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Abstract 

Vascular diseases are among the leading causes of death and threaten human health worldwide. 

Imaging examination of vascular pathology with reduced invasiveness is challenging due to the 

intrinsic vasculature complexity and the non-uniform scattering from bio-tissues. Here, we 

report VasNet, a vasculature-aware unsupervised learning algorithm that augments 

pathovascular recognition from small sets of unlabeled fluorescence and digital subtraction 

angiography (DSA) images. The VasNet adopts the multi-scale fusion strategy with a domain 

adversarial neural network (DANN) loss function that induces biased pattern reconstruction, 

by strengthening the features relevant to the retinal vasculature reference while weakening the 

irrelevant features. VasNet delivers outputs of “Structure + X”, where X refers to multi-

dimensional features such as blood flows, the distinguishment of blood dilation and its 

suspicious counterparts, and the dependence of new pattern emergence on a disease progression, 

which may assist the discovery of novel diagnostics. Therefore, explainable imaging output 

from VasNet and other algorithm extensions hold the promise to revolutionize the practice of 

medical diagnosis, as it improves performance while reduces the cost on human expertise, 

equipment exquisite and time consumption.  
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Introduction 

Human organs are infiltrated with blood vessels to supply oxygen and nutrient and eliminate 

metabolic by-products for living tissue cells1. The vascular abnormalities, both structural and 

dynamic, have strong pathologic indications in a wide range of diseases. Common cerebral 

vascular diseases, including atherosclerosis, thrombosis, and aneurysm, can cause stroke2-5, and 

many forms of neurological dysfunction and degeneration6,7. Inflammatory bowel diseases 

(IBD), including Crohn’s disease and ulcerative colitis, and bowel microbial infection are found 

associated with enriched vasculature and microbleeds along the digestive tract8-10. Internal 

bleeding is one major factor leading to mortality after trauma11 and hemoptysis12. 

Hypervascular tumor13 features enriched angiogenesis. Therefore, probing abnormal 

vasculature has significant impacts on a range of biomedical examinations. 

Vascular imaging with reduced invasiveness causes zero or minimal incision to patients and 

experimental animals, yet it introduces challenges to the imaging-based diagnosis. Vascular 

networks are covered by biological structures such as skins and organ tissues, which induce 

severe light scattering for optical investigations, including fluorescence imaging14-16, optical 

coherence tomography (OCT)17,18, and photoacoustic angiography19-21. The topologies are 

imposed with heavy and inhomogeneous noises that disrupt the recognition of pathovascular 

features. When investigating internal bleeding using X-ray computed tomography (CT) and 

digital subtraction angiography (DSA)22-26, similar pathological features in solid organs, such 

as vessel bleeding, stricture, aneurysm, and tortuous blood vessels, are difficult to distinguish, 

due to the artifacts caused by organ motions and the vascular network complexity. 

Deconvolution is a relatively common solution to extract information from noise-polluted 

signals, which usually requires estimating or measuring the point spread function (PSF) of the 

system based on theoretical models. However, spatially inhomogeneous and individually 

different characteristics make such non-blind deconvolution solution impossible on biomedical 

data. Learning-based techniques have recently been utilized to extract high-quality 

physiological and pathological features and perform recognition across a wide range of scales, 
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including cells27,28, histology tissue slides29 and deep tissue feature acquired from OCT, CT, 

and magnetic resonance imaging (MRI)30,31. Meanwhile, deep learning has been proven 

versatile in extracting features from highly scattered patterns through synthetic diffusers32,33. 

Unfortunately, such learning-based descattering methods are supervised, where a large number 

of labeled and per-pixel registered data are necessary for training neural networks. Moreover, 

a model trained on one location of the diffuser can hardly be extended to other regions, due to 

the assumption of spatial-invariant PSF for deconvolution. It has an essential conflict with 

limited data availability and a large diversity of pathology features. On the other hand, the 

“black box” operations of deep learning make decisions without explanations. Establishing 

algorithms to “unbox” learning and generate explainable outputs to render decision-making 

transparent can accelerate the advances of deep learning in medical diagnosis34,35. For example, 

it might assist the discovery of new diagnostic characteristics, by validating the correlation of 

initially unexplainable features and the occurrence of a disease.  

