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Abstract

The matrix separation problem aims to separate a low-rank matrix and a sparse matrix from their

sum. This problem has recently attracted considerable research attention due to its wide range of

potential applications. Nuclear-norm minimization models have been proposed for matrix separation and

proved to yield exact separations under suitable conditions. These models, however, typically require the

calculation of a full or partial singular value decomposition (SVD) at every iteration that can become

increasingly costly as matrix dimensions and rank grow. To improve scalability, in this paper we propose

and investigate an alternative approach based on solving a non-convex, low-rank factorization model by

an augmented Lagrangian alternating direction method. Numerical studies indicate that the effectiveness

of the proposed model is limited to problems where the sparse matrix does not dominate the low-rank

one in magnitude, though this limitation can be alleviated by certain data pre-processing techniques.

On the other hand, extensive numerical results show that, within its applicability range, the proposed

method in general has a much faster solution speed than nuclear-norm minimization algorithms, and

often provides better recoverability.

Keywords. matrix separation, alternating direction method, augmented Lagrangian function.

1 Introduction

Recently, the low-rank and sparse matrix separation problem has attracted increasing research interest with

potential applications in various areas such as statistics and system identifications [17, 18, 34]. The problem

is to separate a low-rank matrix L∗ and a sparse matrix S∗ from their given sum D ∈ R
m×n, i.e.,

Find a low-rank L∗ ∈ R
m×n and a sparse S∗ ∈ R

m×n such that L∗ + S∗ = D. (1)

We will call this problem sparse matrix separation (SMS) for brevity, omitting mentioning low-rankness since

it is the assumed property (just like in matrix completion where low-rankness is omitted). It has been shown

in [3, 9, 10, 21, 44] that, under some suitable conditions, the solution to problem (1) can be found by solving

the convex optimization problem:

min
L,S∈Rm×n

‖L‖∗ + µ‖S‖1 s.t. L+ S = D, (2)
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where µ > 0 is a proper weighting factor, ‖L‖∗ is the nuclear norm of L (the sum of its singular values) and

‖S‖1 is the sum of the absolute values of all entries of S (not the matrix 1-norm). Model (2) is called robust

principal component analysis in [33, 44] or principal component pursuit in [21]. As is now well known,

ℓ1-norm minimization has been used to recover sparse signals in compressive sensing (see, for example,

[5, 6, 7, 13]), and nuclear-norm minimization has been used to recover a low-rank matrix from a subset of

its entries in matrix completion (see, for example, [2, 42]).

Several algorithms have been developed to solve the convex model (2). One type of algorithms is based on

a scheme called iterative shrinkage which has been successfully applied to ℓ1 minimization ([12, 16, 19, 25],

for example), and to matrix completion [2, 35]. Extensions of this basic shrinkage scheme have been devised

to solve model (2) in [43, 44]. To accelerate the convergence of the basic shrinkage scheme, a projection

gradient algorithm was presented in [33], utilizing Nesterov’s acceleration approach [36, 39]. Also in [33], a

gradient projection-like method was proposed to solve a dual problem of model (2).

Another type of algorithms is based on the classic augmented Lagrangian alternating direction method

(ALADM or simply ADM) that minimizes the augmented Lagrangian function of model (2) with respect to

one variable, either L or S, at a time while fixing the other at its latest value, and then updates the Lagrangian

multiplier after each round of such alternating minimization. This ADM framework has been implemented

by Yuan and Yang [46] in a code called LRSD (Low Rank and Sparse matrix Decomposition), and by Lin,

Chen, Wu and Ma [32] in a code called IALM (Inexact Augmented Lagrangian Method); though due to

implementation differences, LRSD and IALM often behave quite differently. In [32], an exact augmented

Lagrangian method (EALM) is also implemented that runs multiple rounds of alternating minimization

before the Lagrangian multiplier is updated.

The most expensive computational task required by nuclear-norm minimization algorithms is to perform

singular value decomposition (SVD) at each iteration, which becomes increasingly costly as the matrix

dimensions grow. Instead of doing a full SVD at each iteration, one may perform a partial SVD by only

calculating the dominated singular values and vectors. When the involved ranks are relatively low, partial

SVD schemes can be much faster than a full SVD one, though they do require the ability to reliably estimate

the rank of the involved matrix. In the two ADM codes LRSD and IALM mentioned above, the former uses

the full SVD while the latter uses a partial SVD scheme.

Even with partial SVD implementations, the scalability of nuclear-norm minimization algorithms are

still limited by the computational complexity of SVD as matrix sizes and ranks both increases. To further

improve the scalability of solving large-scale matrix separation problems, in this paper, we propose and

study an alternative model and an algorithm for solving the model. As in [42, 49], we explicitly apply a

low-rank matrix factorization form to L rather than minimizing the nuclear norm of L as in (2), avoiding

SVD computation all together. As simple as the motivation is, a number of issues needs to be carefully

addressed in order to make this approach work reliably and efficiently.

In practical applications, some entries of the data matrix D may be corrupted or missing (see a discussion

in [3]). To accommodate this possibility, we consider a more general model than (1) in which only a subset

of the entries in D are given. Let Ω be an index subset,

Ω ⊆ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Let PΩ(M) be the projection of a matrixM ∈ R
m×n onto the subspace of matrices whose nonzeros entries are

restricted to Ω. That is, [PΩ(M)]ij = 0, ∀(i, j) /∈ Ω. Similarly, PΩc(M) is the projection to the complement

subspace.
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Given PΩ(D) and assuming that the rank of L does not exceed a prescribed estimate k < max(m,n), we

first consider the model:

min
L,S∈Rm×n

‖PΩ(S)‖1 s.t. PΩ(L+ S) = PΩ(D), rank(L) ≤ k. (3)

Obviously, the low-rank matrix L can be expressed, non-uniquely, as a matrix product L = UV where

U ∈ R
m×k and V ∈ R

k×n. For clarity, we will use the letter Z for the variable L. Replacing the constraint

rank(Z) ≤ k by Z = UV , substituting S = D − Z into (3) and simplifying, we arrive at a new model with

three variables,

min
U,V,Z

‖PΩ(Z −D)‖1 s.t. UV − Z = 0, (4)

where U ∈ R
m×k, V ∈ R

k×n for some given but adjustable rank estimate k > 0, and Z ∈ R
m×n. In

particular, problem (4) is called a partial-data model if Ω is a proper subset of the full index set; otherwise,

it is called a full-data model. 1

The motivation for proposing the low-rank factorization model (4) is that it is hopefully much faster to

solve this model than model (2). However, two potential drawbacks are apparent: (a) the non-convexity

in the model may prevent one from getting a global solution, and (b) the approach requires an initial rank

estimate k. In this paper, we present convincing evidences to show that (a) on a wide range of problems

tested, the low-rank factorization model (4) is empirically as reliable as the nuclear norm minimization model

(2); and (b) at least for “well-conditioned” low-rank matrices the initial rank estimate need not to be close

to the exact rank.

