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Abstract: The quality of Neural Machine Translation

(NMT), as a data-driven approach, massively depends on

quantity, quality and relevance of the training dataset.

Such approaches have achievedpromising results for bilin-

gually high-resource scenarios but are inadequate for low-

resource conditions. Generally, the NMT systems learn

from millions of words from bilingual training dataset.

However, human labeling process is very costly and time

consuming. In this paper, we describe a round-trip train-

ing approach to bilingual low-resource NMT that takes ad-

vantage of monolingual datasets to address training data

bottleneck, thus augmenting translation quality. We con-

duct detailed experiments on English-Spanish as a high-

resource language pair aswell as Persian-Spanish as a low-

resource language pair. Experimental results show that

this competitive approach outperforms the baseline sys-

tems and improves translation quality.

Keywords: natural language processing, neural machine

translation, low-resource language pairs, round-tripping

1 Introduction

NeuralMachine Translation (NMT) hasmade considerable

progress in recent years. However to achieve acceptable

translation output, large sets of aligned parallel sentences

are required for the training phase. Thus, as a data-driven

paradigm, the quality of NMT output strongly depends on

the quality as well as quantity of the provided training

data [1]. Unfortunately, in practice, collecting suchparallel

data in practice is very expensive. As such, parallel bilin-

gually data is limited formany language pairs, e.g. Persian-

Spanish [2].

*Corresponding Author: Benyamin Ahmadnia: Department

of Computer Science, Tulane University, New Orleans, LA 70118,

United States of America; Email: ahmadnia@tulane.edu

Bonnie J. Dorr: Institute for Human and Machine Cognition (IHMC),

Ocala, FL 34471, United States of America; Email: bdorr@ihmc.us

Assuming that large monolingual texts are available,

an obvious next step is to leverage these texts to aug-

ment the NMT systems’ performance. Various approaches

have already been developed for this purpose. In some ap-

proaches, targetmonolingual texts are employed to train a

LanguageModel (LM) that is then integratedwithMTmod-

els trained from parallel texts to enhance translation qual-

ity. Although these approaches utilize monolingual text

to train a LM, they do not address the shortage of bilin-

gual training datasets [3, 4]. In other approaches, bilin-

gual datasets are automatically generated from monolin-

gual texts by utilizing the Translation Model (TM) trained

on aligned bilingual text; the resulting sentence pairs are

used to enlarge the initial training dataset for subsequent

learning iterations [5, 6]. Although these approaches en-

large the bilingual training dataset, there is no quality

control and, thus, the accuracy of the generated bilingual

dataset cannot be guaranteed [7].

To tackle the issues described above, we apply a new

round-tripping approach that incorporates dual learning

[8] for automatic learning from unlabeled data, but tran-

scends prior work through effective leveraging of monolin-

gual text. Specifically, the round-tripping approach takes

advantage of the bootstrapping methods including self-

training and co-training. These methods start their mis-

sion from a small set of labelled examples, while also con-

sidering one or two weak translation models, and make

improvement through the incorporation of unlabeled data

into the training dataset.

In the round-tripping approach, the two translation

tasks (forward and backward) togethermake a closed loop,

i.e., one direction produces informative feedback for train-

ing the TM for the other direction, and vice versa. The feed-

back signalsÐwhich consist of the language model like-

lihood of the output model and the reconstruction error

of the original sentenceÐdrive the process of iterative up-

dates of the forward and backward TMs.

For the purpose of evaluation, we apply this approach

to a bilingually high-resource scenario (English-Spanish)

as well as a bilingually low-resource scenario (Persian-

Spanish) to leverage monolingual data in a more effec-

tive way. By utilizing the round-trip training approach,
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the monolingual data play a similar role to the bilingual

data, effectively reducing the requirement for parallel data.

In particular, each model provides guidance to the other

throughout the learning process. Our experimental results

demonstrate that round-tripping for NMT works well over

the baselines. By learning frommonolingual data, this ap-

proach achieves comparable accuracy to a NMT approach

trained from the full bilingual data for the two translation

tasks (forward and backward). As discussed in Section 5,

our enlarged systems achieve comparable accuracy to a

NMT approach trained on a comparable amount of bilin-

gual data.

In general, the round-tripping approach significantly

reduces the requirement on the alignedbilingual data, and

helps us to translate from scratch even without access to

parallel data. This communication game can be played

for an arbitrary number of rounds, and the two TMs will

get improved through this procedure. In this way, we de-

velop a general learning framework for training NMTmod-

els through a round-tripping game.

This paper is organized as follows; Section 2 presents

the previous related work. Section 3 describes the lan-

guage issues. In Section 4, we briefly review the relevant

mathematical background of NMT paradigm. Section 5 de-

scribes the round-trip training approach. The experimen-

tal framework is covered by Section 6. The results analysis

is presented in Section 7. Conclusions and future work are

discussed in Section 8.

2 Related work

It is almost impossible to provide high-quality state-of-the-

art NMT systems for rare or low-resource languages be-

cause of the dependence on large parallel corpora, which

may be available for high-resource languages but require

expensive human annotation under low-resource condi-

tions. Due to the small size of training datasets, such sys-

tems generally produce inferior translation output. Unfor-

tunately, large quantities of parallel data are not available

for a certain number of language pairs. This has triggered

a new research challenge in MT related to training an NMT

system where availability of parallel texts is not sufficient.

