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Augmenting Motor Imagery Learning for

Brain-Computer Interfacing using Electrical

Stimulation as Feedback
Saugat Bhattacharyya, Maureen Clerc and Mitsuhiro Hayashibe

Abstract—Brain-computer Interfaces (BCI) and Functional
electrical stimulation (FES) contribute significantly to induce
cortical learning and to elicit peripheral neuronal activation
processes and thus, are highly effective to promote motor
recovery. This study aims at understanding the effect of FES
as a neural feedback and its influence on the learning process
for motor imagery tasks while comparing its performance with
a classical visual feedback protocol. The participants were
randomly separated into two groups: one group was provided
with visual feedback (VIS) while the other received electrical
stimulation (FES) as feedback. Both groups performed various
motor imagery tasks while feedback was provided in form of a bi-
directional bar for VIS group and targeted electrical stimulation
on the upper and lower limbs for FES group. The results shown in
this paper suggest that the FES based feedback is more intuitive
to the participants, hence, the superior results as compared to the
visual feedback. The results suggest that the convergence of BCI
with FES modality could improve the learning of the patients
both in terms of accuracy and speed and provide a practical
solution to the BCI learning process in rehabilitation.

Index Terms—Brain-Computer Interfacing, Common Spatial
Patterns, Functional Electrical Stimulation, Motor Imagery,
Feedback.

I. INTRODUCTION

Brain-computer Interfaces (BCI) measures the neural activ-

ity of the brain to create a direct communication channel to

peripheral devices in form of robots, prosthesis, wheelchair

or a computer controlled by the user [1], [2]. Thus, it opens

up a new frontier in rehabilitation that would allow the

direct control of devices by patients with neural disorders,

such as stroke, amyotrophic lateral sclerosis, spinal injury

and physical disability [3], [4]. Intentions of the user are

generated from the brain in form of electrical impulses or

changes in the cerebral blood flow which can be captured by

numerous recording modalities, like Electroencephalography,

Magnetoencephalography or Functional Magnetic Resonance

Imaging. Electroencephalography (EEG) is the most widely

used recording technique in the BCI domain because it is

inexpensive, portable, easily available and has high temporal

resolution [2], [5].

The data acquired from the EEG are used to generate the

control signal for the BCI in real time but the performance
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of the BCI relies on the users’ ability to modulate their brain

signals at will. Thus, users participating in BCI experiments

undergo an initial training to develop the skill of voluntary

brain modulation for a specific cognitive task. One such

example is the modulation of rhythmic brain activity in the

sensorimotor areas by motor imagery, where the user induces

a desynchronization and synchronization (ERD/ERS) in the

brain rhythms due to imagining or planning the execution

of movement of a certain limb. To provide to the user an

indication of his/her voluntary brain modulation, a feedback

in form of visual [6], [7], auditory [8] or (vibro-)tactile [9],

[10] medium can be provided during training. Feedback in the

form of a visual medium is used by most BCI researchers [7]

but it is a matter of debate about which feedback modality

is most beneficial to the user. There may also be cases when

the visual system may be compromised due to a disease or

by the nature of the system that the user wishes to control

and hence, a different form of feedback must be provided

by the system. A study by [7] evaluated the performance of

auditory, vibrotactile and visual feedback where the results

showed a high variability among individuals. They reached a

conclusion that the feedback modality for BCI systems must

be personalized for the user. In this paper, we have employed

Functional Electrical Stimulation (FES) [11],[12] as a form of

feedback in BCI and verified its feasibility as a natural sensory

feedback compared to the visual feedback.

FES is often applied during rehabilitation to directly engage

muscles located in the impaired section of the body by

reconstructing certain daily life skills through direct electrical

stimulation. Previous studies have reported the ability of FES

to elicit recovery of skills such as standing up, grasping,

cycling and walking by re-training the users on these tasks,

but most FES based rehabilitative systems do not employ the

cortical activity of the patient [13], [14], [15], [16].

One can employ Functional Electrical Stimulation (FES)

targeting specific muscle groups as a feedback modality in

BCI research. An existing hypothesis on augmented movement

therapy by FES states that recovery occurs mostly due to

cortical plasticity and partly due to peripheral mechanisms

[17]. This has been confirmed on motor learning tasks in-

volving transcranial magnetic stimulation [18] and functional

magnetic resonance imaging [19]. Thus, it is quite natural

to combine FES rehabilitation with BCI systems, where the

FES can activate the sensory channel to provide a maximal

inflow of information into the brain and the BCI would

provide an efferent outflow of motor commands from the brain
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to the targeted region in the body (for example, the upper

limb) to close the motor loop [20] and this could lead to an

improvement of learning for the targeted group.