Herein, we report VasNet, an unsupervised transfer learning technique based on the domain 

adversarial neural network (DANN)36, specialised for vascular feature recognition. It performs 

vascular-aware domain transfer learning between the widely-accessible retinal vasculature in 

binary formats as the target domain and the diffusive organ vasculature acquired from 

fluorescence or X-ray imaging as the source domain. It eliminates the dependence on large 

datasets of image registration and manual labeling of ground truths (sometimes inaccessible) in 

supervised methods. The algorithm outputs explainable images with multi-dimensional 

information of blood flows, including the vascular structure, flow rates, and the pre-screened 

examination of suspicions. The DANN loss function is embedded in the algorithm to create 

bias in feature selection to significantly improve vasculature extraction from inhomogeneous 

backgrounds. In this work, we performed the diagnosis augmentation of thrombosis and internal 

bleedings and proofed the concept of establishing new diagnostics for ulcerative colitis in 

animal models.  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.07.938282doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938282
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

Results 

Principle of the vascular imaging augmentation 

The concept of augmenting biomedical diagnosis operates by blind vasculature extraction from 

an unsupervised deep learning algorithm without using labeled data. It is intrinsically an image-

to-image translation problem. Recently, some learning-based approaches emerged by using 

gold standard retinal vascular images to extract explicit vasculature from original fundus 

images37,38. But these models required large datasets of pixel-level aligned image pairs to train 

the generator network and their performance was limited to retinal vessels. The recent seminal 

unsupervised image-to-image method, named cycle-consistent generative adversarial networks 

(CycleGAN)39, proved powerful performance on transfer learning between two sets of images, 

by using cycle consistency loss and adversarial loss to regularize the generator networks and 

produce realistic images. However, these approaches treat the vascular information and the 

degradation patterns equally. They were not feasible for eliminating non-uniform noises 

induced by the heterogeneous diffusibility of skins and organ tissues, uncontrolled organ 

motions, and non-uniform background illumination. 

To generate explainable vascular images using the unsupervised transfer learning technique, 

we chose a publicly available set of retinal vascular binary images as the target domain 

reference. (Supplementary Fig. S1) The retinal images presented high contrast topologies of 

blood vessels against their surroundings with enriched complexity, including the vessel 

branching, size (diameter) variation, knots, and endings, etc. In the following studies, we 

implemented VasNet to translate images of cerebral, bowel and internal solid organ vessels, 

overlayed with heterogeneous noises, into retinal-alike topologies with explainable 

characteristics.  

The principle of diagnosis augmentation is sketched in Fig. 1. A domain-transferred image was 

consistently generated from an input image containing vascular information and noise overlay 

by the neural network until the generated image became indistinguishable from explicit binary 
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images of retinal vessels. Instead of presenting an outcome with a binary decision to overlap or 

validate the human diagnosis, our strategy aimed to augment human diagnosis by presenting 

the end-users explainable images with enriched information, including the vasculature with 

improved contrast against the surrounding tissues, the highlights on suspicious regions in colour 

coding, the probability of disease occurrence, and the trajectory of abnormal blood flows. For 

example, the coloured vessels represent the longitudinal or transverse flow rates, and the rates 

in the transverse direction distinguish the syndromes of blood leaking out of the vessels with 

tortuous vessels and aneurysm. (Fig. 1) 

