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Abstract 

Quantifying human posture and range of motion remains challenging due to the need for 

specific technologies, time for data collection and analysis, and space requirements. The demand 

for affordable and accessible human body position measurement requires alternative methods that 

cost less, are portable, and provide similar accuracy to expensive multi-camera systems. 

This thesis developed and evaluated a novel augmented reality mobile app for human posture 

measurement to bring marker-based body segment measurement to the point of patient contact. 

The augmented reality app provides live video of the person being measured, AprilTag2 fiducial 

markers locations in the video, processes marker data, and calculates angles and distances between 

markers.  

Results demonstrated that the mobile app can identify, track, and measure angles and 

distances between AprilTag2 markers attached to a human body in real-time with millimetre 

accuracy, thereby allowing researchers and clinicians to quantify posture measurements anywhere, 

at anytime.  
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1 Introduction 

1.1 Introduction 

Posture measurement aids have been used to detect poor posture among school-aged 

children, adolescents, college students, and adults [1]. Accurate and reliable posture measurements 

can also be used for treatment planning. Quantitative posture measurements, alongside a clinical 

assessment, may provide the insight needed to properly evaluate sensory issues related to 

exteroception, proprioception, stereognosis, two-point discrimination, and motor impairments that 

affect muscle strength, range of motion, and spasticity. This is particularly important among 

individuals with disabilities [2], [3]. Currently, human posture quantification can involve various 

motion analysis systems (i.e., inertial, optical). These multi-camera labs are necessary to determine 

anatomical points, body segments, and biomechanical models. However, these systems can have 

high purchase and installation costs, and require a permanent, large footprint.  

In an effort to reduce costs and eliminate permanent large equipment footprints, researchers 

have implemented posture measurement using IMU sensors or coloured markers [4], [5]. However, 

computing positions from IMU sensors requires double integration, which is affected by system 

noise and sensor drift [5], [6]. Tracking coloured marker in the video field has problems associated 

with background “confusion” and difficulties with multi-marker tracking, which can adversely 

affect accuracy. A fiducial marker system is a 2D landmark (i.e., QR barcode) that could be a 

viable approach to uniquely identifiable features. These markers can be easily recognizable 

without being affected by background noise or confusion between multiple markers [7]. Therefore, 

this research develops and evaluates a novel marker-based mobile application for real-time human 

posture and range of motion (ROM) measurements using fiducial markers. The goal is for this 

application to be used anywhere and at anytime with high accuracy.  

1.2 Rationale 

Posture measurements are routinely required by clinicians, but current methods of measuring 

angles such as pelvic obliquity require specialized equipment or take an unacceptable amount of 

clinic time. A conventional approach is to make these measurements manually, with a goniometer, 

tape, etc. However, visual observation can be affected by human error [8]. This may lead to a risk 

for patients, since improper pelvis alignment can cause long-term damage. Additionally, advanced 
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technologies such as x-ray and marker-based motion analysis systems (Vicon, etc.) are time 

consuming, costly, and may be hard to access. Considering the drawbacks of these methods, we 

propose an innovative solution using smartphone Augmented Reality (AR) technology in a real-

time application. We will demonstrate that the developed system fills the gap between cost, 

accessibility, and system accuracy. An AR system allows both patients and medical experts to save 

costs and time, and also provides a standardized quantitative measurement in real-time, an 

important feature that does not exist in clinical practice.  

Based on our preliminary research, the AprilTag [7] (visual fiducial system) was selected as 

the best marker option for this application, thereby removing colour or reflective marker errors 

when working in a clinical environment (i.e., markers conflicting with background, lighting 

changes, etc.). Fiducial markers are objects located in the smartphone camera's field of view, to be 

used as reference points for measurement. AprilTag is "2D barcode style" marker (similar to QR 

codes) that can be printed on paper. The AprilTag software library computes precise 2D position, 

tag orientation, and also identifies the tag relative to the smartphone camera. 

1.3 Thesis objectives 

The objective of this thesis is to develop and evaluate an Augmented Reality (AR) mobile 

application that measures range of motion and human posture between anatomical landmarks and 

between body segments in real-time, with an accuracy comparable to other systems currently used 

in practice. 

1.4 Thesis contributions 

This thesis developed and evaluated a novel Android mobile phone application (BAR-M, 

Biomechanics Augmented Reality - Marker) for real time human posture measurement using 

fiducial markers (AprilTag2) [7], [9]. Specific contribution include: 

• BAR-M is the first smartphone-based tool to successfully identify, track, and store 2D 

positions and orientations of AprilTag2 markers.  

• Marker-based outcome measures were displayed in realtime, over video, to provide an AR 

tool that enables clinicians to actively measure posture and other relevant angles and 

distances immediately during a patient encounter. 
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• Accuracy was comparable to industry standard motion capture systems (error less than 1° 

for angle, 4 mm for distance). Anthropometric dummy test errors were less than 0.15° 

(pelvis), 0.14° (shoulder), 0.7° (arm abduction). Human test errors were less than 2° 

(pelvis), 1.5° (shoulder), 11.5° (arm abduction).  

• AR (real-time) interface provided equivalent results to stored post-processed results 

• Easy and accurate to apply 

• Novel marker mounting hardware was developed and was effective for easily positioning 

markers on the body 

1.5 Thesis outline 

This thesis is divided into six chapters and one appendix: 

Chapter 2 is a literature review and discusses the importance of human posture 

measurement. This chapter summarizes relevant technologies currently being used for human body 

postural measurement and reviews different types of fiducial marker systems. 

Chapter 3 contains a modified IEEE manuscript published in the 3rd International 

Conference on Bio-engineering for Smart Technologies (BioSMART), Paris, France, April 2019 

that compares and evaluates different types of fiducial marker systems and validates the selection 

of AprilTag2 as a viable fiducial marker system for further android mobile application 

development. 

Chapter 4 discusses the development and evaluation of the Biomechanics Augmented 

Reality Tag (BAR-M) mobile application that measures angles and distances between two markers 

using a Samsung Galaxy S6 phone.  

Chapter 5 evaluates and reports BAR-M app performance on a Body Opponent Bag (BOB) 

and a group of 15 healthy participants. The results are compared to those obtained with a Vicon 

system as a gold standard comparator. 

Chapter 6 summarizes thesis findings, and suggestions for future work. 

Appendix A presents details of the data collected from each participant and the comparison 

between Vicon and mobile app outcomes.  
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2 Literature Review 

2.1 Overview 

This chapter discusses the importance of human posture measurement and reviews related 

technologies for posture measurements to determine the requirements for a mobile-based posture-

measurement app. Moreover, the chapter introduces several fiducial marker systems to gain 

insights for choosing the most compatible solution for Android mobile app development.  

2.2 Human posture measurement 

Human posture is “the alignment of body segments at a particular time [10].” Posture 

measurement is widespread within biomechanics, ergonomics, and orthopedics [11]–[15]. As a 

key indicator of health, posture-related abnormalities are correlated with disorders and medical 

conditions inclusive of pain-related syndromes, musculoskeletal disorders, respiratory functions, 

and amputations [1], [10], [16]. Posture assessment enables clinicians to identify potential 

problems and develop a care plan. These assessments may focus on postural realignment, range of 

motion, and corrective practices to promote good posture and correct posture abnormalities. Large 

variations from ideal posture can initiate stress on spinal tissues that triggers back fatigue, 

headaches, intervertebral discs degradation, neck pain, spinal ligaments, and spinal structural 

deformities [1]. Posture measurement and range of motion methods include inertial measurement 

unit (IMU) sensors, marker-based systems, and markerless systems.  

2.3 Inertial measurement unit 

An IMU typically includes a gyroscope, accerometer, and sometimes magnetometer. Data 

from these sensors (rotational velocities, accelerations, heading by tracking magnetic-north) can 

be combined to determine the device’s orientation [4], [5]. IMU has shown good accuracy in 

monitoring normal activities, such as gait or sports performance, and outcomes of a rehabilitative 

process in patients. For instance, in knee joint angle measurement the IMU can be attached in a 

sensor alignment tool (Figure 2-1) that is manually aligned to the person’s anatomy. This 

orientation is recorded as the reference orientation. The person then removes the IMU from the 

alignment tool and places them in the sensor cases secured to their thigh and shank. The difference 

between the orientation on the thigh and shank relative to the reference orientation are calculated 
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and utilized to transform the data into an anatomical coordinate system. Moreover, IMU sensors 

are available in the majority of smart phone devices for multiple purposes, including orientation 

and movement acceleration detection. 

Although having vast uses in biomechanics, IMU can produce errors for position 

determination since double integration is required, thereby enhancing drift and noise in the system 

[5]. Furthermore, maintaining a durable interconnection between sensors and joints remains 

challenging, especially for dynamic measurement trials. 

2.4 Markerless systems 

Motion analysis systems that do not require markers could be used in movement analysis to 

reduce participants preparation time and encourage natural movement. Posture can be qualitatively 

and quantitatively assessed by interpreting photographs. For example, Posture Print software [10] 

can be used to measure postural deviations using images, generate a report on anatomical points 

displacement, and prescribe corrective exercises (Figure 2-2). Posture Print had a chest 

measurement error of 1.2 degrees for rotation and 1.6 mm for translation, and head measurement 

error of 1.38 degrees for rotation and 1.1 mm for translation [10]. Since these errors are within a 

clinically acceptable range, this postural assessment software tool was a viable instrument for 

measuring body angles [10].  

 

Figure 2-1 Padded elastic straps secured on the thigh and shank (adapted from [17]). 
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Figure 2-2 Posture Print output with sagittal (A) and coronal (B) views. Anatomical landmarks 

are seen as white dots. Gray vertical line represents gravity-based plumb line. Arrows denote 

directions of postural deviations (adapted from [1]). 

Establishing relationships between body parts via measurements in software is both easy and 

quick [18]; however, key methodological steps are needed to minimize image errors and extract 

optimal results [18], [19]. This includes selection of the environment, camera position, image 

resolution, and anatomical landmarks to be identified in the picture [18]–[20]. Parallax may occur 

when the image is not in the anatomical plane being analyzed, thereby producing measurement 

errors [18].  