Recently, the idea of replacing the rank constraint by the product of two low-rank matrices has been

applied to matrix compressed sensing problem [24] and matrix completion problem [42]. In these works, the

variables U and V appear only in the objective functions which are minimized either by an Gauss-Seidel-

like scheme [24] or by an SOR-like scheme [42]. In the current paper, we devise an augmented Lagrangian

alternating direction method (ALADM or ADM) to solve model (4). The approach of ADM has been

widely used in solving convex optimization and related problems, including problems arising from partial

differential equations (PDEs) [20, 23], variational inequality problems [26, 27], conic programming [14, 41],

various nonlinear convex programming [1, 11, 28, 29, 38], zero-finding for maximal monotone operators

[15], and ℓ1 minimization arising from compressive sensing [40, 45, 48]. Recently, numerical results in [49]

on nonnegative matrix factorization show that ADM can also perform well for solving certain non-convex

models.

Our main contribution in this work is the development of a practically efficient solution method that offers

much enhanced scalability in solving large-scale matrix separation problems, providing accelerations up to

multiple orders of magnitude on some difficult instances. We present comprehensive numerical evidence to

show the effectiveness of the proposed approach, and also identify and discuss weaknesses and limitations of

the proposed approach.

This paper is organized as follows. An alternating direction method (ADM) for solving model (4) is

introduced in Section 2.1. A preliminary convergence result for our algorithm is presented in Section 2.2

indicating that whenever the algorithm converges, it must converge to a stationary point. Section 3 describes

the set-up for our numerical experiments. Extensive numerical results are presented in Section 4 comparing

our algorithm with two state-of-the-art nuclear-norm minimization algorithms. We also discuss limitations

of our approach in Section 4.

1After completing the first version of this paper, we have found a very recent work [37] that extended the nuclear-norm

minimization model (2) to include partial-data situations, and studied an augmented Lagrangian based algorithm.
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2 Augmented Lagrangian Alternating Direction Algorithm

2.1 The algorithmic framework

We first present an augmented Lagrangian alternating direction method for solving (4). The augmented

Lagrangian function of (4) is defined as

Lβ(U, V, Z,Λ) = ‖PΩ(Z −D)‖1 + 〈Λ, UV − Z〉+ β

2
‖UV − Z‖2F , (5)

where β > 0 is a penalty parameter and Λ ∈ R
m×n is the Lagrange multiplier corresponding to the constraint

UV − Z = 0, and 〈X,Y 〉 denotes the usual inner product between matrices X and Y of equal sizes, i.e.,

〈X,Y 〉 =
∑

i,j Xi,jYi,j . It is well-known that, starting from Λ0 = 0, the classic augmented Lagrangian

method solves

min
U,V,Z

Lβ(U, V, Z,Λ
j), (6)

at the j-th iteration for (U j+1, V j+1, Zj+1), then updates the multiplier Λ by the formula

Λj+1 = Λj + β(U j+1V j+1 − Zj+1).

Since solving (6) for U , V and Z simultaneously can be difficult, following the idea in the classic alternating

direction method for convex optimization [22, 23], we choose to minimize the augmented Lagrangian function

with respect to each block variable U , V and Z one at a time while fixing the other two blocks at their latest

values, and then update the Lagrange multiplier. Specifically, we follow the ramework:

U j+1 = argmin
U∈Rm×k

Lβ(U, V
j , Zj , Λj), (7a)

V j+1 = argmin
V ∈Rk×n

Lβ(U
j+1, V, Zj , Λj), (7b)

Zj+1 = argmin
Z∈Rm×n

Lβ(U
j+1, V j+1, Z, Λj), (7c)

Λj+1 = Λj + γβ(U j+1V j+1 − Zj+1). (7d)

where γ > 0 is a step-length (or relaxation when γ > 1) parameter.

For simplicity, we now temporally omit the superscripts in U j and U j+1, and instead denote the two by

U and U+, respectively. Similar notation is used for the variables V , Z and Λ. The subproblems (7a) and

(7b) are simple least squares problems, whose solutions are:

B = Z − Λ/β, U+ = BV †, V+ = U†
+B. (8)

where X† denotes the pseudo-inverse of the matrix X. The computational cost for solving the two linear

least squares problems in (8) is relatively inexpensive whenever k is relatively small. In fact, only one least

squares problem is necessary as pointed out in [42]. It follows from (8) that

U+V+ = U+U
†
+B = PU+

(B),

where PU+
(B) is an orthogonal projection of B onto R(U+), the range space of U+. It can be easily verified

that R(U+) = R(BV ⊤) and hence

U+V+ = PBV ⊤(B) = QQ⊤B

where Q is an orthonormal basis for R(BV ⊤), which can be computed, say, by a QR factorization. Hence,

(8) can be replaced by

B = Z − Λ/β, U+ = orth
(

BV ⊤
)

, V+ = U⊤
+B, (9)
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so that U+V+ remains the same. The solution Z+ of the subproblem (7c) can also be explicitly computed

from the well-known shrinkage (or soft-thresholding) formula, leading to

PΩ(Z+) = PΩ

(

S
(

U+V+ −D +
Λ

β
,
1

β

)

+D

)

and PΩc(Z+) = PΩc

(

U+V+ +
Λ

β

)

, (10)

where S(x, τ) := sign(x)max(|x| − τ, 0) for a scalar variable x and is applied component-wise to vector- or

matrix-valued x. Clearly, when Ω is the full index set, (10) reduces to

Z+ = S
(

U+V+ −D +
Λ

β
,
1

β

)

+D. (11)

Summarizing the above description, we arrive at an augmented Lagrangian alternating direction method

(ALADM) given in Algorithm 1, whose implementation is called LMaFit (Low-rank Matrix Fitting) [47].

Note that the code in [42] for matrix completion is also called LMaFit since they both employ the matrix

factorization strategy.

Algorithm 1: LMaFit for sparse matrix separation

Input Ω, data PΩ(D), initial rank estimate k, and parameters β and γ.1

Set j = 0. Initialize V 0 ∈ R
k×n, and Z0,Λ0 ∈ R

m×n.2

while not converge do3

Compute U j+1 and V j+1 by (9), Zj+1 by (10), and Λj+1 by (7d).4

Increment j, and possibly re-estimate k and adjust sizes of the iterates.5

Remark 2.1 It is important to note that although the augmented Lagrangian function (5) is not jointly

convex in the pair (U, V ), it is convex with respect to either U or V while fixing the other. This property

allows the ADM scheme to be well defined.

