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Abstract

Flaw detection in non-destructive testing, especially for complex signals like ultrasonic data, has thus far relied heavily on

the expertise and judgement of trained human inspectors. While automated systems have been used for a long time, these

have mostly been limited to using simple decision automation, such as signal amplitude threshold. The recent advances in

various machine learning algorithms have solved many similarly difficult classification problems, that have previously been

considered intractable. For non-destructive testing, encouraging results have already been reported in the open literature,

but the use of machine learning is still very limited in NDT applications in the field. Key issue hindering their use, is the

limited availability of representative flawed data-sets to be used for training. In the present paper, we develop modern, deep

convolutional network to detect flaws from phased-array ultrasonic data. We make extensive use of data augmentation to

enhance the initially limited raw data and to aid learning. The data augmentation utilizes virtual flaws—a technique, that has

successfully been used in training human inspectors and is soon to be used in nuclear inspection qualification. The results from

the machine learning classifier are compared to human performance. We show, that using sophisticated data augmentation,

modern deep learning networks can be trained to achieve human-level performance.

Keywords Machine learning · NDT · Ultrasonic inspection · Data augmentation · Virtual flaws

1 Introduction

Automated systems have long been used for flaw detec-

tion in various Non-destructive evaluation (NDE) systems.

The automated systems provide consistent results and do

not show the variation commonly seen in human inspectors

due to fatigue, stress or other “human factors”. However,

the traditional automated systems have relied on simple

decision algorithms such as a signal amplitude threshold.

In more demanding inspection cases, such as the typi-

cal ultrasonic inspections, the human inspectors achieve

far superior inspection results than the simplistic auto-

mated systems. Consequently, in most of these inspec-

tions the data analysis are currently analyzed by human

experts, even when the data acquisition is highly automated.

Such analysis is time consuming to do and taxing for the

personnel.
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The key problem with more sophisticated automation

has been, that the work of the human inspector does not

lend itself to simple algorithmic description. The inspectors

acquire their skill through years of training and utilize vari-

ous signal characteristics in their judgement (e.g. the “signal

dynamics”). Machine learning (ML) systems can be used

to automate systems, where direct algorithmic description

is intractable. The recent improvements in ML algorithms

and computational tools (GPU acceleration, in particular)

have enabled more complex and powerful models that reach

human-level performance in tasks like image classification

and machine translation.

Early attempts to use machine learning for NDT flaw

detection and classification focused on using simple neural

networks to classify various types of NDT data. Masnata and

Sunser [22] used a neural network with single hidden layer

to classify various flaw types (cracks, slag inclusions, poros-

ity) from ultrasonic A-scans. Before learning, the A-scan was

reduced to 24 pre-selected features using the Fischer discrim-

inant analysis. Chen and Lee [7] used wavelet decomposition,

to obtain features from A-scans and reported goal classifica-

tion, while the training and testing was done with limited data

set. Yi and Yun [36] similarly used shallow neural network to
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train flaw type classifier with a larger data set. Aldrin et al. [2]

attained high POD-performance on complicated ultrasonic

inspection case by training several shallow neural networks

to detect various chahacteristic crack types from a complex

ultrasonic signal. Although in many cases this early work

reported high classification accuracy, the results proved to

be difficult to scale and to extend to new cases.

One of the issues with developing ML-models for defect

classification has been the limited availability of training

data. Liu et al. [20] used finite element simulation results

to provide artificial NDT signals to augment training data.

With the increase in computational power, the used

machine learning models have become more powerful. Many

authors [11,13,26,27] have reported good results with shal-

low models like support vector machines (SVM’s). While

these models offer high classification capability, they also

require a pre-selected set of features to be extracted from

the raw NDT signal. Fei et al. [13] used wavelet packet

decomposition of ultrasonic A-scans to train SVM for defect

classification in a petroleum pipeline. Sambath et al. [26]

used neural network with two hidden layers to classify ultra-

sonic A-scans using a hand-engineered set of 12 features.

Shipway et al. [27] used random forests to detect cracks

from fluorescent penetrant inspections (FPI). Cruz et al. [11]

used feature extraction based on principal component anal-

ysis to train a shallow neural network to detect cracks from

ultrasonic A-scans. He reported good classification analysis

with only 5 extracted features, and computational efficiency

that makes such classification feasible as on-line evaluation

support for inspector during manual scanning. Silva et al.