Multiple 2D images of an object (typically 3-6 images) can be used to convert 2D marker 

locations into 3D data [18], [21]. Another approach uses artificial neural networks to define limb 

3D orientation [22]. A neural network learned arm reach posture from 3D motion trajectories of 

the shoulder, elbow, and wrist (Expert Vision Motion Analysis System generated 3D coordinates 

from two images (Figure 2-3). No significant differences were found between neural network and 

Expert Vision Motion Analysis System joint coordinates when reaching [22]. The neural network 

approach demonstrated potential in simulating and measuring human reach; however, training an 

accurate model requires large data sets and markers can be confused with backgrounds or other 

people in the video field. Moreover, specific landmarks not included in the neural network model 

cannot be identified. Therefore, a marker based approach is more beneficial. 
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Figure 2-3 Reach posture measurement (adapted from [22]). 

  Another markerless system, laser acquisition, is used by 3D scanners to measure surface 

geometry. A laser is fixed in the equipment, projects a laser light pattern on the surface, and a 

video camera moves step by step to scan the individual’s body [18]. Although laser acquisition is 

precise and can detect small differences, it requires skilled operation that might not be practical in 

a clinical environment. Laser scanning precision has contributed to its adoption for scanning static 

objects, but systems such can be expensive, bulky [18], and individuals must be completely still 

during measurement. This precludes this laser technology for clinical posture and range of motion 

measurement.  

Depth-cameras can be used to measure the distance from the camera to a given person or 

object, using a pattern of lights (IR or white light) [18], [19]. Systems such as Microsoft Kinect 

were developed by the gaming industry to track player movements while they interact with a game 

[23]. This gaming device can be used to assess gait kinematics, as well as spatiotemporal gait 

variables [23]–[25]; however, Kinect fails to accurately record body kinematic data [23]. Kinect 
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could measure some spatiotemporal parameters associated with gait [23], [24], [26], [27], but 

measurement accuracy can be affected by sensor position and tracking methodology.  

  SPGAP (Posture evaluation rotating platform system) is an instrument for quantitative 

analysis of body posture with applicability for clinical use. As a noninvasive body posture 

evaluation system, SPGAP is easy to handle and transport for posture evaluation within clinical 

practices [28]. SPGAP eliminates parallax errors associated with photographic methods [28] by 

using a rotating platform, known as PGA, to rotate the individual during the filming procedure. 

Therefore, a sequence of images of the individual was developed and calibrated using a digital 

video camera, image processor, computer, and analysis software [28]. The PGA is responsible for 

rotating the individual under evaluation during the filming procedure. Because of this movement, 

a sequence of images of the individual were saved in a file and can be selected, thus enabling 

statistical analysis post process (averaging values, probabilistic density, standard deviation). In 

this way the adverse effect of the parallax obtained from the analysis of a single image will be 

reduced (Figure 2-4). 

 

 

Figure 2-4 Image acquisition system (adapted from [28]). 
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Findings from this study revealed that SPGAP-generated values were relatively close to real 

measurements. During the retest, SPGAP had an error of approximately 1% for height-related 

dimensions alongside an error of about 0.3% for dimensions of width [28]. Such findings prove 

that this marker-less system is both reliable and valid as a method to measure body posture within 

clinical practice settings [28]. 

2.5 Marker-based optical systems 

2.5.1 Passive marker systems 

Passive marker-based systems typically use retro-reflective balls that are illuminated using 

infrare (IR) lights mounted on the cameras.Systems include Motion Analysis Corporation (Santa 

Rosa, CA), Qualisys (Göteborg, Sweden), Vicon (Oxford, England),. Song & Godøy [29] claimed 

that passive marker-based motion tracking systems that attach independent retro-reflective 

markers to clothing or skin are convenient but passive markers exacerbate challenges in post-

processing 3D data for markers close to each other [29]. This may require manual editing to relabel 

markers [30], [31]. Reflective surfaces in the background may also be mistaken for markers, 

requiring manual background masking or relabelling [32]. Distances between markers have been 

used to evaluate both precision (0.015 mm) and accuracy (0.15mm) of motion caption systems 

[31], [33]. The closer the camera is to the dynamic object, the better the motion capture 

performance due to greater resolution [32], [34].  

While passive marker systems are accurate, using them in clinical practice is limited due to 

motion lab space requirementes, system cost, and time requirements for patient setup and data 

processing [35], [36]. 

2.5.2 Active marker systems 

Active systems use light-emitting diodes (LED) as markers, with each marker having a 

predefined frequency to assist in marker differentiation [4]. However, individuals need to carry 

several cables and other components that may affect their movements. Active markers systems 

include Codamotion (Rothley, England), Optotrak (Northern Digital, Inc., Waterloo, Ontario, 

Canada), Qualysis (Göteborg, Sweden), Selcon (Selspot Systems, Ltd., Southfield, Michigan), 

[37]. Active markers can eliminate errors due to marker misidentification and therefore marker 

sorting time during postprocessing [38].  
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Neelesh, Nissa, Amod, and Sohi’s [39] evaluated an active marker system using LED-based 

markers to compute spatiotemporal and kinematic parameters through LabVIEW. A study of 19 

healthy participants and 39 patients with lower back pain revealed that patients with lower back 

pain demonstrated a rigid (less flexible) pelvis-thorax coordination compared to healthy 

participants [40]. Lamoth [41] noted that active markers enhance distractibility and reduce gait 

alteration since the cable system responsible for powering and controlling the LED lags behind the 

participant as they walk. New Optotrak markers have in-line batteries that eliminate the need for 

a tether following the person, but wires are still needed for limb markers on the body.  

The Selspot system taped active markers to the participant’s limbs [42]. Drawbacks of the 

Selspot system included errores due to reflections, the need to carry apparatus and cables, and a 

trade-off between the number of markers and sampling rate [42]. Since distance influences image 

resolution, as LEDs are moved away from Selspot cameras the amount of light intercepted per 

light pulse decreases [43], and increasing the aperture to capture more IR light can distort image.  

In next decade, future developments of active marker systems will employ radio-frequency 

active emitters as gait analysis hardware [42]. Radio-frequency signals are applied in the military. 

Due to their lightweight nature and low cost, implementation of a similar approach in clinical 

practice settings requires further research and development [42]. However, research and 

development of hardware and software entail costs that are significantly below the costs attributed 

to passive marker systems [42]. 

2.5.3 Magnetic systems 

Low frequency quasi-static magnetic field techniques can be used to determine position and 

orientation of a sensor relative to a source [44]. While these 3D measurement systems are portable, 

they are more cumbersome to employ due to the system's power, size, and weight [44] and are 

susceptible to metal within the capture volume.  

2.6 Fiducial markers system 

Fiducial marker systems are characterized by “patterns that are mounted in the environment 

and automatically detected in digital camera images using an accompanying detection algorithm 

[45].” Fiducial markers are most applicable in augmented reality applications, robotics, and other 

applications where accurate, real-time camera-object pose is required and tracked [45]–[49]. Since 
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virtual information in augmented reality is shared with the real world, this illusion requires good 

registration of both the virtual and real worlds [47], [48]. To the best of the author’s knowledge, 

no research literature has yet to examine fiducial markers in posture measurement.  

Fiducial marker systems performance is typically measured by the false negative rate, false 

positive rate, and inter-marker confusion rate. False negative rate is when a fiducial marker is 

present within the image yet never reported [45]. Falsely reporting the existence of a given marker 

despite its absence is a false positive, while inter-marker confusion occurs when a fiducial marker 

is detected yet incorrect identification is provided [45]. Research literature also includes the 

importance of minimal marker size in reliable detection, detection jitter, and immunity to lighting 

[45], [46]. Errors increase as the markers move farther from the camera [46], [47]. Minimal marker 

size is measured using 𝑇𝐷𝑀𝑖𝑛  =  𝑀𝑆 ⅹ 2 metres [46], where TDMin represents the minimum 

tracking distance and MS represents the marker size in meters. In addition to jitter, challenges have 

been found with this marker-based approach related to blurredness, movement of markers or 

camera along x or y-axis, occlusion, robustness, and tracking stability [46].  

2.6.1 AprilTag 

Based on earlier fiducial markers such as ARToolkit and ARTag, Edwin Olson developed 

the AprilTag system (Figure 2-5), a black and white square tag encoded with a binary payload [7]. 

The detection process includes seeking linear segments, detecting tags, computing tag position and 

orientation, and decoding the barcode [50]. 

The marker detection system calculates a marker’s identity, orientation, and position to the 

camera [7], [9], [47]. According to Walters and Magna [49], AprilTag was developed to 

• Maximize the number of distinguishable codes 

• Maximize correctable bit errors 

• Minimize false positive confusion rate 

• Minimize the number of bits per tag (minimizing tag size) [7] 
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Figure 2-5 AprilTag applications. Clockwise from top left: robot-to-robot localization and 

identification on MAGIC robots, object localization for Boston Dynamics Atlas robot, 

virtual reality headset testing at Valve, and tracking individual ants to study their social 

organization (adapted from [51]). 

 AprilTag works robustly in environments with lens distortion, occlusion, and warping [47]. 

AprilTag markers revealed increased sensitivity to edge occlusions [50]. AprilTag markers 

performed at satisfactory levels when the internal portion of a tag was occluded, yielding a 

detection rate of 50-100% depending on the tag ID [50]. AprilTag marks showed strong resistance 

to lateral and normal rotations because markers were detected and recognized at 0°, 10°, 20°, 30°, 

45°, 55°, and 65° relative to clockwise and counterclockwise directions [50]. Occlusion and 

rotation around the longitudinal axis were successful at 0°, yet unsuccessful at 22°, 45°, 67°, and 

90° [50].   
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2.6.2 ArUco 

ArUco is an opensource system that uses black and white square markers to estimate camera 

pose. ArUco detection involves:  

• Image segmentation: yields good results for an array of values and parameters (ωt) 

• Discard small contours 

• Contour extraction and filtering: the remaining contours are approximated by the most 

similar polygon based on the Douglas and Peucker algorithm [52] 

• Marker code extraction: assess innermost region of the remaining contours to determine 

marker validity 

• Subpixel corner refinement: locate corners with subpixel accuracy 

ArUco applies an adaptive threshold in a gray image, then seeks to find potential marker 

candidates by eliminating all contours that are not approximated by a rectangle [53]. Relative to 

contour extracting and filtering, a perimeter smaller than P(τc) = 4 x τc pixels will be rejected [54], 

where P(τc) is the canonical image perimeter and τc is the side length. Considering a detected 

contour 𝑣 ∈ 𝐼𝑟, and denoted by 𝑃(𝑣)𝑗j, then its perimeter is in the image, 𝐼𝑗 ∈ I. The best image 𝐼ℎ ∈ I for code extraction and identification is computed by 

  𝐼ℎ ǀ ℎ = 𝑎𝑟𝑔𝑚𝑖𝑛 ǀ𝑃(𝑣)𝑗 –  𝑃(𝜏𝑐)ǀ (2.1) 𝑗є{0,1, … 𝑛} 

and precedes error correction within ArUco’s detection and identification process [54]. A variation 

of ArUco (Chilitags) utilizes a similar decoding method for marker binary codes [54]. 