The integration of monolingual data for NMT models

was first proposed by Gülçehre et al. [4], who train mono-

lingual LMs independently, and then integrate them dur-

ing decoding through rescoring of the beam (adding the

recurrent hidden state of the LM to the decoder state of

the encoder-decoder network). In this approach, an addi-

tional controllermechanism controls themagnitude of the

LM signal. The controller parameters and output parame-

ters are tuned on further parallel training data, but the LM

parameters are fixed during the fine tuning stage.

Jean et al. [9] also report on experiments with rerank-

ing of NMT output with a 5-gram LM, but improvements

are small. The production of generated parallel texts bears

resemblance to data augmentation techniques, where

datasets are often augmented with rotated, scaled, or oth-

erwise distorted variants of the limited training set [10].

A similar avenue of research is self-training [11]. The

self-training approach as a bootstrapping method typi-

cally refers to the scenario where the training dataset is en-

hanced with training instances with artificially produced

output labels (whereaswe start with neural network based

output, i.e., the translation, and artificially produce an in-

put). We expect that this is more robust towards noise in

MT. Also co-training [12] as another bootstrappingmethod

increases the amount of labelled data through effective

use of large amounts of unlabelled data. The basic idea of

co-training is to check for redundancies in the unlabelled

data and then to leverage these to support two ormore sep-

arate but redundant views in the form of disjoint feature

subsets.

Improving NMT with source-side monolingual data,

following similar work on phrase-based Statistical Ma-

chine Translation (SMT) [13], remains possible futurework.

Domainadaptationof neural networks via continued train-

ing has been shown to be effective for neural LMs by Ter-

Sarkisov et al. [14].

Sennrich et al. [15] noted that encoder-decoderNMTar-

chitectures already have the capacity to learn the same in-

formation as in the LM, and they explore strategies to train

onmonolingual datawithout changing theneural network

architecture. By pairingmonolingual training datawith an

automatic back-translation, they are able to treat the data

as additional parallel training data, with substantial im-

provements.

Artetxe et al. [16] proposed a novel method to train

an NMT system in an unsupervised manner, relying on

monolingual corpora. Their model builds upon the recent

work on unsupervised embeddingmappings, and consists

of a slightly modified attentional encoder-decoder model

(which selectively focuses on sub-parts of the sentence

during translation) that is trained on monolingual cor-

pora alone using a combination of denoising and back-

translation.

Relatedly, Lample et al. [17] proposed a model that

takes sentences from monolingual corpora in two differ-

ent languages and maps them into the same latent space.

By learning to reconstruct in both languages from this

shared feature space, the model effectively learns to trans-
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late without using any labeled data. Along the same lines,

Yang et al. [18] introduced an extension that used two in-

dependent encoders that shared partial weights that ex-

tract high-level representations of the input sentences. In

addition, two different Generative Adversarial Networks

(GANs), namely the local GAN and global GAN, were pro-

posed to enhance the cross-language translation.

One of the common solutions to the lack of parallel

data is the use of a pivot (bridge) language technique [19].

This technique induces a systematic approach toMTwhen

a proper bilingual corpus is lacking or the existing ones

are weak. Ahmadnia et al. [20] indicated that the pivot

language technique outperforms direct SMT processes cur-

rently in use between Persian and Spanish languages.

They investigated both sentence pivoting and phrase piv-

oting, demonstrating that phrase-level pivoting outper-

forms sentence-level pivoting for Persian-Spanish SMT.

They also suggested amethod called combinationmodel in

which the standard direct translation model and the best

triangulation pivotingmodel are blended in order to reach

a high-quality translation.

Round-tripping approach has already been utilized in

phrase-based SMT by Ahmadnia et al. [21]. In this work,

forward and backward models produce informative feed-

back to iteratively update the TMs during the training of

the system until convergence.

3 Language issues

Low-resource languages, also known as resource poor, are

those that have fewer technologies and datasets relative

to some measure of their international importance. The

biggest issue with low-resource languages is the extreme

difficulty of obtaining sufficient resources. Natural Lan-

guage Processing (NLP) methods that have been created

for analysis of low-resource languages are likely to en-

counter similar issues to those faced by documentary and

descriptive linguists whose primary endeavor is the study

of minority languages. Lessons learned from such studies

are highly informative toNLP researcherswho seek to over-

come analogous challenges in the computational process-

ing of these types of languages.

3.1 Persian language issues

MT has proven successful for a number of language pairs.

However, each language comes with its own challenges,

and Persian is no exception. Persian suffers significantly

from the shortage of digitally available parallel and mono-

lingual texts. It is morphologically rich, with many charac-

teristics shared only by Arabic. It makes no use of articles

(a, an, the) and no distinction between capital and lower-

case letters. Symbols and abbreviations are rarely used. As

a consequence of being written in the Arabic script, Per-

sian uses a set of diacritic marks to indicate vowels, which

are generally omitted except in infantwriting or in texts for

those who are learning the language. Sentence structure

is also different from that of English. Persian places parts

of speeches such as nouns, subjects, adverbs and verbs in

different locations in the sentence, and sometimes even

omits them altogether. Some Persian words have many

different accepted spellings, and it is not uncommon for

translators to invent new words. This can result in Out-Of-

Vocabulary (OOV) words.

