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Abstract. In image processing, the Rudin-Osher-Fatemi (ROF) model [L. Rudin, S. Osher, and
E. Fatemi, Physica D, 60(1992), pp. 259–268] based on total variation (TV) minimization has proven
to be very useful. A lot of efforts have been devoted to obtain fast numerical schemes and overcome
the non-differentiability of the model. Methods considered to be particularly efficient for the ROF
model include the dual methods of Chan-Golub-Mulet (CGM) [T.F. Chan, G.H. Golub, and P. Mulet,
SIAM J. Sci. Comput., 20(1999), pp. 1964–1977] and Chambolle [A. Chambolle, J. Math. Imaging
Vis., 20(2004), pp. 89–97], and splitting and penalty based method [Y. Wang, J. Yang, W. Yin,
and Y. Zhang, SIAM J. Imaging Sciences, 1(2008), pp. 248–272], as well as split Bregman iteration
[T. Goldstein, and S. Osher, SIAM J. Imaging Sciences, 2(2009), pp. 323–343]. In this paper, we
propose to use augmented Lagrangian method to solve the model. Convergence analysis will be
given for the method. In addition, we observe close connections between the method proposed here
and some of the existing methods. We show that the augmented Lagrangian method, dual methods,
and split Bregman iteration are different iterative procedures to solve the same system. Moreover,
the proposed method is extended to vectorial TV and high order models. Using the approach here,
we can easily obtain the CGM dual method and split Bregman iteration for vectorial TV and high
order models, which, to our best of knowledge, have not been presented in the literature. Numerical
examples demonstrate the efficiency and accuracy of our method.
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1. Introduction. Image restoration such as denoising and deblurring are the
most fundamental tasks in image processing. To preserve image edges and features in
image regularization is difficult but very desired. Recently, the ROF model [33] has
been demonstrated very successful in edge-preserving image restoration. The model
immediately attracted much attention and has been extended to high order models
[13, 46, 27, 29, 24, 35] and vectorial models for color image restoration [34, 2, 4, 14];
see [15] for an overview.

However, the numerical computation of the ROF model suffers from difficulties
related to its nonlinearity and non-differentiability. In [33], the authors proposed a
time marching strategy to the associated Euler-Lagrange equation. This method is
slow due to the constraint of stability conditions about the time step size. To find
fast algorithms has been an active research area so far.

There are several methods that have proven to be particularly efficient for im-
age restoration problems based on the ROF model. One class of approaches is dual
methods [12, 9, 11, 48], which are based on dual formulation of the ROF model. The
other is based on variable-splitting and equality constrained optimization, e.g., the
approach proposed in [39, 40, 42] which uses alternative minimization of the penalized
cost functional, and the method in [25] where splitting is applied to the data fidelity
term, as well as split Bregman iteration [43, 22]. In this paper, we use a technique
related to the augmented Lagrangian method to solve the ROF model. Convergence
analysis of the proposed approach will be supplied. In addition, we show that the
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augmented Lagrangian method, the dual methods, and split Bregman iteration are
just different iterative schemes to solve the same system. Some connections between
CGM and Chambolle’s dual methods have been noticed in [48]. In the context of
compressive sensing, the authors in [43] pointed out the equivalence between aug-
mented Lagrangian method and Bregman iteration. Here we show how CGM and
Chambolle’s dual methods are connected to the augmented Lagrangian method, and
verify the equivalence between augmented Lagrangian method and split Bregman it-
eration. The proposed method is extended to vectorial TV and high order models.
Using the extension, we can easily get dual methods and split Bregman iteration for
vectorial TV and high order models. To our knowledge, the CGM dual method and
split Bregman iteration for vectorial TV and high order models are still missing in
the literature.

The paper is organized as follows. In the next section, we give basic notations.
In Section 3, we present the ROF model and some existing solvers. Augmented
Lagrangian method will be given in Section 4 with some convergence analysis. In
Section 5, we show connections between the proposed method and dual methods as
well as split Bregman iteration. Our approach and observations are then extended
to vectorial TV in Section 6 and high order models in Section 7. Finally, we present
some numerical experiments and conclude the paper.

2. Basic notations. Without the loss of generality, we represent a gray image
as an N × N matrix. The Euclidean space R

N×N is denoted as V . The discrete
gradient operator is a mapping ∇ : V → Q, where Q = V × V . For u ∈ V , ∇u is
given by

(∇u)i,j = ((D̊+
x u)i,j , (D̊

+
y u)i,j),

with

(D̊+
x u)i,j =

{
ui,j+1 − ui,j , 1 ≤ j ≤ N − 1
ui,1 − ui,N , j = N

(D̊+
y u)i,j =

{
ui+1,j − ui,j , 1 ≤ i ≤ N − 1
u1,j − uN,j, i = N

,

where i, j = 1, . . . , N. Here we use D̊+
x and D̊+

y to denote forward difference operators
with periodic boundary condition (u is periodically extended). Consequently FFT
can be adopted in our algorithm.

We denote the usual inner product and Euclidean norm of V as (·, ·)V and ‖ · ‖V ,
respectively. We also equip the space Q with inner product (·, ·)Q and norm ‖ · ‖Q,
which are defined as follows. For p = (p1, p2) ∈ Q and q = (q1, q2) ∈ Q,

(p, q)Q = (p1, q1)V + (p2, q2)V ,

and

‖p‖Q =
√

(p, p)Q.

In addition, we mention that, at each pixel (i, j),

|pi,j | = |(p1
i,j , p

2
i,j)| =

√

(p1
i,j)

2 + (p2
i,j)

2,

the usual Euclidean norm in R
2. From the subscript i, j, one may regard |pi,j | as

pixel-by-pixel norm of p.
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Using the inner products of V and Q, we can find the adjoint operator of −∇,
i.e., the discrete divergence operator div : Q → V . Given p = (p1, p2) ∈ Q, we have

(divp)i,j = p1
i,j − p1

i,j−1 + p2
i,j − p2

i−1,j = (D̊−
x p1)i,j + (D̊−

y p2)i,j ,

where D̊−
x and D̊−

y are backward difference operators with periodic boundary condi-
tions p1

i,0 = p1
i,N and p2

0,j = p2
N,j.

3. The ROF model and some existing solvers. Assume f ∈ V is an ob-
served image and is degraded from the true image, u ∈ V , as follows

f = Ku + n, (3.1)

where K : V → V is a convolution operator, and n ∈ V is the random Gaussian noise
(the most typical noise model). Image restoration aims at recovering u from f . Since
the problem is usually ill-posed, we cannot directly solve u from (3.1). Regularization
on the solution should be considered. One of the most basic and successful image
regularization models is the ROF model [33], which reads

min
u∈V

{Frof(u) = Rrof(∇u) +
α

2
‖Ku − f‖2

V }, (3.2)

where

Rrof(∇u) = TV(u) =
∑

1≤i,j≤N

|(∇u)i,j |, (3.3)

is the total variation of u. Note here Rrof(·) is regarded as a functional of ∇u. In
[33], the authors considered the image denoising problem (K = I) and presented a
gradient descent method to solve (3.2). Here the method is described for general K.
The artificial time marching is introduced to the associated Euler-Lagrange equation
(it is actually a system of ordinary differential equations since we are in discrete
setting) as follows

ut = div( ∇u√
|∇u|2+β

) + αK∗(f − Ku)

u(0) = f
, (3.4)

where β is a small positive number to avoid zero division and K∗ is the L2 adjoint of
K.

There are mainly two drawbacks for the gradient descent method (3.4). At first, it
is an approximation of the original problem (3.2), since the regularity term Rrof(∇u)
is smoothed and thus approximated to get (3.4). On the second, the method is slow
due to strict constraints on the time step. The choice of β will effect both of these
aspects. Larger the β, more efficient the scheme is, whereas worse the approximation
will be. Therefore it is a tradeoff between the accuracy and the efficiency.

