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Abstract. Effective training of neural networks requires much data. In
the low-data regime, parameters are underdetermined, and learnt net-
works generalise poorly. Data Augmentation alleviates this by using ex-
isting data more effectively, but standard data augmentation produces
only limited plausible alternative data. Given the potential to generate
a much broader set of augmentations, we design and train a generative
model to do data augmentation. The model, based on image conditional
Generative Adversarial Networks, uses data from a source domain and
learns to take a data item and augment it by generating other within-
class data items. As this generative process does not depend on the
classes themselves, it can be applied to novel unseen classes. We demon-
strate that a Data Augmentation Generative Adversarial Network (DA-
GAN) augments classifiers well on Omniglot, EMNIST and VGG-Face.

1 Introduction

Over the last decade Deep Neural Networks have enabled unprecedented perfor-
mance on a number of tasks. They have been demonstrated in many domains [12]
including image classification [25, 17, 16, 18, 21], machine translation [44], natu-
ral language processing [12], speech recognition [19], and synthesis [42], learning
from human play [6] and reinforcement learning [27, 35, 10, 40, 13] among others.
In all cases, very large datasets have been utilized, or in the case of reinforce-
ment learning, extensive play. In many realistic settings we need to achieve goals
with limited datasets; in those cases deep neural networks seem to fall short,
overfitting on the training set and producing poor generalisation on the test set.

Techniques have been developed over the years to help combat overfitting
such as L1/L2 reqularization [28], dropout [20], batch normalization [23], batch
renormalisation [22] or layer normalization [2]. However in low data regimes,
even these techniques fall short, since the the flexibility of the network is so
high. These methods are not able to capitalise on known input invariances that
might form good prior knowledge for informing the parameter learning.

It is also possible to generate more data from existing data by applying var-
ious transformations [25] to the original dataset. These transformations include



2 Augmenting Image Classifiers using DAGAN

random translations, rotations and flips as well as addition of Gaussian noise.
Such methods capitalize on transformations that we know should not affect the
class. This technique seems to be vital, not only for the low-data cases but for
any size of dataset, in fact even models trained on some of the largest datasets
such as Imagenet [7] can benefit from this practice.

Typical data augmentation techniques use a limited set of known invariances
that are easy to invoke. Here, we recognize that we can learn a model of a
much larger invariance space through training a form of conditional generative
adversarial network (GAN) in some source domain. This can then be applied
in the low-data domain of interest, the target domain. We show that such a
Data Augmentation Generative Adversarial Network (DAGAN) enables effective
neural network training even in low-data target domains. As the DAGAN does
not depend on the classes themselves it captures the cross-class transformations,
moving data-points to other points of equivalent class.

In this paper we train a DAGAN and then evaluate its performance on low-
data tasks using standard stochastic gradient descent neural network training.
We use 3 datasets, the Omniglot dataset, the EMNIST dataset and the more
complex VGG-Face dataset. The DAGAN trained on Omniglot was used for
augmenting both the Omniglot and EMNIST classifiers to demonstrate benefit
even when transferring between substantially different domains. The VGG-Face
dataset provides a considerably more challenging test for the DAGAN. VGG-
Face was used to evaluate whether the DAGAN training scheme could work on
human faces, which are notoriously hard to model using a generator. Furthermore
the usefulness of the generated faces was measured when used as augmentation
data in the classification training.

2 Background

Transfer Learning and Dataset Shift: The term dataset shift [36] generalises
the concept of covariate shift [33, 37, 38] to multiple cases of changes between
domains. For data augmentation, we may learn a generative distribution that
maintains class consistency on one set of classes and apply that consistency trans-
formation to new unseen classes, on the understanding the the transformations
that maintain consistency generalise across classes.

Generative Adversarial Networks: GANs [11], and specifically Deep
Convolutional GANs (DCGAN) [29] use the ability to discriminate between
true and generated examples as a learning objective for generative models. GAN
approaches can learn complex joint densities. Recent improvements in the opti-
mization process [1, 14, 3] have reduced some of the failure modes of the GAN
learning process as well as produced objectives that correlate well with sample
quality [1, 14]. Furthermore image conditional GANs have been used to achieve
image to image translation [24], as well as augment datasets [5, 45, 34]. How-
ever the work relating to the enhancement of datasets only uses the GAN to
either fine tune simulated data or generate data by attempting to reconstruct
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existing data points. Whereas our model is explicitly trained to produce data
augmentations as a manifold of samples around real data samples.