Our learning algorithm eliminated the requirement of large datasets of labeled images as ground 

truths to train neural networks. With this strategy, medical diagnosis is expected to be 

dramatically improved in many aspects; it reduces the dependence of imaging-based medical 

diagnosis on high-end equipment; professional users, e.g. doctors, can make faster and more 

accurate decisions on patients; non-professional users, e.g. patient themselves, medical interns, 

and general practitioners, can perform pseudo-professional diagnosis. Additionally, it offers a 

route to discover new diagnosis characteristics, as the unboxing operation generates explainable 

images, where the subtle morphological changes might be closely correlated with a disease 

occurrence. In the following sections, we present three pieces of demonstration to prove the 

versatility of our unsupervised transfer learning potential in different scenarios. 
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Fig. 1 The augmentation principle of vascular disease diagnosis. An unsupervised transfer 

learning algorithm was established to process and understand raw images corrupted by 

scattering, aberrations, or non-uniform noises. It extracts the vascular topology, colour-coded 

the blood flow dynamics, and unveils the spatiotemporal illumination of regions of interest (a), 

examines the pathological features, and presents the suspicions in contrasting colours (b), and 

discovers new diagnostic features and suggests the probability of a disease occurrence (c). 

VasNet learns the image-to-image mapping between two unpaired image domains: the raw 

vascular observations and the segmentation of the retinal vascular images (d).  

 

The VasNet algorithm 

The training and testing of biomedical data are often limited by the accessible data volume and 

their enriched diversity. To recognize vascular features through intact diffusers, such as skins 

and solid organs that enclose the blood vessels, we eliminated the imposed noises by modeling 
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the non-uniform desattering as an unsupervised mutual information disentanglement problem. 

Successful descattering was attributed to the adaptation and modification of the unsupervised 

domain-transfer network, and the selection of the standard dataset of a retinal vascular network 

as reference for imaging generation. Additionally, we incorporated the multi-scale fusion 

strategy with a DANN loss function to induce biased pattern reconstruction. Determined by the 

binary retinal vascular network as the training reference, the noise corrupted images were 

disentangled into vascular-alike features, also defined as the reference-relevant features, and 

the noises, defined as the reference-irrelavent features. The VasNet discriminated the two 

domains after training. Therefore, the algorithm testing performed unblanced selectivity on the 

vascular-relavent and irrelevant features. As a consequence, the vascular reconstruction was 

considerably improved and the noise misinterpretation suppressed, compared with the 

performance of algorithms with non-biased feature selection.  

Despite the absence of labeled blood vessels, by utilizing the cycle consistency loss L𝐶𝑦𝑐𝑙𝑒, our 

domain transfer network (Fig. 2) learned the mapping between two image domains. We fed the 

segmented retinal vasculature into the VasNet as the target image domain (A domain) and the 

raw images acquired from fluorescence or X-ray imaging and overlayed with heterogenous 

noises as the source image domain (B domain). Then, the problem of blind vasculature 

extraction can be modeled as disentanglement of the vascular structure zBc  from the degraded 

observations (real_B). In order to bias the domain transfer by strengthening the vascular-

relevant features and weakening the irrelavent features, we incorporated a domain adversarial 

loss function40 to reduce the structural domain shift between the source domain and target 

domain. The loss penalized the domain gap between the embeddings zAc  and zBc , indicating 

the mutual information of vascular structure. The inference network (coloured in orange in Fig. 

2) tended to disregard the vascular-irrelevant features, such as non-uniform background and 

scattering noises. Furthermore, in order to ease the training process, the network is designed to 

master only in small scales by restricting the average width of blood vessels in a narrow range. 
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While given the complexity of the vasculature, the algorithm is expected to deal with the blood 

vessel with different widths simultaneously.  

Therefore, we proposed a coarse-to-fine fusion scheme that merges the predictions of the input 

pyramid in multiple scales. For each scale, the prediction focuses on the blood vessel with a 

specific range of width and degree of scattering. Benefited from the vasculature-aware design 

in the unsupervised domain transfer learning framework, VasNet works regardless of the 

acquring modalities of the vascular images from the two domains. It delivers the results of 

“Structure + X”, where X refers to multi-dimensional features such as blood flows, the 

examined blood dilation and its suspicious counterparts, and the dependence of new structure 

emergence on a disease progression, which might open a route to assist novel disease 

diagnostics.  

 

Fig. 2 The proposed VasNet solves the heterogeneous descattering problem by extracting the 

relevant information to the vasculature (domain A) from the scattered observations (domain B). 