Many algorithms have been proposed to improve the gradient descent method,
aiming to compute the solution of the ROF model (3.2) as efficiently and exactly as
possible; see, e.g., dual methods [12, 11], split Bregman iteration [43, 22], as well as
splitting and penalty based method [39, 40].

The difficulty to solve the ROF restoration model (3.2) is due to the non-differentiability
of the total variation norm. By using an operator-splitting technique [21, 39, 40, 22],
we can separate the calculation of the non-differentiable term and the squared 2-norm
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term. Concretely, an auxiliary variable p ∈ Q is introduced for ∇u. The model (3.2)
is thus equivalent to

min
u∈V,p∈Q

{Grof(u, p) = Rrof(p) + α
2 ‖Ku − f‖2

V }
s.t. p = ∇u

, (3.5)

which is a constrained optimization problem.
In this paper, we make the following mild assumption
• The null spaces of ∇ and K have only 0 as common elements, i.e., Null(∇)∩

Null(K) = {0}.
Under this assumption, the functional Frof(u) in (3.2) is convex, proper, coercive,
and continuous. According to the generalized Weierstrass theorem and Fermat’s rule
[19, 21], we have the following result.

Theorem 3.1. The problem (3.2) has at least one solution u, which satisfies

0 ∈ αK∗(Ku − f) − div∂Rrof(∇u), (3.6)

where ∂Rrof(∇u) is the sub-differential [19] of Rrof at ∇u. Moreover, if Null(K) =
{0}, the minimizer is unique.

In the following, we review some typical existing solvers for the ROF model.

3.1. The CGM dual method. In [12] Chan et al proposed a primal-dual
method to solve the ROF model. They introduced a new variable ω ∈ Q defined by

ωi,j =
(∇u)i,j

|(∇u)i,j |
, 1 ≤ i, j ≤ N (3.7)

to the Euler-Lagrange equation of (3.2), to remove some of the singularity caused by
the non-differentiability of the object functional. This yields the following primal-dual
system:

−divω + αK∗(Ku − f) = 0
∇u − ω|∇u| = 0

, (3.8)

where u and ω are called primal and dual variables, respectively. The system is then
approximated using a regularized TV norm (with some small positive β) in numerical
computation. Newton’s linearization technique for both the primal and dual variables
is adopted. As shown in [18], the primal-dual Newton’s method is very efficient and
the parameter β can be very close to 0.

3.2. Chambolle’s dual method. Another work based on dual formulation
with a different derivation is due to Chambolle [11]. In this method, the primal
variable of the image data is expressed explicitly with the dual variable and only
the dual variable is computed iteratively. However, the algorithm does not consider
general operator K in (3.2). In the following we introduce Chambolle’s method in
our context (Note the difference on the boundary condition we used, and the slight
difference between (3.2) and the model in [11] about the parameter α).

Denoting

S = Closure{divξ : ξ ∈ Q, |ξi,j | ≤ 1, ∀ 1 ≤ i, j ≤ N}, (3.9)

Chambolle [11] showed that the ROF restoration model (3.2) with K = I yields

u = f − 1

α
πS(αf) = f − πS

α
(f), (3.10)
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where πS(·) is a nonlinear projection operator to S, which reads

min
divξ

{‖divξ − ·‖2
V : ξ ∈ Q, |ξi,j | ≤ 1, ∀ 1 ≤ i, j ≤ N}. (3.11)

From the Karush-Kuhn-Tucker (KKT) conditions and a careful observation, it was
shown that ξ in the nonlinear projection satisfies

−(∇(divξ − αf))i,j + ξi,j |(∇(divξ − αf))i,j | = 0, (3.12)

which allows a semi-implicit gradient descent algorithm to find ξ.

3.3. Split Bregman iteration. Recently, Bregman iteration and split Bregman
iteration attract much attention in signal recovery and image processing community
[7, 8, 22, 30, 43, 44, 47]. The basic idea is to transform a constrained optimization
problem to a series of unconstrained problems. In each unconstrained problem, the
object function is defined by the Bregman distance [3] of a convex function.

The Bregman distance of a convex functional J(u) is defined as the following
(nonnegative) quantity

D
g
J(u, v) ≡ J(u) − J(v)− < g, u − v >, (3.13)

where g ∈ ∂J(v), i.e., one of the sub-gradients of J at v.
When J(u) is a continuously differentiable functional, its sub-differential ∂J(v)

has a single element for each v, and consequently the Bregman distance is unique. In
this case the distance is just the difference at the point u between J(·) and its first
order approximation at the point v. For those non-differentiable functionals, the sub-
differential may contain none or multiple values. Therefore, the Bregman distance
between u and v can be ill-defined or multi-valued. However, this doesn’t matter
in Bregman distance based iterative algorithms since the algorithms automatically
choose a unique sub-gradient in each iteration as long as the fidelity term for the
constraints is differentiable (This condition holds usually). We also remind here that
the Bregman distance of a functional is not a distance in the usual sense since, in
general, D

g
J(u, v) 6= D

g
J(v, u) and the triangle inequality does not hold. See [30, 43]

for more details.
To find the solution of the ROF model (3.2), or equivalently the constrained

problem (3.5), split Bregman iteration solves a sequence of unconstrained problems
with the form as

(uk, pk) = arg min
u∈V,p∈Q

D
(gk−1

u ,gk−1

p )

Grof
((u, p), (uk−1, pk−1)) +

1

2
‖p −∇u‖2

Q, (3.14)

where gk−1
u and gk−1

p , sometime written together to be (gk−1
u , gk−1

p ), are the sub-

gradients of Grof at (uk−1, pk−1) with respect to u and p, respectively. Taking the
update of the sub-gradients into consideration, the iteration procedure is formulated as
Algorithm 3.1. The computation of (uk, pk) in the algorithm is similar with Algorithm
4.2.

4. Augmented Lagrangian method for the ROF model. Augmented La-
grangian method [23, 31, 32] has many advantages over other methods such as penalty
method [1], and has been successfully applied to nonlinear PDEs and mechanics [21].
In this section, we present the method for the ROF model, or equivalently the con-
strained problem (3.5). The details of the algorithms will be elaborated, followed by
some convergence analysis.
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Algorithm 3.1 Split Bregman iteration for the ROF model

1. Initialization: u−1 = 0, p−1 = 0, g−1
u = 0, g−1

p = 0;

2. For k=0, 1, 2, ...: Compute (uk, pk) using (3.14), and update

gk
u = gk−1

u − div(pk −∇uk)
gk

p = gk−1
p − (pk −∇uk)

. (3.15)

4.1. Augmented Lagrangian method for the ROF model. We first define
the augmented Lagrangian functional for the constrained optimization problem (3.5)
as follows:

Lrof(v, q; µ) = Rrof(q) +
α

2
‖Kv − f‖2

V + (µ, q −∇v)Q +
r

2
‖q −∇v‖2

Q, (4.1)

where µ ∈ Q is the Lagrange multiplier, and r is a positive constant. For the aug-
mented Lagrangian method for (3.5), we consider the following saddle-point problem

Find (u, p; λ) ∈ V × Q × Q,

s.t. Lrof(u, p; µ) ≤ Lrof(u, p; λ) ≤ Lrof(v, q; λ), ∀(v, q; µ) ∈ V × Q × Q.
(4.2)

The relation between the saddle-point of problem (4.2) and the solution of (3.2)
is stated in the following theorem.

Theorem 4.1. u ∈ V is a solution of (3.2) if and only if there exist p ∈ Q and
λ ∈ Q such that (u, p; λ) is a solution of (4.2).
Proof Suppose (u, p; λ) is a solution of (4.2). From the first inequality in (4.2), we
have

p −∇u = 0. (4.3)

The above relation, together with the second inequality in (4.2), shows

Rrof(∇u) + α
2 ‖Ku − f‖2

V ≤ Rrof(q) + α
2 ‖Kv − f‖2

V + (λ, q −∇v)Q + r
2‖q −∇v‖2

Q,

∀(v, q) ∈ V × Q.

