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AUGMENTED LAGRANGIAN METHODS FOR

TRANSPORT OPTIMIZATION, MEAN-FIELD GAMES

AND DEGENERATE PDES

JEAN-DAVID BENAMOU AND GUILLAUME CARLIER

Abstract. Many problems from mass transport can be reformulated
as variational problems under a prescribed divergence constraint (static
problems) or subject to a time dependent continuity equation which
again is a divergence constraint but in time and space. A large class
of Mean-Field Games introduced by Lasry and Lions may also be inter-
preted as a generalisation of the time-dependent optimal transport prob-
lem. Following Benamou and Brenier [BB00], we show that augmented
Lagrangian methods are well-suited to treat such convex but neither
smooth nor strictly convex problems. It includes in particular Monge’s
original optimal transport problem. A finite element discretization and
implementation of the method is used to provide numerical simulations
and a convergence study.

1. Introduction

Context. Optimal transport theory has received a lot of attention in
the last two decades and both the theory and the applications continue to
develop rapidly (see the monographs of Villani [Vil03], [Vil09]). In contrast,
numerical methods for optimal transport are still underdeveloped. On the
one hand and independently of the transport cost, optimal transport prob-
lems are infinite-dimensional linear problem. After discretization, they can
be solved using Linear Programming methods (e.g. simplex, interior points)
or combinatorial methods for the assignment problem (Hungarian or auction
algorithms). On the other hand, fine discretizations of continuous measures
lead to large finite dimensional problems and these methods quickly become
too expensive.

In many relevant applications however, the transport cost has a strong
structure: it is a distance in Monge’s original problem, the squared distance
in the quadratic Monge-Kantorovich problem (solved by Brenier in [Bre91])
or more generally a convex function of the displacement. It is then natural
to investigate if specific numerical algorithms, efficient and tractable enough
to deal with measures with a large number of points in their support, can
be designed for such costs.
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In [BB00], Benamou and Brenier introduced a ”computational fluid dy-
namics (CFD)” reformulation of the quadratic optimal transport. It refor-
mulates the squared distance cost as a time dependent kinetic energy which
is minimized over solutions of the continuity equation with prescribed initial
and terminal densities. The resulting variational problem is non smooth and
convex and can be solved using augmented Lagrangian numerical methods.
A key idea of this reformulation is to interpret the continuity equation as a
divergence in time and space. The algorithm ALG2 of [FG83] was used in
[BB00]. Despite the slow convergence of this iterative method, the approach
has been quite successful numerically and proved very robust as an alterna-
tive to the above mentioned linear or combinatorial numerical methods for
the quadratic cost.

An extension using the Augmented Lagrangian Numerical method to a
mixed L2/Wasserstein distance was proposed by Benamou in [Ben03]. More
general time dependent problems were soved by Buttazo, Jimenez and Oudet
in the framework of congested dynamic [BJO09] also using an Augmented
Lagrangian Numerical method. More recently, Papadakis, Peyré and Oudet
have shown that the Augmented Lagrangian method belongs to the larger
class of proximal splitting methods [PPO14] and applied it to generalised
time dependent cost functions interpolating between the quadratic cost opti-
mal transport problem and the H−1 norm. Augmented Lagrangian methods
have also been used for ”realistic” image interpolation by Hug, Maitre and
Papadakis [HMP05] but in this work the continuity equation constraint itself
is modified and it breaks the convexity of the problem.

Contribution. The goal of the present paper is to push further the
extension of Augmented Lagrangian methods and the numerical use of ALG2
to several other problems arising either in optimal transport or in Mean-
Field Games theory. We will consider two classes of convex but neither
strictly convex nor smooth variational problems. The first one is a class
of time independent minimal flow problems. These consist in minimizing
a convex functional among vector fields with a prescribed divergence. The
Monge problem is of this type as well as many variants, including degenerate
elliptic PDEs of Euler-Lagrange type

σ = ∇H(∇φ), − div(σ) = f

where H is convex but not strictly convex (it can be 0 on a whole ball for
instance which makes the previous equation even more degenerate than the
p-laplacian).

The second class consists of time dependent problems where a certain
energy is minimized among solutions of the continuity equation:

∂tρ+ div(ρv) = 0.

The Benamou-Brenier formulation of quadratic optimal optimal transport
belongs to this class of problems as well as some classes of Mean-Field
Games. We shall see (see remark 3.2) why Augmented Lagrangian methods
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are well suited to treat such problems and in particular why they ensure
that mass remains nonnegative.

The paper is organized as follows. Section 2 presents various motivating
examples, both in the static and the time-dependent cases. Section 3 recalls
the principle of augmented Lagrangian methods, its connection with split-
ting methods and its convergence in finite dimensions, approximation of the
infinite-dimensional problem by finite elements is also discussed. Section 4
explains the implementation of ALG2 both in our static and dynamic set-
tings. Section 5 presents a numerical convergence study. FreeFem++ proto-
types codes are available at https://team.inria.fr/mokaplan/software/

2. Variational formulation and examples

2.1. Static problems: prescribed divergence. The aim of this para-
graph is to emphasize the role of variational problems with a prescribed
divergence constraint in mass transport problems. Let us start with a con-
vex variational problem of the form

(1) inf
φ∈W 1,p(Ω)

J(φ) := F (φ) +G(∇φ)

where Ω is some open subset of Rd, p ∈ (1,+∞] and F and G are two convex,
proper and lsc functions, F : W 1,p(Ω) → R ∪ {+∞} and G: Lp(Ω)d →
R ∪ {+∞}.

In mass transport, F is a linear form related to the initial and final distri-
butions of masses and G generally lacks strict convexity and/or smoothness
properties. We list below some examples to emphasize the type of singular-
ities one has to take into account. As we will see, transport problems can
be formulated in the optimal flow dual form of (1) :

(2) sup
σ∈Lq(Ω)d

−F ∗(div(σ))−G∗(σ)

where q is the dual exponent of p, q = p/(p − 1) if p 6= ∞ and q = 1 when
p = +∞ and F ∗ and G∗ denote the Legendre transforms of F and G. Note
that we are slightly abusing the terminology when p = +∞ because in this
case L1 is not the dual of L∞ but in view of applications to mass transport
problems it is essential to consider this case as well. We give below some
examples and numerical illustrations. A more comprehensive discussion of
the numerical method follows in section 3.

