
Augmenting Complex Problem Solving
with Hybrid Compute Units

Hong-Linh Truong1, Hoa Khanh Dam2, Aditya Ghose2, and Schahram Dustdar1

1 Distributed Systems Group, Vienna University of Technology, Austria
{truong,dustdar}@dsg.tuwien.ac.at

2 University of Wollongong, Australia
{hoa,aditya}@uow.edu.au

Abstract. Combining software-based and human-based services is crucial for
several complex problems that cannot be solved using software-based services
alone. In this paper, we present novel methods for modeling and developing
hybrid compute units of software-based and human-based services. We discuss
high-level programming elements for different types of software- and human-
based service units and their relationships. In particular, we focus on novel
programming elements reflecting hybridity, collectiveness and adaptiveness prop-
erties, such as elasticity and social connection dependencies, and on-demand and
pay-per-use economic properties, such as cost, quality and benefits, for com-
plex problem solving. Based on these programming elements, we present pro-
gramming constructs and patterns for building complex applications using hybrid
services.

1 Introduction

Recently, several novel concepts have been introduced to exploit human computing
capabilities together with machine computing capabilities. This combination has intro-
duced a new form of “computing model” that includes both machine-based and human-
based “computers”. In this emerging computing model, machine-based and human-based
computing elements are interconnected in different ways, thus it is possible to support
different programming models built on top of them.

Indeed, there are different ways to develop applications atop such a new computing
model. In the current research approaches, human-based capabilities are usually provi-
sioned via “crowdsourcing” platforms [1] or specific human-task plug-ins [2,3]. These
approaches achieve human and software integration mainly using (specific) platform
integration. The main programming model is mostly the workflow which is however not
flexible enough for programming different types of interactions among multiple types of
services. In these approaches, essential programming elements representing software-
based services (SBS) and human-based services (HBS) cannot be programmed directly
into applications. Furthermore, these approaches do not provide a uniform view of SBS
and HBS, and let the developer perform the complex tasks of establishing relationships
between SBS and HBS. In addition, although SBS and HBS can be provisioned using
cloud provisioning models (thus they can be requested and initiated on-demand under

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 95–110, 2014.
c© Springer International Publishing Switzerland 2014

96 H.-L. Truong et al.

different quality, cost and benefit models), there is a lack of mechanisms to program
explicitly quality, cost, and benefit constraints for complex elastic applications.

In this paper, we view the “new computing model” as a collection of diverse and het-
erogeneous SBS and HBS that can be provisioned (e.g., by cloud computing models)
on-demand under different cost, benefits and quality models. This view is very differ-
ent from human-based workflows of which tasks and flows are (statically) mapped to
humans. More specifically, our model considers humans as a service unit, like software
service units, and takes into account diverse types of relationships among human-based
and software-based service units, quality, cost and benefit properties. Our approach
provides concepts for developing such applications where hybrid service units, their re-
lationships, and cost, quality and benefits are first-class programming elements. Hence,
our approach provides a higher level of abstraction and a flexible way for combining
hybridity, collectiveness and adaptiveness of human-based and software-based services.

The rest of this paper is organized as follows: Section 2 discusses background, related
work and our approach. Section 3 serves to describe programming elements covering
units, relationships and non-functional parameters. In Section 4 we describe high-level
programming constructs. Section 5 illustrates an example of how our approach works
in practice. We conclude the paper and outline our future work in Section 6.

2 Background and Related Work

Several types of SBS, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), Software-as-a-Service (SaaS), and Data-as-a-Service (DaaS), have been avail-
able and widely used in practice. Among these types of SBS, SaaS and IaaS are well
conceptualized using service models and the developer can easily program and utilize
SBS, their data and control flows, using APIs, such as, JClouds1, Boto2 and Open-
Stack3. On the other hand, HBS have been emerging and several work have devoted for
virtualizing HBS and integrating them with SBS. Most systems support HBS in terms
of providing specific platforms and plug-ins. Cloud APIs for interfacing to humans and
on-demand accessing HBS have been proposed [4]. Although, such existing work has,
to some extent, yet matured, there is an increasing demand for applications that use
both HBS and SBS. However, existing programming languages and tools do not con-
sider and exploit well the use of HBS and SBS together, in a flexible, on-demand, and
pay-per-use manner. In the following, we discuss our main related work.

Software-Based Service Units Constructs: There exist several frameworks for engi-
neering and executing cloud applications using different IaaS, PaaS and SaaS, such as
Aneka [5], BOOM [6]. They abstract cloud resources and support different program-
ming models, such as MapReduce and dataflows. But they do not consider hybrid ser-
vices consisting of SBS and HBS and do not provide high level programming constructs
for modelling the relationships among HBS and SBS. Most of them rely on traditional
relationships among SBS, such as control and data dependencies, modeled in specific
application structure descriptions, workflows and declarative programming languages.