(4.4)
Taking q = ∇v in the above equation indicates that u is a solution of (3.2).

Conversely, we assume that u ∈ V is a solution of (3.2). We take p = ∇u ∈ Q.
From (3.6), there exists one λ ∈ ∂Rrof(∇u) such that divλ = αK∗(Ku − f). We
verify that (u, p; λ) is a saddle-point of Lrof , i.e., Lrof(u, p; µ) ≤ Lrof(u, p; λ) ≤
Lrof(v, q; λ), ∀(v, q; µ) ∈ V × Q × Q. Since p = ∇u, the first inequality holds. In the
following we show Lrof(u, p; λ) ≤ Lrof(v, q; λ), ∀(v, q) ∈ V × Q. Since

Lrof(v, q; λ) =Rrof(q) +
α

2
‖Kv − f‖2

V + (λ, q −∇v)Q +
r

2
‖q −∇v‖2

Q

=Rrof(q) +
α

2
‖Kv − f‖2

V +
r

2
‖q −∇v +

λ

r
‖2

Q − 1

2r
‖λ‖2

Q

is convex, proper, coercive, and continuous with respect to (v, q), Lrof(v, q; λ) has a
minimizer (v̄, q̄) over V × Q, which is characterized [19, 21] by

Rrof(q) − Rrof(q̄) + (λ, q − q̄)Q + r(q̄ −∇v̄, q − q̄)Q ≥ 0, ∀q ∈ Q, (4.5)
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and

α

2
‖Kv−f‖2

V −α

2
‖Kv̄−f‖2

V +(divλ, v−v̄)V +r(div(q̄−∇v̄), v−v̄)V ≥ 0, ∀v ∈ V. (4.6)

It is straightforward to verify that (u, p) satisfies (4.5) and (4.6). This completes the
proof. �

Theorem 4.1, together with Theorem 3.1, shows that the problem (4.2) has at
least one solution and each u in the solutions solves the original problem (3.2). We
then use an iterative algorithm to solve the saddle-point problem (4.2); see Algorithm
4.1.

Algorithm 4.1 Augmented Lagrangian method for the ROF model

1. Initialization: λ0 = 0;
2. For k=0,1,2,...: compute (uk, pk) as an (approximate) minimizer of the aug-

mented Lagrangian functional with the Lagrange multiplier λk, i.e.,

(uk, pk) ≈ arg min
(v,q)∈V ×Q

Lrof(v, q; λk), (4.7)

where Lrof(v, q; λk) is defined in (4.1); and update

λk+1 = λk + r(pk −∇uk). (4.8)

We are now left the minimization problem (4.7) to address. One may notice the
symbol ≈ in this problem. This is because that, in general, it is difficult to find the
minimizers uk and pk exactly in practical computation since v, q are coupled together.
Usually, one separates the variable v and q and then uses an alternative minimization
procedure [39, 40, 22] to solve (4.7), through which in practice one can only obtain
the minimizer approximately. However, this does not affect the convergence of the
whole algorithm 4.1. More details are as follows.

We separate (4.7) to be the following two sub-problems:

min
v∈V

α

2
‖Kv − f‖2

V − (λk,∇v)Q +
r

2
‖q −∇v‖2

Q, (4.9)

for a given q, and

min
q∈Q

Rrof(q) + (λk, q)Q +
r

2
‖q −∇v‖2

Q, (4.10)

for a given v.
Sub-problems (4.9) and (4.10) can be efficiently solved. For (4.9), the optimality

condition gives a linear equation

αK∗(Kv − f) + divλk + rdivq − r△v = 0,

by the periodic boundary condition we are using. It allows us to use Fourier transforms
and thus an FFT implementation as done in [39, 40], which, to our best of knowledge,
are the first papers using FFT in total variation minimization problems. Denoting
F(v) as the Fourier transform of v, we write the solution as follows

v = F−1(
αF(K∗)F(f) −F(D̊−

x )F((λ1)k + rq1) −F(D̊−
y )F((λ2)k + rq2)

αF(K∗)F(K) − rF(△)
), (4.11)
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where λk = ((λ1)k, (λ2)k) and q = (q1, q2); and Fourier transforms of operators
such as K, D̊−

x , D̊−
y ,△ = D̊−

x D̊+
x + D̊−

y D̊+
y are regarded as the transforms of their

corresponding convolution kernels. For (4.10), we actually have the following closed
form solution [6][40]

qi,j =

{
(1 − 1

r
1

|wi,j |
)wi,j , |wi,j | > 1

r
,

0, |wi,j | ≤ 1
r
,

(4.12)

where

w = ∇v − λk

r
, (4.13)

since we can reformulate it (by multiplying r) to be

min
q∈Q

Rrof(rq) +
1

2
‖rq − (r∇v − λk)‖2

Q.

We then iteratively and alternatively compute the v and q according to (4.11) and
(4.12). It is with Gauss-Seidel flavor. The procedure is shown in Algorithm 4.2. Here

Algorithm 4.2 Augmented Lagrangian method for the ROF model – solve the min-
imization problem (4.7)

• Initialization: uk,0 = uk−1, pk,0 = pk−1;
• For l = 0, 1, 2, ..., L − 1: Compute uk,l+1 from (4.11) for q = pk,l; and then

compute pk,l+1 from (4.12) for v = uk,l+1;
• uk = uk,L, pk = pk,L.

L can be chosen using some convergence test techniques. In this paper, we simply set
L = 1. In our experiments we found that with larger L (> 1) the algorithm wastes the
accuracy of the inner iteration and does not speed up dramatically the convergence
of the whole algorithm. This has also been observed in [22], for the split Bregman
method (which is equivalent to augmented Lagrangian method, as will be shown in
the following).

4.2. Convergence analysis. We show some convergence results of the aug-
mented Lagrangian method. We first give the convergence of Algorithm 4.2, and then
present two convergence results for Algorithm 4.1 where the minimization problem
(4.7) is computed by Algorithm 4.2 with full accuracy (L → ∞) and rough accuracy
(L = 1), respectively.

Theorem 4.2. The sequence {(uk,l, pk,l) : l = 0, 1, 2, · · · } generated by Algorithm
4.2 converges to a solution of the problem (4.7).
Proof The proof is motivated by [40]. Here we just sketch the differences.

We define an operator S similarly with that in [40], such that (4.12) is refor-
mulated as q = S(w), where w is as in (4.13). Therefore the iterative scheme in
Algorithm 4.2 is as follows

{

uk,l+1 = (∇∗∇ + α
r
K∗K)−1(∇∗pk,l + ∇∗ λk

r
+ α

r
K∗f),

pk,l+1 = S(∇uk,l+1 − λk

r
),

(4.14)

where ∇∗ = −div is the adjoint operator of ∇. Here we also mention the existence
of (∇∗∇+ α

r
K∗K)−1 for the assumption Null(∇)∩Null(K) = {0}. We then define a
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linear operator h : Q → Q as

h(q) = ∇(∇∗∇ +
α

r
K∗K)−1(∇∗q + ∇∗λk

r
+

α

r
K∗f) − λk

r
. (4.15)

It is straightforward to verify the non-expansiveness of h defined above.
Rewriting the iterative scheme (4.14) as

{

uk,l+1 = (∇∗∇ + α
r
K∗K)−1(∇∗pk,l + ∇∗ λk

r
+ α

r
K∗f),

pk,l+1 = S ◦ h(pk,l),
(4.16)

one can show the convergence via a similar argument in [40]. �

In the following we give the convergence of Algorithm 4.1 where the minimization
problem (4.7) is computed by Algorithm 4.2 with full accuracy (L → ∞) and rough
accuracy (L = 1), respectively. We should point out that the idea of our proofs follows
the convergence proof in [21]. However, the convergence proof of (uk, pk) (see (4.18)
and (4.36)) in [21] requires the uniform convexity of Rrof(p) (in our context) and thus
cannot be directly applied to our case. In addition to modifying this part, we provide
more details to make the proof clearer.