[28] used fast extreme learning machine to classify time

of flight diffraction (TOFD) signals in welds that allowed

fast and efficient training on limited set of frequency based

features.

Kahrobaee et al. [16] demonstrated the use of machine

learning to achieve data fusion by learning separate clas-

sification networks from different NDT data and using a

combined classifier with the results from these separate clas-

sifiers. It is often the case in inspection, that more than one

inspection method is used and the ability to take better advan-

tage of the multiple data sources is thus advantageous.

The machine learning classifiers have been used for a wide

variety of NDT signals and classification cases. Tong et al.

[30] used deep convolutional neural networks (CNNs) to

detect subgrade defect from ground penetrating radar sig-

nals. For NDT methods, that provide image or image-like

raw data, deep CNNs used for image classification have been

applied with little modification. Dorafshan et al. [12] used the

AlexNet [18] deep CNN for detecting cracks in concrete from

visual inspection images.

Convolutional networks have recently shown great suc-

cess with various image classification tasks [21]. The con-

volutional architechture lets the networks to learn position

independent classification. The recent deep architerctures

have shown the ability to learn increasingly abstract rep-

resentations in higher layers, which obliviates the need for

hand-engineered features [38]. These features make the deep

convolutional networks also interesting for the flaw detection

in NDE signals.

Recently Meng et al. [23], Zhu et al. [39] and Munir et al.

[25] used deep CNNs for defect classification in ultrasonic

and EC-data. Meng et al. [23] used deep neural networks

with an SVM top layer for enhanced classification capability.

The classifier was used to classify voids and delamination

flaws in carbon fibre composite material. Before presented

to the CNN, the raw A-scan data was decomposed using

wavelet packet decomposition and the resulting coefficients

re-organized into 32×16 feature matrix. Thus, the CNNs

classified the A-scans separately.

Munir et al. [24] used deep CNN’s to classify austenitic

stainless steel welds. The training data was obtained from

weld training samples containing artificial flaws (i.e. solidi-

fication flaws). The data-set was augmented by shifting the

A-scans in time-domain and by introducing Gaussian noise

to the signal.

Zhu et al. [39] used deep CNN’s to detect cracks in eddy

current signal. Also, drop-out layer was used to estimate

the confidence of the classification, which is an important

opportunity in using ML in field NDT, where the reliabil-

ity requirements are very high. This work is also notable

in that the raw signal database was exceptionally representa-

tive with NDT indications representing plant data for various

defect types [31].

In summary, the current state of the art for using machine

learning in NDT classification may be seen to focus on two

distinct aims. Firstly, modern shallow ML models (e.g. ran-

dom forests) with advanced feature-engineering are used

with the aim to develop computationally lightweight models

that can be implemented on-line to aid inspector in manual

inspection. Secondly, deep CNNs are used to learn from raw

NDT signals without the need for explicit feature engineer-

ing. The recent work on deep models takes full advantage of

recent advances in models developed for other industries and

shows good results across different NDT fields.

For ultrasonic testing, the existing machine learning mod-

els have mostly involved classification the single A-scan

level. This is a natural approach for many applications, such

as the previously studied manual inspection [11] or for C-scan

style classification of large inspection analysis as done by

Meng et al. [23]. However, in many inspection cases, mech-

anized inspection and electronic scanning using phased array

ultrasonic systems provide rich data-set where adjacent A-

scans can be analysed together to provide more information.

Machine learning application to such data-sets have not been

widely published. In the present work, we present application

of deep CNN for phased array ultrasonic data, where num-
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ber of adjacent A-scans are considered together for improved

flaw detection capability.

Common obstacle for using powerful ML models in NDE

classification is, that the available flawed data tends to be

scarce. Acquiring sufficient representative data-set would in

many cases necessitate artificially manufacturing large set

of flawed samples, which quickly becomes infeasible. Data

augmentation is commonly considered a key tool for success-

ful application of ML for small data sets and some authors

have used data augmentation [24] for ultrasonic data. In the

present work, we significantly expand on the previously pub-

lished data augmentation schemes for ultrasonic inspection

by using virtual flaws to generate augmented data sets. The

use of virtual flaws enables generation of highly representa-

tive augmented data set for ML applications.