Studies in [21],[22] have explored the potential of imple-

menting BCI in functional recovery using FES by directly

linking the cortical response of the user to muscular response.

To date, most BCI-FES systems are used to activate the

FES stimulation device through motor imagery commands

generated by the BCI. The first study to report restoration

of hand grasp was Pfurtscheller et al. in [23] where they

combined BCI with FES transmitted via surface electrode. The

effects of FES on ERD/ERS patterns during reconstruction

of the motor activity was studied by Müller et al. in [24].

EEG/MEG studies undertaken by [22],[25] had also reported

the presence of ERD/ERS patterns during an FES induced

hand or leg movement tasks. Zhao et al. in [26] demonstrated

the feasibility of BCI combined with upper extremity FES

to restore functions for patients suffering from tetraplegia.

Pistohl et al. in [27] reported the improvement of angular

accuracy of movements when the participants were provided

with additional artificial proprioceptive feedback rather than

using visual feedback but this did not increase the overall

accuracy determined from the average distance between the

cursor and the target.

The study of effect of FES on the motor cortex and its

influence on motor imagery learning is an open area of

research. It is interesting to study whether FES has any positive

influence as feedback in learning movement-related tasks and,

in a more broader sense, for BCI based rehabilitation. Our

previous study [28] on FES in the form of a neuro-feedback

in BCI has suggested a positive influence of FES during

motor learning on the subjects. A steady increase in the

classification performance during FES-induced feedback as

compared to visual feedback was reported. On incorporating

electrical stimulation as neuro-feedback, the subjects in this

experiment were reported to be more focused in performing

the tasks, especially for the longer sessions.

The primary aim of this paper is to augment the performance

of the BCI classifier through FES as a neural feedback and

improve the learning process for motor imagery tasks. To

meet our goal, electrical stimulation was provided as feedback

during two separate but consecutive experimental conditions:

when the participants are in a relaxed state (not performing

any task) followed by when the participants are performing

some active motor imagery task. The former relaxed session

is assumed to be a baseline for the later active sessions. The

novelty of this paper is the improvement observed in the

learning process through electrical stimulation by removing

the sensory reaction generated in the brain during stimulation.

We also compare the learning during FES and visual feedback.

Replacing visual feedback by electrical stimulation could

improve the focus of the participants in performing the tasks

and augment the performance of the motor task at hand. This

in turn would improve the learning of the patients both in

terms of accuracy and speed and if successful, it can provide a

practical solution to the motor recovery process of the patient.

The rest of the paper is as follows: Section II provides an in-

sight on the experiment protocol adopted for the study of FES
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Fig. 1. The locations of the electrodes (or channels) used in the online neuro-
feedback experiment.

as neuro-feedback during a motor imagery task. Section III

illustrates the signal processing techniques adopted to extract

relevant features which are to be decoded by the classifier

designed specifically for this study. Section IV provides a

detailed discussion on the results and their significance. A

discussion is included in Section V followed by the concluding

remarks in Section VI.

II. EXPERIMENT DESCRIPTION

A. Data Acquisition

The EEG signals were recorded from 17 channels covering

the fronto-central, central, centro-parietal and parietal regions

(Fz, FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz,

CP4, P3, Pz, P4) (Fig. 1) arranged on the basis of the standard

10-20 system using a TMSI Refa8 amplifier with a sampling

rate of 256Hz.

Surface electrical stimulation is provided to the anterior

compartment of the upper-limbs and the triceps surae muscle

group for the lower-limbs to induce wrist flexion and foot

plantar flexion, corresponding to the mental task to perform.

We have used two rectangular electrodes of size 5 × 9 cm

to relay the stimulation for each limb. For the forearms, the

electrodes were placed on the anterior compartment of the

forearm for wrist flexion direction. One electrode was placed

approximately 3cm distal from wrist joint, and the other was

placed 1cm distal from elbow joint for arm. For stimulation of

the triceps surae muscle group to induce foot plantar flexion,

one electrode is approximately placed 4cm distal from knee

joint, and the other one is placed 14cm distal from knee joint.