Theorem 4.3. Assume (u, p; λ) is a saddle-point of Lrof(v, q; µ). Suppose that
the minimization problem (4.7) is exactly solved in each iteration, i.e., L → ∞ in
Algorithm 4.2. Then the sequence (uk, pk; λk) generated by Algorithm 4.1 satisfies

{
lim

k→∞
Grof(u

k, pk) = Grof(u, p),

lim
k→∞

‖pk −∇uk‖Q = 0.
(4.17)

Since Rrof(p) is continuous, (4.17) indicates that uk is a minimizing sequence of Frof .
If we further have Null(K) = {0}, then

{
lim

k→∞
uk = u,

lim
k→∞

pk = p.
(4.18)

Proof Let us define uk, pk, λ
k

as

uk = uk − u, pk = pk − p, λ
k

= λk − λ.

Since (u, p; λ) is a saddle-point of Lrof(v, q; µ), we have

Lrof(u, p; µ) ≤ Lrof(u, p; λ) ≤ Lrof(v, q; λ), ∀(v, q; µ) ∈ V × Q × Q. (4.19)

From the first inequality of (4.19), we have p = ∇u. This relationship, together with
(4.8), indicates

λ
k+1

= λ
k

+ r(pk −∇uk).

It then follows that

‖λk‖2
Q − ‖λk+1‖2

Q = −2r(λ
k
, pk −∇uk)Q − r2‖pk −∇uk‖2

Q. (4.20)

On the other hand, from the second inequality of (4.19), (u, p) is characterized
by

α

2
‖Kv − f‖2

V − α

2
‖Ku − f‖2

V + (divλ, v − u)V + r(div(p −∇u), v − u)V ≥ 0, ∀v ∈ V,

(4.21)



10 Chunlin Wu, Xue-Cheng Tai

Rrof(q) − Rrof(p) + (λ, q − p)Q + r(p −∇u, q − p)Q ≥ 0, ∀q ∈ Q. (4.22)

Similarly, (uk, pk) is characterized by

α

2
‖Kv−f‖2

V −α

2
‖Kuk−f‖2

V +(divλk, v−uk)V +r(div(pk−∇uk), v−uk)V ≥ 0, ∀v ∈ V,

(4.23)

Rrof(q) − Rrof(p
k) + (λk, q − pk)Q + r(pk −∇uk, q − pk)Q ≥ 0, ∀q ∈ Q, (4.24)

since (uk, pk) is the solution of (4.7). Taking v = uk in (4.21) and v = u in (4.23), we
obtain, by addition,

−(λ
k
,∇uk)Q − r(pk −∇uk,∇uk)Q ≤ 0. (4.25)

Similarly, we have

(λ
k
, pk)Q + r(pk −∇uk, pk)Q ≤ 0, (4.26)

by taking q = pk in (4.22) and q = p in (4.24) and then addition. It then follows that

(λ
k
, pk −∇uk)Q + r‖pk −∇uk‖2

Q ≤ 0, (4.27)

if we add (4.25) and (4.26) together.
By (4.27) and (4.20), we have

‖λk‖2
Q − ‖λk+1‖2

Q ≥ r2‖pk −∇uk‖2
Q ≥ 0, (4.28)

which implies

{

{λk : ∀k} is bounded,

lim
k→∞

‖pk −∇uk‖Q = 0. (4.29)

Moreover, the second inequality of (4.19) indicates

Grof(u, p) ≤ Grof(u
k, pk) + (λ, pk −∇uk)Q +

r

2
‖pk −∇uk‖2

Q. (4.30)

If we take v = u in (4.23) and q = p in (4.24), we have, by addition,

Grof(u, p) ≥ Grof(u
k, pk) + (λk, pk −∇uk)Q + r‖pk −∇uk‖2

Q. (4.31)

Using (4.29), we have

lim inf Grof(u
k, pk) ≥ Grof(u, p) ≥ lim supGrof(u

k, pk), (4.32)

by taking lim inf in (4.30) and lim sup in (4.31). Hence we complete the proof of
(4.17).

In the following we show (4.18) if Null(K) = {0} holds. Since (u, p; λ) is a saddle-
point of Lrof(v, q; µ), we have

−λ ∈ ∂Rrof(p), (4.33)

divλ = −αK∗(Ku − f), (4.34)
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where ∂Rrof(p) is the sub-differential of Rrof at p. Then, we deduce

Grof(u
k, pk) + (λ, pk −∇uk)Q

≥Rrof(p) − (λ, pk − p)Q +
α

2
‖Kuk − f‖2

V + (λ, pk −∇uk)Q

=Rrof(p) +
α

2
‖Kuk − f‖2

V + (λ,∇u −∇uk)Q

≥Rrof(p) +
α

2
‖K uk + u

2
− f‖2

V + α(K∗(K
uk + u

2
− f),

uk − u

2
)V + (λ,∇u −∇uk)Q

=Rrof(p) +
α

2
‖Ku − f‖2

V +
α

2
‖K uk + u

2
− f‖2

V − α

2
‖Ku − f‖2

V

+ α(K∗(K
uk + u

2
− f),

uk − u

2
)V + (λ,∇u −∇uk)Q

=Rrof(p) +
α

2
‖Ku − f‖2

V +
α

2
‖K uk + u

2
− f‖2

V − α

2
‖Ku − f‖2

V

+ α(K
uk + u

2
− f, K

uk − u

2
)V + α(Ku − f, K(u − uk))V

=Grof(u, p) +
3

8
α‖K(uk − u)‖2

V ,

from which we obtain

lim
k→∞

‖K(uk − u)‖V = 0,

according to (4.17). If Null(K) = {0} holds, it follows that

lim
k→∞

uk = u.

This result, together with the second equation in (4.17), yields

lim
k→∞

pk = ∇u = p,

which completes the proof. �

Theorem 4.4. Assume (u, p; λ) is a saddle-point of Lrof(v, q; µ). Suppose that
the minimization problem (4.7) is roughly solved in each iteration, i.e., with L = 1 in
Algorithm 4.2. Then the sequence (uk, pk; λk) generated by Algorithm 4.1 satisfies

{
lim

k→∞
Grof(u

k, pk) = Grof(u, p),

lim
k→∞

‖pk −∇uk‖Q = 0.
(4.35)

Since Rrof(p) is continuous, (4.35) indicates that uk is a minimizing sequence of Frof .
If we further have Null(K) = {0}, then

{
lim

k→∞
uk = u,

lim
k→∞

pk = p.
(4.36)

Proof Again we define the following errors

uk = uk − u, pk = pk − p, λ
k

= λk − λ.
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In this case, (4.20) still holds, which is presented as follows

‖λk‖2
Q − ‖λk+1‖2

Q = −2r(λ
k
, pk −∇uk)Q − r2‖pk −∇uk‖2

Q. (4.37)

Since (u, p; λ) is a saddle-point of Lrof(v, q; µ), (u, p) is characterized by

α

2
‖Kv − f‖2

V − α

2
‖Ku − f‖2

V + (divλ, v − u)V + r(div(p −∇u), v − u)V ≥ 0, ∀v ∈ V,

(4.38)

Rrof(q) − Rrof(p) + (λ, q − p)Q + r(p −∇u, q − p)Q ≥ 0, ∀q ∈ Q. (4.39)

Similarly, by the construction of (uk, pk) (Algorithm 4.2 with L = 1), we have

α

2
‖Kv−f‖2

V −
α

2
‖Kuk−f‖2

V +(divλk, v−uk)V +r(div(pk−1−∇uk), v−uk)V ≥ 0, ∀v ∈ V,

(4.40)

Rrof(q) − Rrof(p
k) + (λk, q − pk)Q + r(pk −∇uk, q − pk)Q ≥ 0, ∀q ∈ Q. (4.41)

Taking v = uk in (4.38), v = u in (4.40) and q = pk in (4.39), as well as q = p in
(4.41), we obtain, after addition,

(λ
k
, pk −∇uk)Q + r‖pk −∇uk‖2

Q + r(∇uk, pk − pk−1)Q ≤ 0. (4.42)

It then follows from (4.37) and (4.42) that

‖λk‖2
Q − ‖λk+1‖2

Q ≥ r2‖pk −∇uk‖2
Q + 2r2(∇uk, pk − pk−1)Q. (4.43)

In the following we estimate (∇uk, pk − pk−1)Q in (4.43). We have

(∇uk, pk − pk−1)Q = (∇uk −∇uk−1, pk − pk−1)Q

+(∇uk−1 − pk−1, pk − pk−1)Q + (pk−1, pk − pk−1)Q
.