The proposed multi-scale fusion strategy with a domain adversarial neural network (DANN) 

loss function encourages the emergence of the mutual features, i.e. 𝑧𝑟𝑒𝑎𝑙_𝐴𝑐  and 𝑧𝑟𝑒𝑎𝑙_𝐵𝑐 .   
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Fig. 3 Validation of the VasNet robustness in vasculature reconstruction. (a, b) Comparison of 

CycleGAN and VasNet in vasculature reconstruction. Each group, from left to right, has 

vascular images acquired through intact skins and input into the networks, the reconstructed 

vascular network from cycleGAN, and the reconstructed network from VasNet. (c - j) The 

vasculature reconstruction using VasNet is regardless of the vascular topology and distribution. 

(c, d) A binary image of the retinal vascular network used as the reference (the target domain) 

for the VasNet training (c) and the count of the vessel width (d). (e - j) The vascular structural 

reconstruction (e, h), the quantification of regional vessel dimensions (f, i), and the counts of 

the vessel width (g, j) in the input images and the VasNet output images along the dashed and 

solid lines in (e) the fluorescent bowel vasculature and (h) the x-ray acquired internal organ 

vasculature.  

The precise interpretation of vascular network comprising different thicknesses was attributed 

to the bias in the selection of input topology, created by the DANN loss function in the neural 

architecture. In this study, as we targeted at the vasculature reconstruction, the algorithm picked 

the vascular-like features, such as the regional features with high aspect ratios, and tended to 

disregard the non-vascular features in the reconstruction. This resulted in a significant 

difference in the output image by using CycleGAN and VasNet (Fig. 3a and 3b). Non-learning 
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approaches were proven even less competitive in processing vascular images. (Supplementary 

Fig. S2) 

A major challenge in imaging-based vascular diagnosis is the loss of structural precision, 

especially the transverse dimensions of blood flows that indicate the vascular abnormalities, 

such as blood vessel stricture, dilation, and breakage, etc. The VasNet algorithm compromised 

the structural loss and recapitulated the topology of the vessels hidden in heterogeneous and 

complex noises. The versatility of VasNet on different imaging techniques with variations in 

vascular structures was validated by comparison. The reference retinal vascular image had 

enriched variation in vessel topology and size, but the distribution of vessel dimensions in the 

testing images was distinctive with the reference images, regardless of the non-uniform noise 

magnitude and distribution overlayed on the patterns. (Fig. 3c – 3j)  

 

The DANN biased feature reconstruction 

Prior to proceeding to the feature recognition from diffusive patterns in experimental models 

and humans, we first tested the performance of the DANN loss function on biased feature 

selection on a simulation system. A digital micromirror device (DMD) projected letter patterns 

on a non-transparent polystyrene board or a piece of 3 mm-thick chicken breast slice, which 

were acquired by a camera from the other side of the diffuser. (Supplementary Fig. S3) The 

diffuser was placed on a translation stage to create the inhomogeneous diffusion that mimicked 

the in vivo conditions. The acquired patterns and the reconstructed features by using the 

reported deep learning algorithms (‘Li et al. 2019, the reference 32’, with fixed diffusivity) and 

our algorithm (‘ours’) are presented in Supplementary Information. The comparison showed 

that our DANN algorithm gained both improved feature extraction ability from diffused 

speckles and higher versatility in overcoming the disturbance caused by the changes in 

diffusivity. (Supplementary Fig. S4 – S6) 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.07.938282doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938282
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

Augmenting fluorescence imaging for the diagnosis of cerebral vascular disease 

The Indocyanine green (ICG) is an FDA approved dye molecule for clinical uses. It has 

emission in the near-infrared window (the peak emission at ~ 820 nm). The specific binding of 

ICG to lipoproteins in the bloodstreams prolongs the circulation lifetime of ICG in blood14. 

Though the light scattering of skins weakens with increased wavelength, the acquired images 

in our experiments in the NIR-I region (800 - 900 nm) were proven highly disrupted for feature 

recognition at zero or minimal tissue incisions. Herein, the unlabeled diffused images were 

input into the transfer learning network and translated into explainable images with both 

precision vascular structures and spatial flow dynamics in the mouse cerebrum.  

