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Abstract—The role of human in the Industrie 4.0 vision is still
considered as irreplaceable. Therefore, user interfaces of cyber-
physical systems involved in the production automation need to
be well designed and taking into consideration the industrial
application requirements. With the advances in augmented and
virtual reality data visualization and novel interaction techniques
like mid-air gestures, these approaches seem to be suitable for
integration into the industry environment. This paper describes
the implementation of an augmented reality application for
smart glasses with mid-air gestures and smart phone with touch
interaction to compare and evaluate the usage of such interfaces
in a production cell comprising an industrial robot.

I. INTRODUCTION

Current trends in Industrie 4.0 vision [1] show that the

human interaction in Cyber-physical systems (CPS) cannot

be eliminated but, in opposite, it should be supported and

emphasized. Apparently, humans cannot be replaced by robots

in some specialized product processing tasks, so the cooper-

ation between humans and robots [2] needs to be supported.

Users are also shifting from repeated manual work to more

specialized roles. Such roles, as mentioned by Gorecky et al.

[3], cover mainly servicing and maintenance of manufacturing

plants, but also monitoring, planning, and simulation of pro-

duction processes. To conclude that, human-system interaction

must be developed as an integral part of CPS with respect to

both user tasks but also human abilities and limitations.

The application of human factors in the development of

products is intensively used in the human-computer interaction

field. Methodologies like user-centered design (UCD) [4] that

include the usage of prototyping tools, representation of target

user groups in form of persons or task modeling, help to take

the user into account in every step of the product development.

The usage of these approaches increases the chance that the

user interface and interaction will be usable, therefore improve

the performance and cause fewer user errors. Initial research

in the field of human-centered design in the context of CPS

already started in the form of usability engineering in projects

like ARVIKA [5]. Additionally, Romer et al. [6] recently

showed how to develop applications for the Industrie 4.0

environment using the UCD methodology. Also Valdeza et

al. [7] described how to use additional usability methods for

decreasing the complexity of user interfaces applications in

Industrie 4.0 environment.

The diversity of the activities in Industrie 4.0 vision is very

big, spanning from the interaction with individual elements,

such as PLC (Programmable Logic Controllers) or robots, to

management of the production at the SCADA (Supervisory

Control and Data Acquisition) level. Therefore this paper

focuses only on specific parts. Selected activities involve the

presence of the user in the factory shop floor. Specifically,

these activities involve mainly maintenance tasks, but also

monitoring and planning tasks can be included. At this level,

devices used for user interaction and data visualization are mo-

bile devices (e.g., phones/tablets) and wearable smart glasses

(e.g., look-through glasses). From the data presentation point

of view, augmented reality (AR) and virtual reality (VR) ap-

plications provide data in form of standardized graphical user

interfaces, human-machine interfaces or graphical information

as a part of AR or VR environment.

The objective of this paper is to describe the experiences

with development of an AR application for augmentation of an

industrial robot. The paper focuses on the description of the

application requirements and prototype implementation. The

initial version of the user interface is evaluated and results are

discussed.

The rest of the paper is organized as follows: section II

discusses related AR applications and experiments. Section III

describes the requirements and the architecture for the devel-

oped AR application. Section IV describes the implementation

details of the AR application, including hardware and software

components. In section V, the qualitative evaluation of the AR

application is described and results from the evaluation are

discussed in section VI. Finally, section VII rounds up the

paper with conclusion and points out some future work.

II. RELATED WORK

VR and AR applications may be used with many types

of displays, such as head-mounted displays (HMD), hand-

held displays, spatial see-through displays or projectors. A

comprehensive list of current technologies is provided by Bim-

ber [8] and van Krevelen [9]. HMD and see-through glasses

allow AR/VR data visualization while preserving empty hands.

Moreover, they can be used in stereoscopic mode, which

allows better illusion of 3D augmented visualization in space.

Hand-held displays require that at least one hand holds the

display. Spatial displays are similar to hand-hold displays or

see-through glasses, but they are usually bigger and attached,

so no hands need to be used to hold them. On the other hand,

their usage is limited by their position. Projectors are used
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for projection of augmented data on real objects that are then

perceived by users.