1 http://www.jclouds.org/
2 http://docs.pythonboto.org/en/latest/index.html
3 http://www.openstack.org/

http://www.jclouds.org/
http://docs.pythonboto.org/en/latest/index.html
http://www.openstack.org/

Augmenting Complex Problem Solving with Hybrid Compute Units 97

Human Computation Programming Frameworks: There have been an increasing
number of programming frameworks for human computation introduced in recent years.
Most of existing work (e.g., Crowdforge [1], TurKit [2]) consider human workers as
being homogeneous and interchangeable, which is useful in developing crowdsourc-
ing solutions where scalability and availability are the main issues. Such frameworks,
however, provide limited notion of identity, human skills, and social relationships which
are important in developing an ecosystem of connected, heterogeneous people and soft-
ware. The recent Jabberwocky framework [7] has addressed this issue to some extent by
providing a programming environment for both human and machine computation. Jab-
berwocky also allows the programmer to specify types of people based on personal
properties and expertise and route tasks based on social structure. However, Jabber-
wocky does not allow to explicitly model the relationships between people and ma-
chines. General-purpose programming languages for human computation, such as
CrowdLang [8], do not rely on service models and do not consider quality, cost, bene-
fits and elasticity as first-class entities in programming and constructing hybrid compute
units.

High-Level Constructs for Hybrid Compute Units: Using several low level APIs for
accessing SBS, like JClouds, Boto, and OpenStack, the developer can define SBS ob-
jects and establish data and control flows. Our previous work (e.g., [4]) has focused on
providing well-defined APIs for provisioning HBS. However, there is a lack of support
for programming different types of relationships among SBS and HBS. The developer
has to do this on his/her own. As a result, he/she would find it difficult to code such
relationships due to the lack of well-defined programming elements, in particular those
related to cost, benefit, quality constraints and to mixed compositions of SBS and HBS.
The use of generic “building blocks” abstracting patterns and providing them via APIs
to simplify the developer task is well-known in SBS in clouds [9]. However, no high-
level program constructs and code generation have been proposed for HBS and SBS in
cloud environments.

Compared with existing work we are focusing on combining HBS and SBS for
hybrid compute units using service computing and cloud computing models. Our ap-
proach supports unified framework for human and software, and provide high-level
programming constructs for different types of services, relationships, and cost, quality,
and benefits models.

3 Fundamental Elements for Hybrid Compute Units

3.1 Service-Based Compute Units

In our model, at the core of SBS and HBS there are “processing units”, realized via
either machine CPUs/cores or human brains. To program an application, the developer
can exploit an SBS or HBS via an abstract service unit. Therefore, an application devel-
oped in our framework is abstractly viewed as consisting of a number of service-based
compute units (see Figure 1) and their interactions. A Unit can perform a number func-
tions (e.g., detecting a pattern in or enriching the quality of an image) with input and
output data. A unit also has a number of cost, benefit, and quality properties (see Sec-
tion 3.3 for more details). A unit can be either a SBS (Software-Based Service) or HBS

98 H.-L. Truong et al.

(Human-Based Service). We further divide HBS into ICU (Individual Compute Unit
– representing a service offered by an individual) and SCU (Social Compute Unit –
representing a service offered by a team). Both HBS and SBS units can potentially sup-
port elasticity in terms of capability (resource), cost and quality [10]. For example, a
SBS for data analytics can increase its cost when being asked to provide higher analysis
accuracy or a SCU can reduce its size and the cost when being asked to reduce the qual-
ity of the result. To support solving complex problems with elastic service units, we
model elasticity capability (ElasticityCapability) and associate it with Unit.

Fig. 1. A conceptual model for elements in programming hybrid compute units

A SBS unit can be in number of known software forms offered in cloud computing
models, such as IaaS (e.g., Amazon EC), DaaS (e.g., Microsoft Azure Data Market-
place), PaaS (e.g., Google App Engine) or SaaS (e.g., Salesforce.com). Although many
ongoing work is still being developed for SBS, SBS are already extensively explored in
terms of service management, capabilities, and function modeling. Therefore, we rely
on existing common models for representing SBS.

For HBS, their computing capability is specified in terms of human skills and skill
levels. Therefore, in our model a HBS unit has a set of Skills, each of which is asso-
ciated with a skill level. Those skills and skill levels can be defined consistently within
a particular service provisioning platform (using evaluation techniques, benchmarking,
or mapping skills from different sources into a common view for the whole platform).
Therefore, we associate each HBS with a Human Power Unit (HPU) [4], a value defined
by the HBS provisioning platform to describe the computing power of the HBS based
on its skills and skill levels, which are always associated with specific Archetypes
indicating the domain in which the skills are established.