Monge’s problem. Given Ω a convex bounded open subset of Rd and two
probability measures ρ0 and ρ1 on Ω, Monge’s optimal transport problem
(for the euclidean distance |.|) consists in finding the cheapest way to trans-
port ρ0 to ρ1 for the euclidean distance. Denoting by γ ∈ Π(ρ0, ρ1) the
set of transport plans between ρ0 and ρ1 i.e. the set of probability mea-
sures on Ω× Ω having ρ0 and ρ1 as marginals, one thus wishes to solve the

https://team.inria.fr/mokaplan/software/
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infinite-dimensional linear programming problem:

(3) W1(ρ0, ρ1) := inf
γ∈Π(ρ0,ρ1)

∫

Ω×Ω
|y − x|dγ(x, y)

whose value W1(ρ0, ρ1) is by definition the 1-Wasserstein distance between
ρ0 and ρ1. The well-known Kantorovich duality formula (see for instance
[Vil03], [Vil09]) reads:

(4) W1(ρ0, ρ1) = sup{

∫

Ω
φ(ρ1 − ρ0) : φ 1-Lipschitz }.

Note that since ρ1 − ρ0 has zero mass, one can normalize φ to have mean
zero. Problem (4) can be written in the standard form (1) with

F (φ) := −

∫

Ω
φ(ρ1 − ρ0), G(q) :=

{
0 if ‖q‖L∞ ≤ 1

+∞ otherwise.

In this case, (2) reads as the minimal flow problem:

(5) sup
σ∈L1(Ω)

{−

∫

Ω
|σ| : − div(σ) = ρ1 − ρ0, σ · ν = 0 on ∂Ω }

where the divergence constraint has to be understood in the weak sense:
∫

Ω
∇u · σ =

∫

Ω
u(ρ1 − ρ0), ∀u ∈ C1(Ω).

Of course, one should in general relax (5) to vector-valued measures, but
it follows from the important results of De Pascale and Pratelli [DPP04]
and Santambrogio [San09] that there is in fact an L1 solution of (5) as
soon as ρ0 and ρ1 are L1. We wish now to explain more precisely the
connections between the three optimization problems (3)-(4) and (5) (see
Evans and Gangbo [EG99] or the lecture notes of Ambrosio [Amb03] for a
more detailed presentation). Let φ be a 1-Lipschitz potential that solves
(4), then by the Kantorovich duality formula a transport plan γ between ρ0
and ρ1 is optimal for (3) if and only if

φ(y)− φ(x) = |x− y| γ-a.e.,

which means that the mass at x is transported along a segment on which φ
grows at maximal rate 1, such rays whose direction is given by the gradient of
φ are called transport rays and give the direction of optimal transportation
in Monge’s problem. An optimal flow field σ for (5) is formally related to
an optimal φ in (4) by:

∇φ =

{
σ
|σ| if σ 6= 0

any vector in the unit ball if σ = 0.

Hence σ also gives the direction of transport rays, moreover |σ| is called the
transport density and measures how much total mass is passing through a
given point. There is also a relation between optimal flows σ’s and optimal
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plans γ: if γ solves (3), then the vector field σ defined by, for every X ∈
Cc(Ω,R

d):
∫

Ω
σ(x) ·X(x)dx :=

∫

Ω×Ω

(∫ 1

0
X(x+ t(y − x)) · (y − x)dt

)
dγ(x, y)

actually solves (5).
Figure 1, shows Monge optimal flows computed on a 2D square (x =

(x1, x2) ∈ [0, 1]2) in two test cases. In test case 1, we take:

ρ0 = e−40∗((x1−0.75)2+(x2−0.25)2 and ρ1 = e−40∗((x1−0.25)2+(x2−0.65)2)

in the presence of an obstacle. In test case 2, ρ0 is a constant density and
ρ1 is the sum of three concentrated Gaussians

ρ1 = e400∗((x1−0.25)2+(x2−0.75)2) + e400∗((x1−0.35)2+(x2−0.15)2)

+ e400∗((x1−0.85)2+(x2−0.7)2).

Variants of Monge’s problem: anisotropies and heterogeneous media. There
are natural variants of Monge’s problem for the euclidean distance which
are very simple to deal with using the Augmented Lagrangian algorithm.
The first variant is when one replaces the euclidean distance by

dK(x, y) := sup
p∈K

〈x− y, p〉

for some (not necessarily symmetric) convex compact set K with 0 in its
interior. In this case, the dual problem of (3) simply reads as

(6) sup{

∫

Ω
φ(ρ1 − ρ0) : ∇φ ∈ K a.e. }.

Optimal transport plans are then concentrated on pairs (x, y) for which
φ(y)− φ(x) = dK(x, y) and the optimal flow formulation is obtained by re-
placing the euclidean norm |σ| by dK(σ, 0). Another interesting case arises
when, instead of a translation-invariant distance one rather considers a Rie-
mannian distance such as:

dg(x, y) := inf{

∫ 1

0
g(γ(t))|γ̇(t)|dt : γ ∈ W 1,1([0, 1],Rd), γ(0) = x, γ(1) = y}

where g is some bounded and bounded away from 0 function capturing
possible media heterogeneities. For such a distance, optimal transport does
not occur on straight lines anymore but on geodesics for dg and the dual of
(3) becomes

(7) sup{

∫

Ω
φ(ρ1 − ρ0) : |∇φ | ≤ g a.e.}.

We recover the standard form (1) with F as in Monge and

G(∇φ) :=

∫

Ω
G(x,∇φ(x))dx
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Figure 1. Test Case 1 and 2 : Monge problem flows, length
of arrows are proportional to transport density - Level curves
correspond to the right hand side density term of the diver-
gence ρ1 − ρ0 source/sink data to be transported

with

G(x, q) =

{
0 if q ≤ g(x)

+∞ otherwise.

Figure 2, shows such heterogeneous Monge flows between two Gaussian
densities defined for x = (x1, x2) ∈ [0, 1]2 by:

ρ0 = e−40∗((x1−0.75)2+(x2−0.25)2 and ρ1 = e−40∗((x1−0.25)2+(x2−0.65)2).
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First a concave lens - test case 3 - and then a discontinuous medium - test
case 4 - are considered, corresponding to the metrics

g(x1, x2) = 3− 2 ∗ e−10∗((x1−0.5)2+(x2−0.5)2) or g(x1, x2) = 1 + 2 ∗ χx1>
1

2

.