Finally, the key requirement for adaptation of machine

learning models in many industries, is to show how they com-

pare with human inspectors. Especially in high-reliability

industries like the nuclear and aerospace industries, there’s

common requirement to employ best-available means to

guarantee structural reliability. In practice, this would mean

that the ML models would need to show performance

exceeding that attained by the human inspectors or to show

performance that meets the current requirements set for the

traditional inspection systems (e.g. show required a90/95 per-

formance, as commonly required in the aerospace industry).

However, in many cases even the human inspection perfor-

mance is not quantified and known with sufficient reliability

to allow direct comparison to developed ML models. In

present work, we used human performance data obtained

from previous research [35] and developed the machine

learning models to work on comparable data thus enabling

direct comparison between human inspector and modern

machine learning model.

1.1 Virtual Flaws and Data Augmentation

The problem with ultrasonic training of machine learning

models is the scarcity of representative ultrasonic data. Sam-

ples with real flaws are difficult to come by and in terms of

nuclear power plants can be contaminated making them chal-

lenging to use. Mock-ups can be made with representative

flaws, but production of such mock-ups is costly and time-

consuming. The mock-ups also tend to be specific to a certain

inspection case. Virtual flaws can be used to generate suffi-

cient representative flawed ultrasonic data from limited set

of mock-ups and flaws [17,29,33,34]. In essence, the flawed

sample is scanned and the ultrasonic data recorded. From the

recorded data the flaw signals are extracted by comparing the

signal data point by data point to a selected flawless area. The

flaw signal extracted this way is guaranteed to be representa-

tive, since it is recorded from an existing flaw. The extracted

flaw signal can then be implanted into different locations

of the scan data, point by point, allowing the generation of

new virtual flaws. In addition, the depth and length of the

flaw can be altered and various other signal modifications

can be achieved. The flaw signals extracted can be moved to

different samples. Flaw signals acquired with different ultra-

sonic parameters can be made compatible with different files.

Using the virtual flaws augmented data generation is virtually

unlimited and ample representative training data can be gen-

erated for the training of ML models. The approach has some

similarity with synthesized learning cases used by Bansal et

al. [6].

1.2 Estimation of NDT Performance and Probability
of Detection (POD)

NDE is most valuable when used in area, where its expected

reliability is very high. Consequently, measuring the perfor-

mance of an NDE system and its reliability, in particular,

is demanding. Demonstrating this high reliability requires

high number of evaluation results on relevant targets and,

thus, high number of test samples with representative flaws.

Providing these flawed test samples is costly and thus differ-

ent methodologies have evolved to optimize the use of the

available test blocks.

Currently, the standard way to measure NDE performance

is to define a probability of detection (POD) curve and, in

particular the smallest crack that can be found at level of

sufficient confidence, typically 90% POD at 95% confidence

(a90/95). Experimentally, the POD curve is determined with

test block trials and a set of standardized statistical tools [3–

5].

In this paper hit/miss method was selected due to nature of

the test set-up. While signal amplitude can be used with fewer

test blocks, it does not include the effects of inspector judge-

ment on the NDE reliability. Especially in noisy inspection

cases such as austenitic stainless steel welds, flaw detection

relies on pattern recognition, not just signal amplitude and

a clear threshold, thus the result is filtered by the inspector.

This was observed also by Virkkunen and Ylitalo [32]. For

the present study and comparing human and machine inspec-

tors, it’s vital to include the judgement effect and thus, the

hit/miss approach was chosen.

2 Materials andMethods

2.1 NDT Data

Inspected specimen for data-acquisition was a butt-weld in

an austenitic 316L stainless steel pipe. Three thermal fatigue

cracks with depths 1.6, 4.0 and 8.6 mm were implemented in

the inner diameter of the pipe near the weld root by Trueflaw

ltd. and scanned with ultrasonic equipment. An austenitic
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Fig. 1 Scan set-up with Zetec

pipe scanner, extension fixed to

the right side for scanner

mounting

weld was chosen as a test specimen due to being common in

the industry. In addition austenitic weld has increased inspec-

tion difficulty due to noise caused by the anisotropy of the

weld structure.

