
BIROn - Birkbeck Institutional Research Online

Zhou, Y. and Tong, Y. and Chen, Taolue and Han, J. (2017) Augmenting
bug localization with part-of-speech and invocation. International Journal
of Software Engineering and Knowledge Engineering 27 (6), pp. 925-950.
ISSN 0218-1940.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/19656/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/19656/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

AUGMENTING BUG LOCALIZATION WITH PART-OF-SPEECH

AND INVOCATION

YU ZHOU

College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics 210006, China

zhouyu@nuaa.edu.cn

YANXIANG TONG

State Key Laboratory for Novel Software Technology,

Nanjing University 210023, China

tongyanxiang@ics.nju.edu.cn

TAOLUE CHEN

Department of Computer Science,

Middlesex University, London, United Kingdom

t.chen@mdx.ac.uk

JIN HAN

School of Computer and Software,

Nanjing University of Information Science and Technology 210044, China
hjhaohj@126.com

Bug localization represents one of the most expensive, as well as time-consuming, activi-

ties during software maintenance and evolution. To alleviate the workload of developers,

numerous methods have been proposed to automate this process and narrow down the
scope of reviewing buggy files. In this paper, we present a novel buggy source file lo-

calization approach, using the information from both the bug reports and the source

files. We leverage the part-of-speech features of bug reports and the invocation relati-
onship among source files. We also integrate an adaptive technique to further optimize

the performance of our approach. The adaptive technique discriminates Top 1 and Top
N recommendations for a given bug report and consists of two modules. One module
is to maximize the accuracy of the first recommended file, and the other one aims at

improving the accuracy of the fixed defect file list. We evaluate our approach on six

large-scale open source projects, i.e., ASpectJ, Eclipse, SWT, Zxing, Birt and Tomcat.
Compared to the previous work, empirical results show that our approach can improve

the overall prediction performance in all of these cases. Particularly, in terms of the
Top 1 recommendation accuracy, our approach achieves an enhancement from 22.73%

to 39.86% for ASpectJ, from 24.36% to 30.76% for Eclipse, from 31.63% to 46.94% for

SWT, from 40% to 55% for ZXing, from 7.97% to 21.99% for Birt, and from 33.37% to
38.90% for Tomcat.

Keywords: software engineering; bug localization; information retrieval; bug report.

1

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

2 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

1. Introduction

Bug tracking systems (BTS) are a class of dedicated tools to keep track of bug-

related issues for software projects. They provide critical supports and are widely

used by developers during software development and maintenance phases. Usually,

a new software project may set up an account in a robust BTS, such as Bugzilla,

to gather potential defects. If multiple shareholders of the software, such as deve-

lopers, testers or even users, come across a defect, they can resort to the BTS and

create an issue report to describe the situation. When a bug report is received and

confirmed, it will be assigned to a developer for fixing [37]. The developer must first

carefully read the bug report, especially the descriptive parts (e.g., “Summary” and

“Description”) and elicit the keywords such as class names or method names, and

then review source code files to find and fix the buggy parts. The above activity is

indeed time-consuming and tedious, especially for large projects with thousands of

source files. Manual localization requires high expertise and imposes a heavy bur-

den to developers, which inevitably hampers productivity. Therefore, it is highly

desirable to automate this process and recommend potential buggy source files to

developers with a given bug report.

In recent years, some researchers have proposed various approaches to produce a

ranking list of buggy files for processing a bug report [33]. The ranking list can nar-

row down a developer’s search scope and thus help enhance debugging productivity.

The basic technique of these approaches is standard information retrieval (IR). It

returns a ranking list of buggy files based on the similarity scores between the tex-

tual parts of a bug reports and the source code. However, the important information

of bug reports does not only come from the textual information, but also from other

parts. For example, Sisman et al. extended the IR framework by incorporating the

histories of defects and modifications stored in versioning tools [25]. The histories

might complement the vague description in the textual parts of the bug reports

and improve the accuracy of ranking buggy files. Indeed, the source files are coded

in some specific programming language, such as Java or C++, which, compared to

natural languages, have different grammatical/semantic features. Therefore, traditi-

onal natural language processing techniques from IR field cannot be applied directly

to extract the discriminative features of the source code. In light of this, Saha et al.

utilized code constructs and presented a structured IR based technique [23]. They

divided the code of each file into four parts, namely, Class, Method, Variable and

Comments. Furthermore, the similarity score between a source file and a bug report

was calculated by summing up the eight similarity scores between the source files

and bug reports. In [37], Zhou et al. integrated the information of file length and

similar bugs to strengthen the traditional Vector Space Model. After that, many

other researchers have explored combining other attributes of the bug reports and

the source code to further improve the accuracy of bug localization [29, 34, 32].

We observe that most of the existing work, if not all, treats the words (apart

from stop words) equally without discrimination. To be more specific, they do not

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 3

76225
Move the ExternalAntBuildfileImportPage to use the

AntUtil support.
The ExternalAntBuildFileImportPage duplicates a

lot of funcationality now presented in AntUtil.

org.eclipse.ant.internal.ui.AntUtil.java
org.eclipse.ant.internal.ui.model.AntElementNode.java
org.eclipse.ant.internal.ui.model.AntModel.java

Fig. 1: Bug Report example

consider the part-of-speech features of underlying words in the bug reports. The

part-of-speech, simply “POS” or “PoS” for short, represents any particular category

of words which have similar grammatical properties in nature language, such as

noun, verb, adjective, adverb, conjunction, etc. Words with the same part of speech

generally display similar behavior in terms of syntax, and play similar roles within

the grammatical structure of sentences. In reality, to understand the meaning of a

bug report, part-of-speech of each word in a sentence is of particular importance.

For example, after traditional IR-based preprocessing, the summary of Eclipse Bug

Report #84078: “RemoteTreeContentManager should override default job name”

is transformed into “RemoteTreeContentManag override default job name”. The

noun “RemoteTreeContentManager” directly indicates the buggy file, and the noun

phrase “job name” is the substring of a method in the buggy file. By contrast, the

verb “override” does not exist in the defect file and the adjective “default” is not

a discriminative word for Java code. Thus these words actually provide very little

help during debugging.