Figure 2. Test cases 3 and 4 : Heterogeneous medium
Monge problem flows, length of arrows are proportional to
transport density - Level curves correspond to the right hand
side density term of the divergence ρ1 − ρ0 source/sink data
to be transported
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Congested transport and degenerate elliptic PDEs. In [CJS08], a variant of
Monge’s problem allowing for congestion effects (i.e. the fact that crossing
zones of high traffic is more costly) has been proposed and in [BCS10], it
has been shown that this variant leads to consider minimal flow problems
with a superlinear term, a typical case being

(8) inf
σ∈Lq(Ω)

{

∫

Ω
(β|σ|+

1

q
|σ|q) : − div(σ) = f, σ · ν = 0 on ∂Ω }

where again f = ρ1 − ρ0 represents the difference between the target and
source measures, ν denotes the exterior unit normal, q > 1 and β ≥ 0. This
congested variant of Monge’s problem is dual to the problem of type (1):

(9) inf
φ∈W 1,p(Ω)

1

p

∫

Ω
(|∇φ| − β)p+ − 〈f, φ〉

with p = q/(q − 1) the conjugate exponent of q. Note that G is not strictly
convex since it identically vanishes whenever |∇φ| ≤ β. Solving (9) amounts
to solve the degenerate elliptic equation

(10)

{
− div

(
(|∇φ| − β)p−1

+
∇φ
|∇φ|

)
= f, in Ω,

(|∇φ| − β)p−1
+ ∇φ · ν = 0 on ∂Ω.

The optimal flow σ (which is unique) is related to φ solving (10) (which is
not unique even with a zero mean normalization) by

σ =
(
|∇φ| − β

)p−1

+

∇φ

|∇φ|
.

When β = 0, one recovers the standard p-Laplace equation, for which
Glowinski and Marrocco [GM75] observed long ago that augmented La-
grangian methods are well-adapted. If on the contrary, β is very large, one
recovers in (8) a regularization of the Monge flow problem (5). Another reg-
ularization which was used numerically in [BP07] consists in taking β = 0
and q very close to 1.

Figure 3, shows tests cases 5, 6, and 7 which correspond to three values of
q: q = 1.01 (Monge like, almost no congestion), q = 2 (some congestion), q =
6.66 (more congestion), densities and obstacle are the same as in test case 1
for the classical Monge problem. Many variants (other boundary conditions,
anisotropic norms, coefficients depending on x, different exponents for the
different components of the flow...) can of course be considered in a similar
way.

2.2. Time-dependent problems: the continuity equation.

Time-dependent formulation of optimal transport. The fact that Monge’s
optimal transport problem admits a static reformulation with a divergence
constraint (5) is in fact related to the fact that the cost satisfies the triangle
inequality. In contrast, for strictly convex transportation costs c ∈ C1(Rd),
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Figure 3. Test cases 5, 6, and 7. Congested Monge prob-
lem flows for q = 1.01, 2, 6.66, length of arrows are pro-
portional to transport density - Level curves correspond to
the right hand side density term of the divergence ρ1 − ρ0
source/sink data to be transported
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it is necessary to introduce an extra time variable as proposed in [BB00] for

the quadratic c(y − x) = |y−x|2

2 . Consider the optimal transport problem

(11) Wc(ρ0, ρ1) := inf
γ∈Π(ρ0,ρ1)

∫

Ω×Ω
c(y − x)dγ(x, y).

Then, the dynamic formulation of (11) consists in minimizing
∫ 1

0

∫

Rd

c(vt(x))ρt(dx)dt

among solutions of the continuity equation

(12) ∂tρ+ div(ρv) = 0, ρ|t=0 = ρ0, ρ|t=1 = ρ1.

It is convenient to rewrite this problem in terms of σ(t, x) = (ρt(x),mt(x)) :=
(ρt(x), ρt(x)vt(x)) ∈ R

d+1. Indeed, in this case, (12) simply becomes the
linear constraint:

(13) − divt,x(σ) = f := δ1 ⊗ ρ1 − δ0 ⊗ ρ0

in the weak sense and the divergence is of course with respect to t and x.
Let us then define

E(σ) = E(ρ,m) :=





c(m/ρ)ρ if ρ > 0

0 if ρ = 0 and m = 0

+∞ otherwise.

Note that E is convex, lsc, one homogeneous and incorporates the natural
constraints of the transport problem: mass is nonnegative and momentum
vanishes where mass does. The time-dependent formulation of (11) then
can be rewritten as:

(14) inf{

∫ 1

0

∫

Rd

E(σt(x))dxdt : − divt,x(σ) = f}.

Observing that E is the support function of the closed and convex set:

K := {(a, b) ∈ R× R
d : a+ c∗(b) ≤ 0}

problem (14) appears naturally as the dual of

(15) inf
φ=φ(t,x)

{−〈φ, f〉 : ∇t,xφ = (∂tφ,∇φ) ∈ K}

that is the maximization of the linear form:∫

Rd

φ(1, x)dρ1(x)−

∫

Rd

φ(0, x)dρ0(x)

among subsolutions of the Hamilton-Jacobi equation with Hamiltonian c∗:

∂tφ+ c∗(∇φ) ≤ 0.

This is again a convex variational problem in the form (1) with linear F and
a singular G, the indicatrix of the convex K, which forces the space time
gradient ∇t,xφ to stay in K and captures in a dual way the constraints of
the time-dependent formulation of the mass transport problem.
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At least formally, the primal-dual optimality conditions for (14)-(15) reads
as the Hamilton-Jacobi/continuity equation system:





∂tφ+ c∗(∇φ) = 0,
∂tρ+ div(ρ∇c∗(∇φ)) = 0,
ρ|t=0

= ρ0, ρ|t=1
= ρ1.