3.2 Spanish language issues

Spanish utilizes the Latin alphabet, with a few special let-

ters; vowels with an acute accent (á, ú, é, ó, í), u with an

umlaut (ü), and an n with a tilde (ñ). Due to a number of

reforms, the Spanish spelling system is almost perfectly

phonemic and, therefore, easier to learn than the major-

ity of languages. Spanish is pronounced phonetically, but

includes the trilled r which is somewhat complex to repro-

duce. In the Spanish IPA, the letters b and v correspond

to the same symbol b and the distinction only exists in re-

gional dialects. The letter h is silent except in conjunction

with c, ch, which changes the sound into tf. The Spanish

language punctuation is very close to, but not the same as,

English. There are a few significant differences. For exam-

ple, in Spanish, exclamation and interrogative sentences

are preceded by inverted question and exclamationmarks.

Also, in a Spanish conversation, a change in speakers is

indicated by a dash, while in English, each speaker’s re-

mark is placed in separate paragraphs. Formal and infor-

mal translations address several different characteristics.

Inflection, declination and grammatical gender are impor-

tant features of Spanish language.

3.3 Farsi-Spanish divergences

A number of divergences [22, 23] between low-resource

(e.g., Farsi) and high-resource (e.g., Spanish) languages

pose many challenges in the translation from one to the

other, or vice versa. In Farsi, the modifier precedes the

word it modifies, and in Spanish the modifier follows the

head word (although it may precede the head word under

certain conditions). In Farsi, the sentences follow a łSub-

jectž, łObjectž, łVerbž (SOV) order, and in Spanish, the

sentences follow the łSubjectž, łVerbž, łObjectž (SVO) or-
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der [24]. Such distinctions are exceedingly prevalent and

thus pose many challenges for machine translation.

4 Neural machine translation

NMT consists of an encoder and a decoder. Following

Bahdanau et al. [1], we adopt an attention-based encoder-

decoder model, i.e., one that selectively focuses on sub-

parts of the sentence during translation. Consider a source

sentence x = x1, x2, ..., xJ, the encoder transforms it to an

internal representation h = h1, h2, ..., hJ and then a de-

coder decodes h to the target sentences y = y1, y2, ..., yI .

The problem of translation from the source language to

the target is solved by finding the best target language sen-

tence ŷ that maximizes the conditional probability:

ŷ = argmax
y

P(y|x) (1)

The NMTmodels the conditional probability of the tar-

get sentence as:

P(y|x) =

I
∏︁

i=1

P(yi|y<i , x) (2)

Both the encoder and decoder components are Recur-

rent Neural Networks (RNNs). The encoder converts the

source words into a sequence of vectors, and the decoder

generates target words one-by-one based on the condi-

tional probability shown in the Equation (2). More specifi-

cally, the encoder takes a sequence of source words as in-

puts and returns forward hidden vectors
−→
hj (1 ≤ j ≤ J) of

the forward-RNN:

−→
hj = f (

−−→
hj−1, x) (3)

Similarly, we obtain backward hidden vectors
←−
hj (1 ≤

j ≤ J) of the backward-RNN, in the reverse order.

←−
hj = f (

←−−
hj−1, x) (4)

The forward and backward vectors are concatenated

to make source vectors hj(1 ≤ j ≤ J) based on Equation (5):

hj =
[︁−→
hj ;
←−
hj

]︁

(5)

The decoder takes source vectors as input and returns

target words. It starts with the initial hidden vector hJ (con-

catenated source vector at the end), and generates target

words in a recurrent manner using its hidden state and an

output context. The conditional output probability of a tar-

get language word yi is defined as follows:

P(yi|y<i , x) = so�max(f (di , yi−1, ci)) (6)

where f is a non-linear function and di is a the hidden state

of the decoder at step i:

di = g(di−1, yi−1, ci) (7)

where g is a non-linear function taking its previous state

vector with the previous output word as inputs to update

its state vector. ci is a context vector to retrieve source in-

puts in the form of a weighted sum of the source vectors

hj, first taking as input the hidden state di at the top layer

of a stacking Long Short-Term Memory (LSTM) [25]. The

goal is to derive a context vector ci that captures relevant

source information to help predict the current target word

yi. While these models differ in how the context vector ci
is derived, they share the same subsequent steps. ci is cal-

culated as follows:

ci =

J
∑︁

j=1

αt,jhj (8)

where hj is the annotation of source word xj and αt,j is a

weight for the jth source vector at time step t to generate

yi:

αt,j =
exp(score(di , hj))

∑︀J
j′=1 exp(score(di , hj′ ))

(9)

The above score functionmay be defined in variety of ways

as discussed by Luong et al. [26]. We use dot attention for

this score function calculated as follows:

score(di , hj) = dTi hj (10)

This scalar product score basicallymeans the decoder puts

more weights (attention) to source vectors close to its state

vector di.