(4.44)
On the other hand, by the construction of pk−1 (from uk−1), it follows that

Rrof(q) − Rrof(p
k−1) + (λk−1, q − pk−1)Q + r(pk−1 −∇uk−1, q − pk−1)Q ≥ 0, ∀q ∈ Q.

(4.45)
Taking q = pk−1 in (4.41) and q = pk in (4.45), we obtain, by addition,

r‖pk − pk−1‖2
Q + (pk − pk−1, λ

k −λ
k−1

)Q − r(pk − pk−1,∇uk −∇uk−1)Q ≤ 0. (4.46)

Since

λ
k − λ

k−1
= λk − λk−1 = r(pk−1 −∇uk−1),

we have

(pk − pk−1,∇uk −∇uk−1)Q + (pk − pk−1,∇uk−1 − pk−1)Q ≥ ‖pk − pk−1‖2
Q. (4.47)

according to (4.46). (4.44) and (4.47), together with the following identity

(pk−1, pk − pk−1)Q =
1

2
(‖pk‖2

Q − ‖pk−1‖2
Q − ‖pk − pk−1‖2

Q),
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imply

(∇uk, pk − pk−1)Q ≥ 1

2
(‖pk‖2

Q − ‖pk−1‖2
Q + ‖pk − pk−1‖2

Q). (4.48)

We then obtain from (4.43) and (4.48) that

‖λk‖2
Q+r2‖pk−1‖2

Q−(‖λk+1‖2
Q+r2‖pk‖2

Q) ≥ r2‖pk−∇uk‖2
Q+r2‖pk−pk−1‖2

Q. (4.49)

(4.49) indicates






{λk : ∀k}, {pk : ∀k}, and {∇uk : ∀k} are bounded,

lim
k→∞

‖pk −∇uk‖Q = 0,

lim
k→∞

‖pk − pk−1‖Q = 0.

(4.50)

On the other hand, since (u, p; λ) is a saddle-point of Lrof(v, q; µ), we have

Grof(u, p) ≤ Grof(u
k, pk) + (λ, pk −∇uk)Q +

r

2
‖pk −∇uk‖2

Q. (4.51)

If we take v = u in (4.40) and q = p in (4.41), we have, by addition,

Grof(u, p) ≥ Grof(u
k, pk) + (λk, pk −∇uk)Q + r‖pk −∇uk‖2

Q + r(∇uk, pk − pk−1)Q.

(4.52)
Using (4.50), we have

lim inf Grof(u
k, pk) ≥ Grof(u, p) ≥ lim sup Grof(u

k, pk), (4.53)

by taking lim inf in (4.51) and lim sup in (4.52). This completes the proof of (4.35).
Starting from (4.35), one can verify (4.36) in a similar way as in the proof of Theorem
4.3. �

Similar results as Theorem 4.4 were obtained in [36] by reformulating the algo-
rithm to be Douglas-Rachford splitting on the dual problem, and also in [8].

We remind that the operator K is invertible in many cases, e.g., image denoising
where K = I, and most of image deblurring problems (although the condition number
of the blur kernel may be very bad). In these cases, Theorem 4.3 and 4.4 imply the
convergence of the sequence {uk} (either L → ∞ or L = 1 in Algorithm 4.2) to the
unique solution of the problem.

5. Relations between augmented Lagrangian method and dual methods

as well as split Bregman iteration for the ROF model. In this section, we show
that dual methods such as CGM [12] and Chambolle’s [11] for the ROF model are
closely connected to the augmented Lagrangian method. Also, we explain that split
Bregman iteration [22] is equivalent to Algorithm 4.1.

For the saddle-point problem (4.2), we have the following optimality condition

∂vLrof(v, q; µ)|(u,p;λ) = αK∗(Ku − f) + divλ + rdiv(p −∇u) = 0, (5.1)

∂qLrof(v, q; µ)|(u,p;λ) = ∂Rrof(p) + λ + r(p −∇u) ∋ 0, (5.2)

∂µLrof(v, q; µ)|(u,p;λ) = p −∇u = 0, (5.3)

where ∂Rrof(p) is the sub-differential of Rrof at p.
It is definitely true that various techniques such as Newton’s and quasi Newton’s

linearizations can be applied to the above system of optimality condition to solve
the saddle-point problem. Actually the optimality condition can be simplified to the
CGM and Chambolle’s dual methods as discussed in the following.
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5.1. Connection to the CGM dual method. We show how to obtain the
CGM dual method from augmented Lagrangian method. Using (5.3), we get p = ∇u,
which gives

λi,j =

{

− (∇u)i,j

|(∇u)i,j |
, if |(∇u)i,j | 6= 0,

g ∈ R
2, |g| ≤ 1, if |(∇u)i,j | = 0.

(5.4)

from (5.2). Therefore, the multiplier λ is just the dual variable of the CGM method
with a different sign. We then can reformulate the system of (5.1), (5.2), and (5.3) to
be

divλ + αK∗(Ku − f) = 0
∇u + λ|∇u| = 0

, (5.5)

which is just the primal-dual system in [12] if −λ is replaced with ω.

5.2. Connection to Chambolle’s dual method. In the following we show
how Chambolle’s algorithm is connected to the augmented Lagrangian method. Com-
pared to the derivation in [11], this is another way to obtain the dual method.
From the system of (5.1), (5.2), and (5.3), we first eliminate the p variable to ob-
tain (5.5), and then ulteriorly eliminate the λ variable to get u as following (assume
Null(K) = {0})

u = (αK∗K)−1(αK∗f − divλ). (5.6)

This yields the equation for the dual variable as:

∇((K∗K)−1(αK∗f − divλ)) + λ|∇((K∗K)−1(αK∗f − divλ))| = 0. (5.7)

For image denoising problems where K = I, (5.7) and (5.6) are just the equations
used by Chambolle in [11] to solve the dual variable and recover the primal variable u,
respectively. (5.7) for the dual variable in [11] was obtained through a key result from
the optimization theory. We deduce the same equation naturally from augmented
Lagrangian method. In addition, (5.6) and (5.7) are formulations for general K. We
should mention that K is sometimes compact and thus the condition number of K∗K

is very bad. In this case the algorithm is not as efficient as expected.

5.3. Connection to split Bregman iteration. The split Bregman iteration
is equivalent to augmented Lagrangian method [38, 36, 20]. Considering the zero
initialization for the sub-gradients and the Lagrange multiplier and letting

(gk−1
u , gk−1

p ) = −(divλk, λk) (5.8)

for k = 0, 1, 2, · · · , we have

(uk, pk) = arg min
u,p

D
(gk−1

u ,gk−1

p )

Grof
((u, p), (uk−1, pk−1)) +

1

2
‖p −∇u‖2

Q

= arg min
u,p

Rrof(p) +
α

2
‖Ku − f‖2

V + (u, divλk)V + (λk, p)Q +
1

2
‖p −∇u‖2

Q

= arg min
u,p

Rrof(p) +
α

2
‖Ku − f‖2

V − (λk,∇u)Q + (λk, p)Q +
1

2
‖p −∇u‖2

Q

= arg min
u,p

Lrof(u, p; λk),

indicating the equivalence of the solutions of Bregman iteration and augmented La-
grangian method with r = 1, if the sub-problems in these two methods are solved
identically. In the context of compressive sensing, this equivalence has been pointed
out in [43].
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6. Extension to vectorial TV model. In this section, we extend our method
and observations to vectorial TV restoration model. Let us denote in general an
M -channel image by u = (u1, u2, · · · , uM ), where um ∈ V, ∀m = 1, 2, · · · , M . The
intensity at pixel (i, j) is thus multi-valued, say, ui,j = ((u1)i,j , (u2)i,j , · · · , (uM )i,j).
If M = 3, one gets usual color models such as RGB.