2.6.3 ARToolKit 

ARToolKit was initially used in scientific and industrial research [45], [51], [55]. This 2D 

planar marker system identifies markers in a given image and is widely employed in interactive 

and augmented reality applications due to source availability [56], [57].  
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According to Fiala [45], inter-marker confusion is computed by 

 

𝑃(≠  𝐴)  = ∑ 𝐻 𝐷(𝑛) ∙  𝑝 (𝑛)𝑞(𝑛)36
𝑛=1  (2.2) 

 𝑃(≠  𝐴)  = ∑ 𝐻 𝐷(𝑛) ∙  𝑝𝑛 (1 − 𝑝)36−𝑛 (2.3)36
𝑛=1  

where P(≠A) is the probability that a marker A can be mistaken for another marker in the set used 

in a system; p(n) and q(n) are the probability of n bits being falsely and correctly detected, 

respectively; and HD(n) represents Hamming distance histogram [45]. 

2.6.4 ArUco, ARToolKit, and AprilTag2 advantages  

All three marker systems are black-and-white squared-based fiducial markers [58] that have 

reliable decoding schemes and can be identified efficiently. ArUco may be the most popular and 

reliable marker detection system due to its adaptability to non-uniform illumination [54]. ArUco 

is inherently robust and is capable of detecting and correcting binary code errors [54]. Detection 

is based an adaptive threshold within a gray image followed by identification of marker candidates 

only after eliminating and discarding contours that cannot be approximated by a rectangle [53], 

[54]. Thereafter, codes are extracted, markers are identified, and errors are corrected accordingly 

[53]. ArUco is also characterized by a good performance at a range of marker orientations, bit error 

detection and correction, reduced inter-maker confusion, ability to use smaller tag sizes, and 

decreased total bits in a tag [51]. 

 ARToolKit was the earliest marker detection system to be widely used in augmented 

reality. ARToolKit executes faster than ARTag and ARToolKitPlus [45], [55]. Such tags are 

appropriate and highly applicable within robotic applications, since robotics requires a highly 

robust system [58].  

AprilTag is robust to lighting variations and accuracy relative to tag orientation (Figure 2-6). 

AprilTag2 improved over AprilTag [9], [53], yielding shorter detection computation time and 

fewer false positives due to tag covering, color-related errors, and lighting [49] in natural 

environments [7]. The tag’s lexicode-based generation process reduces the false positive rate 

without hindering location accuracy [7], [9]. With special algorithms to detect markers, the 
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AprilTag2 redesigned tag detector enhanced the efficiency and robustness when compared to its 

predecessor [9]. AprilTag2 also has enhanced performance on smaller images, in particular 

decimated input images, yielding significant improvements in detection speed [9]. Unlike other 

marker systems, AprilTag encodes only 4-36 bits of data, enabling quicker tag detection [7]. 

Improved robustness and efficiency reveal the advancements in AprilTag2 compared to ArUco 

and ARToolKit [9]. Thus, AprilTag2 is an appropriate tool for cases where computational power 

is a challenge. AprilTag2 tag detection via smartphones could improve real-time tag tracking on 

mobile devices. 

Future studies on AprilTag2 should focus on experiments related to occlusion resilience, 

such as rotating around three principal axes [50], [51], [59], and resistance to inter-marker 

confusion and illumination changes [59]. To deal with inter-marker confusion, ArUco maximizes 

inter-marker differences and bit transitions, both of which reduce the prevalence of inter-marker 

confusion rates and false positive rates while enhancing ArUco system robustness [45]. Classifying 

markers patterns have proven to reduce inter-marker confusion rates. Badeche and Benmohammed 

[60] used Latin characters to classify ARToolKit markers pattern in an effort to lower inter-marker 

confusion. AprilTag2 uses a similar method to minimize confusion rates. 

 

Figure 2-6 AprilTag fiducial system (adapted from [49]). 
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2.6.5 ArUco, ARToolKit, and AprilTag2 disadvantages 

ArUco and ARToolKit have disadvantages compared with AprilTag2. This section outlines 

these disadvantages. 

ARToolKit has several drawbacks [45]. While ARToolKit is faster than ArUco and 

AprilTag2 for marker recognition, ARToolKit is challenged by slow pattern recognition 

processing [55]. In ARToolKit, a global threshold is used to produce a binary image. This image 

is correlatdd with images in a predefined database [53], which increases processing effort since 

the database grows with each picture processing instance and for each individual tag in the picture 

[47], [50], [51]. To improve ARToolKit performance, taking pictures of the markers from different 

angles and with varying lighting will improve the database for accurate marker detection, but make 

marker detection and identificaton time longer since more correlations are required. Moreover, 

ARToolKit applies a greyscale threshold to each image before processing, and this threshold 

setting will adversely affect either false negative rate or false positive rate (i.e., if false negative 

rate increases, false positive rate decreases).  

ARToolKit uses basic error correction methods, resulting in poorer performance compared 

with edge based detection approaches [45]. However, ARToolKit error correction does provide a 

low false positive rate and is robust when the marker rotates [9], [53].  

 Differing opinions have been presented on the effect of ARToolKit library size on marker 

uniqueness. A study by Xiao, Owen, and Middlin [61] proposed an ARToolKit library with 

components of spatial frequency to widen and expand the library, thereby improving marker 

detection with increased library size. In contrast, A study by Khan, Ullah, and Rabbi indicated that 

the new library size did not improve inter-marker confusion rates [45] despite ARToolKit’s ability 

to reduce inter-marker confusion rates, a generalized classification algorithm was not proposed for 

ARToolKit [55], [60].  

ArUco has relatively poorer behavior than ARToolKit and AprilTag2, regardless of the 

resolution [54]. ArUco detection reliability is affected by uncalibrated cameras with small focal 

length because they usually exhibit high distortion [54].  

AprilTag2 performance advantages over ArUco and ARToolKit are partly due to image 

segmentation based on a graph with local gradients to approximate edge lines [7], [58]. Occlusion 

is handled with a quad detection method (attempting to find four-sided regions facilitate by black 
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and white border of a tag)[53], [62]. After initial detection of lines, AprilTag2 uses black and white 

pixels to aid in decoding the image payload within a spatially-varying threshold [53], [62].  

A common disadvantages of all fiducial marker systems is the tradeoff between marker 

detection distance and accuracy. The rate of the successful marker detection decreases as distance 

from the camera (Hamming distance: the sum of the differences between two digital sequences) 

increases. In AprilTag2, false positive rates are dependent on Hamming distance [7], with false 

positive rates increasing as Hamming distance increases. 

2.7 Summary 

Based on the literature, these items can be considered: 

• Human posture measurement is required routinely by researchers and clinicians. Accurate 

and real time posture measurement at the point of patient contact has been a challenge for 

decades.  

• Accelerometer, gyroscope, and often magnetometers can be combined to compute position; 

however, accuracy (noise amplification due to double integration from acceleration) 

remain a challenge.  

• Markerless posture measurement using videos or pictures can be used to manually 

determine anatomical points by selecting points on-screen. The manual anatomical 

selecting process might result in errors, and real time evaluation is not possible. 

• Marker-based approaches use markers on person to provide accurate measurements. 

However, a dedicated location for the motion analysis cameras and other hardware are 

required, and systems can be costly.  

• Fiducial marker systems are uniquely identifiable objects in the field of view that can 

provide location and orientation (i.e., marker angle in the 2D image). AprilTag2 is a viable 

fiducial system since low computational cost and high accuracy should allow human 

posture measurement in real time on smartphones (i.e., anywhere at any time). 
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3 Fiducial Marker Approach for Biomechanical Smartphone-Based 

Measurements 

3.1 Overview 

This chapter introduces fiducial marker systems for potential use in a mobile app that 

measures human posture using anatomical and body segments. The chapter compares and 

evaluates the performance of different fiducial markers system on a Samsung Galaxy S5. The 

chapter contains a modified IEEE manuscript published in 3rd International Conference on Bio-

engineering for Smart Technologies (BioSMART), Paris, France, April 2019. 

3.2 Abstract 

Marker-based measurement has been used to assess human body positioning, but human 

marker tracking has yet to make the transition from the laboratory to personal computing devices, 

such as smartphones. A novel smartphone-based approach could use a fiducial marker system. 

Fiducial markers are applicable to augmented reality, robotics, and other applications where a 

camera-object pose is required and tracked. However, few fiducial systems can be implemented 

on a mobile phone because of the processing requirements for identifying and tracking the tags in 

real-time. In augmented reality, virtual information is shared with the real world to further enhance 

a person’s view of the environment; therefore, this illusion is directly associated with good 

registration of both virtual and real worlds. Measurement applications also require accurate and 

fast registration so that real objects are in alignment with virtual objects in real-time. Our research 

reviewed and evaluated various fiducial marker systems by developing an Android mobile 

application for real-time biomechanical measurement. A test was designed for two nominated 

fiducial systems to compare their speed and robustness on the mobile phone. AprilTag2 was 

selected as the best fiducial marker option for this application. 

3.3 Introduction 

Posture measurements are routinely required by clinicians, but current methods of measuring 

joint and pose require specialized equipment or unacceptable clinic time. These angle 

measurements are typically taken manually, using a protractor or goniometer, since visual 

observation introduces human error. Advanced technologies such as x-ray and marker-based 
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motion analysis systems (Vicon, etc.) are time consuming, costly, and may be hard to access. We 

proposed an innovative solution using smartphone augmented reality (AR) technology. With 

smartphone-based AR in a real-time application, the gap can be filled for cost, accessibility, and 

accuracy. An AR system could provide standardized quantitative measurements in realtime, an 

important feature that does not exist in clinical practice, providing clinicians with instant feedback 

on human body orientations and distances.  