The stimulus is delivered by a computer-controlled stimulator

(ProStim, MXM, France) with pulse width (PW) modulation

[29](PW max = 400 µs) at a constant amplitude and frequency

(20 Hz). Each stimulation sequence consists of a trapezoidal

envelope train of PW (0.4 s ramp-up, 1.2 s plateau, 0.4 s

ramp-down).

OpenVIBE software [30] was used to record the signal,

display the cues, pre-process, analyze and classify the EEG,

and to send the commands to the stimulator through MATLAB

software during the online run of the experiment. The offline

analysis of the EEG is done in MATLAB.

B. Participants

For this study 16 participants (13 male and 3 female) were

recruited with a mean age of 28 years and standard deviation
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of 9 years. 14 of the 16 participants had no prior experience

with motor imagery BCI experiments and 2 participants had

taken part in a single motor imagery experiment before this

current experiment. The experiments took place in INRIA

Sophia Antipolis. The electrical stimulation provided to the

FES group was kept at a maximum of 25mA and before the

onset of the experiment, the participants were asked to tune

the intensity of the stimulation to a comfortable level of their

choosing and this intensity was used for the whole duration of

the experiment. The participants performed the experiment in

isolation while sitting in a comfortable chair placed in front of

a display monitor placed at eye level. Prior to the experiments,

the subjects are informed about the purpose of the experiment

and the tasks they have to perform. After the experiment, the

participants were asked to provide a subjective assessment, in a

scale of 1-10, of ‘how focussed they were while performing the

tasks’. All participants signed an informed consent form before

taking part in the study, which was approved by institutional

ethical committee.

C. Task Description

The participants performed the following cued motor im-

agery tasks: left hand, right hand, left foot and right foot. In

this experiment, the participants were randomly placed in two

groups: one group was provided with only visual feedback

(VIS) and the other group received only FES feedback during

the motor imagery tasks. One of the two participant with prior

experience with BCI was placed in the FES group and the

other was placed in the VIS group. In this way each group

was exclusively trained with only one type of feedback.

The group with FES feedback performed two different

sets of experiments: 1) the participant performed the motor

imagery tasks while receiving electrical stimulation as feed-

back, which we call FES-Active (ACT), and 2) the participants

performed no motor imagery task and received the electrical

stimulation as a cue, which we call FES-Passive (PAS). A

session provides instructions to the participant through a

sequence of visual cues to execute one of the four motor tasks

and each visual cue is associated to a ‘trial’. Each participant

from the FES group first underwent 1 PAS session followed

by 3 ACT sessions in a single experiment run, while each

participant from the VIS group underwent 3 sessions. Each

session consisted of 40 trials of each motor imagery task. Prior

to the feedback session, each participant underwent a training

session of 160 trials.

D. Design of the Visual Cue

The visual cue (or instruction) is designed similar to our

previous work in [28] and a schematic time representation of

the visual cue is shown in Fig. 2. Each session starts with

a resting period of 20 seconds followed by motor imagery

trials. Each trial begins with a fixation cross displayed on

screen for 1 second followed by a 1 second instruction of the

motor task to be performed in form of arrows. First, a left or

right arrow is displayed on screen for 0.5 second to indicate

left or right motor imagery, respectively followed by up or

down arrow of 0.5 second which corresponds to hand or foot

B +
Time

+ B

20s 1s 0.5s 0.5s                         4s                2.5s-3.5s

Right imagery

Left imagery

Hand imagery

Leg imagery

Fig. 2. Schematic of the sequence of visual cues displayed to the participants
during the online neuro-feedback experiment.

imagery, respectively. Following the instructions, the feedback

is generated for 4 seconds. The subject commences his/her task

on the onset of this cue and the feedback received is the motor

imagery output of the subject. For FES sessions, only electrical

stimulation is provided to the subjects as feedback while for

VIS sessions the subjects receive only visual feedback. Lastly,

a blank screen is displayed for 2.5s-3.5s for the participants to

relax and also avoid overlapping of task related EEG between

consecutive trials.

III. METHODOLOGY

A motor imagery (MI) task is characterized by an occur-

rence of event-related desynchronisation (ERD), resulting in

a decrease in sensorimotor rhythms prominently in the mu

band (8-12 Hz) and central beta band (16-24 Hz) [31]. After

termination of the MI task, an event-related synchronisation

(ERS) occurs most notably as an increase in power in the

beta band (13-35 Hz) [32]. Thus, it can be assumed that

each MI task has a characteristic signature in these frequency

bands. The decoder is trained to identify these characteristic

signatures and provide an output for an unknown occurrence.