Deterministic Mean-Field Games. The Mean-Field Games theory of Lasry
and Lions ([LL06a], [LL06b], [LL07]) naturally leads, in the deterministic
case, to coupled systems of Hamilton-Jacobi and continuity equations which
generalise the system above:

(16)





∂tφ+H(t, x,∇φ) = α(t, x, ρ),
∂tρ+ div(ρ∇H(t, x,∇φ)) = 0,
ρ|t=0

= ρ0, φ|t=T
= −γ(x, ρT ).

To make things simple, we consider the periodic framework where x ∈ T
d :=

R
d/Zd and set Ω := (0, 1)d the periodicity cell. The Hamiltonian H is given

by:

H(t, x, p) := sup
v
{p · v − L(t, x, v)}

i.e. it is associated to the (convex in v) Lagrangian L. This system char-
acterizes equilibria for a continuum of players, each of them solving an op-
timal control problem with a cost which depends on the density ρ of the
other players. The Hamilton-Jacobi equation captures optimality for fixed
ρ and the second equation means that ρ is obtained by transporting ρ0 by
the flow of the optimal feedback ∇H(t, x,∇φ). Typically both α and γ are
nondecreasing in ρ which captures congestion effects.

As emphasized by Lasry and Lions in [LL06b], the MFG system above is
related to a variational problem which generalizes the dynamic formulation
of optimal transport i.e. problem (14). More precisely, let us define

A(t, x, ρ) :=

{∫ ρ

0 α(t, x, s)ds if ρ ≥ 0

+∞ otherwise

and

Γ(x, ρ) :=

{∫ ρ

0 γ(t, x, s)ds if ρ ≥ 0

+∞ otherwise

and consider the variational problem

(17) inf
ρ,v

∫ T

0

∫

Ω
[L(t, x, v)ρ+A(t, x, ρ)]dxdt+

∫

Ω
Γ(x, ρT )dx

subject to the constraint that ρ is again related to v through the continuity
equation:

∂tρ+ div(ρv) = 0, ρ|t=0
= ρ0.
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This is again (up to the same change of variables as in Benamou-Brenier) a
convex optimization problem:
(18)

inf
σ=(ρ,m)

∫ T

0

∫

Ω
[L
(
t, x,

m

ρ

)
ρ(t, x) +A(t, x, ρ(t, x))]dxdt+

∫

Ω
Γ(x, ρT (x))dx

(where, as in the Benamou-Brenier dynamic formulation of optimal trans-
port, the functional above is extended by +∞ whenever the momentum m
does not vanish where ρ does) subject to the linear constraint

∂tρ+ div(m) = 0, ρ|t=0
= ρ0 with periodic boundary conditions.

The convex problem (18) is dual to

(19) inf

∫ T

0

∫

Ω
A∗(t, x, ∂tφ+H(t, x,∇φ))dxdt+

∫

Ω
φ0ρ0+

∫

Ω
Γ∗(x,−φT )dx.

Problem (19) can again be put into the abstract class of problems (1) at the
cost of considering a slightly more general operator Λ than the gradient1.
More precisely, one can rewrite (19) in a similar form as (1) by setting
F (φ) =

∫
Ω φ0ρ0 and

G(Λφ) =

∫ T

0

∫

Ω
A∗(t, x, ∂tφ+H(t, x,∇φ))dxdt+

∫

Ω
Γ∗(x,−φT ) dx

with Λ the linear operator

Λφ = (∂tφ,∇φ,−φ(T, .)) = (∇t,xφ,−φ(T, .)).

Of course (19) is still amenable to an Augmented Lagrangian numerical res-
olution as the CFD formulation of optimal transport.

At least formally, the Mean-Field Game system (16) corresponds to the
primal-dual optimality conditions for (18)-(19). In fact, one has to be cau-
tious about the regularity of φ and the fact that the Hamilton-Jacobi is
satisfied only where ρ > 0. We refer to Graber [Gra14], Cardaliaguet and
Graber [GC14], Carlier, Cardaliaguet and Nazaret [CCN13] for precise state-
ments.

We have tested the ALG2 algorithm for the MFG problem using the

quadratic Hamiltonian H(b) = |b|2

2 and the following form for the functions
A (running cost) and Γ (terminal cost):

(20) Nq,γ(ρ1, ρ) :=




γ
|ρ− ρ1|

q

q
if ρ ≥ 0,

+∞ otherwise.

1as recalled in section 3, it is essential for the convergence of ALG2, that the operator Λ
is injective, in mass transport problems, one can normalize potentials to have zero-mean,
under this normalization, the gradient operator is injective, but one cannot impose zero-
mean any more in the case of MFG’s this is why one has to add the terminal value as part
of the operator Λ to make it injective.
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In our examples q = 1, 2 and ρ1 a given arbitrary positive L1 or L2 target
function. We show 4 examples set on [0, T ]× [0, 1]2 (χω is the characteristic
function of the set ω) :

• Test Case 8 : ρ0 = 1.5χ[0.25,0.75]2 , A = 0 and Γ = N1,1(0.5χ[0.25,0.75]2),
• Test Case 9 : ρ0 = 1.5χ[0.25,0.75]2 , A = 0 and Γ = N2,1(0.5χ[0.25,0.75]2),
• Test Case 10 : ρ0 = 1.5χ[0.25,0.75]2 , A = N1,0.5(0.5 (1 − χ[0.25,0.75]2))
and Γ = N1,1(0.5 (1− χ[0.25,0.75]2)),

• Test Case 11 : ρ0 = 1.5χ[0.25,0.75]2 , A = N2,0.5(0.5 (1 − χ[0.25,0.75]2))
and Γ = N2,1(0.5 (1− χ[0.25,0.75]2)).

A time slice of the space time density ρ(t, x) is shown on figure 4 for cases
8 and 9. The total mass of ρ0 is larger than the total mass of ρ1. We see
the spreading/sharpening of the excess of mass induced by the L2/L1 norms
penalisation on the t = T boundary. Figure 5 corresponds to cases 10 and
11. The L1/L2 norms are now set in space and time and penalise sharply
the support of ρ.