The cerebral vasculature was covered by a translucent skull and an intact scalp skin (about 0.6 

mm thick). It had a stem vein along the superior longitudinal sinus, with branched vessels 

distributed on the two sides. A stroke occurs when the blood supply is occluded. Thrombosis 

is a common type of occlusion resulted from the blood clot formation inside vessels. A mouse 

model of thrombosis was created by intravenously injecting Rose Bengal and exposing a region 

of the cerebrum to a 532 nm laser light (0.8 W) for 4 min through the intact scalp skin and the 

skull41. Ischemic lesion was induced, obtaining the thrombosis model for diagnostic tests in the 

following study. (Supplementary Fig. 7a) 

The ICG was first dissolved in phosphate-buffered saline (PBS). Then, a BALB/c mouse was 

intravenously injected ICG at a dosage of 8.0 mg/kg body weight (bw) at once. The dye 

molecules rapidly circulated to the cerebrum within a few seconds after the intravenous 

injection. A 785nm laser beam was projected on the mouse head with the topical hair removed. 

(Supplementary Fig. 7b) The fluorescence from ICG in circulation that illuminated the cerebral 

vessels were recorded immediately after ICG injection at a frame rate of 25 Hz through an 810 

– 890 nm bandpass filter. The bright-field images of the vascular structure were acquired as the 

reference after removing the scalp and the skull. The healthy mice were imaged in the same 

procedures as the diseased ones for control.  
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The acquired image sequences contained both the spatial and time-dependent illumination of 

ICG circulating in the blood, from the variation of which could the blood flow rates be derived. 

Owing to the light scattering through the scalp and the skull, only diffused vascular topology 

of healthy and diseased mice could be acquired. (Fig. 4a and 4c) We applied VasNet to 

eliminate the irrelevant information from the vasculature, including noises and non-vascular 

topologies, and extracted precise vascular structures from the relevant signals. 10 retinal 

vascular images of 512 × 512 size were fed to VasNet as the target domain (the real domain A 

in Fig. 2), and 10 unlabeled images from fluorescence acquisition with a size of 1024 × 1024 

as the source domain (the real domain B in Fig. 2). Note that the augmented training data is 

sampled from the large images with the patch size of 128 × 128. The algorithm-generated 

images exhibited high-contrast vascular features (Fig. 4b and 4d) that were validated by the 

patterns obtained after removing the scalp (Supplementary Fig. S8). The global cerebral 

vasculature was constructed from the illumination sequence.  

The blood flow rates throughout the network were derived from the illumination sequence, and 

encoded in colours, based on the principle of the continuum of mass for incompressible fluids, 

i.e. the blood. (Fig. 4e) The colour-coding shows predominantly drops in regional flow rates 

resulted from blood occlusion in the thrombosis models, when compared with their healthy 

counterparts. The flow rates and their variations in different parts of the vascular network were 

found consistent in at least 3 healthy and 3 diseased mice. (Fig. 4e – 4h, and Supplementary 

Fig. S9) It proved that our algorithm was not only reliable in probing the structural 

abnormalities, but also the abruption in flow rates with high spatial signatures in the cerebrum. 

The structural-dynamic dual-check assured augmented higher diagnosis efficiency and 

accuracy in the non-invasive examination. 
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Fig. 4 Fluorescence imaging and interpretation of the cerebral vasculature using the 

unsupervised transfer learning algorithm. The vascular network was perfused with ICG and 

imaged in the near-infrared window (excitation at 785 nm and emission at 810 - 890 nm). (a - 

d) Acquired images of ICG illuminated vessels (a, c) and the VasNet output images (b, d) in 

the cerebrum of a healthy mouse (a, b) and a mouse with thrombosis (c, d). (e - h) The derived 

blood flow rates from the time-dependent illumination of blood vessels in a healthy cerebrum 

(e, f) and a diseased cerebrum (g, h). The time-dependent intensity variation on multiple 

locations indicated with coloured arrows were plotted in (f, h). Scale bars in all panels: 2 mm. 