2.2 Convergence issue

There is no established convergence theory, to the best of our knowledge, for ALADM algorithms applied

to non-convex problems or even to convex problems with more than two blocks of variables as we have in

Algorithm 1. On the other hand, empirical evidence suggests that Algorithm 1 have very strong convergence

behavior. In this subsection, we give a weak convergence results for Algorithm 1 that under mild conditions

any limit point of the iteration sequence generated by Algorithm 1 is a KKT point. Although far from

being satisfactory, this result nevertheless provides an assurance for the behavior of the algorithm. Further

theoretical studies in this direction are certainly desirable.

For simplicity, we will consider the full-data model (4) where Ω is the full index set. A similar result can

be derived for the partial-data model as well. It is straightforward to derive the KKT conditions for (4):

ΛV ⊤ = 0, U⊤Λ = 0, UV − Z = 0, Λ ∈ ∂Z(‖Z −D‖1),

where, for any β > 0, the last relaton is equivalent to

Z −D +
Λ

β
∈ 1

β
∂Z(‖Z −D‖1) + Z −D , Qβ(Z −D) (12)
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with the scalar function Qβ(t) ,
1
β
∂|t| + t applied element-wise to Z − D. It is easy to verify that Qβ(t)

is monotone so that Q−1
β (t) , S(t, 1

β
). Applying Q−1

β (·) to both sides of (12) and invoking the equation

Z = UV , we arrive at

Z −D = Q−1
β (Z −D + Λ/β) ≡ S(Z −D + Λ/β, 1/β) ≡ S(UV −D + Λ/β, 1/β).

Therefore, the KKT conditions for (4) can be written as: for β > 0,

ΛV ⊤ = 0, U⊤Λ = 0, UV − Z = 0, (13a)

Z −D = S(UV −D + Λ/β, 1/β). (13b)

Proposition 2.2 Let X , (U, V, Z,Λ) and {Xj}∞j=1 be generated by Algorithm 1. Assume that {Xj}∞j=1 is

bounded and limj→∞(Xj+1−Xj) = 0. Then any accumulation point of {Xj}∞j=1 satisfies the KKT conditions

(13). In particular, whenever {Xj}∞j=1 converges, it converges to a KKT point of (4).

Proof: It follows from (8), (10), and the identities V †V V ⊤ ≡ V ⊤ and U⊤
+U+U

†
+ ≡ U⊤

+ that

(U j+1 − U j)V j(V j)⊤ =

(

Zj − Λj

β
− U jV j

)

(V j)⊤,

(U j+1)⊤U j+1(V j+1 − V j) = (U j+1)⊤
(

Zj − Λj

β
− U j+1V j

)

,

Zj+1 − Zj = S
(

U j+1V j+1 −D +
Λj

β
,
1

β

)

+D − Zj ,

Λj+1 − Λj = β(U j+1V j+1 − Zj+1).

(14)

Since {Xj}∞j=1 is bounded by our assumption, the sequences {V j(V j)⊤}∞j=1 and {(U j+1)⊤U j+1}∞j=1 are

bounded. Hence limj→∞(Xj+1−Xj) = 0 implies that both sides of (14) all tend to zero as j goes to infinity.

Consequently,

U jV j − Zj → 0, Λj(V j)⊤ → 0, (U j)⊤Λj → 0, (15a)

S
(

U jV j −D +
Λj

β
,
1

β

)

+D − Zj → 0, (15b)

where the the first limit in (15a) is used to derive other limits. That is, the sequence {Xj}∞j=1 asymptoti-

cally satisfies the KKT conditions (13), from which the conclusions of the proposition follow readily. This

completes the proof.

2.3 A rank estimation technique

A good estimation for the rank of L∗, denoted by k∗, is essential to the success of the matrix separation

model (4). Here we describe a rank estimation strategy, first proposed in [42], that utilizes the rank-revealing

feature of QR factorization. Suppose that k∗ is relatively small but not known exactly. We start from a

relatively large estimate k so that k ≥ k∗ and monitor the diagonal of the upper-triangular matrix in the

QR factorization of BV ⊤ in (9). Let QR = (BV ⊤)E be the economy-size QR factorization of U with a

permutation matrix E so that the diagonal of R is non-increasing in magnitude. We then examine the

diagonal elements of R, trying to detect a large drop in magnitude to near zero which gives a rank estimate.

It should be clear that if the iterates converge to a well-conditioned low-rank solution, then rank-revealing

QR factorization will eventually give a correct answer provided that a proper thresholding value is used in
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detecting the drops in magnitude. Specifically, from the diagonal of R we compute two vectors d ∈ R
k and

r ∈ R
k−1:

di = |Rii| and ri = di/di+1, (16)

where we set 0 = 0/0, and then examine the quantity

τ =
(k − 1)r(p)
∑

i 6=p ri
, (17)

where r(p) is the maximum element of the vector r (with the largest index p if the maximum value is not

unique). The value of τ represents how many times the maximum drop (occurring at the p-th element of d)

is larger than the average of the rest of drops. In the current implementation, we reset the rank estimate k

to p once τ > 2, and this adjustment is done only once. This simple heuristics seemed to work sufficiently

well on randomly generated problems in our tests where the correct drops could usually be detected after a

very few iterations.

Rank estimation is an essential ingredient in algorithms designed to avoid full-matrix operations, including

those using only partial SVDs. On the other hand, the effectiveness of rank estimation depends heavily on

the existence of a clear-cut numerical rank, as well as on other properties of the matrices involved. In

general, there exist no foolproof techniques for rank estimation. The above QR-based strategy is designed

for well-conditioned, random-like, low-rank matrices that are not combined with sparse matrices of dominant

magnitude in matrix separation problems.

3 Setup of Numerical Experiments

In this section, we describe the setup of our numerical experiments, including the solvers and rules used for

comparison and the generation of random test problems. We denote the rank of the low-rank matrix L∗ by

k∗, the number of nonzero elements of sparse matrix S∗ by ‖S∗‖0, and the “density” (or “sparsity”) of S∗

by ‖S∗‖0/mn.

3.1 Solvers compared

We compared the performance of our solver LMaFit with either or both of the two recent solvers: LRSD (Low

Rank and Sparse matrix Decomposition) by Yuan and Yang [46] and IALM (Inexact Augmented Lagrangian

Method) by Lin, Chen, Wu and Ma [32] on various test problems. In fact, two other codes, the dual algorithms

in [33] and the exact augmented Lagrangian method in [32], were also tested. Since our preliminary numerical

results indicated that they generally were not as competitive as LRSD and IALM, we will only present

comparison results involving LRSD and IALM. Most of our test problems are generated randomly, but some

simple video background extraction problems are also used for the purpose of demonstration. All these tested

codes were written in Matlab (though with some tasks done in C or Fortran). All numerical experiments

were performed on a notebook computer with an Intel Core 2 Duo P8700 2.53GHz processor and 4G memory

running Windows Vista basic edition and Matlab Release 7.9.0.