There are many natural generalizations and variants of (18). In particular
one can prescribe the terminal density instead of having a terminal cost (see
Buttazzo, Jimenez and Oudet [BJO09] where an augmented Lagrangian
method is used). Lasry and Lions more generally considered the case of
Mean-Field Games with diffusion, that is the system





∂tφ+ ν∆φ+H(t, x,∇φ) = α(t, x, ρ),
∂tρ− ν∆ρ+ div(ρ∇H(t, x,∇φ)) = 0,
ρ|t=0

= ρ0, φ|t=T
= −γ(x, ρT )

for a positive diffusion parameter ν. This MFG with diffusion system is
related to the minimization of the energy (17) subject to the Fokker-Planck
equation:

∂tρ− ν∆ρ+ div(ρv) = 0, ρ|t=0
= ρ0.

We refer to the articles of Achdou and coauthors [ACCD12], [ACD10] and
[ACCD13] for finite difference schemes directly based on the MFG system
with diffusion. The Augmented Lagrangian strategy may also be applied in
this diffusive case. However, a bilaplacian operator appears in the algorithm
and generates new numerical difficulties as discussed in [AP12].

3. The augmented Lagrangian algorithm

3.1. On finite-element approximations. The detailed analysis of infinite-
dimensional problems of the form (1)-(2) arising in transport optimization
is beyond the scope of this paper. We shall rather study finite-dimensional
approximations which are easier to analyze and for which augmented La-
grangian methods are guaranteed to converge under mild assumptions that
are adapted to the singularities which typically arise in transport problems.

We therefore first discuss the convergence (in the sense of Γ-convergence)
of approximations by finite elements which will be used in the numerical
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Figure 4. Test cases 8 and 9 : time slice of the obtained
density for L1 final norm (top) and L2 final norm (bottom).

section. For the sake of simplicity, we shall restrict here ourselves to static
problems with a linear F , i.e. we consider problems of the form

(21) inf
φ∈W 1,p(Ω)

J(φ) := G(∇φ)− 〈f, φ〉



15

Figure 5. Test cases 10 and 11 : : time slice of the obtained
density for L1 final norm (top) and L2 final norm (bottom).

where Ω is an bounded domain of Rd with Lipschitz boundary, f = (ρ1−ρ0)
is in the dual of W 1,p(Ω), 〈f, 1〉 = 0 (so that φ can be normalized so as to
have zero mean) and

G(w) =

∫

Ω
G(x,w(x))dx, w ∈ Lp(Ω)d
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where G is convex in its second argument, as in the examples of the previous
paragraph.

We are now interested in discretizing (21) by finite elements (and then
to solve this dicretization by an augmented Lagrangian method as we shall
explain below). Given a regular triangulation of the domain with typical
meshsize h, let Eh ⊂ W 1,p(Ω) be the corresponding finite-dimensional space
of Pk finite elements of order k (k ≥ 1 but in practice we’ll take k = 1 or
k = 2) whose generic elements are denoted φh. We approximate if necessary
the linear form f by fh ∈ Eh (again with 〈fh, 1〉 = 0) and the nonlinear
term G by a (convex) approximation Gh and consider

(22) inf
φh∈Eh

Jh(φh) := Gh(∇φh)− 〈fh, φh〉

as well as its dual

(23) sup
σh∈F

d
h

{−G∗
h(σh) : − divh(σh) = fh}

where Fh is the space of Pk−1 finite elements and − divh(σh) is of course
defined by duality:

〈σh,∇φh〉F d
h
= −〈divh(σh), φh〉Eh

.

As soon as:

(24)
Gh(qh)

|qh|
→ ∞ as |qh|F d

h
→ ∞

and the following qualification constraint holds

(25) there exists φh ∈ Eh such that Gh is continuous at ∇φh,

then, it follows from classical arguments that both (22) and (23) have so-
lutions, the values of (22) and (23) coincide and solving the two problems
amount to solve the primal-dual extremality relations:

(26) − divh(σh) = fh, σh ∈ ∂Gh(∇φh).

At this point, the natural question is whether (22) correctly approximates
(21) in the sense of Γ-convergence (for the weak topology of W 1,p) which
will in particular imply convergence of values and of minimizers. It is easy
to see that the following assumptions (which are easy to check in the time-
independent examples above, the time-dependent case being much more
involved) guarantee convergence:

• density in energy of smooth functions: for every φ ∈ W 1,p(Ω) such
that J(φ) < +∞ and every ε > 0 there exists φε ∈ Ck(Ω) such that

(27) |J(φ)− J(φε)| ≤ ε

and the problem is not degenerate in the sense that there exists
φ ∈ Ck(Ω) such that J(φ) < +∞,
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• consistency of approximation for smooth functions: for every φ ∈
Ck(Ω) such that J(φ) < +∞, one has

(28) Jh(Ih(φ)) → J(φ) as h → 0,

where Ih is the usual Lagrange interpolation operator: Ck(Ω) → Eh,
• Γ-liminf inequality: for every φ ∈ W 1,p(Ω) and every sequence φh ∈
Eh that converges weakly to φ in W 1,p(Ω) (i.e φh converges strongly
to φ in Lp, and ∇φh converges weakly in Lp(Ω)d to ∇φ if p ∈ (1,∞),
weakly ∗ in L∞(Ω)d if p = ∞) one has

(29) lim inf
h→0

Jh(φh) ≥ J(φ),

• equicoercivity: there exists a constant λ > 0 such that for every h
and every φh ∈ Eh one has

(30) Jh(φh) ≥ λ
(
‖∇φh‖Lp − 1

)
.

We then have (also see Gabay and Mercier [GM76] for similar results and
a more detailed discussion):

Proposition 3.1. Under assumptions (24)-(25)-(27)-(28)-(29)-(30), if φh

solves (22), it admits as h → 0, a subsequence that converges weakly in
W 1,p(Ω) to a φ that solves (21). In particular if (21) has a unique (up to
an additive constant) solution, the whole sequence converges.

3.2. ALG2 and its convergence. We stay in the framework of finite-
dimensional convex optimization problems using the discretization by finite-
elements of (1) which leads to a problem of the form :

(31) inf
φ∈Rn

J(φ) := F (φ) +G(Λφ)

where F : R
n → R ∪ {+∞}, G: R

m → R ∪ {+∞} are two convex lsc and
proper functions and Λ is an m × n matrix with real entries. The dual of
(31) then is:

(32) sup
σ∈Rm

−F ∗(−ΛTσ)−G∗(σ).