In the majority of projects related to industry environments,

the main type of AR display used is HMD. A comprehensive

overview of projects using AR in industry was presented

by Ong et al. [10] and up-to-date research was also done

by Garcia et al. [11]. One of the projects that focused on

the development of AR applications in industry is ARVIKA

project [5]. The goal of the project was to develop AR tech-

nologies and applications to augment real-world field of view

of various professions in automotive and aerospace industries,

power and processing plants and machine tools and produc-

tion machinery. Over 30 prototypes of AR applications were

developed in usability engineering and user-centric approach.

In [12] Rainers et al. investigated the usage of AR and VR

for assembly of door lock in automotive industry. Specifically

in aerospace industry, De Crescenzio et al. [13] showed how

maintenance tasks can be improved by augmented reality.

Other types of displays for AR/VR applications were also

used in industry related projects. Olwal et al. [14] used the AR

with projection technique for augmentation of process with a

Computer Numerical Control (CNC) machine. Similarly, Zhou

et. al. [15] used projection techniques combined with HMD

for automotive production.

Complex model based AR visualization applications started

to be developed in order to evaluate whole processes of

production life-cycle. Penna et al. [16] presented web-based

solution, Espindola [17] presented universal solution. The

usage of AR in SmartFactory environment was presented by

Paelke et al. [18].

This literature review shows that current approaches focus

mainly on AR or VR applications in environments where the

user is typically staying or sitting at specific places. In this

work, the focus is on experiments with AR/VR applications

that are used in environments where the user is moving around

a real or virtual object that is being augmented or visualized by

the application. Moreover, the user interaction with the AR/VR

application is usually limited. In this paper we also investigate

the suitability of the Leap motion device for mid-air gestures

as an alternative mean of interaction to touch interface.

III. REQUIREMENTS AND ARCHITECTURE OF AR

APPLICATIONS FOR INDUSTRIAL AUTOMATION

Typical tasks in Industrie 4.0 environments need to combine

several aspects:

• The distance of the augmented object from the user can

vary from several centimeters to several meters.

• The augmented object can vary in size from several

centimeters to several meters and can have various shapes

and materials.

• The light and sound conditions may vary.

• The tasks that the user is performing may require usage

of one or both hands, or require user attention for some

time.

Additionally, when AR applications are used in the UCD

cycle, they need to:

Fig. 1. Design of multilayer architecture of developed AR application.

• Support the observation and analysis of the user interac-

tion via data collection.

• Take into account data complexity of real manufacturing

processes for high fidelity prototyping.

• Allow prototyping and possibility for iterative develop-

ment.

Based on these aspects and requirements, a basic AR

application structure was designed, as illustrated in Fig. 1.

The AR application comprises 3 fundamental layers forming

a client-server structure. The client layer involves client AR

applications running on devices like smart glasses or tablets,

depending on the task requirements like free hands or size of

display. These client AR applications provide the visualization

of AR data to the user, and based on the type of display,

they may allow also the user input (e.g., touch interaction

in case of mobile phones and tablets). A specific type of

client AR applications is the evaluation client, that should

be implemented as PC application due to the performance

reasons. The evaluation client should allow control of the task

flow during experiments and data collection that is important

for understanding of AR application issues. The second layer

consists of a server providing mainly synchronization of data

among clients. Additionally, the server layer communicates

with the third layer, which represents external data sources

like inputs/outputs from the CPS that is being augmented. This

helps researchers to make task believable and improves the

quality of the evaluation.

IV. AR APPLICATION IMPLEMENTATION

The AR application and experiments were implemented in a

small scale production cell, illustrated in Fig. 2, which consists

of several Fischertechnik workstations and one ABB IRB 1400

robot unit with controller and teaching pendant device. The

robot tool configuration comprises a mechanic gripper for

item holding using air pressure to pick/release the item. The

robot is positioned in the middle of the system layout with

workstations being disposed around the robot.

A. Tracking

In AR applications, the position of the user in the real

world needs to be detected in order to align augmented data

visualization with the real world view. In order to detect the

position of the user in the vicinity of the robot, the marker
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Fig. 2. User using Epson Moverio smart glasses with AR application and
Leap Motion controller.

detection and standard markers provided with Vuforia SDK

[19] were used. The markers were arranged into multi-target

marker setup (see MM marks in Fig. 3). Used Vuforia SDK

brings also benefit in so called extended tracking where other

device sensors like accelerometers and gyroscopes are used

together with on the fly scene reconstruction. Thus, the scene

is tracked continuously even if all parts of multi-target marker

are lost.