Textual similarity can indeed help identify potential buggy source files. For ex-

ample, Figure 1 illustrates a textual snippet of a real bug report (ID: 76255) from

Eclipse 3.1 and the bug-fix information. Both the summary and the description

focus on the source file “AntUtil.java” and the file is indeed at the first place of

the ranking list, but the rest two fixed files “AntElementNode.java” and “Ant-

Node.java” contributing to this defect are at the 4302nd and the 11459th places

on the same list ranked solely by similarity [37]. In this case, we observe that most

fixed files for the same bug report have invocation relationship between them. For

example, the file “AntUtil.java” invokes the other two files. Such underlying logical

relationship cannot be captured by the grammatical similarity. This fact motivates

us to combine the invocation information with the traditional IR based methods to

improve the accuracy of buggy source files identification.

In [15], Kochhar et al. investigated the potential biases in bug localization. They

defined “localized bug reports” in which the buggy files have been identified in the

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

4 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

report itself. Namely, the class names or method names of the buggy files exist in

the bug reports. Motivated by this, in our approach, we filter the source files and

only preserve the class names and method names to reduce the noisy localization

for the localized bug reports. However, this process also introduces potential issues.

If a bug report is a localized one, this method indeed can lift up the rankings of its

buggy files. However, this process might also introduce potential problems, i.e., this

filtering strategy could also lift other irrelevant files up to the top places as a side

effect. Moreover, if a bug report is not a localized one – for example, the bug report

does not contain class names or method names but its buggy files are ranked high

on the list – this filtering strategy will reduce their rankings.

In light of the above considerations, we need a more comprehensive approach to

combine different sources of information to give a more accurate buggy source file

localization based on bug reports. We believe that different types of words in bug

reports contribute differently to the bug localization process and are worth treating

distinctively. Our approach takes the part-of-speech of index terms as well as the

underlying invocation relationship into account. In order to take advantages of the

localized bug reports and avoid the decrease of global performance, we use different

ranking strategies for Top 1 and Top N recommendations, and propose an adaptive

approach, taking the demand of the developers into account.

The main contributions of this paper are as follows:

(1) We propose a part-of-speech based weighting method to automatically adjust

the weight of terms in bug reports. Particularly, we emphasize the importance

of noun terms. This method sets different weights to terms from the summary

and description parts in bug reports in order to distinguish their importance.

(2) We consider the invocation relationship between source code files to lift up

the ranking of the files that are invoked by the file mentioned in bug reports

with the highest similarity scores. This method can help increase the global

performance, like MRRa.

(3) We propose an adaptive approach to maximize the accuracy of recommenda-

tions. The approach sets a selection variable opt ∈{true, false} for users. We

conduct a comparative study on the same dataset in [37], which confirms the

performance improvement by our approach.

This paper is based on our previous work [27], but with significant extensions.

We doubled the size of our empirically studied cases—from three to six open source

projects—to minimize the external threats to validity. Moreover, we optimize the

process of rendering invocation relationship. In our previous paper [27], we simply

used the string-based match to find the invocation files of the highest score file which

is easy to implement. However, the performance of this method (implemented in

module 2 of our approach; cf. Section 3) is rather poor and the invocation relation

aMean Reciprocal Rank

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 5

has to be calculated each time. In order to reduce the overhead, we produce the

invocation corpus for module 2 which can be reused once derived.

The rest of the paper is organized as follows. Section 2 describes the background

of our work. Section 3 presents the part-of-speech oriented weighting method and

our adaptive defect recommendation approach. We experiment with open source

data and discuss the results in Section 4. Section 5 and Section 6 give the threat to

validity and related work. We conclude the paper in Section 7.

2. Background

2.1. Basic Ranking Framework

IR is a process to find the contents in a database related to the input queries. The

matching result is not unique, but consists of several objects with different degrees of

relevance, forming a ranking list [19]. The basic idea of defect localization using IR

is to compute the similarity between textual information of a given bug report and

the source code of the related project. It takes the summary and description parts

of a bug report as a query, the source files as documents, and ranks the relevance

depending on similarity scores.

To identify relevant defect source files, the textual part of bug reports and source

code are typically transformed into a suitable representation respecting a specific

model. In our approach, we use the Vector Space Model (aka Term Vector Model) [?]

which represents a query or a file as a vector of index terms.

In order to transform texts into word vectors more efficiently, we need to pre-

process the textual information. The traditional text preprocessing involves three

steps: first, we replace all non-alphanumeric symbols with white spaces, and split

texts of bug reports into a stream of terms by white spaces. Second, meaningless

or frequently used terms called stop word, such as propositions, conjunctions and

articles, are all removed. Usually, the stop word list of the source code is totally

different from natural language documents and is always composed of particular

words relying on programming languages. Third, all remaining words are transfor-

med into their basic form by the Poster Stemming Algorithm, which can normalize

the terms with different forms.

After preprocessing, we take the rest terms of bug reports as index terms to

build vector spaces which represent each bug report and source file as vectors. The

weight of an index term in a bug report is based on its Token Frequency (TF) in the

bug report and its Inverse Document Frequency (IDF) in the whole bug reports.

The same goes for the weight of an index term in a source file. We assume that the

smaller the angle of two vectors is, the closer the two documents represented by the

two vectors are [8].

2.2. Part-of-Speech Tagging

Part-of-speech (POS) tagging is the process of marking up a term as a particular

part of speech based on its context, such as nouns, verbs, adjectives, and adverbs,

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

6 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

etc. Because a term can represent more than one part of speech at different sen-

tences, and some parts of speech are complex or indistinct, it becomes difficult to

perform the process exactly. However, research has improved the accuracy of POS

tagging, giving rise to various effective POS taggers such as TreeTagger, TnT (based

on the Hidden Markov model), Stanford tagger [4, 10, 12]. State of the art taggers

highlight accuracy of circ 93% compared to the human’s tagging results.

In recent years, researchers have tried to help developers in program comprehen-

sion and maintenance by analyzing textual information in software artifacts [1]. The

IR-based framework is widely used and the POS tagging technique has demonstra-

ted to be effective for improving the performance [5, 24]. Tian et al. have investigated

the effectiveness of seven POS taggers on sampled bug reports; the Stanford POS

tagger and TreeTagger achieved the highest accuracy up to 90.5% [26].

In our study, the textual information of bug reports is composed in natural lan-

guage. As mentioned before, we have discovered that the noun-based terms are more

important for bug localization. Therefore, we have made use of POS tagging techni-

ques to label the terms and adjusted the weight of the terms in vector transforming

accordingly.