For convenience of description, we introduce the following notation

V = V × V × · · · × V
︸ ︷︷ ︸

M

,

Q = Q × Q × · · · × Q
︸ ︷︷ ︸

M

.

Hence an M -channel image u is an element of V, and its gradient∇u = (∇u1,∇u2, · · · ,∇uM )
is an element of Q. The usual inner products and norms in V and Q are as follows:

(u,v)V =
∑

1≤m≤M

(um, vm)V , ‖u‖V =
√

(u,u)V;

(p,q)Q =
∑

1≤m≤M

(pm, qm)Q, ‖p‖Q =
√

(p,p)Q.

For u ∈ V and p ∈ Q, we also define the following pixel-by-pixel norms

|ui,j | =

√
∑

1≤m≤M

(um)2i,j

and

|pi,j | =

√
∑

1≤m≤M

|(pm)i,j |2

at each pixel (i, j).
We consider the following vector-valued image restoration problem:

min
u∈V

{Fvtv(u) = Rvtv(∇u) +
α

2
‖Ku− f‖2

V}, (6.1)

where

Rvtv(∇u) = TV(u) =
∑

1≤i,j≤N

√
∑

1≤m≤M

|(∇um)i,j |2 (6.2)

is the vectorial TV norm [34, 4] (see [2] for some other choices), and f = (f1, f2, · · · , fM ) ∈
V is an observed image, K = (Ki,j)M×M : V → V is the blur operator. The diagonal
elements of K denote within channel blur whereas the off-diagonal elements describe
cross channel blur. Similarly with the ROF model, here we make the following as-
sumption

• Null(∇) ∩ Null(K) = {0}.
Under this assumption, the functional Fvtv(u) in (6.1) is convex, proper, coercive,
and continuous. Therefore we have:

Theorem 6.1. The problem (6.1) has at least one solution u, which satisfies

0 ∈ αK∗(Ku − f) − div∂Rvtv(∇u), (6.3)
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where ∂Rvtv(∇u) is the sub-differential of Rvtv at ∇u. Moreover, if Null(K) = {0},
the minimizer is unique.

By introducing a new variable p = (p1, p2, · · · , pM ) ∈ Q, the minimization prob-
lem (6.1) is equivalent to the following constrained optimization problem

min
u∈V,p∈Q

{Gvtv(u,p) = Rvtv(p) + α
2 ‖Ku− f‖2

V},
s.t. p = ∇u.

(6.4)

6.1. Augmented Lagrangian method. Here we present augmented Lagrangian
method for the restoration problem (6.1), or equivalently (6.4). We first define aug-
mented Lagrangian functional as

Lvtv(v,q; µ) = Rvtv(q) +
α

2
‖Kv − f‖2

V + (µ,q −∇v)Q +
r

2
‖q −∇v‖2

Q, (6.5)

where µ ∈ Q is the multiplier. Augmented Lagrangian method aims at solving the
following saddle-point problem:

Find (u,p; λ) ∈ V × Q× Q,

s.t. Lvtv(u,p; µ) ≤ Lvtv(u,p; λ) ≤ Lvtv(v,q; λ), ∀(v,q; µ) ∈ V × Q× Q.
(6.6)

Similarly to Theorem 4.1, we have the following result.
Theorem 6.2. u ∈ V is a solution of (6.1) if and only if there exist p ∈ Q and

λ ∈ Q such that (u,p; λ) is a solution of (6.6).
We use an iterative procedure as described in Algorithm 6.1 to solve the problem

(6.6). Again, one may see the ≈ in (6.7). This is because that the minimization
problem (6.7) has two coupled variables and hence difficult to be solved exactly (see
the following argument).

Algorithm 6.1 Augmented Lagrangian method for vectorial TV model

1. Initialization: λ0 = 0;
2. For k = 0, 1, 2, ...: Compute (uk,pk) from

(uk,pk) ≈ arg min
(v,q)∈(V,Q)

Lvtv(v,q; λk), (6.7)

and update

λk+1 = λk + r(pk −∇uk). (6.8)

As for the minimization problem (6.7), we separate it into the following two sub-
problems:

min
v

α

2
‖Kv − f‖2

V − (λk,∇v)Q +
r

2
‖q −∇v‖2

Q, (6.9)

for a given q, and

min
q

Rvtv(q) + (λk,q)Q +
r

2
‖q −∇v‖2

Q, (6.10)

for a given v.
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Applying Fourier transforms to the optimality condition of the sub-problem (6.9),
we have

αF(K∗)F(K)F(v) − rF(△)F(v) = αF(K∗)F(f) −F(div)F(λk) − rF(div)F(q),
(6.11)

from which F(v) can be found and then v via an inverse Fourier transform. Here ap-
plying Fourier transform to a matrix or a vector is regarded as applying Fourier trans-
forms to its components, e.g., F(v) = (F(v1),F(v2), · · · ,F(vM )), F(div)F(λk) =
(F(div)F(λk

1),F(div)F(λk
2), · · · ,F(div)F(λk

M )), F(K) = (F(Ki,j))M×M . Thus one
needs to solve a system of linear algebraic equations of F(v) = (F(v1),F(v2), · · · ,F(vM ))
since cross blurs exist in general. In a special case without cross blurs, say, the blur
kernel matrix K is a diagonal matrix, the F(v) can be calculated component by
component. The sub-problem (6.10) has the following closed form solution

qi,j =

{
(1 − 1

r
1

|wi,j |
)wi,j , |wi,j | > 1

r
,

0, |wi,j | ≤ 1
r
,

(6.12)

where

w = ∇v − λk

r
. (6.13)

We then have an iterative procedure to alternatively compute the v and q accord-
ing to (6.11) (6.12); see Algorithm 6.2. Here L can be chosen using some convergence

Algorithm 6.2 Augmented Lagrangian method for vectorial TV model – solve the
minimization problem (6.7)

• Initialization: uk,0 = uk−1,pk,0 = pk−1;
• For l = 0, 1, 2, ..., L − 1: Compute uk,l+1 from (6.11) for q = pk,l; and then

compute pk,l+1 from (6.12) for v = uk,l+1;
• uk = uk,L,pk = pk,L.

test techniques and usually simply set to be 1.
In the following we present some convergence results without giving proofs. They

are straightforward generalizations of Theorem 4.2, 4.3 and 4.4.
Theorem 6.3. The sequence {(uk,l,pk,l) : l = 0, 1, 2, · · · } generated by Algorithm

6.2 converges to a solution of the problem (6.7).
Theorem 6.4. Assume (u,p; λ) is a saddle-point of Lvtv(v,q; µ). Suppose that

the minimization problem (6.7) is exactly solved in each iteration, i.e., L → ∞ in
Algorithm 6.2. Then the sequence (uk,pk; λk) generated by Algorithm 6.1 satisfies

{
lim

k→∞
Gvtv(u

k,pk) = Gvtv(u,p),

lim
k→∞

‖pk −∇uk‖Q = 0.
(6.14)

Since Rvtv(p) is continuous, (6.14) indicates that uk is a minimizing sequence of Fvtv.
If we further have Null(K) = {0}, then

{
lim

k→∞
uk = u,

lim
k→∞

pk = p.
(6.15)
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Theorem 6.5. Assume (u,p; λ) is a saddle-point of Lvtv(v,q; µ). Suppose that
the minimization problem (6.7) is roughly solved in each iteration, i.e., L = 1 in
Algorithm 6.2. Then the sequence (uk,pk; λk) generated by Algorithm 6.1 satisfies

{
lim

k→∞
Gvtv(u

k,pk) = Gvtv(u,p),

lim
k→∞

‖pk −∇uk‖Q = 0.
(6.16)

Since Rvtv(p) is continuous, (6.16) indicates that uk is a minimizing sequence of Fvtv.
If we further have Null(K) = {0}, then

{
lim

k→∞
uk = u,

lim
k→∞

pk = p.
(6.17)

6.2. Dual methods for vectorial TV model. In this sub-section we give
CGM and Chambolle’s dual methods for vectorial TV restoration model.