Due to the fact that the robot is not a static part of the

environment, we chose another type of markers for the robot

position detection. In this case, simplified frame markers were

used (FM in Fig. 3) to allow the detection of the robot position

without the direct connection to the robot data or interpretation

of the robot program. There were several frame markers at axis

1, 2, and 3 that allowed the calculation of values of these axis,

as illustrated in Fig. 3. See Vuforia SDK [19] for details about

marker types and tracking details.

B. AR Applications

The AR applications for all platforms were developed

using Unity3d [20]. This framework allowed to implement

the structure of the AR application according to the planned

architecture, including marker detection and client-server ar-

chitecture.

Based on the literature search and manual for the ABB IRB

1400 maintenance, a basic set of tasks that will be provided in

our AR application was detected. The tasks cover mainly the

interaction with the robot from near distance (up to 6 meters).

The list of implemented visual and interaction functions is

listed as following and showed in Fig. 4 and in Fig. 5:

• Data visualization

– Icon visualization, e.g., detection of safe zone.

– Robot visualization using a virtual reality model, out-

line augmentation of the robot and no visualization

of virtual robot using depth mask.

– Highlighting robot parts by color.

MM

MM

MM

FM

FM

FM

Axis 1

Axis 2

Axis 3

Fig. 3. Robot visualization in base pose with multi-target marker composed
of three markers (MM) and with four frame markers (FM). Axis 1, 2, and 3
are depicted, other four axis are hidden for simplicity.

Fig. 4. Various types of robot augmentation. In the left image, there is only
highlighted part of the robot visible. In the middle image, there is outline of
the robot visible. In the right image, whole virtual robot is visualized. Dark
blue parts represent highlighted parts of the robot.

Fig. 5. Various types of specific point highlight visualization on the robot. In
the left image the point is highlighted by 3D arrows. In the middle image the
point is highlighted by leading line going from the left side of the screen to
the down right point. In the right image the point is not directly highlighted
but the state of the point is shown by text message.

– Highlighting specific points of the robot by 3D

arrows.

– Navigation to invisible points on the robot using

leading line.

– Providing instructions using text.

• Basic interaction using touch control and mid-air gestures

– Manipulation with robot by adjusting axis values.

– Navigation in menu structures.

The AR application for HMD was developed for Epson
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Fig. 6. AR application run on Android smart phone.

Fig. 7. Evaluation application running on PC. Various settings of the client
applications are set by buttons on the right side. Virtual robot in the middle
reflects the visualization perceived by user of client application.

Moverio BT-200 smart glasses (see Fig. 2), which consist of

two see-through displays for augmented reality and one cam-

era on the side for environment sensing. The AR application

was used in stereoscopic mode. In case of hand-held displays

the AR application was developed for Android devices and

the application was run in normal 2D mode (see Fig. 6). For

evaluation of the AR application usage, the PC AR application

was developed and used in 2D AR mode (see Fig. 7). The PC

application was implemented so that it is merging the client

and server layers into one, also providing operator with the

functions to control the course of experiment and show how

the user is performing and what he/she can see and do.

The interaction with the client applications was done using

touch interaction on mobile devices and using Leap motion

sensor with smart glasses. The Leap motion controller was not

directly connected to the smart glasses, but it was connected to

PC, due to the availability of drivers, without any significant

impact on the user interaction experience.

V. AR APPLICATION EVALUATION

The prototype AR application was evaluated in the small

scale cell setup. The goal was to qualitatively analyze initial

feedback of the test participants on individual types of the

robot augmentation. In the study, there were 6 participants,

who work as researchers and Ph.D. students in the field of

CPS. All participants were given all of the following tasks:

1) ”You will see several types of augmented robot (outline,

virtual robot, real robot) together with highlighted part

of the robot. Evaluate, which type of visualization is

most suitable for you.”