2.3. Evaluation Metrics

Three metrics are used to measure the performance of our approach.

(1) Top N is the number of buggy files localized in top N (N=1, 5, 10) of the

returned results. A bug is related to many buggy files and if one of the buggy

files is ranked in top N of the returned list, we consider the bug to be located

in top N . Of course, the higher the metric value is, the better our approach

performs.

(2) MRR (Mean Reciprocal Rank) is a statistic measure for evaluating the process

that produces a sample of the ranking list to all queries. The reciprocal rank of

a list is the multiplicative inverse of the rank of the first correct answer. The

mean reciprocal rank is the average of the reciprocal ranks for all queries Q :

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

where ranki is the rank of the first correct recommended file to bug report i

and |Q| is the number of all bug reports.

(3) MAP (Mean Average Precision) is a global measurement for all of the ranking

lists. It takes all of the rankings of the buggy files into account. There are

possibly several relevant source code files corresponding to a bug report, the

Average Precision (AP) for a bug report k can be computed as:

APk =

|S|∑
k=i

P (k)× pos(k)

Numbers of Defective Files
(2)

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 7

New Bug Report

Source Files
Text Filtering

Similarity Scores

Invoking

Files

File

length

Tagging Preprocessing

Preprocessing Indexing

VSM

Represention

Final

Recommendation

opt

Module 1

Module 2

opt

Query

Index

Fig. 2: The Overview of Our Approach

where |S| is the number of source files, and pos(k) is the indicator representing

whether or not the file at rank k is a real defect. P (k) is the precision at the

given cut-off rank k. MAP is the mean of the average precision values for all

bug reports.

3. Approach

Our approach consists of two interconnecting modules and a parameter opt. The

two modules are:

• Module 1 is a revised Vector Space Model combining with part-of-speech orien-

ted weighting method. A ranking list for a certain bug report will be produced.

In this module, we use a revised Vector Space Model to represent the bug re-

port and index the source code files for similarity calculation. The proposed

weighting method was applied automatically to adjust the weight of each term

based on its tag. We note that the way of filtering the source code is determined

by the parameter opt.

• Module 2 is based on the results of module 1. We use the invocation relationship

to further augment the accuracy of the results. In this module, we will search

the summary and description parts of a bug report for the class-name terms. If

the corresponding source files of the class have been ranked high in module 1,

their invoking files will be raised accordingly in the ranking lists.

The parameter opt is a Boolean indicator of our adaptive recommendation de-

pending on the developers’ context. If the value of opt is set to be true, it means

developers want a single decisive, i.e., the most probable file to this bug report; if

its value is false, it indicates a list of n files would be provided.

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

8 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

Ajde does not support new AspectJ 1.1 compiler

options

Ajde/NNP

does/VBZ

not/RB

support/VB

new/JJ

AspectJ/NN

1.1/CD

compiler/NN

Fig. 3: The Tagging Results

Our approach mainly uses POS tagging technique to mark up the part-of-speech

of each term in bug reports and the invocation relationship between source files can

be generated from code comprehension techniques, such as static analysis. Figure 2

gives an overview of our approach. The details will be elaborated below.

3.1. Module 1 – Similarity Calculation

In this module, the similarity scores between the new bug report and the candidate

source files are calculated, and then an initial ranking list is produced. It’s highly

important that the part-of-speech must be tagged before the text preprocessing.

Namely, the inputs to the POS tagger are all complete sentences. We use the-state-

of-the-art POS tagger Stanford-Postaggerb to mark all of the terms of the bug

reports.

Figure 3 illustrates the tagging results for the summary of AspectJ (Bug ID:

29769). The output includes words of the sentences and their parts of speech which

have been defined in the English tagging model of Stanford-Postagger. We can see

that the words “Ajde”, “AspectJ”, “complier” and “options” are all noun terms. We

duplicate the terms marked as “NN (noun, singular or uncountable)”, “NNS (noun,

plural)”, “NNP (proper noun, singular)” and “NNPS (proper noun, plural)” three

times and other terms twice to increase the weights of noun-based terms. Moreover,

this weighting strategy wouldn’t increase the dimension of Vector Space Model and

thus it need not keep the markings until the calculation step. We aim to highlight

the nouns comparing to others, thus the weights of the terms with all noun types

increase without any difference.

The descriptive parts, i.e., description and summary, of a bug report are regarded

as a query, but the significance of these two parts is different [14]. In order to

highlight the summary, we follow the heuristics from [30] to increase its terms’

bhttp://nlp.stanford.edu/software/tagger.shtml

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 9

frequency twice of that of the description. For source files, we filter the source code

before preprocessing, and set the Boolean parameter opt to determine what kind

of files are recommended. Because the empirical cases studied in our paper are

programmed in Java, we leverage API of Eclipse JDT, namely ASTParser, to parse

the source code. ASTParser can analyze the main components of a source file, such

as classes, methods, statements and annotations. The source code can be parsed as

a compilation unit. By calling the methods of this API, we can remove some useless

elements in the source code. In our approach, all annotations of source code are

filtered out. Moreover, if the value of the parameter opt is set to be true, only class

names and method names of the source files will be reserved. We take the filtered

source code files as documents and the weight-processed bug reports as queries.

In this way, we can build a Vector Space Model to represent both texts based on

the index terms of bug reports and source code. The weight wt,d of a term t in a

document d is computed based on the term frequency (tf) and the inverse document

frequency (idf), which are defined as follows:

wt,d = tft,d × idft (3)

where tft,d and idft are computed as:

tft,d =
ft,d
td

(4)

idft = log(
nd
nt

) (5)

Here, ft,d is the number of the occurrences of term t in document d and td is

the total number of terms document d includes. nd refers to the number of all

documents and nt is the number of documents containing term t. Thus, wt,d is high

if the occurrence frequency of term t in document d is high and the term t seldom

exists in other documents. Obviously, if a term appears 5 times in a document, its

importance shouldn’t be 5 times compared to the ones appearing once [19]. In view

of this point, we use the logarithm variant to adjust tft,d [6]:

tft,d = log(ft,d) + 1 (6)

The similarity score between a query and a document is the cosine similarity cal-

culated by their vector representations computed above:

Simt,d =

∑m
i=1 wti,q × wti,d√∑m

i=1 w
2
ti,q ×

√∑m
i=1 w

2
ti,d

(7)

where m is the dimension of the two vectors and wti,q (resp. wti,d) represents the

weight of term ti in query q (resp. document d).

