPS
outage one where it constantly drifts away from the reference
whereas KF/MM solution limits the error growth.

It should be observed that the KF/MM solution matches
the wrong road about half way through the GPS outage. This
portion of Figure 18 is zoomed in and shown in Figure 19.
This is a unique situation because there is a small separation
between two streets until they meet to make one street. The
two streets have the same azimuth angle or heading, therefore
they would both pass the azimuth threshold check during the
MM algorithm. When the first match occurred to the wrong
street, displayed by the circle, the KF-based solution is closer
to the wrong street until the two streets connect together.
Therefore, the MM algorithm is actually operating correctly
but in this unique situation the algorithm is matching to the



12 International Journal of Navigation and Observation

Figure 20: GPS outage nine during the Kingston downtown trajectory.

Figure 21: GPS outage ten during the Kingston downtown trajectory.

wrong street for approximately 2 seconds. A possible way
to correct this is to use the previous map matched position
and the velocity. If the distance from the new map-matched
position to the previous map matched position is too large
for the velocity being travelled, the algorithm would choose
the second nearest line segment.

Figure 20 shows a closer look at GPS outage nine. The
KF-based solution has a maximum position error of 26 m
and the KF/MM-based solution has a maximum error of 6 m,
which is an improvement of 77%. It is easily recognizable
that the KF-based solution (green) has a constant error drift
from the road or reference solution. This is due to the
MEMS sensors which have a constant error drift over time.
The developed method of KF/MM (blue) limited the error
drift, by constantly matching the position back to the actual
road. The MM is performed at every iteration during the
outage.

GPS outage ten is the best example of how the MM algo-
rithm improved the overall accuracy of the position informa-
tion. Figure 21 shows the performance during GPS outage
ten, which starts during a sharp turn before the LaSalle
causeway. The KF-based solution has a maximum position
error of 88 m and the KF/MM solution has a maximum

position error of only 8 m. This is an improvement of 90%.
The KF-based solution (green) is constantly drifting from the
reference and the KF/MM-based solution is limiting the error
growth by restricting it to the actual road.

The KF/MM has shown promising results for the King-
ston downtown trajectory where the majority of the GPS
outages occurred on urban road ways. The next trajectory,
which took place in Kingston suburbs, is chosen to assess the
performance of the proposed algorithm in mostly rural areas
with some urban portions.

5.2. Kingston Suburbs Trajectory. The second trajectory that
was examined was a trajectory of the suburbs of Kingston,
ON. The majority of this trajectory is rural with some
urban driving. There were ten intentionally introduced GPS
outages of 60 seconds to examine the performance during
the outages, focusing on areas like sharp turns and curves on
the road ways. Another great feature about this trajectory is
that some of the GPS outages could be simulated at much
higher speeds reaching 80 km/hr. Figure 22 displays the
Kingston suburbs trajectory with the ten circles marking
the location of the simulated GPS outages during which
the positional error of KF and KF/MM is compared. The
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Figure 22: Kingston suburbs trajectory, ten outages are shown by circles.
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Figure 23: Maximum error in position (m) for the Kingston
suburbs trajectory.

maximum position error (meters) for the Kingston suburbs
trajectory is shown in the bar graph of Figure 23.

Both solutions, the KF based and KF/MM based, were
compared against the reference solution, which is shown
in Figure 22. The proposed KF/MM method showed an
improvement over the KF-based solution in all GPS outages
except GPS outage 8 which will be examined in detail later. It
can be seen that GPS outage five, which was simulated during
a sharp turn (greater than 90◦), has a maximum position
error of 28 m for the KF-based solution and 16 m for the
KF/MM based solution. This is an improvement of 43% or
12 m in positional error. GPS outage six has a maximum
position error of 10 m for the KF-based solution and only 2 m
for the KF/MM-based solution, which is an improvement of
80%.

In GPS outage eight, the KF-based solution had a maxi-
mum position error of 48 m and the KF/MM-based solution
also had a large maximum position error of 49 m. As
shown in Figure 24, the KF-based solution (green) has a
familiar drift which takes the solution away from the road
or the reference solution. The developed KF/MM method

does correct this error drift throughout the outage except for
one iteration as shown in Figure 25. For this one iteration
the MM algorithm selects the wrong road; matched to the
intersecting road (Caton Road). This is the reason why both
solutions have a large maximum position error. During the
next iteration, the algorithm corrected itself and matched
back to the correct road. It may be visualized that KF/MM
is still better then KF because it stays close to the reference
except for a short time whereas KF starts to go away from the
reference right from the onset of the outage. This is evident
from the RMS error of the outage which is only 19 m for
KF/MM-based solution as compared to 31 m for KF-based
solution.