This section describes the pre-processing, feature extraction

and classification techniques adopted in this study to generate

the output required to display (for VIS group)/generate (for

FES) the online feedback and for further offline analysis

presented in this study.

A. Pre-processing

The raw EEG signal is first filtered using a notch filter, to

remove the 50 Hz line noise. Then the signal was filtered using

a 4th order Butterworth band-pass filter at [8,24]Hz [33], [34]

to detect and study the ERD. After filtering the signal, the

continuous EEG were segmented to lengths of 3 seconds into

epochs, starting from 1 second before the onset of feedback

period of each motor imagery task.

B. Decoding the Motor Imagery EEG

After extracting the relevant EEG epoch, Common Spatial

Patterns (CSP) [35] were computed to project the multi-

channel EEG data into low-dimensional spatial subspace with

a projection matrix, capable of maximizing the variance ratio

of the two class signal matrices. It is based on the simultaneous

diagonalization of the covariance matrices of both classes.
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Let us define a single trial EEG as X ǫ RCh×T , where Ch

is the number of channels and T is the number of samples per

channel. Thus, by using the CSP algorithm one can project X

to a spatially filtered counterpart Z, by

Z = WX (1)

where, rows of the projection matrix W are the spatial filters

and the columns of W−1 represent the CSP. The computation

of the CSP is explained thoroughly in [35],[36]. The first and

last columns of the spatial patterns correspond to the largest

variance of one task and the smallest variance of the other. In

our study, we have selected two pairs (the first and the last

two) of optimal spatial filters. Then, we had calculated the

variance (VARp) of the 4 spatially filtered time series for an

epoch T .

Lastly, the variances are normalized and log-transformed to

generate 4 feature vectors.

fp = log

(

VARp
∑

4

p=1
VARp

)

. (2)

The feature vectors are used as inputs to the Linear Dis-

criminant Analysis (LDA) classifier [37], which has a low

computational cost and is simple to use. It separates the data

representing the different classes based on a boundary func-

tion, known as the hyperplane. The hyperplane is a projection

that maximizes the distance between two class means, while

minimizing the inter-class variance [37]. Thus, the class of an

observation depends on which the side of the hyperplane its

feature vector lies. For multi-class classification between four

tasks (left hand, right hand, right foot and left foot MI), the

classifier first classifies between left and right MI followed by

hand and foot MI. This approach was first presented in [28]

and adopted in this experiment to generate the commands for

feedback control. A schematic of the study is shown in Fig.

3.

C. Online Generation of Commands for Feedback Control

The pipeline of the BCI designed to generate the output

for the neuro-feedback is similar to the one designed in our

previous work [28] and is shown in Fig. 4. The classifier

described above, produces output in the form of output labels.

For FES sessions, the neuro-feedback is provided to the limb

corresponding to the output label generated by the classifier for

4 seconds. PW modulation depended on the classifier output:

hyperplane distance with a fixed amplitude and fixed time

length (4s). For VIS sessions, the feedback is provided to

the subject in the form of a blue bar, where the predicted

label determines the direction of the bar with respect to the

fixation cross (the bar appears to the right of the fixation

cross for correct classification output and it appears to the

left of the fixation cross for incorrect ones). The length of the

bar changes with the hyperplane distance obtained from the

classifier. For example, if the classifier produces an output of

right foot instead of the true right hand label, then the bar

would appear on the left side. Whereas if the classifier yields

an output of right hand, then the bar would appear on the right

Afferent Sensory Feedback

to the corresponding body part

Stim

Raw EEG
Temporal filter

FES neuro-feedback

Visual Feedback

Time

Synchronized

CSP pattern extraction

LDA classifier

Feedback modality:
Motor imagery of

Left hand/ Right hand/

Left Leg/ Right Leg

Fig. 3. A schematic of the neuro-feedback experiment adopted for this study.
Participants within the FES group are provided with electrical stimulation on
their limbs as a feedback while participants within the VIS group are provided
with visual feedback.

Bandpass

Filter

(8-24Hz)

log-variance 

of CSP

(4 filters)

Extract 1s epochs

after cue 

 

LDA Classifier

Raw EEG

 Signals

Feedback

Output

Fig. 4. Pipeline of the BCI to generate the neuro-feedback from the incoming
EEG.