Augmenting Complex Problem Solving with Hybrid Compute Units 99

By combining a set of HBS and SBS, we introduce hybrid compute units (HCUs).
A HCU is a collective, hybrid service-based units among which there exist different
types of relationships, covering human-specific, software-specific, as well as human-
software specific ones. A HCU, as a collective unit, can be elastic: it can be expanded
and reduced based on specific conditions.

3.2 Relationships between Service Units

Using cloud computing provisioning models in which SBS and HBS are abstractly
represented under the same service unit model with pay-per-use and on-demand ser-
vice usage, a range of programming elements reflecting relationships among different
types of service units are important and useful in building complex applications. Table
1 describes different types of relationships between service units that we consider as
important programming elements, each of which applies to HBS, SBS or HCU.

Table 1. Different types of relationships between services

Relationship
Type

HBS SBS HCU Description

Similarity Yes Yes Yes This traditional type of relationship indicates how similar
a service is to another. In principle, similarity can be mea-
sured in terms of functions, non-functional parameters and
social contexts.

Composition Yes Yes Yes This well-known type of service relationships indicates that
a service is composed of several other services.

Data depen-
dency

Yes Yes Yes A service depends on another service if the former requires
the latter for providing a certain data for one of its func-
tions.

Control depen-
dency

Yes Yes Yes A service depends on another service if the outcome of lat-
ter determines whether former should be executed or not.

Location
dependency

Yes Yes Yes The locations of two service units are dependent, e.g., co-
located in the same data center or country

Forwarding Yes Yes Yes This is a form of brokering/outsourcing in which a task is
forwarded form one service to another.

Delegation Yes Yes Yes This is a form of brokering/outsourcing in which a service
delegates a task to another service.

Social relation Yes No Yes This relationship describes different types of social rela-
tions (e.g. family or Linkedin connection) between two ser-
vices.

Elasticity Yes Yes Yes This relationship describes how a service unit is formed by
elasticizing another service unit, e.g. via resizing, replac-
ing or (de)composing elements of the later to offer similar
functions but different cost, benefit and quality at runtime.

Similarity. Given that certain tasks can be conducted by software or human, develop-
ers will need to compare HBS and SBS in order to select suitable ones for the tasks. We
extend traditional similarity among SBS for HBS (e.g., simulation result analysis can be

100 H.-L. Truong et al.

provided by two different research teams which are similar in terms of archetype and/or
cost) or between HBS and SBS (e.g., specific image patterns can be detected by scien-
tists or image processing software). From the programming perspective, similarity can
be specified in applications in terms of cost and quality (for all unit types), archetype
(between HBS units), capability (between SBS units) and function (between HBS and
SBS units).

Composition. Composing HBS and SBS units for complex tasks are possible. There-
fore, we extend traditional composition relationships to cover also composites of hybrid
services, such as describing how ICU can be composed with SBS to establish human-
based filter. Composition can be in different forms such as data or control decomposi-
tion, and can be structured in different ways (e.g., star vs. ring structure).

Dependency. We support the classical view of dependency between services in terms
of data (a service requires data provided by another service) and control (a service
requires an successful completion of another service). Data and control dependencies
can be programmed for any types of SBS and HBS. In particular, data exchange between
two units can be conducted via other service units (e.g., two HBS can exchange data via
Dropbox – a SBS). Furthermore, we consider location dependency which is crucial in
clouds due to not only performance but also compliance requirements. Developers can
use the location dependency to control the co-location of services.

Brokering. We consider brokering relationships for work distribution among service
units. Two types of brokering relationships are considered: delegation (a service manip-
ulates a request/response and delegates the request/response to/from another services)
and forwarding (a service just forwards request/result to/from another service). With
hybrid services, such relationships can also be established between a SBS and a HBS,
e.g., a SBS can decide where a SBS or an HBS will be used for evaluating the quality
of data based on the type of the data.

Social Relation. When using HBS for certain tasks in complex applications, we may
require specific social relations among HBS solving the tasks, for example, two scien-
tists who have conducted a joint research before. To support this, social relations are
considered as programming elements.

Elasticity. This emerging relationship is due to the elasticity capability of services at
runtime [10]. To the consumer, elasticity means that the expected service function is
unchanged but the cost, benefits and/or quality can be scaled up/down at runtime. To
the service provider, to enable the elasticity of costs, benefits, and/or quality, at runtime
service units can be replaced by different variants or similar units or (re)composed by
adding/removing appropriate units, or new compositions are introduced.