Although both LRSD and IALM are essentially the same algorithm, the two codes can behave quite

differently due to differences in implementation. LRSD uses the subroutine “DGESVD” in the LAPACK

library [? ] to calculate full SVD through Matlab’s external interface. IALM uses a partial SVD implemented

in the SVD package PROPACK [30]. The partial SVD scheme begins with a small rank estimate and increases

it during iterations. This strategy can be significantly faster than full SVD when the rank involved is relatively
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small so that only a small number of singular values and vectors are calculated at each iteration. On the

other hand, the speed advantage diminishes as the rank increases, and at some point completely vanishes.

LRSD and IALM also differ in the choices of the penalty parameter β in the augmented Lagrangian function.

While the value of β is fixed in LRSD, IALM uses a sequence of β values, starting from a small value and

increasing it after each iteration. By updating β values properly, the performance of IALM can be better

than LRSD, especially when highly accurate solutions are required.

In our experiments, unless otherwise specified we used a set of default values for parameters required by

the solvers. The weight µ in model (2) was set to µ = 1/
√
m for LRSD and IALM as is suggested in [3, 44].

All the other parameters in the codes LRSD and IALM were set to their default values. For LMaFit, the

default value for the penalty parameter β was set to the reciprocal of the average of D-elements in absolute

value, i.e., β = 1/mean(|D|). Unless otherwise specified, in LMaFit the initial rank estimate k was set to

0.25m as the default. In some experiments, we employ a continuation strategy in LMaFit, similar to that

in IALM, for the penalty parameter in which an increasing sequence of penalty parameter values is used,

beginning with the initial value β = 0.01/mean(|D|), multiplying β by a factor of ρ = 1.5 after each iteration

until β = 105/mean(|D|).

3.2 Comparison quantities and stopping rules

In many of our numerical experiments, we compared the performance of the involved algorithms by examining

three quantities: the number of iterations denoted by “iter”, the CPU time in seconds denoted by “CPU”,

and the relative error, denoted by “relerr” (or “err”), between the recovered low-rank matrix L and the

exact one L∗, i.e.,

relerr :=
‖L− L∗‖2F
‖L∗‖2F

. (18)

For random problems, the reported iter, CPU and relerr (or err) are the mean values of corresponding

results obtained on a number randomly generated matrices specified by the parameter test num, which was

set to 50 unless specified otherwise. Even though the relative error is not measurable in practice due to

unavailability of L∗, it is one of the most informative quantities in evaluating algorithm’s performance.

The original stopping rule for the code LRSD is when the relative change

relchg :=
‖Lj − Lj−1‖2F

‖Lj−1‖2F
(19)

is below some prescribed tolerance. On the other hand, IALM is originally stopped when the relative error in

separation, ‖Lj+Sj−D‖2F /‖D‖2F , becomes smaller than a given tolerance. However, to maintain consistency

in comparison, we selectively used the following three stopping rules for all three codes compared:

(1) relerr < tol1, (2) relchg < tol2, (3) iter < maxit

where tol1 and tol2 are prescribed tolerance values, and maxit is a prescribed maximum iteration number

with the default value set to 100. We used rules (2) and (3) for comparing recoverability in which case rule

(2) allows a code to stop even when it is unable to reach a meaningful accuracy. On the other hand, when

comparing running speed, we used rules (1) and (3) because solution speed can be fairly compared only

when the codes reach a similar accuracy. In some difficult cases, we do make an exception for IALM when

it had trouble to reduce the relative error to a prescribed tolerance as other two codes could. In those type

of tests, we also stopped IALM once ‖L + S −D‖F /‖D‖F < tol3 where two default values were used for
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the tolerance: tol3 = 10−3 in tests with noisy data and tol3 = 10−8 in tests with noiseless data. This rule

was used on IALM only, and we call it rule (4).

3.3 Random problem generation

A random data matrix D ∈ R
m×n is created from the following model

D = L∗ + S∗ +N,

where L∗ is low-rank, S∗ is sparse, and N represents additive white noise. First, random matrices U ∈ R
m×k∗

and V ∈ R
k∗×n with i.i.d. standard Gaussian entries are generated, and then the rank-k∗ matrix L∗ = UV

is assembled. The sparse matrix S∗ ∈ R
m×n is constructed as

S∗ = σG, (20)

where σ is a scaler and G is sparse and random. The nonzero entries of G are i.i.d. standard Gaussian

whose locations are uniformly sampled at random. Moreover, another standard Gaussian noise matrix N is

generated, and then scaled so that for some prescribed value δ ≥ 0, ‖N‖F /‖L∗‖F = δ.

Unless specified otherwise, our test problems were constructed using the following parameter settings:

m = n, σ = 0.01m and δ = ‖N‖F /‖L∗‖F = 0.01. Note that the parameter σ in (20) basically determines the

magnitude of the sparse matrix S∗. We choose σ = 0.01m because it ensures that L∗ and S∗ roughly have

the same order of magnitudes, which seems to represent one of the most common scenarios in applications.

To see this, in Figures 1 we present the average and maximum of the ratios between entries of L∗ and S∗

in absolute value, calculated from 100 random generated problems. From these figures, we can see that the

entries of L∗ and S∗ are roughly in the same order.
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Figure 1: The mean (left) and maximum (right) ratios between entries of L∗ and S∗ in absolute value.

4 Numerical Results

We start by presenting a brief comparison that reveals major advantages and disadvantages of the proposed

model compared to nuclear-norm minimization. We then provide further supporting evidence from compre-
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hensive experiments on three types of test problems: (a) fully random test problems where both the low-rank

and the sparse matrices are randomly generated; (b) semi-random test problems where only one of the two

is random while the other is deterministic; and (c) deterministic test problems from video background ex-

traction. In addition, we also demonstrate the use of model (4) to solve matrix completion problems where

available partial data are corrupted by impulsive noise.

In our numerical experiments, we conducted numerical comparison with either IALM, LRSD, or both

whenever appropriate. In those cases where only one of the two codes was used, we always chose the one

with better or equal performance unless such a choice demanded excessive computer resource (as was for

LRSD in a few cases).

4.1 A brief comparison

To get quick ideas on the performance of our algorithm in comparison to the nuclear-norm minimization

code IALM [32], we ran LMaFit and IALM in two simple experiments where problems were generated by

the procedure described in Section 3.3 without noise added. In each experiment, we changed only one

parameter while fixing all others to observe the corresponding change in performance. More specifically, the

parameter test num (number of runs on random problems) was set to 5, the stopping rules (2) and (3) with

tol2 = 10−4 were applied to LMaFit, and stopping rules (3) and (4) with tol3 = 10−4 were applied to

IALM. The maximum iteration number was set to maxit = 200. In both experiments we set m = n = 100.