We start from the optimality condition of the saddle-point problem (6.6), which
reads

∂vLvtv(v,q, µ)|(u,p;λ) = αK∗(Ku− f) + divλ + rdiv(p −∇u) = 0, (6.18)

∂qLvtv(v,q, µ)|(u,p;λ) = ∂Rvtv(p) + λ + r(p −∇u) ∋ 0, (6.19)

∂µLvtv(v,q, µ)|(u,p;λ) = p −∇u = 0, (6.20)

where ∂Rvtv(p) is the sub-differential of Rvtv at p, and divλ = (divλ1, divλ2, · · · , divλM )
as well as div(p −∇u) means similarly.

6.2.1. The CGM dual method. The CGM dual method for color image
restoration is still missing in the literature, as pointed out in [4] that “the ques-
tion of extension is open for the CGM’s model”. Here we present the method via
simplifying the optimality condition of the saddle-point problem (6.6). Using (6.20)
to eliminate p and rearranging the result yield

αK∗(Ku − f) + divλ = 0
∇u + λ|∇u| = 0

, (6.21)

which is a similar system of that in the CGM dual method in [12]. Newton’s lin-
earization techniques can then be used to simultaneously compute the primal and
dual variables u and λ in (6.21).

6.2.2. Chambolle’s dual method. If we go a step further, we will get a method
similar with Chambolle’s [11]. See [4]. From the first equation of (6.21) we have
a relation between the primal variable u and the dual variable λ as (assume here
Null(K) = {0})

u = (αK∗K)−1(αK∗f − divλ). (6.22)

Substituting this equation into the second equation of (6.21) gives

∇((K∗K)−1(αK∗f − divλ)) + λ|∇((K∗K)−1(αK∗f − divλ))| = 0, (6.23)

which can be solved with a semi-implicit gradient descent scheme. Here we derive
Chambolle’s dual method for vectorial TV model in a different way from [4].
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Algorithm 6.3 Split Bregman iteration for vectorial TV model

1. Initialization: (u−1,p−1) = (0, 0), (g−1
u ,g−1

p ) = (0, 0);

2. For k = 0, 1, 2, ...: Compute (uk,pk) from

(uk,pk) = arg min
(u,p)

D
(gk−1

u
,gk−1

p
)

Gvtv
((u,p), (uk−1,pk−1))+

1

2
‖p−∇u‖2

Q, (6.24)

and update

gk
u = gk−1

u − div(pk −∇uk),
gk
p = gk−1

p − (pk −∇uk).
(6.25)

6.3. Split Bregman iteration for vectorial TV model. Split Bregman it-
eration for the restoration problem (6.4) is presented in Algorithm 6.3. Therein the
minimization problem (6.24) can be solved using Algorithm 6.2 with r = 1. To our
knowledge, Algorithm 6.3 has not been proposed yet.

One can show the equivalence between augmented Lagrangian method (Algorithm
6.1) and split Bregman iteration (Algorithm 6.3), as done in last section for the ROF
model.

7. Extension to high order models. We can also extend our method and
observations to high order models. As well known, the TV restoration models (e.g.,
ROF and vectorial TV) suffer from staircase effect; see [45, 41, 13, 15, 5] and references
therein. To overcome this, high order models have been proposed [10, 13, 46, 27, 29,
16, 24]. Here we take the Lysaker-Lundervold-Tai (LLT) model [27] as an example.
Other high order models can be similarly treated. Moreover, we present the model
(which is still denoted as “LLT”) and method for multi-valued images, for generality.

Since the LLT model is defined using second order derivatives, we need to intro-
duce second order difference operators. Given u ∈ V , we define

(D̊−+
xx u)i,j := (D̊−

x (D̊+
x u))i,j ,

(D̊++
xy u)i,j := (D̊+

x (D̊+
y u))i,j ,

(D̊++
yx u)i,j := (D̊+

y (D̊+
x u))i,j ,

(D̊−+
yy u)i,j := (D̊−

y (D̊+
y u))i,j ,

based on the first order difference operators introduced in Section 2. One may verify
that, by the definition above, (D̊++

xy u)i,j = (D̊++
yx u)i,j holds. In this paper we also use

some other second order difference operators such as D̊+−
xx , D̊+−

xy , D̊−+
xy , D̊−−

xy . They
can be similarly defined and we omit the details. We now denote the discrete Hessian
of u as

Hu =

(
D̊−+

xx u D̊++
xy u

D̊++
yx u D̊−+

yy u

)

∈ Q2

with

(Hu)i,j =

(
(D̊−+

xx u)i,j (D̊++
xy u)i,j

(D̊++
yx u)i,j (D̊−+

yy u)i,j

)

,

where

Q2 = V × V × V × V.
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We point out that there are actually 3×4×3 symmetric discrete Hessians by different
combinations of all the second order difference operators. Here we use just one of them
defined above. For a vector-valued image u = (u1, u2, · · · , uM ) ∈ V, the Hessian is
computed channel by channel, and denoted as

Hu = (Hu1, Hu2, · · · , HuM ) ∈ Q2,

where

Q2 = Q2 × · · · × Q2
︸ ︷︷ ︸

M

.

Given

p =

((
p11
1 p12

1

p21
1 p22

1

)

,

(
p11
2 p12

2

p21
2 p22

2

)

, · · · ,

(
p11

M p12
M

p21
M p22

M

))

∈ Q2

and

q =

((
q11
1 q12

1

q21
1 q22

1

)

,

(
q11
2 q12

2

q21
2 q22

2

)

, · · · ,

(
q11
M q12

M

q21
M q22

M

))

∈ Q2,

the inner product and norm in the space Q2 are as follows

(p,q)Q2
=

∑

1≤m≤M

((p11
m , q11

m )V + (p12
m , q12

m )V + (p21
m , q21

m )V + (p22
m , q22

m )V ),

‖p‖Q2
=

√
(p,p)Q2

.

Similarly with those in the ROF and vectorial TV models, we mention the following
pixel-by-pixel norm

|pi,j | =

√
∑

1≤m≤M

((p11
m )2i,j + (p12

m )2i,j + (p21
m )2i,j + (p22

m )2i,j).

By regarding the Hessian as an operator H : V → Q2, we find its adjoint operator
H∗ : Q2 → V as

H∗(p) = (H∗p1, H
∗p2, · · · , H∗pM ),

where

H∗pm = D̊+−
xx p11

m + D̊−−
yx p12

m + D̊−−
xy p21

m + D̊+−
yy p22

m .

We then consider the following image restoration problem

min
u∈V

{Fllt(u) = Rllt(Hu) +
α

2
‖Ku− f‖2

V}, (7.1)

where

Rllt(Hu) =
∑

1≤i,j≤N

|(Hu)i,j |,

and f ∈ V is the observed image, and K : V → V is the blur kernel. Under the
following assumption
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• Null(H) ∩ Null(K) = {0},
the functional Fllt(u) in (7.1) is convex, proper, coercive, and continuous. According
to the generalized Weierstrass theorem and Fermat’s theorem, the problem (7.1) has
at least one solution u, which is characterized by

0 ∈ αK∗(Ku− f) + H∗∂Rllt(Hu), (7.2)

where ∂Rllt(Hu) is the sub-differential of Rllt at Hu. Moreover, if Null(K) = {0},
the minimizer is unique.