Previous work has shown that large source code files have a high possibility to

be defective [21, 35]. Our approach also takes file length into account and sets a

coefficient lens based on file length to adjust the similarity scores. The range of

lengths of source code files is usually large and we must map the lengths to an

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

10 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

interval, namely (0.5, 1.0). To this end, we first compute the average length avg of

all source files and then calculate the standard deviation sd as:

sd =

√∑n
i=1(li − avg)2

n
(8)

where n is the total number of source files. li is the length of source code file i. We

have an interval (low, high) which is defined as:

low = avg − 3× sd, high = avg + 3× sd (9)

and the length li of the source file will be normalized as norm:

norm =

0.5, li ≤ low, (10)

6.0× (li − low)

high− low
, low < li < high, (11)

1.0, li ≥ high. (12)

The coefficient lens is computed as:

lens =
enorm

1 + enorm
(13)

Finally, the similarity score between a bug report (the query) and a source code file

(the document) can be calculated as:

Simt,d = lens×
∑m

i=1 wti,q × wti,d√∑m
i=1 w

2
ti,q ×

√∑m
i=1 w

2
ti,d

(14)

We then obtain all of the similarity scores of source files and bug report and thus

form a ranking list according to the scores.

3.2. Module 2 – Invocation based calibration

As usual, the summary only depicts one obvious defect file and seldom contains

methods of other buggy files, resulting in poor performance of locating the other

hidden buggy files. In order to increase the ranking of all buggy files and improve

the overall performance, we also leverage the invocation information between high-

ranked buggy files to increase scores of the other buggy files.

The textual information of a bug report has been processed already and may

include one or more class-name terms. We define the source files corresponding to

the class-name terms as hitting files, and the hitting file which ranks the highest on

the initial ranking list produced by module 1 as hf . We hypothesize that the hf has

the highest possibility to be the defective source file. Figure 4 shows the detailed

processing of the invoking method. First, we extract all class-name terms of a new

bug report r and collect the hitting files corresponding to these terms. Next, we

select the highest ranking source file hf of the hitting files. We then review the

invocation corpus to find the invocation files. At last, the final score (FScorer,inf)

of the invoking file inf in Module 2 is calibrated as follows:

FScorer,inf = a× Simr,hf + (1− a)× Simr,inf (15)

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 11

Fig. 4: The Detail of Module 2: Invoking Method

where Simr,hf is the similarity score between the highest scored file hf of the hitting

file and the bug report r, and Simr,inf is the similarity score between the file inf

invoked by hf and the bug report r. a is the parameter of the formula which is

different in various projects to further adjust the weight of Simr,inf .

The most important part of module 2 is the invocation corpus which is automa-

tically produced in advance by programs based on API of Call Hierarchy in Eclipse.

The structure of the invocation corpus of a project is similar to that of its source

code. In order to find the invocation files of hf, we need to locate the class folder

by utilizing the package name of the hf. There is a list of method folders under the

class folder and there are two main folders in these method folders, namely callers

and callees which consist of the invocation information of hf. Then, by reading the

files of these two folders and extracting the invocation information, we can collect

the invocation files of hf. The invocation corpus is calculated once and stored as

a repository for future use. Module 2 of our approach aims to improve the perfor-

mance for bug localization by adjusting the similarity scores of invoking files. This

invocation method can be combined with most IR-based bug localization appro-

aches, including BugLocator. Of course, the coefficients combining the invocation

method and the other two original parts of BugLocator should be updated.

3.3. Adaptive Strategy

As mentioned before, Top 1 recommendation and other Top N (e.g., N = 5, 10)

recommendations use different identification strategies. We have considered two

common situations. If the developers only need a decisive file, the accuracy of top

1 will get a preferential treatment. In this situation, we remove all of the elements

of the source files except for the class names and method names. Otherwise, the

developers need N (for example, N = 5, 10) candidate files, and thus the overall

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

12 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

Table 1: The Details of Dataset

Projects #Bugs #Source Files Period
AspectJ 286 6485 07/2002-10/2006

Eclipse 3.1 3075 12863 10/2004-03/2011
SWT 3.1 98 484 10/2004-04/2010
ZXing 20 391 03/2010-09/2010
Birt 4166 9765 06/2005-12/2013

Tomcat 851 2174 07/2002-01/2014

performance of Top N (N = 5, 10) must be considered and we find that keeping all

of the essential elements of the source files except annotation is better.

On top of that, we propose an adaptive approach which can maximize the per-

formance of bug localization recommendation. Our adaptive strategy is based on

the analysis of properties in source code files and bug reports, which is implemented

by a parameter opt set by developers. The parameter controls both the element fil-

tering of source code files and the output of the overall approach shown in Figure 2.

When opt is set to be true, it means developers want a decisive file to the bug, and

other elements of source files except for class names and method names must be

removed before text preprocessing. The output of our recommendation is then a

single file. Otherwise, it means that a list of N (N = 5, 10) files would be provided.

The output of the our recommendation is then N candidate files accordingly.

4. Experiments

To evaluate our approach, we conduct an empirical study and use the same four

cases as in [37], i.e., AspectJ, Eclipse, SWT and ZXing. To demonstrate an even

broader applicability, we also include another two cases, i.e., Birt and Tomcat. The

information of the dataset is given below in Table 1. We compare our approach

with the rVSM model of BugLocator (α = 0). BugLocator is an IR-based bug

localization approach proposed in [37], it consists of two main parts, i.e., ranking

based on source code files and ranking based on similar bugs. The parameter α

is the coefficient combining the scores obtained from querying source code files

(rVSMScore) and from similar bug analysis (SimiScore). Namely, when α is set to

be 0, BugLocator ranks based on rVSMScore solely.