As demonstrated in [14], the Wasserstein formulation for training GANs has
shown superior sample diversity and quality in multiple instances. Additionally
the Wasserstein GANs (WGAN) with Gradient Penalty (GP) have the addi-
tional benefit of being trainable using advanced architectures such as ResNets
[16]. This is especially important since most GAN formulations can only be
successfully trained using very specific and often less expressive model architec-
tures. Furthermore WGAN with GP discriminator losses have been empirically
observed to correlate with sample quality. Taking into consideration available
state of the art methods including standard GAN, LS-GAN, WGAN with clip-
ping and WGAN with Spectral normalization, we focus on the use WGAN with
GP training in this paper due to its versatility in terms of architectures and its
superior qualitative performance. Our own experiments with other approaches
confirm the stated benefits; we found WGAN with GP to produce the most sta-
ble models with the best sample quality both qualitatively and quantitatively.

Data Augmentation: Data augmentation similar to [25] is routinely used
in classification problems. Often it is non-trivial to encode known invariances
in a model. It can be easier to encode those invariances in the data instead
by generating additional data items through transformations from existing data
items. For example the labels of handwritten characters should be invariant to
small shifts in location, small rotations or shears, changes in intensity, changes
in stroke thickness, changes in size etc. Almost all cases of data augmentation
are from a priori known invariance. Various attempts at augmenting features

instead of data are investigated in [39, 8]. Moreover, the effectiveness of data
augmentation has also been shown in other domains except images. Two such
domains is sound [32] and text [31]. There has been little previous work that
attempts to learn data augmentation strategies. One paper that is worthy of
note is the work of [15], where the authors learn augmentation strategies on a
class by class basis. Additional papers that attempt to learn models for data
augmentation include [9, 4, 30]. These approaches do not transfer to the setting
where completely new classes are considered.

3 Model

If we know that a class label should be invariant to a particular transformation
then we can apply that transformation to generate additional data. If we do
not know what transformations might be valid, but we have other data from re-
lated problems, we can attempt to learn valid transformations from those related
problems that we can apply to our setting. This is an example of meta-learning;
we learn on other problems how to improve learning for our target problem.

3.1 Model Overview

Consider a collection of datasets [(xc
i |i = 1, 2, . . . N c)|c ∈ C], with each dataset

labelled by c, the class, taken from the set of classes C, and with each element
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in a dataset c indexed by i and denoted by xc
i . Let x

c
i ∈ X, the space of inputs.

In this paper X will be a space of input images.
The goal is to learn a mapping between a conditional sample xc

i of a certain
class c to other samples xc

j from that same class, using training data [(xc
i |i =

1, 2, . . . N c)|c ∈ C]. To do so we learn a differentiable function G which we
call a generator. Given some random standard Gaussian vector z, we require a
mapping G : (xc

i , z) such that, ∀j, xc
j has high probability under the density of

z mapped through G. Since G is differentiable, z maps out a whole manifold in
X space associated with input xc

i in a class consistent way. Yet G does not have
access to the class c itself, thus enabling the DAGAN to generalize to unseen
classes. We parameterize our generator function x̃ = G(xc

i , z) as a neural network
and we train it as a GAN using the WGAN with GP formulation. Training a
GAN also requires a discriminator network, denoted as D, to be trained along
with the generator network. The discriminator network attempts to discriminate
between real and fake samples whilst the generator attempts to minimize the
discriminator’s performance in guessing real from fake.