3.3 Quality, Cost, and Benefits

SBS and HBS have common and distinguishable quality, cost and benefit properties.
In order to allow programmers to specify these properties, we support the following
programming elements:

Augmenting Complex Problem Solving with Hybrid Compute Units 101

– Quality: represents common quality metrics and models for processing units and
data. Quality can be further classified into Performance for processing capa-
bilities of service units and QoD (quality of data) for input/output of service units.
Performance and QoD can have several other sub entities, such as Response-
Time, Availability, Accuracy, and Completeness.

– Cost: represents monetary pricing models, such as charging or rewarding models.
– Benefits: represents non-monetary benefits. It is classified into different entities,

such as Return-on-Opportunity or Promotion.

We consider these properties as first-class programming elements since service units
are constrained by various types of cost, benefit and quality models and the service
provider wants to program her SBS/HBS/HCU to be able to scale in/out with expected
quality under desirable cost and benefit at runtime. For example, in a situation with sev-
eral real-time events signaling an emergency situation, an HCU might be programmed to
reduce the accuracy of analytics in order to meet the response time to quickly react to the
situation. On the other hand, in non-critical situations it could be programmed to utilize
more (cheap) HBS to minimize the cost, maximize the accuracy, but accept an increasing
response time as a trade-off. Therefore, treating these properties as first-class program-
ming elements will allow the developer to explicitly specify, control, and enforce elastic
constraints.

4 High-Level Constructs for Hybrid Compute Units

From our proposed fundamental elements, in order to assist the development of complex
applications, we develop a number of high-level constructs for service units and the
relationships between them that help establish interactions among units in a hybrid
compute unit. Those constructs correspond to the conceptual model elements presented
in Figure 1. Constructs for service units have a set of APIs that can be called upon
the units. Constructs for a relationship have a set of (usage) patterns that can be used
to establish the relationship. Constructs for cost, quality and benefits also have a set of
APIs for specifying expected costs, quality and benefits. Using high-level programming
constructs the developer can focus on the logic of the hybrid compute unit, instead of
dealing with implementation-specific details of service units and complex algorithms
for establishing relationships among units.

Table 2 presents main programming constructs for relationships, each of which is
abstractly represented as a function which takes a number of arguments. There are two
types of functions: one that takes grounded variables (denoted as capital letters) as ar-
guments, and one that takes free variable (denoted as lower case letters) as arguments.
The latter is denoted with the symbol “?” in the function name. In the following, we
explain some possible algorithmic patterns for high-level constructs for relationships:

Similarity. The construct similarity(U, V, criteria) represents a similarity relation-
ship between units U and V with regard to a given criteria (namely “Cost”, “Quality”,

102 H.-L. Truong et al.

Table 2. High-level constructs for relationships in hybrid compute units

Construct Description

similarity(U,V, criteria) true if U is similar to V w.r.t. criteria
datadependency(U,D, [M,]V) U producing data D which is needed by V . The optional

medium is the location associated with a DaaS (e.g., a
Dropbox URL) where the data will be placed and shared.

controldependency(U,V) declares that V should execute only after U finishes.
locationdependency(U, V, ctx, path) declares that U and V should be linked in a given location

context (e.g., country or data center) with a path in that
context (e.g., city or server rack)

composition(structure, type,
U1, U2, · · · , Un)

construct a composition of U1, U2, ...,Un for a given struc-
ture model and type

forward(U, t, V) U forwards task t to V .
delegate(U, t, V) U delegates task t to V .
socialrelation(U,V, ctx, path) returns a distance relation between U and V in a given

social context.
?elasticity(U, [Func,]NFPs, x) x is a new form of U or x provides function Func to sat-

isfy given cost/quality/benefit models specified in NFPs.

“Archetype”, or “Function”). A variant of this construct is ?similarity(U, x, criteria)
which returns a set of units similar to U with regard to a given criteria and store them
in a free variable x. Pseudo algorithmic for this construct usages is shown below.

i f (c r i t e r i a == "Cost") re tu rn s imCos t (U, V) ;
e l s e i f (c r i t e r i a == "Quality") re tu rn s i m Q u a l i t y (U, V) ;
e l s e i f (c r i t e r i a == "Archetype" && U. t y p e == HBS && V. t y p e ==

HBS) re tu rn (U . Arche type == V. Arche type) ;
e l s e i f (c r i t e r i a == "Function") re tu rn U. F u n c t i o n ==V. F u n c t i o n ;
re tu rn f a l s e ;