(a) (b)

Fig. 5. A simulation of the feedback as visualized by subjects performing
the VIS sessions. (a) shows the feedback for correct classification and (b)
illustrates the feedback for incorrect classification. The length of the bar is
determined by the hyperplane distance of the output label.

side. An illustration of the feedback displayed to the subjects

is shown in Fig. 5.

D. Offline relabelling and Analysis of EEG Data

Our previous research [28] had studied the effects of FES

while learning a motor imagery task. The study showed a
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significant improvement in performance accuracy when the

user received an electrical stimulation as feedback in place of

the visual one. The current study further seeks to improve

the performance of the BCI with FES as a medium of

feedback and compare its performance to VIS feedback. The

occurrence of learning in both the FES and visual feedback are

analysed from the EEG obtained from the three experimental

conditions: ACT, PAS and VIS. To further improve the analysis

of data during ACT conditions, we have removed the average

bandpower of the EEG obtained during the PAS session from

the bandpower of the EEG obtained during the ACT sessions

(named as ACT-PAS). We have employed the spectrogram

method [34] to calculate the band power at a frequency range

between 8Hz to 12Hz and sliding time-window of 100ms

for EEG epochs of 3s, starting from 1s before the onset of

feedback period. The average band power for PAS session

was calculated across all trials of the same motor imagery

task for an epoch length of 3s. The reason behind this step

is that during PAS sessions, the subjects were involved in

no motor related activity. Thus, this condition contains the

information of EEG when the brain reacts passively to the

electrical stimulation. Therefore, we can consider the PAS as

a baseline to the ACT with ACT containing both the passive

reaction and the motor imagery information by receiving

the sensory feedback including proprioception. By removing

the PAS component from its ACT counterpart, we can filter

out the sensory reaction in the brain originating from the

electrical stimulation and specifically consider the activities

that correspond to augmentation in motor imagery learning

thanks to the sensory feedback.

Furthermore, to simplify the offline analysis, we have com-

bined the data of right and left foot imageries into a single

class called ‘foot imagery’. In this paper, we have three motor

imagery classes: left hand, right hand and foot. The ACT and

VIS consists of 40 trials/session × 3 sessions = 120 trials of

left and right hand classes and 80 trials/session × 3 sessions =

240 trials of foot classes. The PAS consists of 40 trials/session

× 1 sessions = 40 trials of left and right hand classes and

80 trials/session × 1 sessions = 80 trials of foot classes.

To maintain parity with the online approach, we have kept

the pre-processing parameters similar to the one described in

section III-A. We have designed a unique two-level decoding

technique to re-train and re-tune the CSP and LDA parameters

to the new class labels. Each layer of the classifier was trained

with data collected during the training session prior to the

feedback sessions (see Section II-C). In the first level (FL),

we designed three CSP sub-filters and LDA sub-classifiers to

decode the following events: left-hand (class 1) vs {right-hand

and foot} (class 0) (Sub-classifier FL1), right-hand (class 1)

vs {left-hand and foot} (class 0) (Sub-classifier FL2) and foot

(class 1) vs {left-hand and right-hand} (class 0) (Sub-classifier

FL3). If one of the sub-classifier yields an output of class 1 and

the other two classifiers produce an output of class 0, then the

event for which the sub-classifier produced the class 1 output

is the final result of that epoch. For example, as shown in

Table I, if sub-classifier FL1 produces an output of 1 and the

other two sub-classifiers produces 0, then left-hand imagery is

the final output as the left-hand event was assigned as class 1

TABLE I
CLASSIFIER DESIGN

Level 1 decoding

Sub-classifier Left Right Foot Status 2nd level

FL1 1 0 0 Left output -
FL2 0 1 0 Right output -
FL3 0 0 1 Foot output -

Level 2 decoding

SL1 1 1 0 Tie Left vs Right
SL2 1 0 1 Tie Left vs Foot
SL3 0 1 1 Tie Right vs Foot

in sub-classifier FL1. In the case when two FL sub-classifiers

produce an output of 1, then the features are re-classified in the

second level (SL) to determine the final output of the system.

For example, if both sub-classifier FL1 and sub-classifier FL3

produced an output of 1, then the features of left hand and

foot events (sub-classifier SL2 is activated) are re-classified

among themselves to determine the final output (which may

be left hand or foot). Table I presents the two-level decoding

technique.