Our experiments are conducted on a PC with an Intel i7-4790 3.6GHz CPU and

32G RAM running Windows 7 64-bit Operating System, and JDK version is 64-bit

1.8.0-65. Table 2 depicts the results achieved by our approach for all of the six

projects. If the value of opt is set to be true, about 114 AspecJ bugs (39.86%), 946

Eclipse bugs (30.76%), 46 SWT bugs (46.94%), 11 ZXing bugs (55%), 916 Birt bugs

(21.99%) and 331 Tomcat bugs (38.90%) are successfully located and their fixed files

can be found at the Top 1 in recommendation. If the value of opt is set to be false,

our approach can locate 76 AspecJ bugs (26.57%), 912 Eclipse bugs (29.66%), 39

SWT bugs (39.79%), 6 ZXing bugs (30%), 382 Birt bugs (9.17%) and 287 Tomcat

bugs (33.73%) whose fixed files are at the Top 1, 135 AspecJ bugs (47.20%), 1571

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 13

Table 2: The Performance of Our Approach

Project Method TOP 1 TOP 5 TOP 10 MRR MAP

AspectJ
opt=true

114
(39.86%)

N/A N/A 0.44 0.24

opt=false
76

(26.57%)
135

(47.20%)
168

(58.74%)
0.37 0.21

Eclipse
opt=true

946
(30.76%)

N/A N/A 0.36 0.23

opt=false
912

(29.66%)
1571

(51.09%)
1854

(60.29%)
0.40 0.30

SWT
opt=true

46
(46.94%)

N/A N/A 0.62 0.56

opt=false
39

(39.79%)
72

(73.47%)
81

(82.65%)
0.55 0.49

ZXing
opt=true

11
(55%)

N/A N/A 0.69 0.63

opt=false
6

(30%)
13

(65%)
13

(65%)
0.42 0.36

Birt
opt=true

916
(21.99%)

N/A N/A 0.25 0.16

opt=false
382

(9.17%)
851

(20.43%)
1138

(27.32%)
0.15 0.11

Tomcat
opt=true

331
(38.90%)

N/A N/A 0.47 0.41

opt=false
287

(33.73%)
489

(57.46%)
554

(65.10%)
0.45 0.41

Eclipse bugs (51.09%), 72 SWT bugs (73.47%), 13 ZXing bugs (65%), 851 Birt bugs

(20.43%) and 489 Tomcat bugs (57.46%) whose fixed files are at the Top 5 and 168

AspecJ bugs (58.74%), 1854 Eclipse bugs (60.29%), 81 SWT bugs (82.65%), 13

ZXing bugs (65%), 1138 Birt bugs (27.32%) and 554 Tomcat bugs (65.10%) whose

fixed files are at the Top 10. Besides, the results of MRR and MAP when opt is true

are better than the ones when opt is false in all of the cases but Eclipse, because

the result of Top 1 contributes more to the performance of MRR and MAP than

the results of Top 5 and Top 10, while in Eclipse the difference between the Top 1

recommendation is very marginal.

Method 1 defines the process of locating the bugs in our approach when opt ’s

value is true and Method 2 represents another process of locating the bugs when

opt ’s value is false. Method 1 takes advantage of the localized bug reports and filters

out more noisy data, contributing more to the accuracy of Top 1 recommendation.

From the results of Top 1 for the six projects with the two methods, we have

observed that the results of Top 1 with Method 1 are better than the results of Top

1 with Method 2 for all of the six projects which confirms the above idea. With

the increasing scale of bug reports, the localized bug reports also get increased and

play a dominant role in bug localization leading to the better performance of Top

1.

Because our approach has filtered the source code in the beginning, particu-

larly when opt is true, module 1 seems more time-saving compared to BugLocator

without similar bugs module. Table 3 illustrates the execution time of rVSM mo-

del and module 1 of our approach. The execution time of BugLocator (α = 0)