Inspection method used for data acquisition was Trans-

mission Receive Shear (TRS) phased array, one of the

common methods used in inspecting of austenitic and dis-

similar metal welds. The scan was carried out by using

Zetec Dynaray 64/64PR-Lite flaw detector linked to a PC.

The probes used were a Imasonic 1.5 MHz 1.5M5x3E17.5-9

matrix probes with central frequency at 1.8 MHz, element

dimensions 3.35 × 2.85 mm and element arrangement as

5 × 3 elements. The sampling rate used was 100 MHz. A

wedge ADUX577A was used to produce a shear wave effi-

ciently. One linear scan with no skew angles was utilized.

The ultrasonic wave was focused to the inner surface of the

pipe and the probe was positioned in a way that the beam

would be focused directly to the manufactured cracks. Cou-

pling was applied through a feed water system and the pipe

was rotated underneath the probe to assure constant and even

coupling between the probe and the pipe. Probe position was

carefully monitored along the scan line by Zetec pipe scanner

with 0.21 mm scan resolution. The specimen and the inspec-

tion procedure is described in more detail in Koskinen et al.

[17]. The specimen and the scanner can be seen in Fig. 1.

For data efficiency, only a single angle was used. The cho-

sen angle was the one, where the cracks were the most visible.

In this case, this was the 45◦ angle. As only one scan line

was acquired, the data was visualized and evaluated using

B-scan images. Since the crack locations and sizes were pre-

cisely known, the crack signals could be removed from the

ultrasonic data to create a blank canvas. Virtual flaw aug-

mentation was used to broaden the representative sizes of the

cracks. The virtual flaw software used was Trueflaw’s eFlaw.

In this case, the eFlaw was used with an assumption that

signal amplitude is the most significant feature of the crack

signal from detection point of view. A similar assumption is

used in the signal response POD estimation (â vs. a). The

eFlaw was used to modify and scale down the original crack

signal amplitude to represent different variety of cracks with

smaller sizes than the original. This allows creation of high

amount of crack images required for POD estimation and for

teaching datasets for ML algorithms. Details of the eFlaw

technology are explained in Koskinen et al. [33], Svahn et al.

[34], Virkkunen et al. [17,29].

The teaching data set was created in the same way as

for testing data set for human inspectors in previous paper

Virkkunen et al. [35]. Once the teaching was finished, the ML

algorithm was tested with the same data as human inspectors

faced. Thus, the ML algorithm and human inspectors were

given the exact same information with the same controlled

environment and a POD curve was estimated based on the

hit/miss results.

2.2 Training Data and Used Data Augmentation

The single 45◦ scan line data containing signals from three

manufactured thermal fatigue flaws was taken as the source

data for training the machine learning model. This is the same

data, that was used to generate human POD results in [35].

From this data, large number of data files were generated

using the same algorithm as previously. The data contained

454 A-scans each containing 5058 samples with 16 bit depth.

The scan step was 1 mm and ultrasonic sampling resolution

0.02µs. The data was recorded in rectified format.

For machine learning purposes, the data was further pro-

cessed, as follows; each A-scan was cut so that only the

interesting area around the weld was included resulting in

454 × 454 point data. Then, the resolution of the ultrasonic

data was down sampled to 256 × 256 points. No preprocess-
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Fig. 2 Example flawed training data samples from the training set. Amplitude shown as percentage of 216, the theoretical data maximum

ing was applied, other than the clipping and down sampling

presented here.

Flaw signals were introduced to this unflawed scan in

random locations. The flaw signals were, in all cases, fully

included in the data and partial signals were not included. The

background was obfuscated by random flip to create variation

to the background and to reduce risk of background mem-

orization. The flaw signals were combined with the local

background data and so even thought the source flaw signals

were always the same, the resulting data exhibits variation

due to differences in the noise around the introduced flaw

location.