To detect if learning occurred during the feedback period

of each successive trial, we have taken the absolute value of

hyperplane distance only in the correct direction [37] (the dis-

tance of a point from the decision boundary) as a performance

metric during three conditions: ACT, PAS, ACT-PAS and VIS.

One can assume that the greater the hyperplane distance is, the

greater is the confidence that the classifier produced a correct

decision. Hence, in this study, we have taken the winning

hyperplane distance obtained at the end of first or second level

classification as the final hyperplane distance of the classifier.

Taking an example from Table I, if sub-classifier FL1 produced

an output of 1 and FL2 and FL3 produced 0, then the average

of the hyperplane distance for class 1 is designated as the final

hyperplane distance. In case the second level of the classifier

is activated, then the hyperplane distance of the winning label

is nominated as the final hyperplane distance of the classifier.

The final hyperplane distance is then used to study the effects

of learning across successive trials. To study the effects of

learning across sessions or the overall performance of each

feedback condition, we have used the classification accuracy

as an evaluation index along with the hyperplane distance.

IV. RESULTS

A. Signal Representation

Fig. 6 represents the grand-averages of the ERD/ERS rep-

resentation at electrode location C4 during the onset of the

left hand motor imagery tasks for ACT (in blue), PAS (in

red), VIS (in green) and ACT-PAS (in black). Except the PAS

condition, all the other conditions show a prominent decrease

in the power in between 650ms to 800ms after the onset of

stimuli followed by a rise in power (which may indicate the

presence of ERS). The dotted lines indicate the p-values of a

two-tailed Wilcoxon signed-rank test [38] at each time instance

where the ERD of ACT-PAS is compared with ACT (blue

dotted), PAS (red dotted) and VIS (green dotted). The black

dotted horizontal line represents the 5% significance level and
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Fig. 6. Grand averages of the ERD at electrode C4 while performing the left
hand motor imagery tasks during ACT (in blue), PAS (in red), VIS (in green)
and ACT-PAS conditions (in black) and the corresponding p-values of the
two-tailed Wilcoxon signed-rank test at each time instance when ACT-PAS is
compared with ACT (in dotted blue), PAS (in dotted red) and VIS (in dotted
green). The black dotted horizontal line represents the 5% significance level.
A similar representation was obtained for right hand and foot motor imagery.

any p-values below it suggests significant difference between

the two conditions.

The PAS condition suggests that without any motor imagery

task being performed by the participants, no conclusive effect

of motor activity occurs in the brain and it contains informa-

tion on the brain sensory reaction purely due to FES feedback.

On the other hand, by removing the PAS component from the

ACT, we notice a removal of offset of the ERD (see blue dotted

line). By looking at the ACT and ACT-PAS representation, we

can infer that a prominent ERD with a greater attenuation is

present as compared to the VIS condition.

B. Learning Across Successive Trials

First, we report the learning during ACT, PAS, VIS and

ACT-PAS for each motor imagery task using the absolute

value of the hyperplane distance of the output label. We

took this parameter to study the feedback effect because the

larger the hyperplane distance is, the higher the confidence of

the classifier is to detect the right output. Fig.7 presents the

grand-average of hyperplane distance for 40 successive trials

pertaining to a single motor imagery task over all 3 sessions

along with their respective p-values using Kruskal-Wallis [39]

for each interval of session. This test is a non-parametric

method for testing whether two or more independent samples

of equal or different sizes originate from the same distribution.

From the figure, it is noted that there is a steady and

significant increase (p-value < 0.01) in the hyperplane distance

for ACT, VIS and ACT-PAS which suggests that as the

participants repeat the task, the participants are more confident

in performing the task which is reflected in the EEG features.

The ACT conditions have similar learning to VIS conditions

for left hand imagery (such behaviour could be because of

the nature of VIS feedback where the correct responses were

shown by a right bar), poorer to VIS for right hand imagery

and better than VIS for foot imagery. Thus, in this comparison,

it is difficult to ascertain whether the ACT is better than VIS.

However, by removing the baseline component (PAS) from

the ACT signals, we can certainly infer that the FES feedback

promotes better learning than the standard VIS paradigm. The

difference in performance of the three conditions: ACT, ACT-

PAS and VIS were also found to be significant using Kruskal-

wallis statistical test for the three motor imagery tasks: left

hand motor imagery (p-value = 0.00001), right hand motor

imagery (p-value = 0.00007) and foot motor imagery (p-value

= 0.003).