3.2 Model Objective Definition

We modify the WGAN with GP formulation to account for the fact that we
are using an image-conditional GAN with a discriminator that takes as input
2 images, instead of 1. Figure 1 shows the high level overview of our training
setup. Our generator and discriminator objectives can be expressed as:

Ldiscr = E
x̃∼Pg

[D(xc
i , x̃)]− E

X∼Pr

[D(xc
i , x

c
j)] + λ E

x̂∼Px̂

(||∇x̂D(xc
i , x̂)||2 − 1) (1)

Lgen = − E
x̃∼Pg

[D(xc
i , x̃)], (2)

where x represents real samples, xc
i and xc

j represent two separate instances of
samples from class c, x̃ represents generated samples from the generator G. x̂
is, as defined in [14], randomly sampled points on linear interpolations between
the samples of the real distribution Pr and generated distribution Pg. The only
difference from the original WGAN with GP formulation is the use of 2 entries
in the discriminator arguments, one for the conditional sample xc

i and one for
the target sample xc

j (for real case) or x̃ (for fake case).

3.3 Architectures

We chose to use a state of the art Densenet discriminator and, for the gen-
erator, a powerful combination of two standard networks, UNet and ResNet,
which we henceforth call a UResNet. The code for this paper is available3, and
that provides the full implementation of the networks. However we describe the
implementational details here.

3 https://github.com/AntreasAntoniou/DAGAN
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Fig. 1. DAGAN Architecture. Left: the generator network is composed of an encoder
taking an input image and projecting it to a lower dimensional manifold. A random
vector (z) is transformed and concatenated with the bottleneck vector; these are both
passed to the decoder network which generates a within-class image. Right: the adver-
sarial discriminator network is trained to discriminate between the samples from the
real distribution (two real images from the same class) and the fake distribution (a real
sample and a generated sample). Adversarial training enables the network to generate
within-class images that look different enough to be considered a different sample.

The UResNet generator has a total of 8 blocks, each block having 4 convo-
lutional layers (with leaky rectified linear (ReLU) activations and batch renor-
malisation (batchrenorm) [22]) followed by one downscaling or upscaling layer.
Downscaling layers (in blocks 1-4) were convolutions with stride 2 followed by
leaky ReLU, batch normalisation and dropout. Upscaling layers were imple-
mented by employing a nearest neighbour upscale, followed by a convolution,
leaky ReLU, batch renormalisation and dropout. For Omniglot and EMNIST
experiments, all layers had 64 filters. For the VGG-Face experiments the first 2
blocks of the encoder and the last 2 blocks of the decoder had 64 filters and the
last 2 blocks of the encoder and the first 2 blocks of the decoder 128 filters.

In addition each block of the UResNet generator had skip connections. As
with a standard ResNet, we used either a summation skip connection between
layers with equivalent spacial dimensions or a strided 1x1 convolution for between
layers with different spacial dimensions, thus bypassing the between block non-
linearity to help gradient flow. Finally skip connections were introduced between
equivalent sized filters at each end of the network (as with UNet).

We used a DenseNet [21] discriminator, using layer normalization instead
of batch normalization; the latter would break the assumptions of the WGAN
objective function (as mentioned in [[14] chapter 4). The DenseNet was composed
of 4 Dense Blocks and 4 Transition Layers, as defined in [21]. We used a growth
rate of k = 64 and each Dense Block had 5 convolutional layers. We removed
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the 1x1 convolutions usually before the 3x3 convolutions as we observed this
improved sample quality. For the discriminator we used dropout at the last
convolutional layer of each Dense Block; this too improved sample quality.

For each classification experiment we used a DenseNet classifier composed of
4 Dense Blocks and 4 Transition Layers with a k = 64, each Dense Block had
3 convolutional layers within it. The classifiers were a total of 17 layers (i.e. 16
layers and 1 softmax layer). Furthermore we applied a dropout of 0.5 on the last
convolutional layer in each Dense Block.

4 Datasets and Experiments

We tested the DAGAN augmentation on 3 datasets: Omniglot, EMNIST, and
VGG-Face. All datasets were split randomly into source domain sets, validation
domain sets and test domain sets.

For classifier networks, data for each character (handwritten or person) was
further split into 2 test cases (for all datasets), 3 validation cases and a varying
number of training cases depending on the experiment. Classifier training was
done on the training cases for all examples in all domains; hyperparameter choice
used validation cases. Test performance was reported only on the test cases for
the target domain set. Case splits were randomized across each test run.

The Omniglot data [26] was split into source domain and target domain
similarly to the split in [41]. The class ids were sorted in an increasing manner.
The first 1200 were used as a source domain set, 1201-1412 as a validation domain
set and 1412-1623 as a target domain test set.