In this paper, we denote all the parameters to be op-

timized in the neural network as Θ and denote C as the

dataset that contains source-target sentence pairs for the

training phase. Hence, the learning objective is to seek the

optimal parameters Θ*:

Θ* = argmax
Θ

∑︁

(x,y)∈C

I
∑︁

(i=1)

log P(yi|y<i , x;Θ) (11)

5 Method description

Round-tripping involves two related translation tasks:

the outbound-trip (source-to-target direction) and the

inbound-trip (target-to-source direction). The defining

traits of these forward and backward tasks are that they

form a closed loop and both produce informative feedback
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that enables simultaneous training of the TMs. In fact,

round-tripping leverages monolingual data in the most ef-

fective and influential way possible, for both the source

and the target languages. This approach enables themono-

lingual data to play a role that is similar to the bilingual

data, and this helps in the gradual reduction of the require-

ment on bilingual text during the training phase [7].

Generally, the round-tripping procedure for NMT is de-

scribed as follows:

ś The first translation system understands the lan-

guage X and it sends a message in this language to

the other translation system. The second translation

system understands language Y. After checking the

message, it sends a notification to the first transla-

tion system.

ś After receiving the message by the first translation

system from the second one, it checks the message

and then sends a notification to the second transla-

tion system as well.

ś After receiving this feedback, both translation sys-

tems know about the performance of the two TMs,

and as a result of this feedback, they make the re-

quired changes.

The structure of round-tripping contains bootstrap-

pingmethods including self-training aswell as co-training.

In general, these methods aim to augment translation

quality. They leverage a small set of labelled data cou-

pled with a set of weak TMs (emergent from training on

initial small bilingual corpora) to make improvements

through incorporation of unlabelled data into the train-

ing dataset. The round-trip training approach resembles

self-training because the outbound-trip produces transla-

tions for monolingual source sentences which are then

used to retrain itself. The round-tripping also resembles

co-training because the inbound-trip gives signals by help-

ing to select high-quality translations from the n-best list

which are then used to retrain the outbound-trip.

According to the round-tripping idea, in order to iden-

tify high-quality translations among many (potentially

noisy) translations on the target side of the generated bilin-

gual sentence pairs, two important points are essential:

ś A candidate translation must be a well-formed sen-

tence in the target language. (It should be an under-

standable as well as a clear even if it is not a correct

translation of its corresponding source sentence).

ś In addition to being a well-formed sentence on the

target-side, the candidate translation shouldbehigh

quality (accurate) for its corresponding source sen-

tence as well.

We assume availability of: (1) monolingual datasets

(CX and CY ) for the source and target languages; and

(2) two weak TMs that bidirectionally translate sentences

from source and target languages. The goal of the round-

tripping approach is to augment the accuracy of the two

TMs by employing the two monolingual datasets instead

of a bilingual text.

We start by translating a sample sentence in one of

the monolingual datasets, as the outbound-trip (forward)

translation to the target language. This step generates

more bilingual sentence pairs between the source and tar-

get languages. We then translate the resulting sentence

pairs backward through the inbound-trip translation to

the original language. This step finds high-quality sen-

tences throughout the entirety of the generated sentence

pairs. Evaluating the results of this round-tripping ap-

proach will provide an indication of the quality of the two

TMs, andwill enable their enhancement, accordingly. This

process is iterated for several rounds until both TMs con-

verge.

WedefineKX as thenumber of sentences, in CX andKY

as the number of sentences in CY . We take P(.|S;ΘXY ) and

P(.|S;ΘYX) to be two neural TMs in which ΘXY and ΘYX

are supposed as their parameters.We also assume the exis-

tence of two LMs for languages X and Y trained in advance

either by using other resources, or using the monolingual

data (CX and CY ). Each LM takes a sentence as input and

produces a real number, based on target-language fluency

(LM correctness) together with translation accuracy (TM

correctness). This score represents the confidence of the

translation quality of the sentence in its own language.

We start with a sentence in CX and denote Ssample as a

translation output sample. This step has a score as follows:

R1 = LMY (Ssample) (12)

The R1 score indicates the well-formedness of the output

sentence in language Y.

Given the translation output Ssample, we employ the

log probability value of s recovered from the Ssample as the

score of the construction:

R2 = log P(S|Ssample;ΘYX) (13)

Note that R2 is the sum of logs of the individual output

word scores which are selected by softmax for s, and this

sum is the figure-of-merit selected for the beam search

used in our round-trip training algorithm (described be-

low).

We adopt the LM score and construction score as the

total reward score:

Rtotal = αR1 + (1 − α)R2 (14)
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where α is an input hyper-parameter.

The total reward score is considered a function of S,

Ssample,ΘXY andΘYX. Tomaximize this score,we optimize

the parameters in the TMsutilizing Stochastic Gradient De-

scent (SGD) [27]. According to the forward TM, we sample

the Ssample and then compute the gradient of the expected

score (E[Rtotal]) where E is taken from Ssample:

∇ΘXY
E[Rtotal] = (15)

E[Rtotal∇ΘXY
log P(Ssample|S;ΘXY )]

∇ΘYX
E[Rtotal] = (16)

E[(1 − α)∇ΘYX
log P(S|Ssample;ΘYX)]

Algorithm 1 shows the round-trip training procedure.

Based on Equations (15) and (16), we are able to adopt

any sampling approach to estimate the expected gradient.