September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

14 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

Table 3: The Execution Time of BugLocator (α = 0) and Module 1 of Our Approach

(m: minute; s: second)

````````Approach
Projects

AspectJ Eclipse SWT ZXing Birt Tomcat

BugLocator 56s 57m 6s 3s 53m 85s
Module 1 49s 9m 12s 6s 8m 40s

0

0.5

1

1.5

2

2.5

AspectJ Eclipse SWT Zxing Birt JDT Tomcat

BugLocator Module 1 of Our Approach

Fig. 5: The Trend of Execution time for The Two Approaches of Comparison

for AspectJ, Eclipse, SWT, ZXing, Birt and Tomcat is 56 seconds, 57 minutes, 6

seconds, 3 seconds and 85 seconds respectively. The execution time of the module

1 of our approach is 49 seconds, 9 minutes, 12 seconds, 6 seconds and 40 seconds

respecitvely. Although the time cost of our approach for SWT and ZXing is higher

compared to that of BugLocator, from Table 3, we can find the larger the project

is, the better advantage our approach can achieve. Figure 5 pictorially illustrates

the execution time comparison of the two approaches. Because the execution time

of the six projects is not at the same level, we set the execution time of each project

using BugLocator as the unit time 1 and represent the time cost of our approach

as the proportion of the execution time of BugLocator. We can discover that the

module 1 relatively decreases the execution time and is more efficient. Moreover,

the larger the source code and bug reports are, the more time-saving the module 1

is.

In our approach, we have made use of the saving time to execute the module

2 which is considerably time-consuming. It is generally known that extracting the

invocation relationship of a large project like Eclipse is very complex and thus costs

much time. Although our approach needn’t obtain the invocation relationship of

all of the source files, it also needs to spend time reviewing thousands of highest

scoring source files hf to get the invoking files. But in our approach, this calculation

can be conducted once and used in future, since these relationship is stored as a

repository.



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 15

We have compared the performance of our approach to BugLocator without

similar bugs because we try to emphasize the importance of part-of-speech and

invocation relationship between source files and don’t combine the similar bugs.

Table 4 compares the accuracy of our approach with BugLocator. As we can see,

the performance of both methods of our approach is better than BugLocator without

using similar bugs.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

TOP 1 TOP 2 TOP 3 TOP 4 TOP 5 TOP 6 TOP 7 TOP 8 TOP 9 TOP 10

AspectJ-True AspectJ-False

(a) AspectJ

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

TOP 1 TOP 2 TOP 3 TOP 4 TOP 5 TOP 6 TOP 7 TOP 8 TOP 9 TOP 10

Eclipse-True Eclipse-False

(b) Eclipse

0.05

0.1

0.15

0.2

0.25

0.3

TOP 1 TOP 2 TOP 3 TOP 4 TOP 5 TOP 6 TOP 7 TOP 8 TOP 9 TOP 10

Birt-True Birt-False

(c) Birt

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

TOP 1 TOP 2 TOP 3 TOP 4 TOP 5 TOP 6 TOP 7 TOP 8 TOP 9 TOP 10

Tomcat-True Tomcat-False

(d) Tomcat

Fig. 6: The Performance Comparison of Method 1 and Method 2 in Four Cases.

When opt is set to be true, our approach recommends one file with the highest

similarity score to the developers and actually the accuracy of recommended file

is sharply high. All of the results have a considerable enhancement. For example,

the accuracy of Top 1 of this method for AspectJ almost improves twice. The

performance of Method 1 are 39.86% for AspectJ compared to 22.73% of rVSM,

30.76% for Eclipse compared to 24.36%, 46.94% for SWT compared to 31.63%,

55% for ZXing compared to 40%, 21.99% for Birt compared to 7.97% and 38.90%

for Tomcat compared to 33.37%. Although this method just provides one file, the

statistics of MRR and MAP are based on the ranking lists Method 1 produces

inside. Despite this method sacrifices the results of top 5 and top 10, the metric

values of MRR and MAP are also higher than BugLocator without using similar



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

16 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

Table 4: The Comparison of BugLocator(α = 0) and Our Approach

Project Method TOP 1 TOP 5 TOP 10 MRR MAP

AspectJ
opt=true

114
(39.86%)

N/A N/A 0.44 0.24

opt=false
76

(26.57%)
135

(47.20%)
168

(58.74%)
0.37 0.21

BugLocator
65

(22.73%)
117

(40.91%)
159

(55.59%)
0.33 0.17

Eclipse
opt=true

946
(30.76%)

N/A N/A 0.36 0.23

opt=false
912

(29.66%)
1571

(51.09%)
1854

(60.29%)
0.40 0.30

BugLocator
749

(24.36%)
1419

(46.15%)
1719

(55.90%)
0.35 0.26

SWT
opt=true

46
(46.94%)

N/A N/A 0.62 0.56

opt=false
39

(39.79%)
72

(73.47%)
81

(82.65%)
0.55 0.49

BugLocator
31

(31.63%)
64

(65.31%)
76

(77.55%)
0.47 0.40

ZXing
opt=true

11
(55%)

N/A N/A 0.69 0.63

opt=false
6

(30%)
13

(65%)
13

(65%)
0.42 0.36

BugLocator
8

(40%)
11

(55%)
14

(70%)
0.48 0.41

Birt
opt=true

916
(21.99%)

N/A N/A 0.25 0.16

opt=false
382

(9.17%)
851

(20.43%)
1138

(27.32%)
0.15 0.11

BugLocator
332

(7.97%)
727

(17.45%)
1003

(24.08%)
0.13 0.09

Tomcat
opt=true

331
(38.90%)

N/A N/A 0.47 0.41

opt=false
287

(33.73%)
489

(57.46%)
554

(65.10%)
0.45 0.41

BugLocator
284

(33.37%)
467

(54.88%)
544

(63.92%)
0.44 0.39

bugs.

When opt is set to be false, our approach recommends n candidate files based

on the ranking list of a bug report to the developers. More defect files ranked at top

N (N=5,10) may give right inspiration to the developers for finding the location of

buggy files. Our approach increases the precision of defect files in top N (N=5,10)

effectively. The performance enhancement is about 3.84% in Top 1, 6.29% in Top 5

and 3.15% in Top 10 for AspectJ, about 5.30% in Top 1, 4.94% in Top 5 and 4.39%

in Top 10 for Eclipse, about 8.16% in Top 1, 8.16% in Top 5 and 5.10% in Top 10

for SWT, about 10% in Top 5 for ZXing, about 1.20% in Top 1, 2.98% in Top 5

and 3.24% in Top 10 for Birt and about 0.36% in Top 1, 2.58% in Top 5 and 1.18%

in Top 10 for Tomcat. It is interesting to discover that our approach improve most

in Top 5 on average.

To further explain the performance of the two selective methods in our approach,

we extend N to cover more value options, i.e., from 1 to 10. In this experiment,

since SWT and ZXing contains relatively smaller number of instances, we conduct

the comparison on the rest four projects. Figure 6(a) shows the performance of



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 17

AspectJ with 286 bug reports from Top 1 to Top 10. AspectJ-True means Method 1

and AspectJ-False means Method 2. It is obvious that the performance of Method 1

increases sharply at Top 1 and then slows down. For Method 2, the results increase

quickly from Top 1 to Top 10 at almost the same speed and get better after Top 5

than Method 1.

For the Eclipse project with 3075 bug reports, only the Top 1 of Method 1

is still better than the Top 1 of Method 2. The results of Method 1 from Top 2

to Top 10 are all worse than that of Method 2. The discovery above is shown in

Figure 6(b). As we can see, only the Top 1 of Method 1 is better even though the

scale of bug reports increase from 286 of AspectJ to 3075 of Eclipse. This is also

the case for the Tomcat project, illustrated by Figure 6(d). However, Birt project

exhibits different properties. From Figure 6(c), we can observe that the performance

of Method 1 is continuously better than Mehtod 2, although the difference between

them is decreasing. The fact indicates a converging trend of the two methods. The

general suggestion is that, if developers want a recommended file, with our approach