In the first experiment, we fixed the parameter pair (k∗, ‖S∗‖0) to either (5, 0.1mn) or (10, 0.05mn),

and varied the parameter σ in (20) from 1 to 15 to increase the magnitude of the sparse matrix S∗. The

computational results are presented in Figures 2 (a) and (b). We can see that LMaFit failed to recover the

solutions once σ is larger than 7 in Figures 2 (a) and 10 in Figures 2 (b). Incidentally, at these two threshold

values, the maximum absolute value of the S∗-elements is slightly larger than twice of that of L∗-elements.

This experiment suggests that LMaFit encounter difficulty when the sparse matrix dominates the low-rank

one in magnitude. On the other hand, IALM seemed to have not shown such a sensitivity to the increase

of σ, at least within the tested range, even though it did show some instability in Figure 2 (b) in terms of

obtained accuracy.
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(a) m = 100, k∗ = 5, ‖S∗‖0 = 0.10mn

0 5 10 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Relative Error vs. Sparsity Magnitude

Sparsity Magnitude

R
e
l−

E
rr

o
r

 

 

LMaFit

IALM

(b) m = 100, k∗ = 10, ‖S∗‖0 = 0.05mn

Figure 2: Relative error vs. sparse matrix magnitude.
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In the second experiment we set k∗ = 5, σ = 0.01m = 1 and varied the sparsity level ‖S∗‖0/m2 from

1% to 40%. The relative errors and CPU seconds are presented in Figures 3. Results in Figures 3 (a)-

(b) were generated from noiseless data with small tolerance, from which we see that LMaFit could recover

accurate solutions for sparsity up to 24% while the relative error obtained by IALM started to deteriorate

once sparsity is greater than 7%. In addition, the speed of LMaFit was about an order of magnitude faster

than that of IALM in the range of interest where IALM still could maintain adequate accuracy. We did

not run LRSD for this set of experiments since it would have required considerably more computing time.

Results in Figure 3 (c)-(d) were for noisy data with δ = 0.01. In these tests, we see that LMaFit clearly

outperformed both IALM and LRSD in terms of both CPU time and relative error.
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(d) Relative Error (with noise)

Figure 3: CPU time and relative error vs. sparsity for fixed m = 100 and k∗ = 5

These two simple experiments suggest a few major properties about the proposed approach.

Disadvantage: The proposed approach appears to be unable to solve problems when the sparse matrix

dominates the low-rank matrix in some measure of magnitude. The reason can be two-fold: (1) a large

sparse matrix makes rank estimation difficult or impossible; (2) a large sparse matrix may force a part

of it being shifted to the low-rank side in order to further reduce the objective.

Advantage I: When the sparse matrix is not the dominant part, the proposed approach exhibits better

recoverability, being able to solve problems on which the nuclear-norm minimization approach fails.

The reason for this phenomenon remains unclear, though should be model-related.
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Advantage II: Thanks to its SVD-free feature, the proposed approach possesses a solution speed much

faster than the nuclear-norm minimization approach, up to one to two orders of magnitude.

In the remainder of this section, we will present experimental results on different types of data matrices

to provide more comprehensive evidence in support of the above observed advantages for our approach.

4.2 Results on fully random problems

In this subsection, we present numerical results using fully random data in which both the sparse and the

low-rank matrices are randomly generated.

4.2.1 Recoverability

We first investigate the recoverability of LMaFit and IALM with respect to rank and sparsity. Although

the recoverability of LRSD seems slightly better than that of IALM, we do not report the results of LRSD

since it demanded too much computing time due to its use of the expensive full SVD. The test problems

were generated with m = 200 and σ = 0.01m = 2. In order to observe the solvers’ ability to achieve a high

accuracy, we did not add Gaussian noise (i.e., δ = 0). We varied rank k∗ from 2 and 120 with an increment

2 and sparsity from 1% to 60% with an increment 1%. For each pair of values of rank and sparsity, we

ran 10 random problems with tol2 = 5× 10−8 for LMaFit and tol3 = 5× 10−8 for IALM. An initial rank

estimate k = 160 was used for LMaFit. After 10 random runs, the geometric mean values of the relative

errors are computed and reported in Figure 4 in terms of the digits of accuracy. For example, an error of

10−8 corresponds to 8 digits of accuracy. A relative error worse than 10−2 is shown in black, and a relative

error better than 10−8 is shown in white; otherwise, it is shown in gray-scale corresponding to its actual

value (between 2 and 8).
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Figure 4: Recoverability phase plots for LMaFit and IALM

It is evident from the “recoverability phase plots” in Figure 4 that the recoverability of LMaFit is superior

to that of IALM, which appears to suggest that model (4) may be better than the nuclear-norm minimization

model (2) at least for some classes of problems.
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4.2.2 Solution speed

To examine the convergence behavior of the codes, in terms of iteration numbers rather than running time,

we ran the three codes on two noiseless random problems of sizes m = n = 400 for 200 iterations and

record the progress of relative errors at all iterations. The random problems were generated with the default

parameter values as is described in Section 3.3. The first problem has a relatively low rank at k∗ = 0.05m

at a relatively low density level with ‖S∗‖0 = 0.05m2; the second problem is a more difficult one with

k∗ = 0.15m and ‖S∗‖0 = 0.15m2. The results on these two problems are given in the first row of Figures

5 (a)-(b), respectively where the relative errors are plotted against the iteration number. As was mentioned

in Section 3.1, a strategy of increasing β was used by both IALM and LMaFit that helped them to reach

a high accuracy. Not using this “continuation” strategy on β, LRSD did not yield a comparable accuracy

on this noiseless problem. Hence, we choose not to include the LRSD results in Figures 5 (a)-(b). From

Figures 5 (a), we see that the convergence speeds of LMaFit and IALM are comparable on the first and easier

problem. On the second and harder problem, however, as can be seen from Figures 5 (b), IALM could not

reach as a high accuracy as LMaFit could, likely caused by over-aggressiveness in its rank-increasing scheme.

Adding Gaussian noise to the data matrix D, we then repeated the same experiment, but this time ran

the three codes for 100 iterations only. The results are presented in Figures 5 (c)-(d) (in the second row).

As can be seen, IALM and LMaFit converged slightly faster than LRSD in this case of noisy data where only

a low accuracy was achievable.
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(d) k∗ = 0.15m, ‖S∗‖0 = 0.15m2

Figure 5: Iteration progress of relative error.
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We emphasize again that so far convergence speed has been measured in terms of iteration number rather

than running time. Next we present results on computing time on a set of experiments where the matrix

dimension m ranges from 200 to 2000 with increment 100, and the stopping rules (1) and (3) were used.

Figures 6 (a)-(b) give results of CPU time versus the dimension on two problems with (k∗, ‖S∗‖0) set to

(0.05m, 0.05m2) and (0.15m, 0.15m2), respectively, representing an easier and a harder problem.
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(a) k∗=0.05m and ‖S∗‖0=0.05m2
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(b) k∗=0.15m and ‖S∗‖0=0.15m2

Figure 6: CPU time versus matrix dimension m.