Based on our preliminary research, visual fiducial marker systems were selected as the best 

option for this application, since other colour or light-based markers were susceptible to 

background noise, lighting conditions, and confusion between markers when working in a clinic 

environment. Fiducial markers are uniquely identifiable objects placed in the field of view that can 

provide a location and orientation (i.e., marker angle in the 2D image). By placing fiducial markers 

on body segments, the segment position and orientation can be tracked in realtime. However, 

fiducial systems for this application have yet to be appropriately implemented on mobile phones. 

Fiducial marker systems are characterized by “patterns that are mounted in the environment 

and automatically detected in digital camera images using an accompanying detection algorithm” 

[45]. System performance can be measured by the false negative rate, false positive rate, and inter-

marker confusion rate. Of these metrics, the false negative rate is deemed the least serious since a 

fiducial marker is present within the image yet never reported [45]. Inter-marker confusion rate 

occurs when a fiducial marker is detected yet incorrectly identified [45]. Other evaluation metrics 

include minimal marker size for reliable detection, detection jitter, and immunity to lighting [45], 

[47]. Blurredness, movement of markers or camera along x or y-axis, occlusion, robustness, and 

tracking stability have also been analyzed [47]. The fiducial system’s decoding algorithm has a 

profound impact on computational cost and time in various conditions, including occlusion and 

lighting. One method (ARToolKit) uses arbitrary image patterns embedded inside a square, which 

are matched to a database of known patterns for identification [45], [57]. AprilTag, ARTag, 

ArUco, and AprilTag2 use 2D binary code patterns to improve tag detection by detecting tag edges, 

which is an improvement over the ARToolkit thresholding method [50], [54]. 

ARToolKit is one of the earliest visual fiducial systems, introduced in 1999 at SIGGRAPH. 

ARToolKit was initially used in scientific and industrial research [45], [51], [55]. The 2D planar 

marker system includes planar patterns and computer vision algorithms to identify markers in a 
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given image [56], [57]. Due to ARToolKit’s source availability, it has been widely employed in 

interactive and augmented reality applications.  

Based on earlier fiducial markers such as ARToolkit and ARTag, Edwin Olson developed a 

new system called AprilTags, a black and white square tag encoded with a binary payload [7]. The 

AprilTag detection process involves seeking linear segments, detecting squares (tags), computing 

the tag’s position and orientation, and decoding the barcode. 

 

 
  

(a) (b) (c) 

 
  

 
  

(d) (e) (f) 

 
  

   

(g) (h) (i) 

 

Figure 3-1 Examples of fiducial marker systems. 

In addition to existing square black and white tags, researchers have proposed other encoding 

methods, such as reacTVision [63] that uses a recognition model that was introduced by d-touch 

[64]. By degrading smoothly, FourierTags [65] can be detected at longer distances. For better 

localization accuracy, RUNE-Tags [66] uses circles of unconnected ellipses to shape the marker. 
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Although RUNE-Tags is more accurate and robust to blurring and occlusion, it requires more 

computation time. To overcome projective geometry, PI-Tag [67] uses crossratio to detect the tag. 

To enhance AprilTag, ChromeTags [49] use two bicolor blended tags in CIELAB color scheme to 

increase gradient magnitude and detection speed by reducing the number of edges. Figure 3-1 

shows different fiducial marker systems patterns. 

3.4 Selection criteria and background 

3.4.1 Design criteria 

For an AR-based mobile application, the fiducial system needs to meet the following criteria: 

• Function in real-time (marker detection, marker tracking, display marker border and 

outcome measures on screen) on smartphones having these minimum specifications: 16MP 

rear camera, 2 MP front camera, 2 GB Ram, 2.5 GHz quad core CPU speed 

• Detection and tracking with at least 1 meter between the phone and markers (i.e., full body 

in video frame) 

• Save marker coordinates and BAR-M outcome measures in a data file 

3.4.2 Selected fiducial systems 

Only two fiducial systems met the criteria and were selected for further testing, AprilTag2 

and ArUco. Both use black-and-white squared-based fiducial tags [58]. As fiducial marker 

systems, ArUco and AprilTag2 possess reliable decoding schemes and can be identified 

efficiently. Romero-Ramirez, Muñoz-Salinas, and Medina-Carnicer [53], [54] claimed that ArUco 

is the most popular and reliable marker detection system today. The system’s adaptability to non-

uniform illumination is key to its reliability. 

AprilTag calculates a specific identity, orientation, and position of a marker relative to the 

camera [7], [9], [47]. AprilTag was developed to maximize the number of distinguishable codes, 

maximize correctable bit errors, minimize false positive confusion rate, and minimize the number 

of bits per tag (minimizing tag size) [49]. 

Maximizing the distance between tags (hamming distance) makes AprilTag highly 

distinguishable. AprilTag2 remained robust to false positives [9], [49]. AprilTags play a 

quintessential role in reducing false positives that occur due to tag covering, color-related errors, 

and lighting issues [49]. Olson claimed that AprilTags are resilient against false positive only in 
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natural environments [7]. Since tag coding is the same as AprilTag, AprilTag2 remains robust to 

false positives within the coding system. However, AprilTag2 improved performance detection, 

yielding fewer false positives and shorter computational time to ensure detection. Additional 

findings demonstrated that the tags’ lexicode-based generation process reduces false positive rates 

without hindering location accuracy [7], [9]. Olson further claimed AprilTag works robustly with 

lens distortion, occlusion, and warping [47]. AprilTag markers revealed increased sensitivity to 

edge occlusions, limiting its effectiveness for cases where occlusion occurs [51]. Upon occlusion 

of the internal portion of the tags, AprilTag markers performed at satisfactory levels, yielding a 

detection rate of 50-100% depending on the tag ID [51]. AprilTag markers showed strong 

resistance to lateral and normal rotations since markers were detected and recognized at 0°, 10°, 

20°, 30°, 45°, 55°, and 65° relative to both clockwise and counterclockwise rotations [51].  

 ArUco uses black and white square markers to calculate camera pose. The detection process 

involves:  

• Image segmentation 

• Contour extraction and filtering. After discarding small contours, the remaining contours 

are approximated by the most similar polygon using the Douglas and Peucker algorithm 

• Marker code extraction. Assessment of the remaining contours’ innermost region to 

determine marker validity 

• Subpixel corner refinement. Corner locations are estimated with subpixel accuracy 

ArUco applies an adaptive threshold in a gray image then seeks to find potential marker 

candidates by eliminating all contours that are not approximated by a rectangle [53]. ArUco 

maximizes inter-marker differences and bit transitions, both of which reduce the prevalence of 

inter-marker confusion rates and false positive rates while enhancing ArUco system robustness 

[45]. Classifying markers has proven to reduce inter-marker confusion rates in other studies. 

3.5 Test and results 

3.5.1 Methodology 

An Android mobile phone application was developed to test tracking response of AprilTag2 

and ArUco in real-time. Java language was implemented for both Apriltag (C language) and Aruco 

(C++) Libraries by calling Java Native Interface (JNI). The core image processing library of both 
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fiducial marker systems was not modified. As an initial test, observational analysis was used to 

evaluate the speed of tag detection and tracking of each tag system. A Samsung Galaxy S5 was 

used for testing. Two ArUco markers were placed on a wall in different locations and angles with 

respect to the phone (Figure 3-2). An examiner held the phone in front of tags and moved the 

phone to visually evaluate the marker tracking response. The test was repeated for AprilTag2.  

For the second test, the mobile phone was set on a tripod with the parallel distance between 

the phone and the markers was 70 cm (Figure 3-2). 10 seconds of marker orientation and 2D 

position data in the camera frame were recorded (corner coordinates for each marker). The false 

positive rate and inter-marker confusion rate between two markers were calculated and the 

standard deviation (SD) of each corner was used to assess jitter rate (i.e., “shaking” in the marker 

image position). 

3.5.2 Results 

Appropriate marker detection and tracking response was required to avoid pauses while 

tracking. ArUco could not meet this first criteria, with perceivable marker tracking latency. 

AprilTag2 successfully tracked markers while the smartphone was in motion. Therefore, further 

testing was performed only on AprilTag2. For the second test set, AprilTag2 performance was 

acceptable (Table 3-1), with no inter-marker confusion, few false positives, and <0.2 SD for corner 

coordinates. 

3.6 Conclusion 

Ten fiducial systems were reviewed to select a suitable system for the intended 

biomechanical measurement mobile phone application. Among these systems, ArUco and 

AprilTag2 were selected for further testing on a Samsung Galaxy S5 smartphone. Both AprilTag2 

and ArUco are open source and have an affordable computational process. However, only 

AprilTag2 met our tracking response requirement on the smartphone. The AprilTag2 system also 

demonstrated robust tag location accuracy. AprilTag2’s boundary-based segmentation algorithm 

for reducing tag detection computing time for and increasing detection rate may have contributed 

to the acceptable performance on the smartphone. Unlike other marker systems, AprilTag2 

encodes only 4-36 bits of data, thus enabling accurate and quick tag detection [9]. Improved 

robustness and efficiency revealed the advancements in AprilTag2 compared to ArUco. Therefore, 
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AprilTag2 is preferred over the other fiducial marker systems due to its improved performance 

relative to small images, thus providing improved detection speed on mobile devices. 

Table 3-1 AprilTag2 results 

 

 

 

 

 

 

 

 

 

Figure 3-2 AprilTag2 marker detection using BAR-M with Samsung Galaxy S5. 

 

  

 Marker 1 Marker 2 

False positive rate 1% 1% 

Inter-Marker confusion rate 0% 0% 

SD of 1st corner location (pixel) 0.184 0.180 

SD of 2nd corner location (pixel) 0.177 0.185 

SD of 3rd corner location (pixel) 0.185 0.192 

SD of 4th corner location (pixel) 0.179 0.188 
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3.7 Future work 

Additional to detecting and tracking markers, the developed mobile application is capable of 

measuring angle and distance between markers (Figure 3-2). Angle and distance are often used to 

quantify human body segments for different applications; such as, diagnosing skeletal deformities 

(e.g., scoliosis, limb length discrepancy), range of motion measurement for sports science, and 

research. The next step is to evaluate angle and distance between markers with people, using a 

motion analysis system as a “gold standard”. 
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4 Augmented Reality Approach for Marker-based Measurement on 

Smartphones 

4.1 Overview 

This chapter discusses Biomechanics Augmented Reality Tag (BAR-M) development and 

reports app performance when measuring angle and distance between two markers using the front 

and back camera of a Samsung Galaxy S6 in different mobile holding positions.  