The EMNIST data was split into a source domain that included classes 0-34
(after random shuffling of the classes), the validation domain set included classes
35-42 and the test domain set included classes 42-47. Since the EMNIST dataset
has thousands of samples per class we chose only a subset of 100 for each class,
so that we could make our task a low-data one.

In the VGG-Face dataset case, we randomly chose 100 samples from each
class that had 100 or more, uncorrupted images, resulting in 2396 of the full 2622
classes available in the dataset. After shuffling, we split the resulting dataset into
a source domain that included the first 1802 classes. The test domain set included
classes 1803-2300 and the validation domain set included classes 2300-2396.

4.1 Training of DAGAN in source domain

A DAGAN was trained on Source Omniglot domains using a variety of archi-
tectures: standard VGG, U-Net, and ResNet inspired architectures. Increasingly
powerful networks proved better generators, with the UResNet described in Sec-
tion 3.3 generator being our model of choice. Examples of generated data are
given in Figure 2. We trained each DAGAN for 200K iterations, using a learning
rate of 0.0001, and an Adam optimizer with Adam parameters of β1 = 0 and
β2 = 0.9. We used a pretrained DenseNet classifier to quantify the performance
of the generated data in terms of how well they classify in real classes. We chose
the model that had the best validation accuracy performance on this classifier.
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Fig. 2. An Interpolated spherical subspace[43] of the GAN generation space on Om-
niglot and VGG-Face respectively. The only real image (xc

i ) in each figure is the one in
the top-left corner, the rest are generated to augment that example using a DAGAN.

.

4.2 Classifiers

The primary question of this paper is how well the DAGAN can augment vanilla
classifiers trained on each target domain. A DenseNet classifier (as described in
Section 3.3) was trained first on just real data (with standard data augmenta-
tion) with 5 to 100 examples per class (depending on dataset). In the second
case, the classifier was was also trained on DAGAN generated data. The real or
fake label was also passed to the network, via adding 1 filter before each convolu-
tion of either zeros (fake) or ones (real) to enable the network to learn how best
to emphasise true over generated data. This last step proved crucial to maximiz-
ing the potential of the DAGAN augmentations. In each training cycle, varying
numbers of augmented samples were provided for each real example (ranging
from 1-10). The best hyperparameters were selected via performance on the val-
idation domain. The classifier was trained with standard augmentation: random
Gaussian noise was added to images (with 50% probability), random shifts along
x and y axis (with 50% probability), and random 90 degree rotations (all with
equal probability of being chosen). Classifiers were trained for 200 epochs, with
a learning rate of 0.001, and an Adam optimizer with β1 = 0.9 and β2 = 0.99.
The results on the held out test cases from the target domain is given in Table 1.
In every case the augmentation improves the classification.

5 Conclusions

Data augmentation is a widely applicable approach to improving performance
in low-data settings. The DAGAN is a flexible model to automatically learn
to augment data. We demonstrate that a DAGAN can improve performance
of classifiers even after standard data-augmentation. Furthermore, it is worth
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Samples Per Class Augment with DAGAN Omniglot EMNIST VGG-Face

5 False 68.99% - 04.47%

5 True 82.13% - 12.59%

10 False 79.41% - -

10 True 86.22% - -

15 False 81.97% 73.93% 39.33%

15 True 87.42% 76.07% 42.93%

25 False - 78.35% 57.99%

25 True - 80.26% 58.46%

50 False - 81.51% -

50 True - 82.78% -

100 False - 83.78% -

100 True - 84.80% -
Table 1. Classification Results: All results are averages over 5 independent runs. The
DAGAN augmentation improves the classifier performance in all cases. Test accuracy
is the result on the test cases in the test domain. Here for the purposes of compactness
we omit the number of generated samples per real sample hyperparameter since that
would produce more than 100 rows of data. We should note however that the optimal
number of generated samples per real image was found to be 3.

noting that a DAGAN can be easily combined with other model types, including
few shot learning models. Further work is needed to evaluate the usefulness in
the few shot learning. However the flexibility of the DAGAN makes it a powerful
means of enhancing models working with a small amount of data.
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