Considering that random sampling brings very large vari-

ance and sometimes unreasonable results in MT, we use

beam-search [28] to achieve acceptable translations for

SGD computation, i.e., we greedily generate n-best sam-

ple translations and use the averaged value on the beam-

search results to approximate the true SGD.¹

To start the round-trip training approach, the systems

are initialized using warm-start TMs trained from initial

small bilingual data. The goal is to see whether the round-

tripping improves the baseline accuracy. We retrain the

baseline systems by enlarging the initial small bilingual

corpus: we add the optimized generated bilingual sen-

tences to the initial parallel text. The new enlarged transla-

tion system contains both the initial and optimized gener-

ated bilingual text. For each translation task, we train the

round-trip training approach.

6 Experimental framework

We apply the round-tripping approach to English-Spanish

(En-Es) and Persian-Spanish (Pe-Es) translation tasks, and

evaluate the results. For the high-resource scenario (En-

Es) we utilize the English-Spanish bilingual corpora from

WMT’18² [29] which contains 10M sentence pairs extract-

ing from Europarl, News-Commentary, UN and Common

Crawl collections. We also concatenate newstest2012 and

newstest2013 as the validation set, and use newstest2014

as the testing set. For the low-resource scenario (Pe-Es)

we use the Persian-Spanish small bilingual corpora from

1 We used beam sizes 500 and 1000.

2 http://www.statmt.org/wmt18/translation-task.html

Algorithm 1: Round-trip training for NMT

Input: Monolingual dataset in source and target

languages (CX and CY ), initial translation models in

outbound and inbound trips (ΘXY and ΘYX),

languagemodels in source and target languages (LMX

and LMY ), trade-off parameter between 0 and 1 (α),

beam search size (N), learning rates (γ1,t and γ2,t).

1: repeat:

2: t = t + 1.

3: Sample sentences SX and SY from CX and CY
respectively.

4: // Update model starting from language X.

Set S = SX.

5: // Generate top-N translations using ΘXY .

Generate sentences Ssample,1, ..., Ssample,N .

6: for n = 1, ..., N do

7: // Set LM score for nth sampled sentence.

R1,n = LMY (Ssample,n).

8: // Set TM score for nth sampled sentence.

R2,n = logP(S|Ssample,N ;ΘYX).

9: // Set total score of nth sampled sentence.

Rn = αR1,n + (1 − α)R2,n.

10: end for

11: // SDG computing for ΘXY .

∇ΘXY
Ê [Rtotal] =

1
N

∑︀N
n=1

[︀

Rn∇ΘXY
log P(Ssample,n|S;ΘXY )

]︀

.

12: // SDG computing for ΘYX .

∇ΘYX
Ê [Rtotal] =

1
N

∑︀N
n=1

[︀

(1 − α)∇ΘYX
log P(S|Ssample,n;ΘYX)

]︀

.

13: // Model update.

ΘXY ← ΘXY + γ1,t∇ΘXY
Ê[Rtotal].

14: // Model update.

ΘYX ← ΘYX + γ2,t∇ΘYX
Ê[Rtotal].

15: // Update model starting from language Y.

Set S = SY .

16: Go through lines 5 − 14 symmetrically.

17: until convergence.

GNOME corpus³ [29] which contains about 500K parallel

sentence pairs. We also use parallel sentences extracted

from Tanzil collection⁴ andKDE4 [29] as the validation and

testing datasets, respectively. For all experiments, we uti-

lize 1M parallel sentences from the OpenSubtitles2018 cor-

pus⁵ [29], as the monolingual data. For all Persian experi-

ments, the Persian set contains explicit diacritic marks to

3 http://opus.nlpl.eu/GNOME-v1.php

4 http://opus.nlpl.eu/Tanzil-v1.php

5 http://opus.nlpl.eu/OpenSubtitles-v2018.php

http://www.statmt.org/wmt18/translation-task.html
http://opus.nlpl.eu/GNOME-v1.php
http://opus.nlpl.eu/Tanzil-v1.php
http://opus.nlpl.eu/OpenSubtitles-v2018.php
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indicated vowels. (This simplification is discussed further

in Section 7).

We implemented the DyNet-based model architecture

[30] on top of Mantis [31] which is an implementation of

the attentional sequence-to-sequence (Seq-to-Seq) NMT.

For each language, we constructed a vocabulary with the

most common 50K words in the parallel corpora, and

OOV words were replaced with a special token <UNK>.

For monolingual corpora, sentences containing at least

oneOOVwordwere removed. Additionally, sentenceswith

more than 80 words were removed from the training set.⁶

The encoders and decoders make use of Long Short-Term

Memory (LSTM)with 500 embedding dimensions, 500 hid-

den dimensions. For training, we used the SGD algorithm

as the optimizer. The batch size was set as 64 with 20

batches pre-fetched and sorted by sentence lengths.

We compare the systembased on the optimized round-

trip training (round-tripping) through two translation sys-

tems; the first one is the standard NMT system (baseline),

and the second one is the system that generates pseudo

bilingual sentence pairs from monolingual corpora to as-

sist the training step (self-training). For the pseudo-NMT

we used the trained NMT model to generate pseudo bilin-

gual sentence pairs from monolingual text, removed sen-

tences with more than 80 words (as above), merged the

generateddatawith theoriginal parallel trainingdata, and

then trained the model for testing. Each of the translation

systems was trained on a single GPU until their perfor-

mances stopped improving on the validation set. This ap-

proach required an LM for each language. We trained an

RNN-based LM [32] for each language using its correspond-

ing monolingual corpus. The LM was then fixed and the

log-likelihood of a received message was utilized for scor-

ing the TM.