4.2 Abstract 

The use of marker tracking for postural and range of motion measurements with a mobile 

device transcends multiple disciplines including, healthcare, ergonomics, engineering, robotics, 

and training. While image analysis has been used to compute angles and distances, a viable real-

time mobile application is currently lacking for measuring limb angles and body posture. To 

address this need, a novel Android smartphone augmented-reality-based application was 

developed using the AprilTag2 fiducial marker system. In augmented reality, virtual information 

is shared with the real world to improve a person’s interaction with the environment. To evaluate 

the app, two markers were printed on paper and attached to a wall. A Samsung S6 (rear camera 

16MP, front camera 5 MP, Ram 3 GB, CPU Octa core with 2.1GHz Quad + 1.5GHz Quad) mobile 

phone was fixed on a tripod, parallel to the wall. The smartphone app tracked and recorded marker 

orientation and 2D position data in the camera frame, from front and rear cameras, for different 

smartphone placements. The average error between mobile phone and measured angles was less 

than 1 degree for all test settings. The average error for the back camera was 0.29º, front camera 

was 0.33º, yaw rotation was 0.75 º and tilt rotation was 0.22 º. The average error between mobile 

phone and measured distance was less than 4 mm for all test settings. The average error for the 

back camera was 1.8 mm, front camera was 2.5 mm, yaw rotation was 3 mm, and tilt rotation was 

3.8 mm. Overall, the app obtained valid and reliable angle and distance measurements with 

smartphone positions and cameras that would be expected in practice. Thus, it is concluded that 

this app has potential for use in clinical range of motion and posture assessments. 

 

Keywords— measurement, markers, fiducial markers, range of motion, posture, augmented 

reality, healthcare, apriltag2, mobile application, smartphone 
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4.3 Introduction 

Posture is commonly characterized as the alignment of body segments at a given time and 

serves as an important health indicator [68]. Posture and range of motion (ROM) measurements 

are used to identify abnormalities stemming from various disorders; including, scoliosis, 

musculoskeletal disorders, pain syndromes, and respiratory dysfunctions [1], [10], [69]. The fields 

of ergonomics, biometrics, orthopedics, and rehabilitation readily employ posture and ROM 

measurement in both able-bodied and clinical populations [1], [3], [10], [16], [70]. However, 

quantitative measurements are dependent on equipment availability and accessibility. A mobile 

technology approach could be considered to bring real-time measurement to the point of patient 

contact. 

Mobile-based approaches have been employed to measure human posture and ROM. Mobile 

applications have become popular because of accessibility. There are two main approaches for 

smart-phone based applications. One approach involves capturing a still image with a smartphone 

or tablet camera and then annotating the image to calculate angles between body segments or 

segment to camera frame. The user will capture images and add anatomical landmarks on screen 

to define reference segments [71]. However, accurate measurements are challenging because the 

selected points might not be placed on the correct anatomical landmarks. 

 A second approach uses smartphone accelerometer and gyroscope sensors to quantify the 

posture measurement and ROM. Inertial Measurement Units (IMU) combine data from a 

gyroscope (rotational velocity), accelerometer (acceleration), and sometimes magnetometer 

(heading by tracking magnetic-north) to determine the sensor’s orientation [5], [6]. Determining 

an IMU’s position in space is difficult because computing position requires a double integration 

that is affected by sensor drift and system noise [5].  

Another approach for markerless measurement of human pose involves depth cameras, such 

as Kinect [5], [72]. These markerless systems can have low accuracy and may not be applied in 

real-time [7], [49], [51]. The lack of real-time feedback reduces the likelihood of improving 

posture among workers during ergonomic interventions [73]. Depth camera systems such as 

Microsoft Kinect can quickly and reliably measure and compute joint angles within posture-related 

evaluations and assessment [73]. However, the depth of view is small and the system struggles 

with dark and shiny surfaces.  
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In desktop applications, Open CV and other libraries provide the ability to track coloured or 

active markers in a video field. However, there are problems with background “confusion”, 

difficulty with consistent multi-marker tracking, and confusion between markers. All of these 

negatively affect accuracy. On the other hand, real-time marker-based systems are of high accuracy 

and can be used for Augmented Reality (AR) mobile-based applications, where live video of the 

real world is augmented by virtual information. In AR marker-based systems, black-and-white 

pictures (fiducial markers) can be recognized by webcams prior to being superimposed by objects 

in real-time multimedia, without the problems associated with coloured or active marker tracking 

[51], [62].  

Fiducial markers could be a viable approach for real-time mobile human body measurement. 

Fiducial marker systems are characterized by “patterns that are mounted in the environment and 

automatically detected in digital camera images using an accompanying detection algorithm” [45]. 

These uniquely identifiable objects are placed in the field of view as reference points to provide a 

location or orientation (i.e., marker angle in the 2D image) that the camera can measure. By placing 

fiducial markers on body segments, position and orientation can be tracked in real-time. 

Fiducial systems are a viable option to meet these criteria because the computational cost is 

low with high accuracy [74]. Fiducial markers will be more easily recognizable than colour or 

light-based markers. Based on our preliminary research, colour or light-based markers were 

vulnerable to background noise, lighting conditions, and confusion between markers when 

working in a clinic environment.  

AprilTag are "2D barcode style" fiducial markers, similar to QR codes, that can be printed 

on paper. The AprilTag software computes precise 2D position, tag orientation, and identifies the 

tag location relative to the camera [7]. AprilTag2 improved on the original AprilTag by providing 

greater reliability than other fiducial systems, featuring a smaller number of false positives and a 

decreased false positive rate compared to other fiducial systems [9]. False positive rate is deemed 

the most important since the fiducial marker would be missing within the image yet reported as 

present [45]. 

 Based on a survey of the literature, current accurate posture measurement and ROM 

systems cannot be used anywhere and at any time since they depend on the experiment setup and 

location. Therefore, a need still remains for a system to measure location or orientation in real-

time with inexpensive and accurate computational processes. The fast nature of the AprilTag2 
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marker-based system, along with its ease of use, makes this a potential approach for accessible 

human posture measurement in healthcare. Therefore, this research developed an AR mobile-app 

using AprilTag2 fiducial markers for posture and ROM measurement by determining marker 2D 

position and orientation and providing information to the user in real-time. Following successful 

evaluation, this mobile AR approach could bridge the gap for posture and range of motion 

measurement at the point of personal contact, thus making postural measurement widely accessible 

and usable [75]. 

4.4 Methodology 

4.4.1 Design criteria 

The design criteria for the AR-based posture and ROM measurement mobile application 

includes: 

• Track markers smoothly without noticeable delay on a mobile phone screen (minimum 

15Hz tracking rate) 

• Real-time display of live video, angles, distance between markers, or marker orientation 

• Appropriate performance with back and front cameras. The front camera is typically lower 

resolution but allows the user to see the screen during use (i.e., self-evaluate or hold marker 

on a person and see the outcome measure) 

• Angle measurement accuracy to 1 degree and distance accuracy to 5mm 

• Convenient to access anywhere, at any time (i.e., mobile application without network 

connectivity requirements) 

4.4.2 Design 

The Biomechanics Augmented Reality Tag (BAR-M) app was developed for Android and 

AprilTag2 fiducial markers, as an extension of the original BAR app that used smartphone sensors 

and orientation for measurement [76]. This novel Android application was developed to track 

AprilTag2 orientation and 2D position in a real-time. Java language was implemented for the 

AprilTag2 Library by calling the Java Native Interface (JNI). The core AprilTag2 image 

processing library (C language) was not modified.  

Smart phone camera captured frames were sent to a background thread (Figure 4-1). This 

thread processed the frame data and sent this data to JNI so that the AprilTag2 library could detect 
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and process markers in the video frame. The AprilTag library returned (x,y) coordinates for marker 

corners and tag center to the processing thread through JNI. Marker angles and distance between 

markers were calculated using regional slope equations and a scale factor (determined from a ratio 

between marker real-world dimensions and marker coordinates in pixels) [77].  

OpenGL was used to render the overlayed graphics in the correct viewpoint relative to the 

smartphone and marker, with marker coordinates transformed into a global affine coordinate 

frame. The graphical overlay included drawing a box around each marker and a line connecting 

marker centers. By drawing a box in real time around markers, the user knows which markers are 

detected (Figure 4-2). Additionally, the phone axis can be displayed on the screen for relative 

feedback of phone orientation to the environment. App output was saved in a .csv file and included 

frame times, marker corner coordinates, marker centre coordinates, and marker side lengths (all 

units in pixels). 

  The user can select the live AR view from two options, individual marker angle to 

horizontal, with horizontal defined by the camera sensor gravity vector; or angle between a line 

connecting the centres of two markers and the horizontal. 

 

 

Figure 4-1 Tracking module flowchart. 
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Figure 4-2 BAR-M augmented reality screen output. 

4.5 Evaluation 

To test the app, two 3.65 cm x 3.65 cm AprilTag2 markers were printed on rigid cardboard 

(i.e., no flexing during testing) and attached to a wall. Tag orienation and distance between tags 

were set in a Microsoft PowerPoint document. This marker size was chosen during pilot testing 

since this was the smallest dimension to enable marker identification within a camera field of view 

that included the entire human body. A bubble level was used to orient the paper to vertical.  

The BAR-M app was installed on a Samsung Galaxy S6 (rear camera 16MP, front camera 5 

MP, Ram 3 GB, CPU Octa core with 2.1GHz Quad + 1.5GHz Quad) phone and then affixed to a 

tripod (Figure 4-3). All tests were performed with both front (1440p) and back (2160p) cameras 

to evaluate differences between video image resolutions. 10 seconds of video data were captured 

for each trial. The effect of distance between the smartphone and the markers was evaluated by 

placing the tripod from 60 cm to 150 cm parallel distance from the tags, in 10 cm intervals. The 

effect of camera rotation was evaluated by placing the tripod 90 cm from the markers (i.e., distance 

with best results from the front camera) and rotating the tripod mount in yaw and then tilt 
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directions. Trials were completed at 0, 5, 10, 15, 20, 25 degrees clockwise and then with the same 

angles counter-clockwise. The angle between a line connecting the 2 markers and the horizontal, 

and the distance between marker centres, were calculated for every output frame and then 

compared to the measured values. The scale factor for distance conversion from pixels to cm was 

calculated using the ratio between marker real-world dimensions and marker coordinates in pixels. 

  
a b c 

Figure 4-3 Setup environment, a) phone parallel to markers, b) yaw rotation, c) tilt rotation 

4.6 Results 

The angle and distance results are presented in Table 4-1. The measured angle was 44.1 

degree and the measured distance was 9.55 cm. 