A pair (φ, σ) ∈ R
n × R

m is said to satisfy the primal-dual extremality rela-
tions if:

(33) − ΛTσ ∈ ∂F (φ), σ ∈ ∂G(Λφ)

which implies that φ solves (31) and that σ solves (32) as well as the fact
that (31) and (32) have the same value (no duality gap). The primal-dual
extremality relations are of course equivalent to finding a saddle-point of the
Lagrangian

(34) L(φ, q, σ) := F (φ) +G(q) + σ · (Λφ− q), ∀(φ, q, σ) ∈ R
n × R

m × R
m
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in the sense that (φ, σ) ∈ R
n × R

m satisfies (33) if and only if (φ, q, σ) =
(φ,Λφ, σ) is a saddle-point of L. Now for r > 0, we consider the augmented
Lagrangian function
(35)

Lr(φ, q, σ) := F (φ)+G(q)+σ·(Λφ−q)+
r

2
|Λφ−q|2, ∀(φ, q, σ) ∈ R

n×R
m×R

m

and recall (see for instance [FG83], [GM76]) that being a saddle-point of L
is equivalent to being a saddle-point of Lr.

The augmented Lagrangian algorithm ALG2 splitting scheme (also known
as ADMM: alternating direction method of multipliers), consists, start-
ing from (φ0, q0, σ0) ∈ R

n × R
m × R

m to generate inductively a sequence
(φk, qk, σk) as follows:

• Step 1: minimization with respect to φ:

(36) φk+1 := argminφ∈Rn

{
F (φ) + σk · Λφ+

r

2
|Λφ− qk|2

}

• Step 2: minimization with respect to q:

(37) qk+1 := argminq∈Rm

{
G(q)− σk · q +

r

2
|Λφk+1 − q|2

}

• Step 3: update the multiplier by the gradient ascent formula

(38) σk+1 = σk + r(Λφk+1 − qk+1).

As emphasized by several authors (see for instance, Eckstein and Bert-
sekas ([EB92] or, more recently, Oudet, Papadakis and Peyré [PPO14])
ALG2 is a special case of the Douglas-Rachford splitting method for find-
ing zeros of the sum of two maximal monotone operators. Convergence of
the ALG2 iterates is guaranteed, under very general assumptions by the
following result which is proved in Eckstein and Bertsekas ([EB92], The-
orem 8) following contributions of the french mathematicians P.-L. Lions,
Mercier, Glowinski, Gabay ([FG83], [LM79], [GM76]) to the analysis of split-
ting methods:

Theorem. Let r > 0, assuming that Λ has full column-rank and that there
exists a solution to the primal-dual extremality relations (33), then there
exists an (φ, σ) ∈ R

n×R
m satisfying (33) such that the sequence (φk, qk, σk)

generated by the ALG2-scheme above satisfies

(39) φk → φ, qk → Λφ, σk → σ, as k → ∞.

The use of ALG2 for transport problems was pioneered in [BB00]. The
assumption that the matrix Λ has full column rank is essential, it is auto-
matically satisfied in all our mass transport examples because in this case
Λφ is the gradient of φ and since φ is defined up to an additive constant we
can normalize it so as to have zero mean, in which case the gradient map
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becomes injective, for MFG’s one rather considers the injective operator
Λφ = (∇t,xφ,−φ(T, .)).

Remark 3.2. The fact that the sequence σk generated by ALG2 remains
in the domain of G∗ follows directly from (37) and (38). Indeed, it follows
from Step 2 that G is subdifferentiable at qk+1 and

σk + r(Λφk+1 − qk+1) ∈ ∂G(qk+1)

which with (38) implies that σk+1 ∈ ∂G(qk+1). Since G(qk+1) < +∞ this
gives that G∗(σk+1) = 〈σk+1, qk+1〉 −G(qk+1) so that σk+1 is in the domain
of G∗. Let us recall that in the context of CFD or MFG’s, the finiteness
of G∗(σ) = G∗(ρ,m) exactly means that ρ ≥ 0 and m = 0 where ρ = 0
(see paragraph 2.2). This explains why ALG2 naturally takes into account
the constraints on mass and momentum which arise in CFD and MFG’s:
contrary to other methods, ALG2 automatically ensures that mass remains
nonnegative and that momentum vanishes where mass does. These singular-
ities are well-known to be a problem for classical gradient descent methods
when the density is not bounded away from 0 (see [BB01] [AP12]). The
previous argument explains why ALG2 gives consistent results even in cases
where the mass may vanish as was already observed in [BB00].

4. ALG2 steps for our problems

The continuous variational formulation of the Augmented Lagrangian and
its Galerkin discretisation are convenient to interpret the three steps of the
ALG2 algorithm. In what follows, the space dimension is d = 2.

4.1. Static problems. All the static variational problems we consider take
the form

(40) inf
φ,q=(a,b)

−

∫

Ω
f(x)φ(x) dx+

∫

Ω
G(x, q(x)) dx

subject to the constraint that ∇φ = q. The corresponding augmented La-
grangian takes the form

Lr(φ, q, σ) :=

∫

Ω

(
− f(x)φ(x) + G(x, q(x)) + 〈σ,∇φ− q〉+

r

2
|∇φ− q|2

)
dx

where f = ρ1 − ρ0. See section 2.1 for examples of functions G.

• Step 1: can be interpreted as the variational formulation of Laplace
equation :

(41) − r(∆φk+1 − div(qk)) = f + div(σk) in Ω

together with the Neumann boundary condition

(42) r
∂φk+1

∂ν
= rqk · ν − σk · ν on ∂Ω.
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Solving this problem is routine after the Galerkin discretisation of
section 3.1.

• Step 2: For P1 finite elements, at each vertex xi, we have to solve
the proximal problem:

qk+1
i = argmin(a,b){〈G(xi, (a, b))− 〈σk

i , (a, b)〉+
r

2
|(∇φk)i − (a, b)|2}.

As detailed in the next section, the solutions are either explicit or
simple projections to compute for the classes of G we consider.

• Step 3: is a straightforward update done at all vertices xi.