We employ Bilingual Evaluation Understudy (BLEU)

[33] (using multi-bleu.perl script from Moses) as the eval-

uationmetric. BLEU is calculated for individual translated

segments by comparing them with a data set of refer-

ence translations. The scores of each segment, ranging be-

tween 0 and 100, are averaged over the entire evaluation

dataset to yield an estimate of the overall translation qual-

ity (higher is better). We additionally use: (1) Accuracy⁷,

also ranging between 0 and 100, which indicates the num-

ber of correct translations among the total number of trans-

lations (higher is better); and (2) Perplexity⁸, which repre-

6 The average sentence length is 47; an upper bound of 80 ensured

exclusion of non-sentential and other spurious material.

7 How correct is the highest-probability hypothesis?

8 How probable is the correct hypothesis?

sents how certainwe are that a predicted translation is cor-

rect (lower is better). The more certain we are, the less in-

formation we gain from the translation predictions, thus

lower perplexity is better. It is fair to say that perplexity is

the de facto standard for evaluating LMs. However, small

perplexity cannot guarantee that the accuracy of predicted

translations is actually high [34].

We note that accuracy and perplexity measure differ-

ent aspects of translation quality. Accuracy refers to the

degree of correctness of thehighest-probability hypothesis.

Perplexity measures the probability of the correct hypoth-

esis or, more generally, how probable the observed data

are. Accuracy is of great interest in our studies, but there

are three challenges to computing accuracy: (1) supervised

data are required; (2) ameasure for degree of correctness is

required; (3) optimization is difficult for accuracy because

accuracy it is generally not a continuous function of the

parameters (i.e., an epsilon change in the parameters may

not change which hypothesis has the highest-probability).

As such, in addition to BLEU, we have reported both Accu-

racy and Perplexity.

7 Results and analysis

The baseline systems for English-Spanish and Persian-

Spanish are trained separately, while the round-tripping

approach conducts joint training. We summarize the over-

all performances in Tables 1 and 2 (En-Es), and Tables 3

and 4 (Pe-Es):

As seen in Tables 1 to 4, the round-tripping sys-

tems outperform the others in all translation directions

(English-to-Spanish and vice-versa as well as Persian-to-

Spanish and vice-versa). The results demonstrate the ef-

fectiveness of the round-trip training approach. The base-

Table 1: Performance of NMT systems for English-to-Spanish.

NMT systems BLEU Accuracy Perplexity

baseline 34.66 17.01 198.07

self-training 35.13 21.21 164.41

round-tripping 37.06 24.13 153.36

Table 2: Performance of NMT systems for Spanish-to-English.

NMT systems BLEU Accuracy Perplexity

baseline 35.71 19.19 199.15

self–training 35.98 20.66 176.13

round–tripping 38.78 21.31 148.98
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Table 3: Performance of NMT systems for Persian-to-Spanish.

NMT systems BLEU Accuracy Perplexity

baseline 30.12 20.98 198.66

self–training 31.91 24.87 179.56

round–tripping 35.66 26.15 174.67

Table 4: Performance of NMT systems for Spanish-to-Persian.

NMT systems BLEU Accuracy Perplexity

baseline 28.02 22.21 189.78

self–training 30.21 27.93 168.85

round–tripping 33.97 30.63 151.64

Table 5: Performance of the baseline and enlarged NMT systems for

English-to-Spanish translation task.

NMT systems BLEU Accuracy Perplexity

baseline 34.66 17.01 198.07

enlarged 38.77 24.59 148.18

Table 6: Performance of the baseline and enlarged NMT systems for

Spanish-to-English translation task.

NMT systems BLEU Accuracy Perplexity

baseline 35.71 19.19 199.15

enlarged 39.89 22.55 139.43

Table 7: Performance of the baseline and enlarged NMT systems for

Persian-to-Spanish translation task.

NMT systems BLEU Accuracy Perplexity

baseline 30.12 20.98 198.66

enlarged 34.85 22.02 160.11

Table 8: Performance of the baseline and enlarged NMT systems for

Spanish-to-Persian translation task.

NMT systems BLEU Accuracy Perplexity

baseline 28.02 22.21 189.78

enlarged 33.43 23.45 155.55

line systems outperform the self-training ones in all cases

because of the noise in the generated bilingual sentences

used by self-training. Upon further examination, this re-

sult might have been expected given that the aim of round-

trip training is to optimize the generated bilingual sen-

tences by selecting the high-quality sentences to get bet-

ter performance over self-training systems.When the bilin-

gual corpus size is small, the round-tripping makes a

larger improvement. This outcome is an indication that the

round-trip training approach makes effective use of mono-

lingual data for these low-resource/high-resource pairings.

(Further generalization of this point is discussed in Sec-

tion 8.)

Tables 5 to 8 show the performance of the baseline

alongside of the enlarged translation systems, in all direc-

tions tested in the original NMTexperiments,where the en-

larged systems utilize the training dataset of both the base-

line and the round-tripping systems. As seen here, the per-

formance of each enlarged NMT system is better than its

corresponding baseline in all translation directions. The

improvements indicate that the round-tripping systems

are promising for tackling training data scarcity and also

help for enhancing translation quality.