By examining Figure 6 (a), we see that on this easier problem LRSD was much slower that both IALM

and LMaFit , while IALM was slower than LMaFit, though the performance gap between the two appears

to be narrowing as m increases. On the harder case depicted in Figure 6 (b), LRSD and IALM performed

at very similar speeds, while LMaFit ran much faster than both for all matrix sizes with a speed advantage

about one to two orders of magnitude.
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Figure 7: CPU time versus rank k∗ (m = 1000 and ‖S∗‖0=0.05m2).

In the next experiment, we take a look at the performance of the algorithms as rank k∗ varies. We fixed

the matrix dimension to m = 1000 and the sparsity level at ‖S∗‖0 = 0.05m2, and then increased rank k∗

from 10 to 320 with increment 10. The test results are depicted in Figure 7 where relative error and CPU

time are plotted against rank k∗ in plot (a) and (b), respectively. As is shown in the plot (a), the relative
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error of IALM starts to deteriorate after k∗ > 200 while those for both LMaFit and LRSD remain unchanged,

indicating a lesser degree of recoverability for the tested version of IALM in this case. Plot (b) indicates

that the performance gap between IALM and LMaFit in CPU time increases rapidly as k∗ increases (up to

the point when IALM starts to lose accuracy), while the gap between LRSD and LMaFit remains constant.

This trend can be explained by the fact that as k∗ increases, the cost of the partial SVD scheme quickly

increases to a point where the partial SVD loses all its speed advantage over the full SVD.

To sum up, in Section 4.2 we have shown that, when the low-rank matrix is not dominated by the sparse

one in magnitude, our code outperforms the two nuclear-norm minimization codes on fully random problems

in terms of both recoverability and solution speed.

4.3 Results on semi-random problems

In practical applications, either the low-rank matrix or the sparse matrix in a given data matrix (sum of the

two) may be more like deterministic than random. To test the performance of the codes in a more realistic

setting, we consider some image separation problems in which one of the two matrices is an image. For such

problems, since incoherent assumptions (see [3, 9, 44]) do not hold, there exists no theoretical guarantee of

any kind for exact separations.

4.3.1 Deterministic sparse matrices

We first consider the case of recovering a deterministic sparse matrix (an image) from its sum with a low-rank

random matrix. While the low-rank random matrices were constructed as before, with rank k∗ = 10, by the

procedure in section 3.3, the sparse matrices were from five images: “blobs”, “circles”, “phantom”, “text”

and “rice” included in the Matlab Image Processing toolbox (“blob” was cropped slightly, and “phantom”

was converted to black and white). As has been mentioned, our algorithm cannot handle the case where

the magnitude of the sparse matrix dominant that of the low-rank one. To make the magnitude of the two

roughly equal in our construction, we multiplied the sparse images by a scalar 0.1 before adding the low-rank

matrices.

We ran LMaFit and IALM on these five semi-random problems without and with noise added. The

stopping rules (2)-(3) with tol2 = 10−4 were used for LMaFit, and the rules (3)-(4) with tol3 = 10−4 were

used for IALM. The recovered images are shown Figure 8 and the relative errors in Table 1, where the first

two rows contain recovered sparse images without impulsive noise added, and the last two with impulsive

noise of value 0.1 added to 10% pixels at random.

Table 1: Relative error in separating deterministic sparse matrices. The first 2 rows are for noiseless images,

and the last two for noisy images with impulsive noise added to 10% pixels.

Solver \ Pattern blob circle phantom text rice

LMaFit 6.579e-5 1.004e-4 8.528e-6 1.325e-4 1.113e-4

IALM 9.329e-1 9.741e-1 7.594e-1 7.830e-1 8.592e-1

LMaFit 9.348e-4 7.429e-4 6.516e-4 6.087e-4 6.134e-4

IALM 7.620e-1 8.725e-1 5.651e-1 5.505e-1 7.795e-1

As can be seen clearly from both Figure 8 and Table 1, LMaFit recovered the sparse images with much
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Figure 8: Recovered sparse images by LMaFit (the first and third rows) and IALM (the second and forth

rows). In the last two rows, impulsive noise is added to 10% pixels at random in each sparse image.

higher accuracies than IALM did, confirming the recoverability advantage of our approach in the case of

deterministic sparse matrices as long as their magnitude does not overwhelm that of low-rank matrices.

4.3.2 Deterministic low-rank matrices

Now we consider the opposite situation where the low-rank matrix is deterministic while the sparse matrix

being random. We used two images for the low-rank matrices: “checkerboard” is exactly rank-2; “brickwall”

is only approximately low-rank.

Our first test is on the 256× 256 “checkerboard” image (see Figure 9) which is of rank 2. We corrupted

the image by adding a sparse matrix whose nonzero entries take random values uniformly distributed in [0, 1]

and the locations of the nonzero entries were sampled uniformly at random. The sparsity level ‖S∗‖0/m2

ranged from 0.05 to 0.8 with increment 0.05. We compared LMaFit with LRSD on this set of problems. In

LMaFit, the initial rank was set to k = 10 and the penalty parameter set to β = 10. In LRSD, we used

the parameter value µ = 0.25/
√
m instead of the default value µ = 1/

√
m since the former yielded a rank-2
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matrix solution while the former did not. The stopping rules (1)-(3) with tol1 = 10−4 and tol2 = 5× 10−4

were used. All other parameters were set to their default values.

The results for this test set are depicted in Figure 9, where the first image corresponds to the sum of the

checkerboard image and an impulsive noise image of ‖S∗‖0/m2 = 40%, the second image was recovered by

LRSD and the third by LMaFit which clearly has a better quality. A more complete picture for this test can

be seen from the last picture in Figure 9 where relative error corresponding to all tested sparsity levels are

plotted. As can be seen, the recovery quality of LRSD started to deteriorate after ‖S∗‖0/m2 > 20%, while

that of LMaFit remains good until ‖S∗‖0/m2 > 35%. If we say that a relative error of 10−2 is acceptable,

then the acceptable level of impulsive noise is about 26% for LRSD and 44% for LMaFit.
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Figure 9: Recovery results for “checkerboard”. From left to right: (1) corrupted image by 40% impulsive

noise, (2) recovered by LRSD, (3) recovered by LMaFit, (4) relative errors vs. noise level.

To construct a more challenging test, we replaced the image “checkerboard” by an image called “brick-

wall”.2 The matrix for this image is not really low-rank, has only a relatively small number of “dominant”

singular values, and hence can be considered as an approximately low-rank matrix. This type of problems is

much more difficult due to the lack of a clear-cut numerical rank and how to deal with them is of practical

importance since they are perhaps more representative of real-world applications.