Data Dependency. The construct datadependency(U,D,M, V) states that V de-
pends on U for data D and medium M where the data is stored. Variants of this
construct include ?datadependency(x,D,M, V) (find unit x which provides data D
needed by unit V), ?datadependency(U,D,M, x) (find unit x which needs data D),
and ?datadependency(U,D, x[c], V) (find a medium x that can be used to share D
between U and V satisfying a given constraint c). Pseudo algorithmic code for data
dependency constructs are shown in the following:

d a t a d e p e n d e n c y (U, D, M, V) {
Uni t s t o r a g e U n i t = M;
i f (M== n u l l) s t o r a g e U n i t = getDedaul tMedium ()
r e q u e s t U s t o r e s D i n t o s t o r a g e U n i t
/ / g e t t h e URI i n d i c a t i n g t h e l o c a t i o n o f t h e da ta
URI u r i = s t o r a g e U n i t . getURI (D)
r e q u e s t V a c c e s s D from u r i

}

Augmenting Complex Problem Solving with Hybrid Compute Units 103

Location Dependency. The construct locationdependency(U, V, ctx, path) estab-
lishes a location dependency between U and V based on a specific context ctx and
a specific path in cxt. Here ctx can represent human-specific location context, such
as the cloud platform providing HBS (e.g., based on Amazon Mechanical Turk) or the
country, or cloud data center locations hosting SBS (e.g., Amazon EC2 EU site). The
path can indicate further dependencies in ctx, such as the same city or the same server
rack in a data center.

Brokering. Delegation and forwarding relations are simply represented by
delegate(U, task, V) and forward(U, task, V) where task is a given task that
needs to be delegated or forwarded. A variant of the delegation construct is
?delegate(U, task, x) which finds a appropriate unit x that U can delegate task t to.
Pseudo code generated for delegate(U, task, x) are given as follows:

f o r u : l i s t U n i t ()
f o r f : u . l i s t F u n c t i o n ()

i f ((f . i n p u t == t a s k . i n) && f . o u t p u t == t a s k . o u t) {
u . e x e c u t e (t a s k) ;
U . w a i t U n t i l (t a s k . f i n i s h e d == t rue) ;
U . a d d I n p u t (t a s k . o u t) ;
re tu rn ;

}

Social Relations. The construct socialrelation(U, V, ctx, path) returns a distance
between U and V (HBS only) via social relations in a given social context, denoted
by (cxt, path). It can also be used to establish a social relation constraint between U
and V . The context ctx is a social network (e.g., Linkedin) and path is a specific group
in that network (e.g., data scientist). A negative distance (e.g., -1) indicates that there
is no social relation found between U and V , whilst a value of 0 indicates that they
belongs to the same given social group (e.g., in data science group on Linkedin). On
the other hand, a positive value indicates that they are related via some third parties
who are directly related with them, e.g., A is a Linkedin colleague of B, B is a col-
league of C, then the distance between A and C is 1. In order to find a HBS that is
socially related to a given HBS within a specified distance, one can use the construct
?socialrelation(U, x, distance, ctx, path). The pseudo algorithmic code for
?socialrelation(U, x, distance, ctx, path) construct is as follows:

? s o c i a l r e l a t i o n (U, x , d i s t a n c e , c tx , p a t h) {
f o r hbs : l i s t H B S ()

/ / g e t t h e subgraph o f t h e s o c i a l ne twork w i t h i n a c o n t e x t
Graph s o c i a l N e t = g e t S o c i a l N e t w o r k (c t x) ;
/ / f i n d t h e d i s t a n c e
i n t d = s o c i a l . f i n d D i s t a n c e (U, hbs , p a t h) ;
i f d <= d i s t a n c e

x . addElement (hbs) ;
re tu rn x ;

}

104 H.-L. Truong et al.

Elasticity. Elasticity construct can be used for different purposes. In the simplest case,
the construct ?elasticity(U, elasticityReq, x) returns a new unit x that offer similar
functions as unit U does but guarantees the elasticity requirement elasticityReq:

f o r v : l i s t U n i t () {
boolean r e s u l t = s i m i l a r i t y (U, v ,’’ f u n c t i o n ’’)
i f (r e s u l t)

E l a s t i c i t y C a p a b i l i t y e l a s C a p = v .
g e t E l a s t i c i t y C a p a b i l i t y () ;

r e s u l t = r e s u l t && (matches (e l a sCap , e l a s t i c i t y R e q) ;
i f (r e s u l t) re tu rn x ;

}

Elasticity construct ?elasticity(Func, elasticityReq, x) returns a (new) unit x that
offers function Func as long as the elasticity requirement is met.

5 Illustrating Examples and Comparison

5.1 Towards the Prototype Implementation

We are currently implementing our model of hybrid compute units and correspond-
ing programming elements and constructs in our Vienna Elastic Computing Model
(VieCOM)4 using Java. Figure 2 depicts the general architecture of our prototype in
which hybrid collective adaptive systems (hCAS) could be programmed using our pro-
gramming elements and constructs.