For the parallel distance test, the front camera detected the markers from 60 cm to 115 cm, 

with an average frequency for providing marker data of 14 Hz. The back camera detected markers 

for the entire 150 cm range, at an average frequency of 22 Hz. Back and front camera results of 

angle and distance between a line connecting markers is shown in Figure 4-4 and Figure 4-5, 

respectively. For the front camera, 90 cm from the markers enabled measurement with the full 

body on the screen and the lowest errors (0.29° and 0.27 cm difference from the measured values). 
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Table 4-1 Angle and distance results 

   

Figure 4-4 Back and front camera angles from two markers. 

For the smartphone yaw and tilt tests, Figure 4-6 and Figure 4-7, there is a constant error 

which leads to underestimate the angle measured and overestimate the distance measured between 

markers. The inflection points of tilt and yaw tests occurred at 0 degree. The average, standard 

deviation, min, and max errors were shown in Table 4-1. There were errors greater than 1 degree 

and 5mm from -15 to -25 degrees and 15 to 25 degrees respectively in yaw test. The reason for tilt 

test offset is due to the smartphone built in sensors which data drifted. 
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Back camera Parallel 0.29±0.16 44.58 43.58 0.18±0.07 9.84 9.44 

Front camera 

Parallel 0.33±0.15 44.41 43.48 0.25±0.07 9.93 9.70 

Yaw 0.75±0.40 45.90 43.20 0.29±0.23 10.15 9.50 

Tilt 0.23±0.14 44.02 43.59 0.38±0.05 10.05 9.85 
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Figure 4-5 Back and front camera distances between two markers 

 

Figure 4-6 Yaw and tilt angle results 
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Figure 4-7 Yaw and tilt distance results 

4.7 Discussion 

The outcomes of this study support the use of AprilTag2 fiducial markers for an AR-based 

mobile application. Accuracy was found to be within the design criteria, with angle and distance 

average errors in all setups less than 1° and 4mm, respectively. These results would support the 

use of this app approach for augmented-reality-based measurement of human posture and range of 

motion. 

All study evaluations were completed with a Samgung Galaxy S6 smartphone; therefore, 

any device with at least an Octa-core processor (4x2.1 GHz Cortex-A57, 4x1.5 GHz Cortex-A53) 

and 1440p camera resolution would be appropriate. Higher camera resolutions could improve 

marker identification accuracy and also would allow smaller tags to be used. Smaller tags could 

be easier to implement for some human movement tracking applications. 

The rear camera had a higher video resolution than the front camera, therefore tags could be 

detected at a longer distance and the sampling rate was faster than the front camera. The maximum 

distance for tag identification was 115 cm for the front camera and 150 cm for the rear camera. 

The minimum number of pixels in 1 cm detected by the mobile phone was 10.23 and 9.33 pixels 
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for front and back camera respectively. The average marker sampling frequency was less than 

22Hz and was influenced by orientation and 2D position computation. At 22Hz, the user preceives 

smooth marker tracking on the AR display. It is expected that this frequency will increase with 

more powerful smartphone processors. Markers exposed to too much light cannot be detected and 

tracked. Hence, having normal lighting (room light) has a profound impact on marker detection 

and the permissible distance between phone and markers. 

AprilTag2 enables robust tag detection for viability on smartphones and other computation-

limited systems, extending their significance for tag tracking in real-time applications. The 

markers showed strong resistance to camera yaw and tilt rotations since markers were detected 

and recognized at 0o, 5o, 10o, 15o, 20o, and 25o relative to both rotation directions (clockwise and 

counter clockwise). Hence, the application was also reliable for posture measurement by clinicians 

even if the tags are not perfectly parallel and the mobile device screen is not vertical to gravity. 

However, the recommendation app use would be to have the smartphone or tablet parallel to the 

tags when measuring. In future research, correction factors based on tag edge-coordinate 

differences from square could be used to better adapt to cases where markers are not parallel to the 

camera plane. 

4.8 Conclusion  

The Biomechanics Augmented Reality Tag app detected, tracked, and measured angles and 

distances between tags as a real-time augmented reality application, and also stored results in a csv 

file for more detailed evaluations. This AR smartphone app could be viable for posture, range of 

motion, and distance measurements that are routinely required by clinicians and researchers. 

Therefore, customizing the mobile application and tag related tools to capture human body posture 

and range of motion will be the next step in BAR-M development. 
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5 Evaluation of a Biomechanical Augmented Reality Mobile-based 

Application 

5.1 Overview 

This chapter evaluates the performance of the augmented reality (AR)-based mobile 

application that measures human posture using anatomical and body segments markers. Contents 

from this chapter will be submitted as a journal paper. 

5.2 Abstract 

Human posture measurements and range of motion (ROM) assessments are important for 

many fields; including, healthcare, ergonomics, and sport science. Currently, video analysis and 

motion capture systems are the most common techniques for quantifying postural measurement. 

However, for broad implementation in clinical practice measurement techniques should be real-

time, accurate, and portable. To address these criteria, a novel smartphone and tablet-based 

approach was developed to enable marker-based (AprilTag2 fiducial marker) body segment 

measurement at the point of patient contact (Biomechanical Augmented Reality – Marker, BAR-

M). This augmented reality app provides real-time angle measurements for use in clinical decision-

making. This research evaluated mobile app performance for measurements on a body opponent 

bag (BOB) and a group of 15 healthy participants. App measurements were compared with Vicon 

motion analysis system measurements. BOB evaluations provided an optimal situation for 

smartphone measurement baseline accuracy, while evaluation on humans demonstrated system 

accuracy in practice. For both tests, a Samsung Galaxy S6 smartphone was set on a tripod, 1 meter 

parallel distance from the participant. The front camera recorded live video and the app calculated 

AprilTag orientations and the angle of “a line connecting the center of two tags” to the horizontal. 

The resulting angle was displayed in real time on the phone’s screen. For Vicon, reflective markers 

were attached to the pelvis, shoulder, arm, and torso. Marker data were processed to calculate 

pelvic obliquity, shoulder, and arm abduction. For the app, a prosthetist held the AprilTag markers 

on the person’s anatomical landmarks so that the angle could be read from the screen. A app 

streaming data file was also created to enable angle post-processing. Each measurement was 

repeated 10 times. For the BOB test, the absolute mean angle difference between Vicon and 

smartphone was 0.09° ±0.05° for hip, 0.09°±0.06° for shoulder, and 0.69° for arm abduction. For 
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the participant test, the absolute mean angle difference between Vicon and smartphone was 

1.70°±0.23° for hip, 1.34°±0.27° for shoulder, and 11.18° ± 3.68° for arm abduction. Overall, the 

app obtained valid and reliable angle measurements in postural and ROM assessments on BOB 

and 15 participants using the front camera of the Samsung Galaxy S6 (rear camera 16MP, front 

camera 5 MP, Ram 3 GB, CPU Octa core with 2.1GHz Quad + 1.5GHz Quad). The poorer arm 

abduction results were due to systematic errors in a few participants (i.e., clothes movement during 

measurement caused Vicon markers to move differently from AprilTag markers). Thus, with 

appropriate measurement methods this app is a viable tool for posture and range of motion 

assessments. 

5.3 Introduction 

Posture is the body’s position or bearing for a special purpose, and is considered a valuable 

health sign [1]. When also considering movement, joint range of motion (ROM) is often used in 

clinical assessments. However, quantitative measurement of posture and body segment positioning 

in clinical practice has remained a challenge due to the need for specific and typically expensive 

technology, time for data collection and analysis, and separate testing space requirements. An 

Augmented Reality (AR) mobile based application approach would be a convenient solution, 

enabling real-time measurement of human posture and ROM at the point of patient contact.  

Biomechanics Augmented Reality (BAR) is an example of an AR-based smartphone app for 

real-time human angle measurement and result reporting [76]. BAR measures angles using the 

phone’s orientation to the gravity line, defined using the smartphone accelerometer. For example, 

aligning the phone screen to the torso would measure the torso angle to vertical. The app also 

shows a constant grid and vertical line based on gravity. Real-time angle measurements on a 

smartphone could support clinicians for accurate and immediate decision making.  

Video based body angle measurements can also be performed by post-processing each frame 

manually. Angle measurements on stored video have been implemented as mobile phone apps or 

a web-based application [71], [78], by selecting three points on the video frame (i.e., online 

goniometer). While angle measurement is accurate based on the selected points, these clinician-

selected points on video might not be the exact anatomical points of measure. This approach takes 

additional time for capturing video, processing markers, and reporting results, but does allow the 

clinician to step through the stored video frames to aid in observational movement analysis.  
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Marker-based motion caption systems are currently considered to be the most accurate body 

segment angle measurement method, and are thus taken as the gold standard for comparing with 

different measurement systems [5]. However, these systems are costly, not portable, and need to 

be set up with calibration. Furthermore, some systems can be sensitive to bright light, restricting 

their use to controlled indoor areas.  

Fiducial marker systems are defined objects mounted in an optical imaging device field of 

view, and can be dynamically detected in software. These markers are best applied in situations 

where a relative pose between the source and the object is needed; for example, robotics, 

Augmented Reality (AR), and Human-Computer Interactions (HCI) applications. To apply 

fiducial markers to human posture and angle measurement, a novel AR-based smart device 

application (Biomechanics Augmented Reality Tag – BAR-M) was implemented with AprilTag2 

and evaluated in bench tests [74]. However, human trails were needed to verify app function in 

clinical situations. 

A gap exists for technology to measure human posture and ROM at the point of patient 

contact in real-time, with high accuracy and easy accessibility. The fast nature of the AprilTag2 

fiducial marker-based system, along with its ease of use, makes this a potential approach for real-

time human posture measurement in healthcare. Therefore, this research evaluated BAR-M 

function for anthropometric evaluation. Following successful evaluation, this AR-based digital 

measurement tool could be used by clinicians to obtain real-time angle measurements to assist in 

clinical decision making at the point of patient contact. 