We compared LMaFit and IALM on this problem. For LMaFit, we fixed k = 50 without using rank esti-

mation, and for IALM we used its default setting except stopping rules. The stopping rules for LMaFit were

(2)-(3) with tol2 = 0.1, for IALM were (3)-(4) with tol3 = 0.2, while maxit = 30 for both. These settings

were adopted after a few trial-and-error runs to ensure a sufficient and attainable accuracy.

The results for “brickwall” are presented in Figure 10 and Table 2. As can be seen Figure 10, the

two codes recovered images that are visually comparable in quality. However, the computing time used by

LMaFitwas several times shorter than that used by IALM, as can be seen from Table 2.

Algorithm iteration CPU second solution rank relative error

LMaFit 10 2.527 50 0.2324

IALM 9 8.705 92 0.2110

Table 2: Numerical results for the “brickwall” image

Remark 4.1 We have shown that on random-like matrices with well-conditioned and a clear-cut numerical

rank, rank estimation required by model (4) can be easily and reliably done. However, on more realistic,

2downloaded from http://upload.wikimedia.org/wikipedia/commons/1/14/Background_brick_wall.jpg.
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Figure 10: Results on “brickwall”: upper left: original image; upper right: corrupted image; lower left:

recovered by IALM; lower right: recovered by LMaFit.

“approximately low-rank” matrices without a clear-cut numerical rank, rank estimation becomes extremely

difficult or even impossible. Hence, trial-and-errors become necessary. In fact, the situation is similar for the

nuclear-norm minimization model (2) which requires a proper choice of the parameter µ. Our computational

experience indicates that for “approximately low-rank” matrices, the µ value can greatly affect the rank of

returned solutions by either IALM or LRSD, making trial-and-errors necessary as is for the choice of k

in LMaFit. In a sense, one may argue that choosing a good µ-value for model (2) is more difficult than

guessing a rank estimate k for model (4) since in (2) the dependence of the solution rank on µ appears highly

nonlinear.

4.4 Results on non-random problems

We now consider the video background extraction problem in [3], which aims to separate a video into two part:

a background and moving objects. Traditional algorithms for this problem often require a good knowledge

about the background and can be quite complicated (see, for example [31]). For simplicity, we use videos

from security cameras in which the background is relatively static (i.e., the background is roughly the same in

every frame) and hence can be viewed approximately as a low-rank matrix (typically rank 3 for color videos).

The moving objects such as pedestrians and cars usually only occupy a small part of the picture, thus together

can be regarded as a sparse matrix. As such, separation of the background and moving objects in a video can
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be modeled as our a matrix separation problem. Our test procedure is similar to that given in [3], and the

video clips were downloaded from http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

Unlike the experiments in [3] where only gray-scale video clips were used, we tested both gray-scale and

color videos. Since all the original videos are color, we converted them into gray-scale by using the Matlab

command rgb2gray. We reshaped every frame of a video in every channel into a long column vector and

then collected all the columns into a matrix. As such, the number of rows in a test matrix equals to the

number of pixels and the number of columns equals to three times the number of frames in a video. For

example, a color (3 channels) video with 300 frames of 320× 240 resolution is converted into a 76800× 900

matrix. We ran LMaFit and IALM on five video background extraction problems (we skipped LRSD since

it would take excessive amounts of time due to full SVD calculations). Since all these video clips have more

than 1000 frames, we took a part of each clip with 300 frames or less to reduce the storage and computation

required.

For IALM, we set µ = 0.5/
√
m as suggested by [3]. For LMaFit, we fixed k = 1 for gray-scale videos and

k = 3 for color ones. We stopped each code after 10 iterations because in our trials no further improvements

were visually observable after that. A summary of the test problems and results is presented in Table 3. In

Table 3, “Resolution” denotes the size of each frame in a video clip, and “No. frames” denotes the number

of frames tested. Video names followed by (c) were tested as color videos, otherwise they were tested as

gray-scale videos. The CPU time of IALM and LMaFit are reported in the last two columns of Table 3.

Video Resolution No. frames IALM LMaFit

hall 176× 144 200 13.6969 4.7580

lobby 160× 128 250 14.3209 4.8984

bootstrap 160× 120 300 19.9213 5.4912

fountain(c) 160× 128 150 27.9242 9.5785

bootstrap(c) 160× 128 150 28.5170 8.5177

Table 3: Video separation problem statistics and CPU time used.

Both codes worked quite well on these video separation problems with indistinguishable quality by naked

eyes, as can be visualized from Figure 11, where several frames of the original videos and computed separation

results are presented for the video clips “hall” and “bootstrap(c)”. On these problems of extremely low ranks,

the partial SVD technique used in IALM becomes quite effective. Even so, the CPU times required by IALM

are still about three times of those required by LMaFit.

4.5 Matrix completion with corrupted data

In this section, we show that our model and algorithm can be applied to matrix completion problems with

impulsive noise in available data. The standard matrix completion problem is to find a low-rank matrix from

a subset of observed entries (see, for example, [2, 4, 8, 42]). Although, existing matrix completion models

can tolerate small white noise, they are not equipped to deal with the more challenging problem where a

part of the observed data is corrupted by large impulsive noise. Unlike model (2), model (4) is applicable to

this case where the index set Ω consists of all known entries including the corrupted ones.

To construct random test problems, we first generate a low-rank matrix with rank k∗, then take a

fraction of the entries uniformly at random as the “observed data” with a corresponding index set Ω. The

quantity SR = |Ω|/mn is called the sampling ratio. For impulsive noise, we add a sparse matrix S∗, similarly
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constructed as in (20), whose support is a subset of Ω. The quantity NR = ‖S∗‖0/mn is called the noise

ratio. In this experiments, test problems were generated with m = n = 1000 and σ = 0.01m. We tested two

sets of problems corresponding to NR = 0.1 SR and NR = 0.2 SR, respectively. In each test set, the sampling

ratio took four values: SR = 0.05, 0.1, 0.2 and 0.4. Then for each of the eight (SR,NR) pairs, we increased the

rank k∗ from 2 until the solver encountered a failure.

10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

k
*

it
e

ra
ti
o

n
 n

u
m

b
e

r

 

 

SR=0.05

SR=0.1

SR=0.2

SR=0.4

(a) Iteration vs. rank k∗ (NR = 0.1 SR)

10 20 30 40 50 60
0

50

100

150

200

250

k
*

it
e

ra
ti
o

n
 n

u
m

b
e

r

 

 

SR=0.05

SR=0.1

SR=0.2

SR=0.4

(b) Iteration vs. rank k∗ (NR = 0.2 SR)

Figure 12: The performance of LMaFit on matrix completion problems with impulsive noise.