Altogether 20000 variations were generated to be used as

training and validation data. The data was stored in mini-

batches of 100 UT-images per file with accompanying true

state information showing the included crack state present,

if any. The data set also contained information, where vir-

tual flaw process had been used to copy unflawed section to

another location. This was done to avoid and to detect the

possibility that the machine learning model would learn to

notice the virtual flaw introduction process, instead of the

actual flaws. Out of these 20000, 200 was used for valida-

tion, 19,800 for training. Both of these were generated from

the same flaw signals and background data, due to the limited

data available.

Some example augmented images with flaws are shown

in Fig. 2

2.3 UsedML Architecture

The machine learning architecture used was based on the

VGG16 network [38]. For ultrasonic data analysis, the basic

network was augmented with a first max-pooling layer, with
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pooling size adjusted to the wavelength of the ultrasonic

signal. This max-pooling layer had the effect of removing

spectral information from the image so that the rest of the net-

work was left with an envelope amplitude curve. The effect

of this layer is shown in Fig. 3. The training used binary cross

entropy as the cost function and training was done using the

RMSProp [37].

Previous work [7,13,23] typically extracted additional

information from the spectral content of the A-scan data

using, e.g., the wavelet decomposition. In this case, it

was also considered to add additional data layers obtained

with wavelet decomposition. However, the source data that

was used for human inspectors was rectified, which made

obtaining any useful information from the spectral content

impossible. Since in this case, it was desirable to use data,

that was directly comparable to the data seen by the human

inspectors it was decided to continue working with the rec-

tified data.

The data was read in the saved mini-batches, converted to

32 bit floating point numbers and normalized by subtracting

the mean and dividing by standard deviation. A small value

of 0.00001 was added to avoid division by zero.

The size of the various layers were originally excessive,

and as soon as successful training was obtained, the layer

sizes were decreased step-by-step to obtain the most efficient

network capable of learning to classify the data. The full

architecture (both initial trial and final) is shown in Fig. 4.

The network experienced some sensitivity to initialization,

and on repeated training, the model sometimes failed to learn

successfully.

The computation was implemented with Python 3 and the

Keras library [10] using the TensorFlow back-end [1].

The chosen architecture does not make use of some of the

recent features included in state of the art deep convolutional

networks. The primary motivation for this was to keep the

network as simple as possible while showing good flaw detec-

tion capability. Some of the considered, but not included, ML

architectural features are discussed in the following.

Drop-out [14] has been extensively used to prevent over-

fitting, and more recently to estimate prediction confidence

[39]. In the present study, the model did not show suscepti-

bility to notable overfitting (see also discussion in Sect. 4).

The likely reason for this is the high number of augmented

images used for training. Consequently, drop-out was not

included and instead the training was stopped after sufficient

performance was achieved. Training with smaller augmented

data-sets could show overfitting and, consequently, make use

of drop-out. Furthermore, even in the absence of overfitting,

the use of drop-out to estimate prediction accuracy is an inter-

esting option especially in case where multiple flaw types are

classified within one model.

Batch renormalization has shown to improve trainability

of very deep networks [15]. While the present network did

Max pooling 7 x 1 Crack indication

Fig. 3 Max pooling was implemented as a first layer that removed the

spectral information and reduced dimensionality of the data

show sensitivity to initialization values and sometimes failed

to train successfully, this did not present significant problem

in this application. A simple re-try with different random

starting values quickly resulted in successful training result.

Channel-wise training [9] has been used to ease training

and to improve training results in image classification. In

the present case, the interesting channel-wise information

would be amplitude information (as used in the present anal-

ysis) and frequency-related information, such as the wavelet

decomposed features used, e.g., by Chen and Lee [7], Fei et

al. [13]. However, in this case, it was of interest to use as-is

the data that was used in previous research [35] to estimate

human POD performance. As this data was rectified, most

of the spectral data was lost and could not be used. Extract-

ing spectral features using wavelet decomposition as separate

channels remains interesting option for further study and may

improve flaw detection.

2.4 Performance Evaluation

In previous research [35] an online tool for assessing inspec-

tor performance was developed. The tool presents randomly

generated B-scan data with implemented virtual cracks and

a possibility to change the software gain. In the normal mode

the inspectors select the locations of the cracks and move on
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Input layer
256 x 256 pixels
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Max pooling
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1

Activation: sigmoid

Flatten

Optimized network Initial network

Fig. 4 The trained network structure. Max pooling was implemented

using Keras MaxPooling2D layer. Convolution layers were imple-

mented using Keras Conv2D layer. The final dense layer was imple-

mented with Keras Dense layer

to the next image. In the learning mode feedback from the

previous image is provided before moving to the next image.