4.2. Time dependent problems. Let us rewrite the variational problem
(19) (for the sake of notational simplicity, we take H and F and G indepen-
dent of (t, x)) arising in deterministic MFG’s as

(43) inf
φ,q=(a,b,c)

∫ T

0

∫

Ω
A∗(a+H(b))dxdt+

∫

Ω
φ0ρ0 +

∫

Ω
Γ∗(c)

subject to the constraint Λφ = (∂tφ,∇φ,−φT ) = q. To the variables
(a, b, c) ∈ R × R

d × R, we associate the dual variables σ̃ := (ρ,m, ρ̃T ) =
(σ, ρ̃T ). The augmented Lagrangian then is:

Lr(φ, q, σ̃) =

∫ T

0

∫

Ω
A∗(a+H(b))dxdt+

∫

Ω
Γ∗(c) +

∫

Ω
φ0ρ0

+

∫ T

0

∫

Ω
(ρ(∂tφ− a) +m · (∇φ− b)−

∫

Ω
ρ̃T (φT + c)

+
r

2

(
‖(∂tφ,∇φ)− (a, b)‖2L2 +

∫

Ω
|φT + c|2

)
.

• Step 1: (minimization with respect to φ) amounts to solve the
elliptic in (t, x) problem

−r∆t,xφ
k+1 = divt,x(σ

k − r(ak, bk))

with φk+1 periodic in x,

r∂tφ
k+1(0, .) = ρ0 − ρk(0, .) + rak(0, .)

and

r(∂tφ
k+1(T, .) + φk+1(T, .)) = ρ̃kT (T, .)− ρk(T, .) + r(ak(T, .)− ck(T, .))

• Step 2: we have to solve two decoupled pointwise proximal sub-
problems:

inf
c
Γ∗(c) +

r

2
|c+ φk+1(T, .)−

ρ̃T
r
|2

and

inf
(a,b)∈R×Rd

A∗(a+H(b)) +
r

2
|a− ∂tφ

k+1 −
ρk

r
|2 +

r

2
|b−∇φk+1 −

mk

r
|2.
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As in the static cases, this step translates after a P1 discretisa-
tion into a finite number of explicit optimisation/projection at the
vertices of the triangulation (see the Appendix for detailed compu-
tations in the case of the functions Nγ,q used in our MFG’s simula-
tions).

• Step 3: is a straightforward update done at all vertices xi.

5. Numerical convergence study

The numerical ALG2 method described in this paper has been imple-
mented using the software FreeFem++ 2. We use the Lagrangian finite
elements and notations introduced in section 3.1, P2 FE for φh and P1 FE
for (qh, σh), (Λφh) is the projection on P1 of the operator Λ ( = ∇φh or
(∂tφh,∇φh, φh(T, .))). As emphasised in section 4, only the functional G
and therefore the pointwise proximal/minimisation step 2 varies with our
different test cases. Step 1 remains a Laplace equation in space for static
problems or time and space for MFGs which can easily be implemented in
FreeFem++ and step 3 is just an explicit update. This section presents the
numerical convergence of ALG2 iterations indicated by the .k superscript,
and the convergence of the Finite-Element discretisation indicated by the .h
subscript, where h is the characteristic size of the mesh elements.

5.1. Static problems. All static problems are computed on a triangulation
of the unit square with N = 1

h
element on each side. We use the following

Convergence criteria :

• DIV Error =
( ∫

Ωh
(div σk

h + (ρ1 − ρ0))
2
) 1

2

is the L2 error on the

divergence constraint,

• BND Error =
( ∫

Γh
(σk

h · ν)2
) 1

2

is the L2(Γh) error on the Neumann

boundary condition.
• DUAL Error = maxxj

|G∗(σk
h)+G(∇φk

h)−∇φk
h ·σ

k
h|, where the max-

imum is with respect to the vertices xj .

The first two criteria correspond to the optimality conditions for the min-
imization of the Lagrangian with respect to φ and the third one corresponds
to maximization with respect to σ.

5.1.1. Monge’s optimal transport problem. Step 2 simply consists in

qk+1
h = pB

(
∇φk+1 +

σk

r

)

where pB is the projection onto B:

pB(z) =

{
z if |z| ≤ 1
z
|z| otherwise.

2http://freefem.org

http://freefem.org
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Figure 6 shows the convergence history for the DUAL error. The DIV and
BND indicator become quickly stationary with k. The values are displayed
in table 1 and show the convergence of the FE discretisation when the grid is
refined and it roughly corresponds to aO(h) consistency of the discretisation.

Figure 6. Test cases 1 (left) and 2 (right) : Convergence
history of log10(DUAL Error) versus ALG2 iterations and
N = 20, 40, 80, 160.

N DIV Error BND Error
20 2.0339e-02 6.4690e-03
40 9.2427e-03 8.8127e-04
80 2.8712e-03 4.2122e-04
160 1.0769e-03 1.3152e-04

DIV Error BND Error
6.3608e-04 5.4305e-03
1.5257e-04 1.7878e-03
3.9831e-05 7.3121e-04
9.5737e-06 3.9019e-04

Table 1. convergence of the finite element discretisation
for test case 1 (left) and 2 (right).

5.1.2. Variants of Monge’s problem: heterogeneous media. In this case, step
2 is simply modified to take into account that the projection now depends
on the local weights gi = g(xi) at the vertices xi

qk+1
i,h = pBgi

(
∇φk+1

i,h +
σk
i,h

r

)

where pBg is the projection on the ball of radius g :

pBg =

{
z if |z| ≤ g

g z
|z| otherwise.
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N DIV Error BND Error
20 2.9528e-03 9.1262e-04
40 5.4175e-04 2.5407e-04
80 7.4324e-05 1.6041e-04
160 9.7279e-06 7.2257e-05

DIV Error BND Error
2.7689e-03 4.7240e-03
6.0847e-04 5.5129e-04
1.2336e-04 1.4319e-04
2.7790e-05 9.9710e-05

Table 2. convergence of the finite element discretisation
for test case 3 (left) and 4 (right).

5.1.3. Congested transport. In the congested transport problem, the cost is
of the form G(q) = 1

p
(|q| − β)p+ so that step 2 of ALG2 requires to solve the

pointwise problem

inf
q

1

p
(|q| − β)p+ +

r

2
|q − q̃k|2

where q̃k = ∇φk+1 + σk

r
. This gives qk+1 = λq̃k where λ ≥ 0 is the root (a

dichotomy algorithm is preferred to Newton in this case) of the equation

(44) (λ|q̃k| − β)p−1
+ + rλ|q̃k| = r|q̃k|.