they can make use of Method 1. If they want N (N=5,10) recommended files instead,

they should make use of Method 2.

5. Threats to Validity

In this section, we discuss the possible threats to the validity in our approach,

mainly the concerns of data validity and invocation validity.

(1) Data Validity. The experimental dataset we used are all programmed by Java

and the keywords of bug reports are mainly class names or method names

which make the VSM model more effective than other IR-based models. The

performance of top 1 gets better when we only reserve class names and method

names in source code and the results of top 5, top 10 decrease at this situation

and we can get the rule that class names and method names contribute to the

results of top 1. But we just used the dataset of Zhou et al [37] and two others

to assure the fair comparison. Thus, whether or not this heuristic fits all of the

Java projects still requires further studied to confirm.

(2) Invocation Validity. We generate the invocation corpus by using the JDT’s plug-

in called Call Hierarchy [20, 16] and search the invocation files from the corpus

afterwards. Although the call graph of the projects we use in our experiments is

of large scale, especially for Eclipse, and the generation with the large repository

can take an additional amount of time, the invocation corpus can be reused once

it was produced which seems to be more time-saving in long terms. Moreover,

due to the characteristic of the source code, we cannot say that the invocation

corpus contains all the invocation files of a particular file. Compared to the

simple string-based searching method used in [27], the invocation corpus can

avoid re-calculating each time.



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

18 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

6. Related Work

Software debugging is time-consuming but also crucial in software life cycles. Soft-

ware defect localization becomes one of the most difficult tasks in the debugging

activity [31]. Therefore, automatic defect localization techniques that can guide

programmers are much-needed. Dynamical bug localization approaches can help

developers find defects based on spectrum [2]. A commonly-used method of these

approaches is to produce many sets of successful runs and failed runs for computing

suspiciousness of program elements via program slicing. The granularity of suspici-

ousness elements can be a method or a statement. Although the dynamic approach

can locate the defect to a statement, the generation of test cases and its selection

are also complex [3].

Many researchers have tried to use static information of bugs and source code

for coarse-grained localization [18]. They proposed some IR-based approaches com-

bining with some useful attributes of software artifacts and defined the suspicious

buggy files depending on the similarity scores between bug reports and source files.

Usually, IR-based models are used to represent the textual information of the bug

report and source code, such as Latent Sematic Indexing (LSI), Latent Dirichlet

Allocation (LDA) and Vector Space Model (SVM), which is feasible for numerical

calculation [11, 22, 28]. But these works did not consider the POS features of the

underlying reports. Gupta et.al [9] attempted to use the POS tagger to help under-

stand the regular, systematic ways a program element is named, but they did not

apply the technique to the field of bug localization.

Apart from the efforts in defect localization, there is another thread of relevant

work on the bug report classification [36]. Before applying the bug localization

techniques, it must be confirmed that the selected bug reports describe the real

bugs and then their fixed files are extracted for evaluation, which may save much

time and reduce potential noise [15]. A lot of research has been conducted for

reducing the noise in bug reports [13]. They used the text of the bug reports and

predicted the bug reports to be bug or non-bug with many techniques [7]. Zhou et

al. proposed a hybrid approach by combining both text mining and data mining

techniques to automate the prediction process [38].

In resent years, Zhou et al. have used the Vector Space Model to represent the

texts and taken the length of source files into consideration combining the similar

bugs to revise the ranking list. After then many other non-textual attributes are

used to enhance the performance, such as version history [25]. Saha et al. found that

the code construct is important for bug localization, so they proposed a structure

information retrieval approach [23] . Wang et al. combined the above three discove-

ries to increase the results [29]. Moreover, Ye et al. have used the domain knowledge

to cover all accessible features to enhance the IR-based bug location technique [34].

In order to help the developers pick an effectiveness approach proposed in the lite-

rature, Le et al. presented the approach APRILE to predict the effectiveness of the

localization tools [17].



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 19

Our approach leverages nature language processing techniques adjusting the

weight of terms depending on their part-of-speech, and takes advantage of heuristics

in bug reports to balance the importance of summary and description. Kochhar et

al. discovered that the existence of class names in summary or description of bug

reports makes contributions to bug localization, which inspires us to propose Method

1 of our adaptive approach [15].

7. Conclusion and Future Work

In software life cycles, maintenance is the most time-consuming and highly cost

phase. An in-time bug fixing is of crucial importance. To mitigate the work of soft-

ware developers, in this paper, we propose an adaptive approach to recommending

potential defective source files given a certain bug report. We take advantages of

POS tagging techniques and the logical invocation relationship between source files

and present an automatic weighting method to further improve the performance.

As far as we know, this is the first work considering the underlying POS features in

bug reports for bug localization. The evaluation results on six large open-source pro-

jects demonstrate the feasibility of our adaptive approach and also indicate better

performance compared to the baseline work, i.e., BugLocator.

In the future, we plan to integrate more features of program to our approach,

such as similar bugs, version history and dynamic information. The aim is to propose

a more adaptive approach for more complex user demands. More technically, the

module 2 of the our approach will be refined to decrease the number of noisy files,

which may produce further enhancement. Moreover, our approach will be expanded

to utilize other kinds of dataset, such as bug reports of commercial projects and

unresolved bug reports, to demonstrate a broader applicability.

Acknowledgments

The work was partially funded by the Natural Science Foundation of Jiangsu Pro-

vince under grant No. BK20151476, the National Basic Research Program of China

(973 Program) under grant No.2014CB744903, the National High-Tech Research

and Development Program of China (863 Program) under grant No.2015AA015303,

the Collaborative Innovation Center of Novel Software Technology and Industria-

lization, and the Fundamental Research Funds for the Central Universities under

grant No.NS2016093. Taolue Chen is partially supported by the ARC Discovery

Project (DP160101652), the Singapore Ministry of Education AcRF Tier 2 grant

(MOE2015-T2-1-137), and an oversea grant from the State Key Laboratory of Novel

Software Technology, Nanjing Unviersity.

References