In the following we present augmented Lagrangian method to solve (7.1). We only
give the algorithm. Convergence results and connections to Chambolle’s dual method
[37] are similar with those in previous sections. It is also quite straightforward to get
the other two new methods, i.e., the CGM dual method and split Bregman iteration
for this problem, by following our observations in the previous section. Here we omit
these details.

We first reformulate (7.1) to be the following constrained optimization problem

min
u∈V,p∈Q2

{Gllt(u,p) = Rllt(p) + α
2 ‖Ku− f‖2

V},
s.t. p = Hu.

(7.3)

To solve (7.3), we define the augmented Lagrangian functional as

Lllt(v,q; µ) = Rllt(q) +
α

2
‖Kv − f‖2

V + (µ,q − Hv)Q2
+

r

2
‖q − Hv‖2

Q2
, (7.4)

where µ ∈ Q2, and consider the following saddle-point problem:

Find (u,p; λ) ∈ V × Q2 × Q2,

s.t. Lllt(u,p; µ) ≤ Lllt(u,p; λ) ≤ Lllt(v,q; λ), ∀(v,q; µ) ∈ V × Q2 × Q2.
(7.5)

Similarly with Theorem 4.1, u ∈ V is a solution of (7.1) if and only if there exist
p ∈ Q2 and λ ∈ Q2 such that (u,p; λ) is a solution of (7.5). This can be shown by
noticing (7.2).

Algorithm 7.1 Augmented Lagrangian method for the LLT model

1. Initialization: λ0 = 0;
2. For k = 0, 1, 2, ...: Compute (uk,pk) from

(uk,pk) ≈ arg min
(v,q)∈(V,Q2)

Lllt(v,q; λk), (7.6)

and update

λk+1 = λk + r(pk − Huk). (7.7)

An iterative algorithm is given in Algorithm 7.1 to solve the saddle-point problem
(7.5). To solve the minimization problem (7.6), we separate it to be the following two
sub-problems:

min
v

α

2
‖Kv − f‖2

V − (λk, Hv)Q2
+

r

2
‖q − Hv‖2

Q2
, (7.8)
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for a given q, and

min
q

Rllt(q) + (λk,q)Q2
+

r

2
‖q − Hv‖2

Q2
, (7.9)

for a given v.
Similarly with (6.11), (6.12) and (6.13), we here give the solutions to (7.8) and

(7.9) as follows. From the optimality condition of the sub-problem (7.8) and using
Fourier transforms, we deduce

αF(K∗)F(K)F(v)+rF(H∗)F(H)F(v) = αF(K∗)F(f)+F(H∗)F(λk)+rF(H∗)F(q),
(7.10)

from which F(v) and then v can be found. The sub-problem (7.9) has the following
closed form solution

qi,j =

{
(1 − 1

r
1

|wi,j |
)wi,j , |wi,j | > 1

r
,

0, |wi,j | ≤ 1
r
,

(7.11)

where

w = Hv − λk

r
. (7.12)

We then use an iterative procedure to alternatively calculate v and q according
to (7.10) (7.11); see Algorithm 7.2. Here L can be chosen using some convergence

Algorithm 7.2 Augmented Lagrangian method for the LLT model – solve the min-
imization problem (7.6)

• Initialization: uk,0 = uk−1,pk,0 = pk−1;
• For l = 0, 1, 2, ..., L − 1: Compute uk,l+1 from (7.10) for q = pk,l; and then

compute pk,l+1 from (7.11) for v = uk,l+1;
• uk = uk,L,pk = pk,L.

test techniques and usually simply set to be L = 1, as in the ROF and vectorial TV
restoration problems.

8. Examples and discussion. Several numerical examples are provided in Fig-
ures 8.1, 8.2, 8.3, 8.4, and 8.5. In all these figures, SNR and t denote signal-noise-
ratio and the CPU time usage, respectively. In Figures 8.1, 8.2, and 8.3, we show
augmented Lagrangian method applied to the ROF restoration model. Examples
in Figures 8.4 and 8.5 illustrate the extension of our method to vectorial TV and
high order restoration models, respectively. Comparisons between our method and
some built-in Matlab functions, i.e. deconvwnr.m, deconvreg.m and deconvlucy.m, are
shown in Figures 8.1, 8.2, and 8.4. As one can see, our method generates much better
restoration than these built-in Matlab functions in comparable (or even less) CPU
time costs. In Figure 8.3, we also compare our method (with increasing parameter
r) with the recently developed FTVd package based on pure splitting-and-penalty,
which is one of the most efficient approaches as compared to other existing methods
as discussed in [40]. From Figures 8.1 and 8.3 people can also compare FTVd with
our method with fixed parameter r. The performance of our method is similar with
that of the FTVd package. The example illustrated in Figure 8.5 shows augmented
Lagrangian method applied to the LLT model to reduce the staircase effect of the
ROF model; see the zoomed images in Figure 8.5.
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We would like to give some comments on the efficiency of our method. As one can
see, our method contains two iterations, one inner iteration and one outer iteration. In
the inner iteration (see Algorithm 4.2, 6.2, and 7.2), FFT-based implementation and
closed form solution of sub-problems ensure the efficiency. In the outer iteration (see
Algorithm 4.1, 6.1, and 7.1, which are equivalent to split Bregman iteration for corre-
sponding problems, e.g., Algorithm 3.1 and 6.3), the method can be interpreted as a
gradient ascent approach for the dual variable (the sub-gradients of the regularization
term). This is particularly efficient when the regularization term is homogeneous 1,
e.g., TV and vectorial TV norms used in this paper.

Original 
 SNR:  InfdB

Blurry&Noisy 
 SNR: 6.30dB

ALM(r=10) 
 SNR: 12.99dB, t = 0.86s

deconvwnr 
 SNR: 11.29dB, t = 0.08s

deconvreg 
 SNR: 11.17dB, t = 0.36s

deconvlucy 
 SNR: 9.29dB, t = 1.31s

Fig. 8.1. Augmented Lagrangian method (ALM) with parameter r = 10 for ROF restoration,
and comparisons to built-in Matlab functions.

9. Conclusions and future works. In this paper we present augmented La-
grangian method to solve the ROF model. As demonstrated in the examples, our
method benefits from both accuracy and efficiency. We also give some convergence
analysis to our approach. Besides, we show close connections between augmented
Lagrangian method and several other particularly efficient approaches, such as the
CGM and Chambolle’s dual methods, as well as split Bregman iteration. In addition,
our method and observations are extended to vectorial TV and high order restoration
models. In these extensions, one may easily obtain some new methods for vectorial
TV and high order models, e.g., the CGM dual method and split Bregman iteration
applied to these models. A Possible future work is to further extend the method to
models with other data fidelity terms, e.g., TV−L1 model. We noticed that recently
a variant of the ROF model was proposed in [26] which avoids the staircase effect
of the ROF model. To apply our approach to this variant is also valuable for future
research.
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Original 
 SNR:  InfdB

Blurry&Noisy 
 SNR: 7.70dB

ALM(r=40) 
 SNR: 14.76dB, t = 2.37s

deconvwnr 
 SNR: 12.34dB, t = 0.33s

deconvreg 
 SNR: 12.30dB, t = 1.37s

deconvlucy 
 SNR: 11.28dB, t = 5.94s

Fig. 8.2. Augmented Lagrangian method (ALM) with parameter r = 40 for ROF restoration,
and comparisons to built-in Matlab functions.

FTVd(r0=1, SF=2, r=256) 
 SNR: 12.62dB, t = 1.09s

ALM(r0=1, SF=2, r=128) 
 SNR: 12.52dB, t = 0.75s

ALM(r0=1, SF=1.70, r=69.758) 
 SNR: 12.71dB, t = 0.80s

Fig. 8.3. Comparisons between FTVd package (splitting-and-penalty) and augmented La-
grangian method with increasing penalty parameters for ROF restoration. In the sub-figures, r0,
SF and r stand for the initial value, the scaling factor and the final value of the penalty parameter
of methods, respectively. The blurry&noisy image is shown in Fig. 8.1.
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