Fig. 2. The architecture of our approach

5.2 Illustrative Application

To illustrate the “expressiveness” of our programming models, we use an illustrative ap-
plication which is based on a real-world simulation application. Consider a multi-scale
simulation application that utilizes different software as simulation solvers and visu-
alization services. Typically, the simulation application includes several components,

4 dsg.tuwien.ac.at/research/viecom

dsg.tuwien.ac.at/research/viecom

Augmenting Complex Problem Solving with Hybrid Compute Units 105

Fig. 3. Expected simulation components and their interactions using both SBS and HBS

each of which is a SBS unit performing a particular task. These components can be
used to pre-process data, execute solver engines, post-process results and analyze final
results. In such an application, the quality of input, and the intermediate and final result-
ing data is crucial. Therefore, several components for evaluating quality of data (QoD)
can be introduced into the application. Currently, such QoD evaluation components are
rarely designed in the application. When redesigning the simulation application with
QoD evaluation components, we face a problem: evaluating QoD cannot be done fully
by SBS and we need to augment the application with human-based services to carry out
runtime quality evaluation [11]. Furthermore, whether the employment of software or
human-based service units for QoD evaluation is dependent on runtime aspects. Based
on this application, we present how our programming elements and high-level con-
structs can be useful for implementing complex tasks using cloud APIs for SBS and
HBS units.

Figure 3 describes expected simulation components and control flows using both
SBS and HBS. Typically, only four main components are described in the sim-
ulation, namely pre-processing, solving, post-processing, and data
analysis. However, by employing QoD-aware activities, we can introduce several
new components for evaluating QoD and utilizing QoD to control the simulation. In
the following we will illustrate how our programming elements and constructs can sim-
plify the development of such new components and their interactions. For the sake of
simplicity, we will not show the whole applications but illustrate main parts.

QoD Evaluation. QoDEvaluation components can be implemented different: (i) only
SBS is needed, for example, in the QoDEvaluation step before pre-processing,
(ii) SBS or HBS is used interchangeably, for example, in the QoDEvaluation after
pre-processing, or (iii) only HBS is used, e.g., in QoDEvaluation after solving.

Let preprocessingUnit be the SBS unit performing pre-processing activity.
Let qodEvalUnit be the service unit required for QoDEvaluation. The following
code excerpt shows how we can program two units to perform the QoD evaluation and
preprocessing:

106 H.-L. Truong et al.

/ / c r e a t e an i n s t a n c e o f s o f t w a r e u n i t
SBS p r e p r o c e s s i n g U n i t =new SBS () ;
F i l e d a t a =new F i l e (f i l eName) ;
/ / . . .
/ / c r e a t e a n o t h e r u n i t f o r QoD e v a l u a t i o n
SBS qodE va lUni t = new SBS () ;
A r r a y L i s t pa raT ype = new A r r a y L i s t () ;
pa raT ype . add (F i l e . c l a s s . getName ()) ;
/ / t h e u n i t must s u p p o r t q o d E v a l u a t e f u n c t i o n which r e t u r n s a

v a l u e i n [0 , 1]
qodE va lUni t . s e t F u n c t i o n ("qodEvaluate" , paraType , Double . c l a s s .

getName ()) ;
/ / . . .
A r r a y L i s t params = new A r r a y L i s t () ;
params . add (d a t a) ;
/ / c a l l qod e v a l u a t i o n u n i t
Double r e s u l t =(Double) qodE va lUni t . e x e c u t e ("qodEvaluate" , params)

;
O b j e c t p r e P r o c e s s e d D a t a = n u l l ;
/ / c a l l p r e p r o c e s s i n g a c t i v i t y i f QoD i s s a t i s f i e d
i f (r e s u l t > 0 . 9) {

p r e P r o c e s s e d D a t a= p r e p r o c e s s i n g U n i t . e x e c u t e ("
preprocessing" , params) ;

}

Specifying Location Dependency. Let solverUnit be the solver SBS unit. The
following code excerpt shows how to make sure that the preprocessingUnit and
solvingUnit should be colocated in the same data center in order to minimize the
data transfer among them:

/ / c r e a t e a new s o f t w a r e u n i t f o r s i m u l a t i o n s o l v e r s
SBS s o l v e r U n i t = new SBS ("solver") ;
/ / make s u r e t h e s o l v e r u n i t and t h e p r e p r o c e s s i n g u n i t are i n

t h e same data c e n t e r
R e l a t i o n s h i p . l o c a t i o n D e p e n d e n c y (p r e p r o c e s s i n g U n i t , s o l v e r U n i t ,"