5.4 Methodology 

A novel Android app was developed to display live video of the person being measured, 

locate AprilTag2 fiducial markers in the video, process marker data, and calculate angles between 

markers. This research investigated two measurements approaches for pelvis obliquity, shoulder 

position, and arm-abduction: evaluation on a body opponent bag (BOB) and evaluation with 15 

healthy adults. The front camera was so clinicians can measure the person and see the result live 

on the screen, allowing clinicians work independantly.  
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5.4.1 Body opponent bag 

A BOB mannequin was used as a static human surrogate for initial evaluation, since 

anatomical-based measurements could be made without human movement and tissue variability. 

As shown in Figure 5-2, reflective markers were attached to the BOB pelvis (superior iliac spines), 

shoulder (acromioclavicular joint), arm, and torso (zyphoid process). A 10 camera Vicon motion 

analysis system recorded reflective marker 3D locations. Angles between the reflective markers 

were calculated as a gold standard comparator.  

For the mobile phone application, a Samsung S6 smartphone (rear camera 16MP, front 

camera 5 MP, Ram 3 GB, CPU Octa core consist of 2.1GHz Quad + 1.5GHz Quad) was set up on 

a tripod such that the screen was 1m in front and parallel to the BOB frontal plane. The application 

tracked AprilTag2 coordinates (tag centre); calculated the angle formed by the tags and displayed 

the angle onscreen in realtime (i.e., angle between a line connecting two tags and the phone 

orientation to gravity, reported as an angle from the horizontal); and stored tag coordinates, angles, 

and time for further analysis. Realtime measuremnt provides live feedback to clinicians, allowing 

them to position markers on the body see the outcome measures instantly.  

Vicon and app data were collected simultaneously for all trials. The app and Vicon system 

were synchronized by voice (i.e., voice count of “1, 2, 3, Go” to start data collection on both 

systems). Since static measures were compared, precise synchronization was not required. Vicon 

data were collected at 100 Hz and the app data collection rate was approximately 19 Hz (app rate 

varied from 18 to 21 Hz, depending on settings). One second of steady state data (i.e., lowest 

standard deviation) was averaged for each comparative measure. 

 AprilTag2 markers were mounted on custom 3D printed adapters to enable positioning at 

anatomical locations: 

• Flat mount: Plastic mount with AprilTag on one side and various mounting options on the 

other side (post-adapter, Velcro, or caliper, Figure 5-1a). The plastic mount can be held in 

square or diamond orientations, with the diamond approach enabling point contact between 

the mount and the anatomical location (Figure 5-2b). 

• Post-adapter: Orients the AprilTag normal to a pointed post (Figure 5-1b) that can be 

placed on an anatomical landmark, especially for landmarks such as the superior iliac spine 

that can be obscured from the camera.  
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• Velcro-adapter: A Velcro band can be passed through the flat mount, to secure the mount 

to the body or limb (i.e., upper arm, chest, etc.) (Figure 5-1c).  

 

 

  

a b c 

Figure 5-1 AprilTags adapters, a) flat mount, b) post-adapter, c) velcro-adapter 

AprilTag markers were co-located beside reflective markers. As shown in Figure 5-2, two 

post-adapters were used for pelvic obliquity measurements (Figure 5-2a).  

a b c 

Figure 5-2 BOB measurements, a) pelvis, b) shoulder, c) arm abduction 
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Flat mounts were held in a diamond position (i.e., corner vertical) for shoulder angle measurement 

(Figure 5-2b). Since tags are square, a diamond position allows precise corner positioning on the 

anatomical landmark. Velcro adapter markers were secured to the upper arm and torso for arm 

abduction angle measurement (i.e., angle between torso and arm) (Figure 5-2c).  

All measurements were made by the same person, who stood behind BOB and held adapters 

next to the reflective markers. Since BOB arm abduction was constant, 1 trial was recorded. Pelvis 

and shoulder angles were measured 10 times. 

5.4.2 Human Testing 

A convenience sample of 15 health adults were recruited (14 male, 1 female). All 

measurements were made by the same prosthetist. All participants provided information consent 

and signed a consent form (approval from uOttawa Research Ethics Board). All participants could 

safely stand for at least 40 minutes. Exclusion criteria were balance problems that affect safe 

standing and cognitive problems that make following instructions difficult. 

An 8 marker set was affixed to each participant, with reflective markers at acromia, anterior 

superior iliac crests, superior iliac crests, torso and arms. The participant was positioned 1 meter 

in front of the phone, such that the body frontal plane was parallel to the phone screen. Three 

measurements were evaluated: pelvis obliquity, shoulder angle, arm-abduction angle. 

For pelvis obliquity measurements, the participant stood still with the right leg on a 2mm 

thick plate, simulating hip misalignment, with their arms at their sides. The prosthetist stood behind 

the participant and held post-adapters on the left and right posterior superior iliac crests for at least 

3 seconds (Figure 5-3a). In addition to the same saved data as the BOB test, the prosthetist recorded 

the most consistent angle from the app’s real-time display (i.e., small angle changes could occur 

due to changes in the handheld Apriltag position, so this represented the angle that a clinician 

would select in practice). This procedure was repeated 10 times (i.e., 10 pelvis angle 

measurements). Angles from anterior superior iliac crests reflective markers locations were used 

as comparators. 

For shoulder angle measurements, the participant stood with their arms at their side. The 

evaluator stood behind the participant and held two marker adaptors in a diamond orientation on 

top of the reflective markers on the acromioclavicular joints, for at least 3 seconds (Figure 5-3b). 

Saved data and evaluator recorded angle were logged. This procedure was repeated 10 times. 
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For arm abduction angle measurement, the participant stood with their arms at their sides 

and facing the camera. Velcro straps secured the Apriltags to the participant’s torso and upper arm. 

The evaluator positioned the torso Apriltag vertically at the center of the participant’s front. Two 

reflective markers were positioned on the chest at top and bottom of the adaptor. The upper arm 

adaptor was aligned to the arm’s long axis and two reflective markers were positioned beside the 

adaptor along the arm’s long axis. The participant abducted their arm to their comfortable range 

and held the position for 3 seconds (Figure 5-3c). Angles of each AprilTag orientation with respect 

to the horizontal were displayed on the app screen and saved on the phone.  

Figure 5-3 Participant measurement: a) hip, b) shoulder, c) arm abduction 

The evaluation criteria was 3 degrees maximum difference between Vicon and BAR-M 

angles [79]. This criteria is below other measurment systems such as IMU sensors (maximum 8° 

error for shoulder angle measurement [80]), inclinometer (average knee angle error above 6°) and 

phone applications (minimum 12° error [81]).  

5.5 Results  

For the BOB, the absolute mean angle difference between Vicon and app results were 0.09° 

±0.05° for pelvis (maximum of 0.2°, minimum of 0.02°), 0.09°±0.06° for shoulder (maximum of 

0.18°, minimum of 0 °), and 0.69° for arm abduction (one constant arm-abduction angle).  

  For the participant test (Table 5-1), the absolute mean difference between Vicon and app 

angle 1.70°±0.23° for pelvis (maximum 3.37°, minimum 0.59°), 1.34°±0.27° for shoulder angle 

 
  

a b c 
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(maximum 3.70°, minimum 0.35°), and 11.18°±3.68° for arm abduction (maximum 28.46°, 

minimum 1.93°). After removing outliers, the new absolute mean difference was reduced to 

7.68°±3.62° and new maximum difference to 11.60°.  

The average angle difference between the value read from the app AR display and data stored 

on the phone is shown in Table 5-1. The absolute mean difference was 0.19°±0.09° for pelvis 

measurement (maximum 0.29°, minimum 0.10°) and 0.12°±0.09° for shoulder angle (maximum 

0.23°, minimum 0.03°).  

Table 5-1 Participant test app AR angle and stored data results 

5.5.1 Arm-abduction insight 

The results for pelvis and shoulder measurement were satisfactory however, the arm-

abduction measurements were not satisfactory, hence it was decided to investigate further. The 

arm-abduction angle measurement was split into a) angle between torso and horizontal line, b) 

angle between arm and horizontal line, c) angle between arm and torso, in order to find the cause 

of the error. Figure 5-4 shows mean differences for all participants, highlighting differences 

between participants and between mean and standard deviation. Torso standard deviations were 

Participant 

Average Difference Between Vicon Angle and App 

Saved Data 
Average Difference Between App AR Angle and App 

Saved Data  
Pelvis Shoulder Arm Pelvis Shoulder 

P1 1.97 ° ± 0.60° 0.42° ± 0.49° 3.51° ± 1.59° 0.12° ± 0.14° 0.07° ± 0.06° 

P2 1.09° ± 0.50° 0.82° ± 0.21° 19.08° ± 5.08° 0.31° ± 0.24° 0.07 ° ± 0.10° 

P3 2.65° ± 0.80° 2.77° ± 0.30° 27.92° ± 1.98° 0.13° ± 0.09° 0.06 ° ± 0.04° 

P4 2.73° ± 1.15° 0.61° ± 0.18° 8.37° ± 4.98° 0.21° ± 0.18° 0.23° ± 0.34° 

P5 0.64° ± 0.56° 0.89° ± 0.68° 6.80° ± 3.51° 0.20° ± 0.29° 0.18° ± 0.18° 

P6 0.78° ± 0.88° 0.42° ± 0.31° 28.46° ± 4.67° 0.18° ± 0.19° 0.09° ± 0.06° 

P7 1.42° ± 0.98° 2.85° ± 0.98° 7.74° ± 5.40° 0.16° ± 0.10° 0.03° ± 0.02° 

P8 1.78° ± 0.92° 2.28° ± 0.61° 7.37° ± 2.95° 0.12° ± 0.11° 0.08° ± 0.06° 

P9 0.62° ± 0.46° 0.68° ± 0.42° 11.19° ± 5.41° 0.16° ± 0.14° 0.07° ± 0.07° 

P10 1.68° ± 0.83° 3.70° ± 0.53° 13.33° ± 4.59° 0.18° ± 0.13° 0.12° ± 0.10° 

P11 1.98° ± 0.89° 0.35° ± 0.21° 11.16° ± 1.49° 0.29° ± 0.33° 0.20° ± 0.25° 

P12 0.59° ± 0.36° 2.38° ± 1.05° 2.71° ± 3.59° 0.27° ± 0.26° 0.15° ± 0.10° 

P13 3.37° ± 0.72° 0.72° ± 0.39° 13.07° ± 6.58° 0.21° ± 0.31° 0.15° ± 0.14° 

P14 1.72° ± 0.86° 0.84° ± 0.69° 1.93° ± 1.17° 0.17° ± 0.13° 0.07° ± 0.05° 

P15 2.52° ± 0.52° 0.44° ± 0.33° 4.99° ± 2.22° 0.10° ± 0.07° 0.19° ± 0.13° 

Average 1.70° ± 0.23° 1.34° ± 0.27° 11.18° ± 3.68° 0.19° ± 0.09° 0.12° ± 0.09° 
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consistent but Standard Deviation (SD) varied for arm angle measurements. Therefore, the average 

angle between arm and torso was greater. 