[1] Abebe, S.L., Tonella, P.: Natural language parsing of program element names for con-
cept extraction. In: Program Comprehension (ICPC), 2010 IEEE 18th International
Conference on, pp. 156–159. IEEE (2010)



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

20 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

[2] Abreu, R., Zoeteweij, P., Van Gemund, A.J.: Spectrum-based multiple fault localiza-
tion. In: Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM Interna-
tional Conference on, pp. 88–99. IEEE (2009)

[3] Bandyopadhyay, A.: Improving spectrum-based fault localization using proximity-
based weighting of test cases. In: Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on, pp. 660–664. IEEE (2011)

[4] Brants, T.: Tnt: a statistical part-of-speech tagger. In: Proceedings of the sixth con-
ference on Applied natural language processing, pp. 224–231. Association for Com-
putational Linguistics (2000)

[5] Capobianco, G., Lucia, A.D., Oliveto, R., Panichella, A., Panichella, S.: Improving
ir-based traceability recovery via noun-based indexing of software artifacts. Journal
of Software: Evolution and Process 25(7), 743–762 (2013)

[6] Croft, W.B., Metzler, D., Strohman, T.: Search engines: Information retrieval in
practice. Addison-Wesley Reading (2010)

[7] Čubranić, D.: Automatic bug triage using text categorization. In: In SEKE 2004:
Proceedings of the Sixteenth International Conference on Software Engineering &
Knowledge Engineering. Citeseer (2004)

[8] Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. International
Journal of Computer Applications 68(13), 13–18 (2013)

[9] Gupta, S., Malik, S., Pollock, L., Vijay-Shanker, K.: Part-of-speech tagging of pro-
gram identifiers for improved text-based software engineering tools. In: Program Com-
prehension (ICPC), 2013 IEEE 21st International Conference on, pp. 3–12. IEEE
(2013)

[10] Hasan, F.M., UzZaman, N., Khan, M.: Comparison of different pos tagging techniques
(n-gram, hmm and brills tagger) for bangla. In: Advances and Innovations in Systems,
Computing Sciences and Software Engineering, pp. 121–126. Springer (2007)

[11] Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity
and string similarity. ACM Transactions on Knowledge Discovery from Data (TKDD)
2(2), 10 (2008)

[12] J.Asmussen, D.: Survey of pos taggers-approaches to making words tell who they are.
DK-CLARIN WP 2.1 Technical Report (2015)

[13] Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction. In:
Software Engineering (ICSE), 2011 33rd International Conference on, pp. 481–490.
IEEE (2011)

[14] Ko, A.J., Myers, B.A., Chau, D.H.: A linguistic analysis of how people describe soft-
ware problems. In: Visual Languages and Human-Centric Computing, 2006. VL/HCC
2006. IEEE Symposium on, pp. 127–134. IEEE (2006)

[15] Kochhar, P.S., Tian, Y., Lo, D.: Potential biases in bug localization: Do they mat-
ter? In: Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pp. 803–814. ACM (2014)

[16] LaToza, T.D., Myers, B., et al.: Visualizing call graphs. In: Visual Languages and
Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on, pp. 117–124.
IEEE (2011)

[17] Le, T.D.B., Thung, F., Lo, D.: Predicting effectiveness of ir-based bug localization
techniques. In: Software Reliability Engineering (ISSRE), 2014 IEEE 25th Internati-
onal Symposium on, pp. 335–345. IEEE (2014)

[18] Lukins, S.K., Kraft, N., Etzkorn, L.H., et al.: Source code retrieval for bug localiza-
tion using latent dirichlet allocation. In: Reverse Engineering, 2008. WCRE’08. 15th
Working Conference on, pp. 155–164. IEEE (2008)

[19] Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to information retrie-



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

Augmenting Bug Localization with Part-of-Speech and Invocation 21

val, vol. 1. Cambridge university press Cambridge (2008)
[20] Murphy, G.C., Kersten, M., Findlater, L.: How are java software developers using the

elipse ide? Software, IEEE 23(4), 76–83 (2006)
[21] Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of

faults in large software systems. Software Engineering, IEEE Transactions on 31(4),
340–355 (2005)

[22] Rao, S., Kak, A.: Retrieval from software libraries for bug localization: a comparative
study of generic and composite text models. In: Proceedings of the 8th Working
Conference on Mining Software Repositories, pp. 43–52. ACM (2011)

[23] Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using
structured information retrieval. In: Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pp. 345–355. IEEE (2013)

[24] Shokripour, R., Anvik, J., Kasirun, Z.M., Zamani, S.: Why so complicated? simple
term filtering and weighting for location-based bug report assignment recommenda-
tion. In: Proceedings of the 10th Working Conference on Mining Software Reposito-
ries, pp. 2–11. IEEE Press (2013)

[25] Sisman, B., Kak, A.C.: Incorporating version histories in information retrieval based
bug localization. In: Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, pp. 50–59. IEEE Press (2012)

[26] Tian, Y., Lo, D.: A comparative study on the effectiveness of part-of-speech tag-
ging techniques on bug reports. In: Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on, pp. 570–574. IEEE (2015)

[27] Tong, Y., Zhou, Y., Fang, L., Chen, T.: Towards a novel approach for defect loca-
lization based on part-of-speech and invocation. In: Internetware, 2015 the Seventh
International Symposium on. ACM (2015)

[28] Wang, Q., Parnin, C., Orso, A.: Evaluating the usefulness of ir-based fault localization
techniques. In: Proceedings of the 2015 International Symposium on Software Testing
and Analysis, pp. 1–11. ACM (2015)

[29] Wang, S., Lo, D.: Version history, similar report, and structure: Putting them together
for improved bug localization. In: Proceedings of the 22nd International Conference
on Program Comprehension, pp. 53–63. ACM (2014)

[30] Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate
bug reports using natural language and execution information. In: Proceedings of the
30th international conference on Software engineering, pp. 461–470. ACM (2008)

[31] Wen, W.: Software fault localization based on program slicing spectrum. In: Procee-
dings of the 34th International Conference on Software Engineering, pp. 1511–1514.
IEEE Press (2012)

[32] Wong, C.P., Xiong, Y., Zhang, H., Hao, D., Zhang, L., Mei, H.: Boosting bug-report-
oriented fault localization with segmentation and stack-trace analysis. In: Software
Maintenance and Evolution (ICSME), 2014 IEEE International Conference on, pp.
181–190. IEEE (2014)

[33] Wong, W.E., Debroy, V.: A survey of software fault localization. Department of Com-
puter Science, University of Texas at Dallas, Tech. Rep. UTDCS-45 9 (2009)

[34] Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports using
domain knowledge. In: Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pp. 689–699. ACM (2014)

[35] Zhang, H.: An investigation of the relationships between lines of code and defects.
In: Software Maintenance, 2009. ICSM 2009. IEEE International Conference on, pp.
274–283. IEEE (2009)

[36] Zhang, J., Wang, X., Hao, D., Xie, B., Zhang, L., Mei, H.: A survey on bug-report



September 22, 2017 15:0 WSPC/INSTRUCTION FILE ws-ijseke

22 Yu Zhou, Yanxiang Tong, Taolue Chen, Jin Han

analysis. Science China Information Sciences 58(2), 1–24 (2015)
[37] Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? more accurate informa-

tion retrieval-based bug localization based on bug reports. In: Software Engineering
(ICSE), 2012 34th International Conference on, pp. 14–24. IEEE (2012)

[38] Zhou, Y., Tong, Y., Gu, R., Gall, H.: Combining text mining and data mining for bug
report classification. In: Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on, pp. 311–320. IEEE (2014)