 

Augmenting DSA imaging for the diagnosis of internal vascular disease 

Digital subtraction angiography (DSA) is among the most important examinations in the 

diagnosis and treatment of internal bleeding and hypervascular tumors via intervention 

embolization25,26. However, patient motions, respiration, and the skeletons create severe 

artifacts and impose noises onto the vascular features, which may result in a delayed diagnosis 
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or a high rate of misdiagnosis. For example, bleeding, tortuous vessels, and aneurysm are all 

characterized by dilation of the radiocontrast agents, and the overlay noises lead to 

indistinguishment between the pathological vascular features and their normal counterparts.  

 

Fig. 5 The VasNet interpretation of time-lapse DSA vascular images. (a) A DSA image of the 

internal vasculature. The images were acquired with a radiocontrast agent (iodixanol) to 

highlight the blood circulation. (b) The VasNet output image with the vasculature reconstructed 

and the bleeding features augmented. (c, d) Zoom-in time-lapse view of the regions of interest 

(ROIs) (framed) in (a, b). The dashed (lines 1 and 1’) and solid lines (lines 2 and 2’) in the 

image sequence indicate the dilation. (e) The dilation trajectory of iodixanol at the bleeding site, 

derived from the VasNet output sequences in (d). The colour-coding shows the dynamics of 
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dilation. (f, g) The time-dependent intensities of iodixanol along the dashed and solid lines in 

(c, d). (h, i) Quantification of the iodixanol intensities along the dashed and solid lines in (c, d) 

at two time-points. Scale bars: (a) 20 mm, (c) 10 mm. 

Though the dilation of the radiocontrast agent (iodixanol) was observed from the DSA images 

(Fig. 5a and 5c), the artifacts caused by respiration induced organ motions reduced the 

recognition of suspicious features or features hidden within the complex vascular background. 

Furthermore, the intervention embolization required a high-rate, or nearly real-time, diagnosis 

of diseased features with precision spatial resolution, as it was operated under the real-time 

guidance of DSA imaging.  

The limitation was overcome by generating explainable images from the VasNet algorithm. 

(Fig. 5b, 5d, 5e) The global vascular network was reconstructed with significantly improved 

accuracy and contrast against the background noise. The ROIs framed in black was interpreted 

with colour-coding exhibiting the dilation in the recording. The dilation recognition in the raw 

input and the output images were compared. (Fig. 5f – 5i) The intensity contrast of the 

circulating agent in the dilation track, contributing positively to the diagnosis ability, was less 

distinctive in the DSA raw images than in the learning output images. The feature augmentation 

was performed in 40 groups of DSA image sequences, each acquired from a patient individual. 

Three examples are shown in Fig. 5 and Supplementary Fig. S10. 

The VasNet interpretation also augmented diagnosis in single static images. Examining the 

bleeding vessel, it is featured with a narrow neck connecting to an expanded domain, 

corresponding to the dilation of blood and the radiocontrast agent. However, the dilation was 

not clearly visible in the non-augmented images due to the elusive boundaries. The narrow-

neck connected expansion was not observed in the branched or coiled vessels or aneurysm.  

VasNet enhanced the vascular structure against the non-uniform degradation, and succeeded to 

deliver outputs with "Structure + X" in DSA modality, where X helps with the distinguishment 

of blood dilation. To validate the effectiveness of augmenting bleeding diagonosis 
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quantitatively, we particularly trained a basic classifier to determine whether the bleeding 

occurred or not, tested on the augmented vasculature of the suspicious patches. More 

specifically, the data from 40 patients were collected, where half of them were adopted for 

training, and the rest for testing. Note that the markers of bleeding region were provided by 

clinicians in the Chinese PLA general hospital, and used as ground truth data for accuracy 

calculation. 

The correctly classified positive (red) and negative (blue) samples are depicted in Fig. 6a and 

6b. By interpreting the bleeding recognition results, we conclude that the classifier prefers to 

group the augmented samples with narrow-neck connected expansion together as positive 

predictions. For the case exampled in Fig. 6c that counted the bleeding and non-bleeding 

features of 20 patients, the bleeding diagnosis performance by the neural network, quantitatived 

by the area under the ROC curve (AUC), reached 97%. The classification accuracy reached 88% 

when the cut-off probability was 0.4. 