C. Classification Performance of all Participants

The overall classification accuracy and the mean of the

hyperplane distance, obtained from the final correctly clas-

sified trial, for each participant after three sessions of ACT,

VIS and ACT-PAS are shown in Table II. ACT-PAS performs

better in terms of accuracy than the VIS and ACT sessions by

9.14% and 9.88%, respectively. Six participants in the ACT-

PAS condition and four participants in the ACT conditions

have higher performance accuracy than their VIS counterpart.

ACT-PAS also has a bigger hyperplane distance in comparison

to ACT and VIS conditions. This clearly indicates that ACT-

PAS shows better learning and superior accuracy than ACT

and VIS conditions.

We have used a two-tailed Wilcoxon signed-rank test [38]

to find whether the differences in performance across different

sessions are significant or not. It is noted from the p-values

in Table II, that ACT-PAS is significantly superior to ACT

and VIS conditions, both in terms of accuracy and hyperplane

distance while it is inconclusive whether ACT is superior to

VIS. Hence, we again conclude that by taking into account the

sensory reaction signal component, motor imagery changes in

ACT data could be highlighted. Thus, by subtracting the PAS

component from the ACT signals, the FES neuro-feedback is

significantly better than visual feedback in training a partici-

pant to perform motor imagery tasks.

D. Classifier Performance across Consecutive Intervals

Next, we have looked into the mean classification accuracy

of the participants undergoing the ACT and VIS sessions at

different trial intervals and compared it with ACT-PAS. Each

participants in the ACT and VIS sessions underwent 480 trials

(120 for left hand and right hand imagery task and 240 for foot

imagery) of motor imagery. In this analysis, we had divided

the 480 trials into 10 consecutive intervals starting from 48

trials and ending at 480 trials and the results for ACT, VIS

and ACT-PAS are shown in Fig. 8.

The accuracy obtained during ACT-PAS is shown to

have significantly superior performance (Two-tailed Wilcoxon

signed-rank test; p < 0.03) to ACT and VIS. Similar to

previous results, there is no significant difference between

the accuracies of ACT and VIS conditions and it is again

inconclusive whether the ACT condition alone is better than

VIS or vice versa. It is also noted that the difference in

accuracy between the ACT-PAS and ACT or VIS conditions

are maximum at smaller trial sizes and the difference gradually
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Fig. 7. The grand-average of hyperplane distance for the three MI imageries over 40 sucessive trials across all participants for the three experimental conditions
(FES in blue, FES-PAS in red and VIS in black).

TABLE II
OVERALL PERFORMANCE

Participant Accuracy Mean hyperplane distance

ACT VIS ACT-PAS ACT VIS ACT-PAS

1 88.89 80.36 96.87 2.5459 1.5358 3.6095
2 96.55 91.07 97.22 4.0306 3.2524 4.2877
3 90.48 87.50 100.00 3.0703 2.4901 5.2004
4 83.33 100.00 97.22 2.4901 5.0344 4.3053
5 72.22 72.22 96.67 1.4317 1.3480 3.5187
6 83.33 88.89 100.00 2.7323 3.1698 5.0344
7 90.48 84.84 94.12 3.4813 2.1711 4.2299
8 90.62 96.97 92.86 3.5112 4.6095 3.6329

Mean 86.99 87.73 96.87 2.9117 2.9514 4.2273
Std 6.87 8.30 2.33 0.7496 1.2561 0.5964

Is ACT better than VIS? p = 0.866 p = 0.012

Is ACT-PAS better than ACT? p = 0.012 p = 0.012

Is ACT-PAS better than VIS? p = 0.036 p = 0.012

50 100 150 200 250 300 350 400 450
Trial Number

55

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

ACT
VIS
ACT-PAS

Fig. 8. Mean classification accuracy of 8 participants for ACT (in blue), VIS
(in black) and ACT-PAS (in green) conditions from trial 48 to 480 for 10
consecutive trials.

narrows down for the larger trial sizes. Hence, by removing

the sensory reaction (PAS) from the motor imagery signals

during ACT, we can say that the FES based neuro-feedback

is inherently better and requires a much smaller user training

time than the visual feedback.