Not all images include cracks. The results are used to produce

hit and miss POD-curve. In previous research, nine level-III

ultrasonic inspection course attendees were randomly split

into two groups to use the learning mode and the normal

mode. Each inspector had time to practise with the tool dur-

ing the course. Finally each inspector analysed 150 images

and hit and miss POD-curve was generated. One inspector

was excluded from the data due to excessive amount of false

calls. For inspectors the best achieved a90/95 value was at 1

mm and under 20 false calls. Most inspectors rated between

1 and 2.5 mm a90/95 and under 30 false calls. The lower-

end inspectors got a90/95 between 3.5 and 4.0 mm and the

highest false call rates were above 180. The number of false

calls did not correlate with inspection performance. While

the online tool does not reflect realistic inspection situation,

it allows relatively rapid and cost-efficient gathering of rele-

vant performance data. Inspection is often done in suboptimal

conditions, and requires skilled inspector. In addition, the rate

at which flaws appear is low making the already repetitive

work even more tiring.

The target in this study is to assess the performance of the

ML model with regard to inspector performance. In addition

to the previous data, that included independent inspectors, a

new data set was generated. To get direct comparison between

the human inspectors and the ML model, a new set of 200

B-scan images not used in the training of the ML model was

generated and a hit and miss POD-curve made for the ML

model. A specialized version of the previously used online

tool for POD evaluation was created with this data set. Human

results were then obtained from three experienced inspectors

from VTT. The same data-set was then given to the classifier

network. This set-up enabled direct comparison of human

and machine performance in a blind set-up. This data-set

contained 200 images and 86 images with cracks. Both the

humans and the ML-network had opportunity to train with

similar data and similar set-up. For these data, the range of

available inspectors is more limited, but the data is even

more comparable. The human results were consistent with

the previous study and are thus expected to be characteristic

of typical human performance.

3 Results

3.1 Training Results

The network was trained for 100 epochs of 10,000 samples.

This resulted in perfect classification: all cracks were cor-

rectly classified and no false calls were made. The evolution

of the training accuracy is shown in Fig. 5. The number

of training epochs was set by hand to stop slightly after

perfect classification score was achieved. During develop-

ment, the results were evaluated against a separate validation

set. The final result was then evaluated against a previously

unseen verification set. Each set contained a 100 images, with

roughly 50% cracks.
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Fig. 5 Validation loss and

validation accuracy during

training for 100 epochs
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3.2 Comparison with Human Performance

To evaluate the network performance against human per-

formance, the data set from the previous work was utilized

Virkkunen et al. [35]. In addition a new data set was generated

for this purpose (Sect. 2.4). The human inspectors reviewed

the full 454× 5058 sample B-scan data. One “run” for the

human inspector consisted of 150 images. The inspectors

were free to train as many times as they wanted, but since

the exercise is somewhat taxing, most elected to do this 2–4

times before the final run.

The performance was evaluated using MIL-HDBK-1823a

hit/miss analysis [3]. The performance comparison is sum-

marized in Table 1. POD curve for the human inspectors

and the ML network are shown in Figs. 6 and 7, respec-

tively. As noted in previous research, the cracks contained

in the original data presented different challenge in relation

to their size. This was primarily caused by the difference in

relative amplitude. The same crack was difficult for both the

human inspectors and the ML network. In the current data

set, the small number of initial flaws as well as their differ-

ence caused some irregularities in the hit/miss performance,

which the computed confidence bounds to be rather wide. For

one inspector, the hits and misses did not show the expected

crack size dependence. This may have been caused by exces-

sive false calls for the inspector. For the ML classifier, all the

cracks were found. To get convergence for the POD curve,

30 misses of zero-sized cracks were added to all the results.

This had the effect of improving slightly the a90/95 values

of the human inspectors and providing convergence for the

ML-classifier even with all the cracks found. In future stud-

ies, wider selection of physical cracks are needed to avoid

such problems.