 

Fig. 6 The diagnosis augmentation of bleeding in static DSA images. (a, b) The distinctive 

feature recognition to distinguish aneurysm (blue in a), tortuous vessel (blue in b) and bleeding 

(red in a and b). The red vessels were featured with thin necks and expanded domains. (c) The 

counts of bleeding (red) and non-bleeding suspicions (blue) in the DSA images (20 patient 

samples in total) with each count showing the bleeding probability. The bleeding and non-

bleeding features were distinctive by interpreting their bleeding probability. (d) The receiver 

operating characteristic (ROC) curve of bleeding counts. 
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Bowel vascular network 

Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn’s 

Disease, have mucosal inflammation and are featured with an increased density of abnormal 

vessels, such as strictures, ulcers, bleeding along the tract, as well as mucosal angiogenesis9,10. 

Mouse colitis models were established by watering BALB/c mice with dextran sulfate sodium 

(DSS, 5 wt% in drinking water). DSS carries a highly negative charge contributed by sulfate 

groups, is toxic to the colonic epithelia, and induces erosions that ultimately compromise barrier 

integrity, resulting in increased colonic epithelial permeability42. In optimal conditions, disease 

induction occurred within 3 to 7 days following DSS administration, and appeared as severe 

colonic bleeding. It mimicked the superficial inflammation seen in ulcerative colitis, which was 

found featuring enriched angiogenesis in the mucosa, but nothing reported on the bowel outer 

surface43.  
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Fig. 7 Fluorescence imaging and interpretation of the mice bowel vasculature to diagnose colitis. 

(a) Steps of diagnostic testing, including creating the colitis models by watering mice with DSS, 

non-invasive imaging of the bowel vasculature, and access to ground truths of the vasculature 

by sectioning off the abdominal skins. (b) Bright-field image of the bowel vasculature of an 

experimental mouse. (c - f) Acquired fluorescence images (c, e) and interpreted images (d, f) 

of the bowel vasculature of healthy mice (c, d) and mice with colitis (e, f). (g) The multi-style 

interpretation and counts of bowel vasculature, including the area percentage of large vessels, 

the average branch length, and the average branch width. (h) The scatter diagram of blood 
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vessels acquired from 22 mice based on quantitative evaluation of the area percentage of large 

vessels, the average length and the average width of the vessels and their branches. We used 

the T-distributed Stochastic Neighbor Embedding (t-SNE) algorithm to embed high-

dimensional parameters in 2-dimensional space for visualization. Scale bar: 5 mm. 

Likewise, we used ICG to enhance the probing of the bowel vasculature. The bowel vasculature 

was covered by the abdominal skin (about 0.3 mm thick), which scattered the emission from 

the circulating ICG in the vessels that appeared on the surface of the tract. A mouse was fixed 

on the imaging table, with the hair-removed abdomen facing the camera fixed on the top. The 

abdominal vasculature was illuminated by an expanded 785 nm laser beam, with an 

illumination area and field-of-view larger than 9 cm2. Both healthy and DSS treated mice were 

imaged in the same manner, by recording their spatiotemporal illumination of the bowel 

vasculature at high frequency (25 Hz), started immediately after the ICG injection from the tail 

vein. The images were acquired at days 2, 4 and 6 after the DSS administration. The healthy 

mice were imaged as the control, named as day 0 in the counting. The ground truths of the 

health conditions were accessed by cutting off the abdominal skin and the peritoneum with iris 

scissors and presenting the vascular features to the camera. (Fig. 7)  

The explicit vascular topology extracted from the blurry raw images was interpreted with 

various diversification methods, including the large vessel fraction, and the vessel length and 

width. (Fig. 7g, 7h) Fig. 7g shows the statistics of vessel diversification of mice at days 0, 2, 4, 