 

  

a b 

 

c 

Figure 5-4 Absolute mean differences between Vicon angle and app saved data and standard 

deviations, for all participants for the arm abduction trials: a) torso to horizontal line, b) arm to 

horizontal line, c) arm to torso. 
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a b 

 

c 

Figure 5-5 Vicon angle and app saved data for participant 4: a) torso to horizontal line, b) 

arm to horizontal line, c) arm to torso. 
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5.6 Discussion 

The smartphone biomechanics augmented reality app successfully tracked and displayed 

accurate angles, based on evaluation with a Body Opponent Bag where anthropometric measures 

were not affected by clothing or participant movement. This demonstrated that the app provides 

viable angle measurements that can be used for point-of-contact assessments. Evaluations with 

humans also demonstrated viability for posture and ROM assessment, but results were not as good 

as the BOB analyses, indicating that measurement method improvements could be made to enable 

optimal patient encounters.  

Various sources of marker-based measurement error have been reported for human 

movement analysis. These include skin movement over bone, clothing movement, and difficulty 

locating anatomical landmarks in areas with excessive tissue [82]–[84].  

5.6.1 Pelvis and shoulder measurement  

For shoulder and pelvis measurement, measurements with most subjects displayed 

differences between the Vicon and the app of less than 2°. However, two subjects had differences 

of more than 3°. The greater differences could be due to difficulties of positioning both markers 

sets (AprilTag and reflective markers) on the anatomical landmarks. For shoulder measurements, 

not holding the AprilTag’s flat mount in a perfect diamond shape on top of the reflective markers 

would cause an error. For pelvis measurement, the greater differences could be due to the Vicon 

markers being positioned over clothing since using the post-adapter to locate anatomical 

landmarks could move clothing and thereby affect reflective markers locations. Vicon 

measurement SD was greater than the mobile app, especially for people with more fat on pelvis 

area because body mass would move when the prosthetist located the landmarks with the post 

adapter. Therefore, this research highlights the practical issues for using marker-based analysis at 

the point of patient contact. Since the AprilTag mount is held at the appropriate location, regardless 

of clothing, this approach may be more appropriate that markers that are stuck onto the person for 

other data collection-based approaches. Since BOB testing provided accurate results, attaching a 

reflective marker to the AprilTag mount would have also provided accurate results. 
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5.6.2 Arm-abduction measurement 

Arm abduction differences between Vicon and app measurements were greater than the 

shoulder and pelvis measurements. In some cases, these differences were more than 10°, with the 

maximum of 28.46°. This error involved both the arm and chest, hence error summation was 

greater than the other two previous measurements (i.e., pelvis and shoulder). All errors were 

systematic and chest area errors could be resolved by an appropriate Velcro straps and locating 

tags on the participant’s back rather than chest (i.e., flatter surface). Moreover, securing the mount 

with tape could help since strap movement due to breathing or torso movement could be reduced.  

For the arm, errors occurred by lack of consistent alignment between the reflective markers 

an the AprilTag (i.e., marker slipped while a participant moved their arm because of clothing and 

marker locations on arm, which may not be a rigid body segment due to skin movement). This 

error could be reduced by positioning markers on a line adaptor (green stick) to avoid shirt 

movement (Figure 5-6a). In (Figure 5-6b) the line created from reflective markers (green line) has 

a different angle from a line passing through the AprilTag’s center (orange line). The difference is 

small between a line created by torso reflective markers (yellow line) and a line passing through 

the AprilTag marker (light blue line). Therefore, the difference in arm-abduction measurement 

between phone and Vicon was due to their positioning on a shirt, which is a known measurement 

error. In some situations where participants are not comfortable removing their clothes  

(i.e., cultural reason or measurement in public), measurement errors caused by clothing is likely 

to happen for adhesive-based approaches. An appropriate strap and AprilTag marker approach 

could minimize clothing-based errors, As well as holding the marker in the appropriate orientation. 

Reading the most consistent angle from the mobile screen provided accurate results, 

supporting the AR approach for pose measurement. The average difference between reading the 

most consistent number and calculating the average angle form saved data was less than a 0.2°. 

Therefore, reading instant measurements from the mobile screen is appropriate.  
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a 

 
b 

Figure 5-6 Arm-abduction error and solution, a) locating tags using a stick b) measurement 

methodology error visualization. 

Fiducial markers were essential to avoid marker loss in environments with complex 

backgrounds and to avoid confusion between markers (each fiducial marker is unique). Another 
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benefit from AprilTag fiducial markers is that the marker corner coordinates are provided, which 

can be used to calculate a linear scale factor for distance measurements. With a smartphone, a 

trade-off exists between image resolution and AprilTag sample rate, with sample rate decreasing 

for higher resolutions. The current configuration enabled pose measurement with the entire body 

in the field of view. Newer mobile devices with faster processors will enable faster sample rates 

or higher video resolutions, which would allow enable the camera to be farther back or smaller 

AprilTags to be used. The BAR-M app has a setup option to configure the software for appropriate 

resolution for a functional frame rate. 

The BAR-M approach is viable but systematic measurement method errors could negatively 

affect measurements. Future research can address and solve these errors, providing a quantitative 

measurement tool at the point of patient contact and the bench.  

5.7 Conclusion 

 The Biomechanics Augmented Reality-Tag application detected, tracked, and calculated 

angles between anatomical landmarks, in real time. The angle was displayed on-screen and 

detailed data were stored on the mobile device. The AR smartphone app was viable for range of 

motion and postural measurements that are required by clinicians and researchers, both from 

recording the realtime angle and post processing saved data. The measurement methodology could 

be improved to compensate for measurement over clothes and other factors that can introduce 

measurement error. This includes developing straps that can be quickly applied to the body and 

provide a consistent fiducial marker location and expanding on the current set of adapters to make 

human measurement efficient for the clinician and the person being measured. 
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6 Thesis Conclusions and Future Work 

6.1 Conclusions 

This thesis developed and evaluated the first AR mobile phone based human posture 

measurement app using fiducial markers (AprilTag2) to measure angles between anatomical 

landmarks and between body segments. The algorithm identified, tracked, and recorded fiducial 

marker orientation and 2D position data in the camera frame (corner coordinates for each marker), 

and then stored the data as a CSV file in the mobile phone. This accomplished the thesis objecive, 

develop and evaluate an Augmented Reality (AR) mobile application that measures range of 

motion and human posture between anatomical landmarks and between body segments in real-

time, with an accuracy comparable to other systems currently used in practice.  

Initial bench tests with a Samsung Galaxy S6 smarphtone proved that the app can measure 

angles with an average error less than a 1º and distances with an average error of 4 mm. Even with 

the phone set in different positions and orientations from the markers (parallel distance, yaw and 

tilt rotation), the system responded with acceptable accuracy.  

The average error between BAR-M and Vicon measurements on the BOB were less that 

0.7°, which was within the evaluation criteria. The shoudler and hip results were exceptional, with 

only 0.09° average difference. 

The app had larger differences from Vicon with human participants, with 1.70°±0.23° for 

pelvis obliquity, 1.34°±0.27° for shoulder angle, and 11.18° ± 3.68° for arm-abduction angle. 

Measuring on people presented various sources of human movement measurement error; such as, 

difficulty locating anatomical landmarks in areas with excessive tissue, which is a known source 

of bias for human body measurement. [82]–[84], skin and clothing movement, and relative 

movement between markers. 

Overall, the results demonstrated that the BAR-M app provides accurate marker outcomes 

measures in realtime, but that clinicians should be aware of typical human marker-based 

meaurement factors when positioning markers on the body. 

6.2 Future work 

The research presented in this thesis is a novel human body segment measurement tool using 

an AR mobile-based approach that can demonstrate results in real-time, with the ability to be used 
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anywhere at any time. Contributions of this thesis include a cost-effective, easy-to-access, viable, 

and high accuracy solution to quantify human posture measurement using fiducial markers 

(AprilTag2 paper-based) and an Android mobile phone.  

The successful BAR-M app opens the door for many new research opportunities. AprilTag3 

was recently introduced and could improve 3D and dynamic postural measurements [85]. 

AprilTag3 should reduce tag detection and proceesing algorithm time, so Z direction can be 

computed live without a delay [85]. Z axis can be used in following scenarios:  

• Provide 3D coordinates for each marker to enable better correction for out-of-plane marker 

positions or movements 

• Enable movements unconstrained to the camera plane (i.e., person can move out of plane) 

• Explore dynamic movements, with camera being moved to keep a person in the video field 

(e.g., walking or running) 

• In industry or public where smartphone-based markerless measurements are difficult and 

error-prone (measuring furniture, living spaces, etc.) 

Robust tag holders are required to avoid artifact caused by skin and clothing. New tag holders 

should consider different posture measurements requirements (i.e., curve, square, foldable).  

Clinical research is needed to determine the best way to use BAR-M to perform common 

posture and ROM related measurements. BAR-M could be used for tuning prosthetic and orthotic 

devices, where realtime orthosis or prosthesis angle measures can be used during the live tuning 

process. 
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Appendix A 

This section presents human evaluation stored data. The overall human evaluation included 

pelvis obliquity, shoulder angle and arm-abduction angle measurement for 15 healthy people (10 

trials for suject) from Vicon system, mobile app, and prosthetist AR reading (pelvis and shoulder 

measurements). The connected lines between points show trends and patterns between trials. 
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