Table 1 Comparison of performance from human inspectors and

machine learning classifier

Inspection a90/50 False calls

Previous data 1–2.5 130

Inspector 1 3.0 36

Inspector 2 2.7 917

Inspector 3 5.6 2

ML classifier 0.9 0

For ML classifier, all the cracks were found and smallest found crack

is shown as a90/95

4 Discussion

The present study showed, that the current deep machine

learning networks are powerful enough to achieve human-

level performance on NDT-tasks previously considered

intractable, such as crack detection in ultrasonic B-scan sig-

nals. Achieving human-level performance is an important

milestone, since it indicates that the machine learning net-

works can be used also in fields, where high reliability is

sought after and regulatory requirements mandate the use of

best available means, such as in the nuclear industry.

Data augmentation is a well known technology in the

ML literature and is commonly considered to be a key

enabling technique when working with limited data sets

Chollet [8]. Data augmentation has also previously used for

NDT applications of ML [25]. In present study, extensive data

augmentation was utilized using the previously developed

virtual flaw technology. This allowed generating training

data, that incorporated many aspects of actual inspection,

such as the detection of flaw signals from varying back-

grounds and variations in probe contact, without extensive
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Fig. 6 Example POD curve from a human inspector. Note, that addi-

tional cracks were added at 0 crack length for comparability on

ML-results. The data shows anomalous POD-a dependence due to dif-

ferences in detectability of various natural cracks between crack sizes

3.2 mm and 4.0 mm. The natural cracks show variation in amplitude

with the same nominal size and with small number of cracks the POD

appears discontinuous. In the future, this can be alleviated by additional

cracks to better cover variability in natural cracks

Fig. 7 POD curve the machine learning classifier. Note, that additional cracks were added at 0 crack length for convergence
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database of real cracks. This can be expected to yield ML-

models that generalize well to different real-world inspection

cases. In addition, the virtual flaw technology has been used

in training human inspectors, and expected to be used in

nuclear qualifications in the near future. The use and exten-

sive validation of the virtual flaw technology in the case of

human inspectors gives high confidence that the augmented

data sets are relevant also for ML applications.

The results from present study indicate, that such domain-

specific and separately validated data-augmentation tech-

niques enabling technique for successfully applying machine

learning in various NDE fields, where the data is scarce but

performance requirements high.

In previous work, the ML-classification of ultrasonic sig-

nal is usually applied at the single A-scan level. In contrast,

our approach has been to train the network on full scan of

454 A-scan lines. This approach necessarily limits the appli-

cability of the solution to mechanized or location-encoded

inspections, where such coordinated combination of A-scans

is available.

The present work has some significant limitations. The

raw data contained only three real cracks, that were then

modified to give the total data set. This was similar for both

the human inspectors and the machine learning solution. The

natural flaws exhibit significant variation and a set of three

flaws is clearly insufficient to capture this variation and thus

the model may overfit to the specific flaw types present in this

study. For example, the ASTM POD standard [5] requires 40

cracks, which is chiefly to to capture this variation. Thus

the network trained here is not expected to work as-is for

more general crack detection tasks. Instead, future research

will extend the source data using additional thermal fatigue

cracks, simulated flaws and other interesting signal types.

Due to the limited data there are several plausible ways

for the model to exhibit “Clever Hans” behaviours [19] and

to learn something other than the desired flaw detection. For

example, an ML model might learn to memorize the repeating

background or to identify the specific repeated flaw pat-

terns or features of the augmentation. Similar behaviours are

plausible for the human inspectors. While we tried to mini-

mize these behaviors in the current study by model selection

and augmentation, proper validation would require testing

performance on data completely separate from training and

data augmentation. This will be addressed in further studies.

Accordingly, it is not claimed that the POD curves presented

in this study are descriptive of field inspections; the POD

curves show comparative performance between the trained

ML and human performance, with the described limitations.

5 Conclusions

The following conclusions can be drawn from this study:

– Deep convolutional neural networks are powerful enough

to reach human-level performance in detecting cracks

from ultrasonic data

– Data augmentation using virtual flaws is seen as key

enabling technique to train machine learning networks

with limited flawed data
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