Figure 12 contains numerical results for running LMaFit under the above setting with default parameter

values, except that the maximum number of iteration were set to maxit = 200 for the easier case NR = 0.1 SR,

and maxit = 250 for the harder case NR = 0.2 SR. In Figure 12, the average number of iterations taken

by LMaFit was plotted for each test instance after multiple runs, where an iteration number less than the

maximum allowed indicates that LMaFit had “converged” with an accuracy less than the prescribed tolerance

for all runs, and a near-vertical line indicates that LMaFit encountered a failed run from that point on. The

results show that LMaFit is capable of solving these matrix completion problems with impulsive noise as

long as a sufficient number of accurate sample entries is available.

4.6 Treatments of sparse matrices of excessive magnitude

We have shown that LMaFit is not able to solve problems in which the magnitude of the sparse matrix S∗

dominates that of L∗. However, for these problems, it is often easy to detect those large elements of S∗

and somehow fix the problem. In this section, we introduce two “fixes” or remedial techniques. One is to

truncate the detected large entries of S∗, another is to exclude them from the index set Ω. The truncation

technique depends on a properly chosen threshold value ν so that any element of D with |Dij | > ν implies

that S∗
ij 6= 0. In this case, we can replace the data matrix D by its projection P[−ν,ν](D) in model (4) and

still obtain the correct low-rank solution, where the projection onto the interval [−ν, ν] is done element-wise

(in some cases it may be necessary to choose an unsymmetrical interval). Obviously, it is important to be

able to find a proper threshold ν. For random matrices, we can sort the magnitudes of entries of D in

descending order, locate a “turning point” and use the magnitude at this point for ν. An example for this

idea is given in Figure 13 for a random data matrix of sizes m = n = 400. Instead of truncating large entries

in D, we can also remove those large elements from D and solve a partial-data model for the index subset

Ω consisting of the remaining indices, which is the second remedial technique tested.
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(b) σ = 0.1m

Figure 13: An example of choosing threshold in truncation. Each curve represents the sorted absolute values

of all entries in D; horizontal lines represent threshold values ν.

We tested the above two techniques in a set of experiments on fully random problems. We constructed

test problems using m = 400, σ = 400, k∗ = 20, and varying the “noise ratio” NR = ‖S∗‖0/m2 from 0.01 to

0.80 with increment 0.01. For clarity, we will call LMaFit with the truncation technique “LMaFit w/trun”,

and LMaFit applied to a partial-data model “PLMaFit”, and compared the two with the nuclear-norm

minimization code LRSD since it exhibited a stronger recoverability than IALM in this set of tests. The test

results are presented in Figure 14.

10 20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

10
1

Sparsity(%)

re
la

ti
v
e

 e
rr

o
r

 

 

LRSD

LMaFit w/trun

PLMaFit

(a) relative error

10 20 30 40 50 60 70 80

10
0

10
1

Sparsity(%)

C
P

U
 t

im
e

 

 

LRSD

LMaFit w/trun

PLMaFit

(b) CPU time

Figure 14: Results on random problems with large magnitude S∗ (σ = 400)

Since σ = 400 used in this dataset makes S∗ really large, LMaFit always failed without a remedial

technique. On the other hand, the two remedial techniques enabled LMaFit to solve many of the tested

problems at reasonable sparsity levels, as can be seen from Figure 14 (a). Although “LMaFit w/trun” is

much faster than the other two algorithms, its ability is still limited in handling less sparse matrices, starting

to fail when ‖S∗‖0/m2 > 0.30, while LRSD started to fail after ‖S∗‖0/m2 > 0.36, and PLMaFit after

‖S∗‖0/m2 > 0.70. The extra capacity of PLMaFit is due to the fact that correctly removing detected large

entries reduces the effective density level of the sparse matrices involved. The drawback of PLMaFit is that

solving the partial-data model is more costly than solving the full-data model.

Remark 4.2 It should be emphasized that the above two remedial techniques have not completely removed
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the limitation of model (4), even though they do alleviate it to some extent. For example, there apparently

exist borderline situations where an appropriate threshold value ν becomes exceedingly difficult or impossible

to determine.

4.7 Summary of numerical experiments

Extensive numerical experiments were performed on three types of test matrices: fully random, semi-random

and non-random. Computational results indicate that, when the magnitude of sparse matrices does not

dominate that of the low-rank ones, our algorithm implemented in LMaFit generally outperforms the two

state-of-the-art nuclear minimization algorithms in terms of both solution speed and recoverability. The

speed advantage of LMaFit results from solving a model that does not require any SVD calculation. This

speed advantage, already significant on very low-rank problems such as the video background extraction

problems in Section 4.4, grows as matrix sizes and rank increase, reaching up to one or more orders of

magnitude on tested random problems. Interestingly, LMaFit also demonstrates greater recoverability, able

to solve harder problems with a higher rank or density level (relative to a given sample ratio) that nuclear-

norm minimization algorithms have difficulty to solve.

For approximately low-rank matrices that do not have a clear-cut numerical rank, our approach can

produce a similar solution quality compared with that of nuclear-norm minimization, while maintaining its

speed advantage over the latter. For these approximately low-rank problems, both approaches generally

require some trial-and-errors to find appropriate model parameters.

A main limitation of the proposed approach is its inability to solve problems where the sparse matrix

dominates the low-rank one in magnitude. We have tested two remedial techniques that have shown promises

to alleviate this difficulty at least for some classes of problems.

5 Conclusions

We have studied a practical procedure for the emerging problem of sparse matrix separation based on solving

a low-rank matrix factorization model by an augmented Lagrangian alternating direction method.

In terms of recoverability, the proposed model complements well the nuclear-norm minimization model.

On one hand, the factorization model is unable to solve “sparse-matrix-dominated” (measured by magnitude)

problems. On other problems, it is able to extend the frontier of recoverable problems beyond those solvable

by nuclear-norm minimization. This phenomenon seems particularly notable in situations, arguably more

realistic in many applications, where incoherence assumptions do not hold as required by the current theory

for recoverability. In addition, we have demonstrated that the proposed approach is capable of solving

problems with partial data or corrupted data or both, an example being low-rank matrix completion problems

based on a subset of observed entries that contain impulsive noise.

In terms of computational efficiency, the proposed approach has exhibited a significant speed advantage

over nuclear-norm minimization, yielding a much improved scalability for solving large-scale problems in

practice. The fast speed of the proposed algorithm, often up to one or more order of magnitude faster

than nuclear-norm minimization codes compared in our numerical tests, is a direct result of solving the

factorization model free of any SVD calculations.

In spite of non-convexity in the factorization model and a lack of theoretical guarantee, the proposed

approach has numerically performed as reliably and stably as nuclear-norm minimization on all the tested
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matrix classes that the approach is capable of solving. This phenomenon and other theoretical issues remain

to be better understood and warrant further investigations.
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Figure 11: Video separation. From left to right: original, separated results by IALM and LMaFit .

Above: frames from clip “Hall”. Below: frames from clip “bootstrap”
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