V. DISCUSSION

In this paper, we have augmented the performance of motor

imagery BCI by applying functional electrical stimulation

(FES) as neuro-feedback. The participants that underwent

FES training took part in two different sessions: one while

performing motor imagery tasks (ACT) and the other with-

out performing any motor imagery task (PAS). The EEG

during PAS session comprised only of sensory reaction of

brain by having sensory feedback including proprioception

through FES. Hence, by removing the sensory reaction, the

ACT sessions exclusively contained signals related to motor

imagery tasks. The features of these signals in turn, lead

to improvement in the BCI performance as well as provide

insight on whether the FES has any effect on motor imagery

learning.

For this study, we have employed CSP to extract the

relevant features and LDA to classify the mental intentions

of the participants. Classification was used to compare the

performance of the different neuro-feedback conditions (ACT,

PAS, ACT-PAS and VIS) across trials, across sessions and

overall. We have used the hyperplane distance of the output as

an attribute to learning with neuro-feedback by the participants

across successive trials in a session. It is assumed that the

bigger the hyperplane distance is, the more distinguishable

the features are from each other. This suggests that due to the

repetitions in the tasks, the brain gradually encodes a signature
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EEG to the motor imagery task which can be more easily

decoded by the system.

The results mentioned in Section IV show a significant

improvement in performance and learning when the PAS

component is removed from the EEG obtained during the ACT

conditions. The steep increase in hyperplane distance seen in

Fig. 7 across successive correctly classified trials for the three

conditions: ACT, ACT-PAS and VIS suggests an improvement

in learning among participants to differentiate between the

different motor imagery tasks during the run of the experiment.

The results also show that the ACT-PAS yields better results

and requires shorter training time than the standard visual

(VIS) sessions (Table II and Fig. 8). The superior results by

ACT-PAS suggest that sensory feedback through FES is more

effective in motor imagery learning than the standard visual

feedback. Moreover, the average of the subjective assessment

(see sectionII-B) of the participants did report a more focused

approach towards the task when they were provided with FES

feedback than the VIS feedback.

The results seen after incorporating electrical stimulation as

feedback in the motor training of participants are positive and

provide an incentive to pursue this feedback modality in future

BCI research. A sensory feedback including proprioception

related to motor control is more natural than visual stimuli

which requires user’s attention to visual feedback. Even though

the experiments in this study were simple and easy for the

participants, further fine-tuning is required for future studies.

Even though the performance of the BCI improved due to

FES feedback, it is still not clear as how the removal of

sensory reaction (PAS) led to this improvement. For better

understanding of the implications of electrical stimulation on

motor imagery learning, experiments with better control condi-

tions are required. Few suggestions provided by the reviewers

of this paper include giving stimulation to the contralateral

limb while the participant performs a motor imagery task (for

example, stimulating the left hand while the subject performs

a right hand motor imagery), removal of passive component

from VIS tasks by including a “completely” passive condition

while resting. Future analysis will include the extension of this

methodology to both the lower limbs as opposed to the three

limbs used in this study. Also, the experiment may be tested

on a more interactive visual medium and a combination of

feedback (say, visual and electrical stimulation) for compari-

son with the FES results in this study.

VI. CONCLUSION

This work provides conclusive evidence on the enhancement

in motor imagery learning due to electrical stimulation as

feedback. The results show a significant increase in learning

across successive trials and sessions for the same motor

imagery task with sensory feedback including proprioception

through electrical stimulation. The results further outline the

efficacy of incorporating feedback for improvement of the

BCI performance, as it tunes the participants to a particular

task over the course of the experiment. Fig. 7 shows that

the FES and VIS group produces a steady and significant

increase in performance. Further, the superior performance by

the FES group in Table II validates our claim that FES yields

an intuitive and more interactive motor imagery learning.

The results suggests that FES feedback would be a suitable

alternative to visual feedback in rehabilitative applications.

The merger of Brain-computer Interfacing methods (BCI) with

Functional electrical stimulation (FES) is highly suitable in the

motor recovery process because both modalities contribute to

the cortical and peripheral learning process. This in turn should

aid patients in reducing the re-learning time.

Further studies on a larger group of subjects are required

to validate the effectiveness of electrical stimulation in BCI

feedback. Also, alternatives to the feature extraction and

classification techniques need to be studied to further improve

the decoding performance of the BCI. Positive results from

these studies will lead to an improvement in motor imagery

based control which would aid in neuroprosthetic control [40].
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