2) ”You will see three types of a specific point highlighting

(by 3D arrow, leading line and text). Evaluate suitability

of the highlighting.”

3) ”Use particular interaction technique (touch or Leap

motion gestures) to manipulate virtual robot to the

predefined position.”

4) ”Using particular interaction technique (touch or Leap

motion gestures), evaluate basic set of gestures for

navigation in maintenance task wizard.”

Participants performed the tasks with one device setup, then

with the other. First half of the participants started with smart

glasses and second half started with Android smart phone.

At the beginning of each part, the users were given time to

experience the usage of the devices.

Two types of the data were collected and analyzed during

the evaluation, a) feedback given by participants from task

execution, and b) evaluation of expected functionality from

the observing application. The participants’ feedback was

collected as immediate feedback expressed mainly vocally

during the task execution. After completing the tasks, the

participants were interviewed to summarize the use of the

applications.

VI. RESULTS AND DISCUSSION

Findings observed during the evaluation of AR applications

can be divided into two groups. The first group is related to

technical aspects and reflects technical findings. The second

group focuses on subjective evaluation and observation of

participants issues. In following subsections the major findings

are discussed.

A. Limitation of the camera for frame marker detection

While the multi-target marker detection together with ex-

tended tracking used for tracking of the user in the scene works

very well on hand-held devices, we have observed problems

with the detection and tracking with smart glasses. From the

technical point of view, the marker detection can be separated

in two different tasks. The first is the detection and recognition

of marker. The second is the marker tracking. For the first

phase, we evaluated that camera had to be closer to the marker

and also the marker should be still. For the second case (we

suppose successful marker recognition from first phase) the

camera or marker can move up to some distance, where marker

is lost. So the participant is limited by a distance of the camera

from the marker and also by the speed of movement (faster

moves causes tracking lost). The second criteria (speed) can

be refined by higher camera frame rate (FPS); on the other

hand, the detection algorithms need to process more frames so

the hardware (CPU) limits the processing speed. Both factors

influence the tracking stability on smart glasses.

The following table shows the size of frame markers in pix-

els depending on the camera distance and camera resolution.
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The used frame marker size was 47× 47mm, and consists of

9 black or white squares separated by spaces of the same size.

Based on our testing, we can say that a marker of this size

is successfully recognized, if the marker resolution is at least

2mm/px. For example with a Tablet Nexus 10, we were able

to detect and recognize markers from 0.98m distance and than

the marker was tracked up to 1.5m. With smart glasses, the

first detection was closer to the marker (0.6m) and tracking

was lost at 1m distance. We observed that the marker detection

is also dramatically affected by lighting conditions and camera

contrast.

Epson (640x480px) Tablet (2560x1920px)

2.6m 0.47px/mm 0.36px/mm

22px/marker 17px/marker

1.6m 0.76px/mm 1.06px/mm

36px/marker 50px/marker

0.6m 2.12px/mm 3.04px/mm

100px/marker 143px/marker

The detection and tracking of multi-target markers had

better performance mainly due to the markers size (A3 format)

and availability of extended tracking. Successful detection

starts at 2.5m distance for tablet and at 1.5m for glasses, and

were tracked up to 4m and 2.5m respectively.

From the participants’ subjective point of view, we saw

that the unstable glasses tracking caused issues with correct

alignment of augmented data in real world and users had to

pause the tasks in order to re-detect markers. This issue had

impact on trust of the participants to AR visualization.

B. Limited field of view

The used AR glasses had a narrow field of view (23◦), i.e.

they covered only small part of human binocular vision system

(114◦ and 190
◦ including monocular sector [21]). This fact

is limiting for real applications in two ways. First, the user

had to stay far away from augmented object for overall view

(approximately 3m in our case, see Fig. 8), thereby increasing

the probability of user collision with the environment, which

can be limiting in real factory environment. Second, in case

of close detail, the user had to be informed about model

changes and had to be guided (for example by line of sight) to

look at other part of augmentation. Up to our knowledge the

limited field of view is similar for all other optical see-through

displays available currently on the market.

From participants’ point of view, we observed the difference

between limitations of the visualization in tasks 1-2 and 3-4.