We note that Tables 7 and 8 show that the results of en-

larged systems are somewhat lower than the correspond-

ing results for round-tripping systems in Tables 3 and 4.

This is to be expected, as the enlarged systems are essen-

tially conventional NMT systems (not the round-trip algo-

rithm), trained on more data (a larger bilingual corpus).

Thus, these experiments support the effectiveness of the

round-trip algorithm, not just for improving translation

output, but for selecting high-quality sentence pairs to in-

crease the size of the original small bilingual corpus (base-

line) for the source and target languages, which is impor-

tant in restricted resource scenarios.

We further note that the translation systems are initial-

ized with TMs trained from small bilingual data corpora.

In the experiments, to transition from the initial model

trained from bilingual data to the model training purely

frommonolingual data,weadopt the following strategy: at

the starting point, for eachmini batch, we train on half the

sentences from monolingual data and half the sentences

frombilingual data (sampled from thedataset used to train

the initial model). The goal is to maximize the weighted

sum of the reward score based on monolingual data as

well as the likelihood on bilingual data. As training pro-

ceeds, we gradually increase the percentage of monolin-

gual sentences in the mini batch, until no bilingual data

were used at all. Additionally, although self-training out-

performs baseline, its improvements are not significant.

We expect that the quality of pseudo bilingual sentences

generated from the monolingual data is not high, which

limits the performance gain of self-training. One might

need to select and filter the generated pseudo bilingual

sentence pairs to get better performance for self-training

systems.

Figures 1 and 2 provide examples in English, Spanish,

and Persian, to compare the self-reconstruction output of

models before and after round-tripping. It is clear that
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Round-

tripping 

languages 

Translation-back-

Translation results 

before round-tripping 

Translation-back-

Translation results 

after round-tripping 

English-to-

Spanish 

El especifica que los 

dos casos 

identificados en Mayo 

de 2010 siguen siendo 

los únicos dos casos 

confirmados en el 

Gobierno de España 

hasta la fecha 

El afirma que los dos 

casos identificados en 

Mayo de 2010 siguen 

siendo los únicos dos 

casos confirmados en 

el Gobierno de España 

hasta la fecha 

English-to-

Spanish-to-

English 

He noted that the two 

cases identified in 

May 2010 remain the 

just two confirmed 

cases in the Spain 

Government to the 

date 

He stated that the 

two cases identified in 

May 2010 remain the 

only two confirmed 

cases in the 

Government of Spain 

to date 

Fig 1: Translation-back-translation through round-trip training 

-  of 

-

Figure 1: Translation-back-translation performance through round-

trip training approach in case of English-Spanish, for source English

sentence: He specifies that the two cases identified in May 2010

remain the only two cases confirmed in the Government of Spain to

date.

 

Round-

tripping 

languages 

Translation-back-

Translation results 

before round-tripping 

Translation-back-

Translation results 

after round-tripping 

Spanish-to-

English 

Most of the growth of 

future years come 

from its liquefied 

natural gas system in 

Australia 

The majority of 

growth in the coming 

years come from its 

liquefied natural gas 

in Australia 

Spanish-to-

English-to-

Spanish 

La grande parte de 

crecimiento en el 

próximo año se 

provendrá de su 

esquemos de gas 

natural licuado en 

Australia 

La mayor parte del 

crecimiento en los 

próximos años 

proviene de su gas 

natural licuado en 

Australia 

Fig 2: Translation-back-translation through round-trip training 
Figure 2: Translation-back-translation performance through round-

trip training approach in case of English-Spanish, for source Span-

ish sentence: La mayoría del crecimiento en los próximos años

provendrá de su esquemas de gas natural licuado en Australia.

after round-tripping, the reconstruction is enhanced for

all directions, i.e., English-Spanish and English-Spanish-

English (Figure 1), Spanish-English and Spanish-English-

Spanish (Figure 2), Persian-Spanish and Persian-Spanish-

Persian (Figure 3), and Spanish-Persian and Spanish-

Persian-Spanish (Figure 4).

For example, in Figure 1, especifica ismore adequately

conveyed as afirma in the English-to-Spanish round-trip,

en route to the more natural sounding stated (as opposed

Round-

tripping 

languages 

Translation-back-

Translation results 

before round-tripping 

Translation-back-

Translation results 

after round-tripping 

Persian-to-

Spanish 

El señala que los dos 

casos identificados en 

mayo de 2010 son los 

mismos dos casos que 

han sido aprobados 

por el gobierno 

Español 

Afirma que los dos 

casos identificados en 

mayo de 2010 son los 

mismos dos casos que 

han sido aprobados 

por el gobierno 

Español 

Persian-to-

Spanish-to-

Persian 

دو که شود می ادآوری او  

۲۰۱۰ مه  ماه در که مورد  

یشناسا مورد دو ،دینا شده ی   

توسط که است مشابه  

شده دییتأ ایاسپان دولت  

 است

دو که کندمی اعلام ا او  

۲۰۱۰ مه ماه در که موردی  

مورد دو ،اندی شده مشخص  

توسط که هستند مشابه  

شده تصوییب اسپانیا دولت  

 است
Fig 1: Translation-back-translation through round-trip training 

یشناسا۲۰۱۰مهماهدرکهیمورددوکهکندمیمشخصاو ی 
اندشدهدییتأایاسپاندولتدرکنونتاکههستندیمورددوهماناند،شده