We have omitted the plot of the Dual errors for test cases 6 and 7 (congested
transport) as well as for test cases 3 and 4 (heterogeneous Monge) because
they turn out to be significantly smaller than in test cases 1 and 2.

N DIV Error BND Error
20 6.3333e-03 8.4775e-03
40 1.9069e-03 1.9369e-03
80 5.5455e-04 7.2514e-04
160 1.7073e-04 1.5939e-04

DIV Error BND Error
6.3333e-03 8.4775e-03
1.9069e-03 1.9369e-03
5.5455e-04 7.2514e-04
1.7073e-04 1.5939e-04

Table 3. convergence of the finite element discretisation
for test case 6 (left) and 7 (right).

5.2. Deterministic MFGs. The dynamic problems are computed on a
triangulation of the unit cube with N = 1

h
= 1

dt
element on each side

and we use periodic boundary conditions in space. We have tested our
ALG2 algorithm on the MFG problem of section 2.2 with the quadratic

Hamiltonian H(b) = |b|2

2 (but other radially symmetric convex Hamiltonian
can be treated as well) and as for the running and terminal costs A and Γ
we took functions in the family Nq,γ(ρ1, .) defined by (20). The resolution of
step 2 for the classical CFD optimal transport is well known. It is a pointwise
projection on the convexK = {q = (a, b), a+ 1

2 |b|
2 ≤ 0} and implementation

details can be found in the literature. The detailed computations for step 2
of ALG2 in the MFG cases treated here involving the functions Nq,γ(ρ1, .)
are detailed in the appendix.

We use the following Convergence criteria corresponding to the MFG
optimality system (16).
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• HJE Error =
( ∫

Ωh
ρk(∂tφ

k +H(t, x,∇φk)− α(t, x, ρk))2
) 1

2

,

• DIV Error =
( ∫

Ωh
ρk(∂tρ

k + div(ρk ∇φk))2
) 1

2

,

• HJB Error =
( ∫

t=1 ρ
k(φk + γ(x, ρk))2

) 1

2

.

We observe convergence of the FE discretisation (decrease with h of the
error) and convergence (in k) of the ALG2 algorithm.

Figure 7. Test case 10 : Convergence history of the error
indicators versus ALG2 iterations for N = 16 and 32.

6. Appendix : details of Step 2 for MFGs

Let γ > 0 and ρ1 ≥ 0 be given, then define

N2(ρ) :=:=

{
γ
2 (ρ− ρ1)

2 if ρ ≥ 0

+∞ otherwise
, N1(ρ) :=

{
γ|ρ− ρ1| if ρ ≥ 0

+∞ otherwise.

For N = N1, N2, we have to compute: N∗ as well as the two proximal
operators:

• Terminal prox, given c0, solve:

(45) inf
c
{N∗(c) +

r

2
|c− c0|

2}.

• Quadratic Hamiltonian prox (recall that we have taken for simplicity
H(p) = 1

2 |p|
2 in the MFG), given (a0, b0) ∈ R× R

d, solve

(46) inf
(a,b)∈R×Rd

{N∗
(
a+

1

2
|b|2

)
+

r

2

(
|a− a0|

2 + |b− b0|
2
)
}.
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Proximal computations for N2: The Legendre transform of N2 is explic-
itly given by

N∗
2 (λ) :=

{
λ2

2γ + λρ1if λ ≥ −γρ1

−γ
ρ2
1

2 otherwise.

In this case, the solution of the terminal proximal-problem (45) is:

(47) c =

{
c0 if c0 ≤ −γρ1
rc0−ρ1
r+γ−1 otherwise

Let us consider now the Hamiltonian-prox problem (46). It is convenient to
formulate the optimality condition for (46) by setting

λ := (a+
1

2
|b|2), rµ := (N∗

2 )
′(λ) = (N∗

2 )
′
(
a+

1

2
|b|2

)

we then have

a = a0 − µ, b =
b0

1 + µ
.

Defining λ0 = a0 +
1
2 |b0|

2, the optimal (a, b) is given by

• case 1: λ ≥ −γρ1 then µ has to be a (nonnegative) root of the
(cubic) equation

(48) rµ = ρ1 +
λ

γ
= ρ1 +

1

γ

(
a0 − µ+

1

2

|b0|
2

(1 + µ)2

)

and the solvability of this equation on R+ is equivalent to λ0 ≥ −γρ1.
• case 2: λ0 < −γρ1 then (a, b) = (a0, b0).

Prox computations for N1. The Legendre transform of N1 is:

N∗
1 (λ) :=





−γρ1 if λ ≤ −γ

ρ1λ if λ ∈ [−γ, γ]

+∞ otherwise.

Rewriting the proximal-problem (45) as the inclusion 0 ∈ (c − c0) +
1
r
∂N∗

1 (c) and distinguishing the different possible cases for ∂N∗
1 (c), one finds

c =





c0 if c0 < −γ

−γ if c0 ∈ [−γ,−γ + ρ1
r
]

c0 −
ρ1
r

if c0 ∈ (−γ + ρ1
r
, γ + ρ1

r
)

γ if c0 ≥ γ + ρ1
r
.

For the second problem (46) which corresponds to the conditions: 0 ∈
(a−a0, b− b0)+

1
r
∂N∗

1 (λ)(1, b), with λ = a+ 1
2 |b|

2, we find as optimal (a, b):

(a, b) =





(a0, b0) if λ0 < −γ

(a(µ), b(µ)) with µ ∈ [0, ρ1
r
] solving (49) (with − sign) if λ∗

0 ≤ −γ ≤ λ0,

(a∗0, b
∗
0) if λ

∗
0 ∈ (−γ, γ)

(a(µ), b(µ)) with µ ≥ ρ1
r

solving (49) (with + sign) if λ∗
0 ≥ γ
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where we have defined

a∗0 := a0 −
ρ1
r
, b∗0 :=

rb0
ρ1 + r

, λ∗
0 := a∗0 +

1

2
|b∗0|

2

a(µ) := (a0 − µ), b(µ) :=
b0

1 + µ
,

(49) ± γ = (a0 − µ) +
1

2

|b0|
2

(1 + µ)2
.
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