GPS outage nine is another example of how MM is
restricting the positioning solution of the developed KF/MM
method to the actual road. The KF-based solution has
a maximum position error of 10 m and the KF/MM-
based solution has a maximum error of 7 m, which is an
improvement of 30%. This GPS outage occurred during a
straight stretch with an average velocity of 50 km/hr.

5.3. Gananoque Trajectory. The third trajectory was con-
ducted mostly in rural areas with slow to medium speeds in
straight as well as winding patches of the road. This trajectory
is called Gananoque trajectory as it passes through this town
and is shown in Figure 26.

There were ten intentionally introduced GPS outages of
60 seconds to examine and compare the performance of
the algorithms. The insertion of the outages was carefully
planned such that they include straight portions, sharp turns,
and curves on the road ways. This trajectory also included
areas where outages could be simulated at higher speeds
reaching up to 80 km/hr. Figure 26 displays the Gananoque
trajectory with the ten GPS outages which were included for
performance analysis.

As shown by the bar graph in Figure 27, the developed
KF/MM method greatly improved the accuracy of the results.
RISS/GPS integration for land vehicles using the developed
method of KF/MM had an average maximum position
error of 13.5 m and the KF-based solution had an average
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Figure 24: GPS outage eight during the Kingston suburbs trajectory.

Figure 25: MM error during GPS outage eight.

maximum position error of 25.8 m. This is an overall average
improvement of 46%.

We will now take a closer look at the GPS outage which
was simulated on highway 2 during a slight turn with an
average velocity of 80 km/hr. During this outage, the KF-
based solution has a maximum position error of 22 m and
the KF/MM-based solution has a maximum error of 11 m
which is an improvement of 50%. Although there are errors
in the KF/MM solution due to piecewise approximation of
the road inherent in the map data, the output trajectory is
mostly within the road boundaries.

GPS outage ten had the most significant improvement.
The KF-based solution has a maximum position error of
52 m while the developed KF/MM based solution has a max-
imum position error of 12 m. This is a large improvement of
77% or 40 m in accuracy.

6. Conclusion

This paper focused on reducing the KF-based RISS/GPS inte-
gration errors by augmenting it with MM. MM limited the
error growth during GPS outages by restricting the position
solution to the road network. This was accomplished by
using digital maps of the road networks as a constraint in
the integration process. To reduce the errors contributed by

the low-cost inertial sensors, a reduced inertial sensor system
was used where only one gyroscope and two accelerometers
were used along with built-in odometer of the vehicle,
which constitute the 3D RISS. Owing to its simplicity and
comparable accuracy during good satellite visibility, loosely
coupled integration was used for integration of inertial
sensors and odometer with GPS. The proposed method,
augmented KF/MM for 3D RISS/GPS integration, was tested
on three disparate trajectories by simulating ten GPS outages
in each trajectory at various locations including straight
portions, slight turn as well as sharp bends. It was also
ensured to include different dynamics by choosing low and
high speeds, stops, and sudden accelerations. The results of
the proposed method were analyzed in detail and compared
with the traditional method of KF-based 3D RISS/GPS
integration for land vehicles. To elucidate the comparison
and clarify the exceptions to the performance of the proposed
algorithm, individual outages were discussed. It was found
that the proposed method outperformed the KF solution in
all the three trajectories with a clear margin despite being
dependent on the accuracy of the map data. For the first
trajectory, the average improvement in maximum position
error of the KF/MM method over KF-only method was 59%.
For the second trajectory and third trajectory, it was 30%
and 46%, respectively. By this account, overall, the average
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Figure 26: Gananoque trajectory, ten outages are shown by circles.
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Figure 27: Maximum error in position (m) for the Gananoque
trajectory.

improvement in maximum position error of the proposed
method over traditional KF-only method was about 45%.
There were few instances where the apparent performance of
the proposed algorithm was poorer. These were highlighted
and probable reasons and possible solutions were furnished
where required.
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