AmazonEC2:Europe") ;
A r r a y L i s t params1 = new A r r a y L i s t () ;
params1 . add (p r e P r o c e s s e d D a t a) ;
/ / e x e c u t e s o l v e r u n i t w i t h i n p u t da ta from p r e p r o c e s s i n g u n i t
O b j e c t s o l v e r R e s u l t = s o l v e r U n i t . e x e c u t e ("solving" , params1) ;

Programming Elasticity and Collectiveness in Solving Steps. Using different con-
structs, the programmer can invoke different types of units to deal with different situa-
tions. The following code excerpt shows examples of using ICU to check why the data
is bad or to find solvers that can handle dirty data as long as they meet cost and quality
requirements:

Augmenting Complex Problem Solving with Hybrid Compute Units 107

Double q o d P r e P r o c e s s e d D a t a =
(Double) qodE va lUni t . e x e c u t e ("qodEvaluate" , params1) ;

/ / g e t an ICU t o check why da ta i s bad
i f (q o d P r e P r o c e s s e d D a t a < 0 . 5) {
/ / i n i t i a t e a new u n i t

ICU d a t a S c i e n t i s t = new ICU () ;
/ / c r e a t e a dropbox p l a c e f o r s h a r i n g da ta

DropboxAPI<WebAuthSession> scuDropbox = n u l l ;
/ /
DropboxAPI . DropboxLink l i n k = scuDropbox . s h a r e ("/hbscloud") ;

/ / ask t h e c l o u d o f HBS t o i n v o k e t h e ICU
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
vieCOMHBS . s t a r tHBS (d a t a S c i e n t i s t) ;
HBSMessage msg = new HBSMessage () ;
msg . se tMsg ("pls. use shared dropbox for communication " + l i n k .

u r l) ;
vieCOMHBS . sendMessageToHBS (d a t a S c i e n t i s t , msg) ;

} e l s e i f (q o d P r e P r o c e s s e d D a t a < 0 . 7) {
/ / i n t h i s case , we j u s t need a s o f t w a r e t o c l e a n t h e da ta

SBS d a t a C l e a n s i n g = new SBS ("datacleaner") ;
/ / . . .

} e l s e i f (q o d P r e P r o c e s s e d D a t a < 0 . 9) {
/ / s p e c i f y some s t a t i c p r o p e r t i e s o f t h e s o l v e r
SBS s o l v e r U n i t 2 = new SBS ("solver") ;
s o l v e r U n i t 2 . c a p a b i l i t i e s . p u t ("DIRTY_DATA" , Boolean . va lueOf (

t rue)) ;
/ / s p e c i f y e x p e c t e d c o s t and accuracy s u p p o r t
CostModel cos tMode l = new CostModel () ;
cos tMode l . p r i c e = 100 ; / / max i n EUR
cos tMode l . usageTime = 1000 ∗ 60 ∗ 6 0 ; / / 1 hour
Q u a l i t y q u a l i t y = new Q u a l i t y () ;
q u a l i t y . name = Q u a l i t y .ACCURACY;
q u a l i t y . v a l u e = 0 . 9 5 ; / / minimum v a l u e
A r r a y L i s t n f p s = new A r r a y L i s t () ;
n f p s . add (q u a l i t y) ; n f p s . add (cos tMode l) ;
/ / f i n d s o l v e r s met q u a l i t y and c o s t needs
SBS e l a s t i c S o l v e r U n i t = (SBS) R e l a t i o n s h i p . e l a s t i c i t y (

s o l v e r U n i t 2 , n f p s) ; O b j e c t s o l v e r R e s u l t 2 =
e l a s t i c S o l v e r U n i t . e x e c u t e ("solving" , params1) ;

} e l s e {
/ /

}

Forwarding and Delegating Analysis Request. After post-processing, in data
analysis, an analyst can capture an unknown pattern which he/she can forward
to his/her research connectors, who have a social relation to him/her in Linkedin.

108 H.-L. Truong et al.

A professor may receive this pattern and he/she delegates the analysis tasks to his/her
SCU, a set of graduate students. The following code excerpt shows the above-mentioned
illustrative tasks:

ICU d a t a S c i e n t i s t = new ICU () ;
/ /
ICU f U n i t = new ICU () ;
R e l a t i o n s h i p . s o c i a l r e l a t i o n (d a t a S c i e n t i s t , fUni t , 1 ,"Linkedin:

DataScienceGroup/TUWien") ;
R e l a t i o n s h i p . f o r w a r d (da t a , f U n i t) ;
/ / . . .

SCU studentSCU = new SCU () ;
/ / . .
R e l a t i o n s h i p . d e l e g a t e (da t a , s tudentSCU) ;

5.3 Comparison of Programming Models for Cloud Applications

We also conduct a comparison of our approach with other prominent programming
frameworks for cloud applications. The set of features that are considered in this com-
parison is:

– Proactive human service: support for proactively invoking human-based service
units through human’s capabilities are utilized.