- ییب ندهیآیسالهارشدنیشت   

عیماعییطبگازستمیساز
الدر استایاست 

ییب یسالهادررشدنیشت   

درعیماعییطبگازازندهیآ
ال شودمیحاصلایاست 

- to 

Figure 3: Translation-back-translation performance

through round-trip training approach in case of

Persian-Spanish, for source Persian sentence:

دوکهشودمیادآوریاو
۲۰۱۰مهماهدرکهمورد

یشناسا مورددو،دیناشدهی 
توسطکهاستمشابه
شدهدییتأایاسپاندولت
است

دوکهکندمیاعلامااو
۲۰۱۰مهماهدرکهموردی

مورددو،اندیشدهمشخص
توسطکههستندمشابه
شدهتصوییباسپانیادولت
است

یشناسا۲۰۱۰مهماهدرکهیمورددوکهکندمیمشخصاو ی 
اندشدهدییتأایاسپاندولتدرکنونتاکههستندیمورددوهماناند،شده

 

Round-

tripping 

languages 

Translation-back-

Translation results 

before round-tripping 

Translation-back-

Translation results 

after round-tripping 

Spanish-to-

Persian 

ییب ندهیآ یسالها رشد نیشت   

عیما عییطب گاز ستمیس از  

ال در است ایاست   

ییب یسالها در رشد نیشت   

در عیما عییطب گاز از ندهیآ  

ال شود می حاصل ایاست   

Spanish-to-

Persian-to-

Spanish 

El mayor crecimiento 

en los próximos años 

es el sistema 

Australiano de gas 

natural 

La mayor parte de 

proyecto de gas 

natural líquido se 

logrará en los 

próximos años en 

Australia 

Fig 2: Translation-back-translation through round-trip training
Figure 4: Translation-back-translation performance through round-

trip training approach in case of Persian-Spanish, for source Span-

ish sentence: La mayoría del crecimiento en los próximos años

provendrá de su esquemas de gas natural licuado en Australia.

to noted) for the English-to-Spanish-to-English round-trip.

Analogously, in Figure 2, majority of growth in the coming

years is amore fluent translation thanmost of the growth of

future years in the Spanish-to-English round-trip, en route

to the more natural sounding phrase La mayor parte del

crecimiento (as opposed to La grande parte de crecimiento)

for the Spanish-to-English-to-Spanish round-trip.

Similarly, in Figure 3, señala is more adequately con-

veyed as afirma in the Persian-to-Spanish round-trip, en

route to the more natural sounding (as opposed

to ) for thePersian-to-Spanish-to-Persian round-

trip. Analogously, in Figure 4, is

a more fluent translation than in
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the Spanish-to-Persian round-trip, en route to the more

natural sounding phrase La mayor parte de proyecto

(as opposed to El mayor crecimiento) for the Spanish-to-

Persian-to-Spanish round-trip.

8 Conclusions and future work

In this paper, we applied a round-tripping approach based

on retraining scenario to tackle training data scarcity in

NMT systems. An exciting finding of this work is that it

is possible to learn translations directly from monolin-

gual data of the two languages. We employed either high-

resource and low-resource language pairs examples and

verified the hypothesis that, regardless of the amount of

training resources, this approach outperforms the base-

line. The results demonstrate that round-trip training is

promising and better utilizes the monolingual data.

Although our experiments make use of only one

language pair from each of the low-resource and high-

resource conditions (Persian-Spanish and English-

Spanish, respectively), the experimental results demon-

strate a promising first step toward generalizing these

results. We have demonstrated first that our approach

works well under both the low-resource and high-resource

conditions for these particular pairings. We view general-

izing to additional low-resource pairings as an important

future opportunity for investigation about the approach ef-

fectiveness on a larger scale for a broader set of language

pairs.

Many Artificial Intelligence (AI) tasks are naturally in

dual form. Examples are: (1) speech recognition paired

with text-to-speech; (2) image captioning paired with im-

age generation; and (3) question answering paired with

question generation. Thus, a possible future direction

would be to design and test the round-tripping approach

for more tasks beyond MT. We note that round-tripping is

not restricted to two tasks only. Indeed, the key idea is to

form a closed loop so feedback signals are extracted by

comparing the original input data with the final output

data. Therefore, if more than two associated tasks form a

closed loop, this approach can applied in each task for im-

provement of the overall model, even in the face of unla-

beled data.

Another future direction is the handling of unvow-

elized Persian. Because Arabic script is used in our work

with Persian, a set of diacritic marks is available to indi-

cate vowels. These are generally omitted for more experi-

enced readers,whichmakesPersian textmore challenging.

For our purposes,we factored out this challengeÐusing ex-

plicit diacritic marksÐto focus on demonstrating the util-

ity of the round-tripping approach for this initial study.

Having a proof of concept leaves us in a better position

for future work that addresses the additional (orthogonal)

challenge of pairings that involve a language with unvow-

elized script.
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