In first two tasks the user did not complain about not seeing

the complete robot. However, in latter two tasks they did. The

difference may be the fact that in the first two tasks they only

observed the robot; however, in second two tasks they had to

additionally control the robot. Another reason may be the fact

that in the first tasks they observed the augmented robot but

in the second tasks they interacted only with the virtual robot.

C. Visualization techniques

The evaluation of the visualization techniques had focused

on four major parts, namely visualization styles of robot

1.6 m
2.6 m

tablet (FOV 60°), 1.6m 

2.6m

1.6m

0.6m

glasses (FOV 23°)

Fig. 8. Comparison of visible area depending on the camera distance. The
FOV of Moverio glasses (23◦) is depicted by cones a) and b) from distances
1.6m and 2.6m respectively. The close distance of glasses (0.6m) is not shown
in bottom image. The c) cone corresponds to device with larger FOV (tablet).
In top figure are depicted visible areas for tablet in 1.6m distance and for
glasses from 2.6m, 1.6m, and 0.6m distances respectively (areas without white
overlay).

augmentation, augmentation of spots by arrows, leading line

and text.

1) Visualization styles: The evaluation of the visualization

style of the robot showed that users preferred to see the robot

either outlined or in full virtual reality. Only one user wanted

to see invisible robot with highlighted parts only. The most

probable reason is the fact that users wanted to be sure about

matching parameters of the real and virtual robot.

2) Arrows: There were no issues with the usage of the

arrows. All the users found the spots where arrows were

pointing. The only case when the user missed the point was

when the marker tracking was lost but the image of the robot

was still shown, but not aligned. We also saw that when the

arrow was occluded by the robot, the user had difficulty to find

it, because he did not know, how many of arrows are shown.

3) Leading line: The leading line was visible, but no user

fully understood its meaning and behavior. There was no clear

difference between start and end point, so the users were not

sure where it is pointing. Missing indication of the end point

also caused that when the line went through the robot, it was

not clear whether the intersection point is end point or not.

4) Text visualization: The text visualization was accepted

well by all users. In case of smart glasses, due to the FOV

limitation, the area for the text has to be very limited. Partic-

ipants suggested maximum 1 line of text with 30 characters

as acceptable. In case of smart phone, the amount of text can

be approximately 3x more, due to the bigger FOV and better

screen resolution.
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D. Interaction techniques evaluation

The evaluation of interaction styles compared the usage of

Leap motion gestures and touch interaction.

1) Touch interaction: This interaction technique was easily

understandable to the participants, even though it was not

implemented optimally. Participants preferred the selection of

axis and manipulation with objects in general using direct

manipulation with parts of the robot.

2) Leap motion gestures: The users were able to use hand

movement gestures to rotate the robot. They appreciated the

speed of the movement compared to touch interaction, but

were not satisfied by the quality of extended finger count

detection and changes in hand count detection. These issues

caused that some of the users were not able to finish the

interaction with Leap motion.

VII. CONCLUSION

This paper describes the development of an AR application

that augments an industrial robot for shop floor tasks like

maintenance or cooperative work of human and robot. The

AR application was designed and developed for smart glasses

with Leap motion air-gestures and mobile phones with touch

interaction. For visualization of the robot, the AR application

is using outline, virtual or no visualization of the robot. For

the visualization of the spots on the robot, the AR application

is using 3D arrows visualization, leading line visualization and

text visualization.

Six participants performed 4 tasks for evaluating the AR

application and interaction techniques. We observed that lim-

itations of the markers detection and limitations of the field

of view using smart glasses caused usability issues of the AR

application for robot augmentation in our setup. Participants

wanted to have complete knowledge about the virtual robot

representation in the AR application and therefore selected

the virtual robot or outline of the robot visualization style.

Additionally, they were satisfied with the 3D arrow visualiza-

tion and text visualization, but they refused the leading line

concept of spot highlighting. In case of interaction with the

AR application, the touch interaction was evaluated as more

familiar then mid-air gestures. On the other hand, mid-air

gestures were considered as faster, but some gestures with

extended fingers were not correctly detected, which caused

failure of task completion.

Future work is devoted to perform further qualitative and

quantitative evaluation in environments where an AR ap-

plication is connected to the robot controller, so that the

visualization can properly visualize robot states and position.
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