– Elasticity: support for adapting services against changing non-functional parame-
ters.

– Team interaction/collaborative patterns: support for interactions and/or collabora-
tion patterns among different services to establish teamwork.

– Social structure/relations: support to request services based on social structure
and/or relations.

– Unified framework for human and software: allow the developer to naturally pro-
gram software services and human-based services in similar ways.

– Cross-platform: work with any cloud platform that hooks into the framework and
and can support execution across several platforms in the same program.

Programming Feature Crowdforge TurKit Jabberwocky JClouds OpenStack VieCOM

Proactive human service N N Y N N Y
Explicit cost/benefits/quality N N N N N Y
Elasticity N N N N N Y
Team interaction/collabora-
tive patterns

N N N N N Y

Social structure/relations N N Y N N Y
Unified framework for hu-
man and software

N N Y N N Y

Cross-platform N N Y Y Y Y

Fig. 4. Comparison of different programming models for cloud applications

Augmenting Complex Problem Solving with Hybrid Compute Units 109

Figure 4 describes our comparison. It is not a strange result that, conceptually, our
approach (VieCOM) supports several features, in particular, covering both SBS and
HBS. The main reason is that currently existing frameworks focus either on SBS or
HBS. While Jabberwocky also supports SBS and HBS, it does not support programming
elements for defining costs, benefits and quality as well as elasticity relations.

6 Conclusions and Future Work

Emerging pay-per-use models, on-demand service acquisition, and advanced human-
machine integration techniques enable the provisioning of human and machine capabil-
ities under the same service model to support the development of complex applications.
In this paper, we investigate high level programming supports for solving complex prob-
lems using software-based and human-based compute units. We have presented a range
of possible fundamental programming elements abstracting software and people and
several possible high-level constructs. As the paper mainly discusses about high-level
models and constructs, our validation is limited to illustrating examples and compar-
isons. We believe that programming elements and high-level programming constructs
presented in this paper can be foundations for the development of domain-specific lan-
guages and software engineering processes for hybrid compute units. Our future work
involves further developing our prototype and tooling support for the proposed high-
level programming constructs.

Acknowledgment. The work mentioned in this paper is partially supported by the EU
FP7 SmartSociety.

References

1. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: crowdsourcing complex work.
In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Tech-
nology, UIST 2011, pp. 43–52. ACM, New York (2011)

2. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: tools for iterative tasks on me-
chanical turk. In: Proceedings of the ACM SIGKDD Workshop on Human Computation,
HCOMP 2009, pp. 29–30. ACM, New York (2009)

3. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins.
Proc. VLDB Endow. 5, 13–24 (2011)

4. Truong, H.-L., Dustdar, S., Bhattacharya, K.: Programming hybrid services in the cloud. In:
Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 96–110.
Springer, Heidelberg (2012)

5. Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The Aneka platform and qos-
driven resource provisioning for elastic applications on hybrid clouds. Future Generation
Comp. Syst. 28(6), 861–870 (2012)

6. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.: DEDALUS:
Datalog in time and space. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog
2010. LNCS, vol. 6702, pp. 262–281. Springer, Heidelberg (2011)

7. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment
for structured social computing. In: Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST 2011, pp. 53–64. ACM, New York (2011)

110 H.-L. Truong et al.

8. Minder, P., Bernstein, A.: crowdLang: A programming language for the systematic explo-
ration of human computation systems. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J.,
Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137. Springer, Heidelberg (2012)

9. Fehling, C., Leymann, F., Ruetschlin, J., Schumm, D.: Pattern-based development and man-
agement of cloud applications. Future Internet 4(1), 110–141 (2012)

10. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes. IEEE Internet
Computing 15(5), 66–71 (2011)

11. Reiter, M., Breitenbücher, U., Dustdar, S., Karastoyanova, D., Leymann, F., Truong, H.L.: A
novel framework for monitoring and analyzing quality of data in simulation workflows. In:
eScience, pp. 105–112. IEEE Computer Society (2011)

	Augmenting Complex Problem Solving with Hybrid Compute Units
	1 Introduction
	2 Background and Related Work
	3 Fundamental Elements for Hybrid Compute Units
	3.1 Service-Based Compute Units
	3.2 Relationships between Service Units
	3.3 Quality, Cost, and Benefits

	4 High-Level Constructs for Hybrid Compute Units
	5 Illustrating Examples and Comparison
	5.1 Towards the Prototype Implementation
	5.2 Illustrative Application
	5.3 Comparison of Programming Models for Cloud Applications

	6 Conclusions and Future Work
	References