6 after being administrated with DSS, by measuring the vessel connectivity, the average length 

and the average width of the reconstructed vessels. The connectivity was quantified by 

evaluating the fraction of connected vessels greater than a particular value in area (150 pixels 

in this case), indexed as ‘area percentage of large vessels’. The percentage was calculated as 

the proportion of the sum pixel value of large vessels over all vessels in each image. The 

average lengths and the average widths were quantified by Fiji44. The quantification was 

presented in the corresponding boxplots in Figure 3g. For better visualization of the multiple 

indices, we performed the t-SNE algorithm45 to present the diversification in two dimensions. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.07.938282doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938282
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

The statistics show the distinct distribution of mice groups at different health conditions, as 

suggested by their disease progression, indexed by the number of days after the DSS 

administration. (Fig. 7h) However, the distinction was not always the same, as the separation 

by calculating the area fraction of large vessels is the most significant, but the least significant 

in their width statistics. The outlier at day 2 in the connectivity plot, indicated by a dashed 

bracket, was suggested to be heavily diseased. It was verified by the skinless observation of the 

bowel conditions. (Supplementary Fig. S11) This study extended the promise of our 

unsupervised transfer learning technique in discovering new diagnostic characteristics, which 

is beyond the scope of the reported artificial intelligence in medical diagnosis.  
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Discussion 

In this work, we reported a new class of contribution that the deep learning technology might 

provide to humans, by showing the power of machine intelligence in augmenting diagnosis of 

vascular diseases. We established VasNet, an unsupervised transfer learning network to 

overcome the challenges raised by the limited data accessibility in biomedical imaging, the 

large diversity of pathological features, and the labor-intensive image registration and ground-

truth labeling for training a neural network. In the algorithm, we embedded a multi-scale 

domain adversarial training scheme that simplifies the disentanglement between the vascular 

structure and the modality-specific noise representation. It was proven versatile for the 

interpretation of images acquired from different modalities and carrying structures with varied 

dimensions, size distributions, and heterogeneous diffusion levels. Rather than providing binary 

decision-making outcome, VesNet unboxed the feasibility of learning on disease diagnosis, and 

generated explainable images with multi-dimensional information, including vascular topology, 

flow rates, prescreened suspicions and statistics of blood vessel features. Therefore, the 

acceptance of artificial intelligence (AI) decision-making is boosted. The doctors could either 

accept a binary dicision or make decision based on the enriched information output from the 

neural network. Consequently, it significantly decreased the rate of misdiagnosis, reduced the 

diagnosis cost as it required less time to decide and became less dependent on high-end 

equipment.  

We also proposed the idea of using deep learning techniques to discover novel diagnostic 

characteristics. Unknown characteristics are usually hidden under heterogeneous noises, as the 

vascular patterns shown in Figure 7c and 8d. Though the distinction was observable from the 

raw images, it requires clear and amplified differences in the pattern evolvement with the 

disease progress to distinguish the features in healthy, pseudo-healthy and diseased conditions. 

Our algorithm-dependent examination amplified the elicit distinction, and therefore, validated 

the diagnosis of colitis by their vasculature appearance on the bowel exterior surfaces. The 

colitis progresses with angiogenesis, which initiates at the early stage of disease occurrence.  
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The technology could be extended to the diagnosis of other types of diseases, depending on the 

feature classification and diversification. For example, lymphatic disorders, such as 

lymphedema (LED), by lymphoscintigraphy (LSG), but this technique is limited in its ability 

to identify pathology and guide therapy. Our AI-based medical imaging augmentation might 

not only assist the rapid diagnosis of LED, but is also promising to guide therapeutic 

intervention46,47. 

Our diagnosis augmentation strategy offers a route for non-experienced users to make rational 

decisions on symptoms on either experimental animals or patients. The AI augmented diagnosis 

takes over the loads on doctors and experimentalists by reducing the dependence on personnel 

experience, equipment qualities, and repetitive labor intensive practice and confirmation. With 

the advent of new diagnosis technologies, such as portable, easily affordable, and family-

equipped diagnostic instruments, patients could make preliminary judgement on their health 

conditions. By all these manner, the deep learning technology holds the promise to alter the 

way of healthcare and hospital management.  
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Methods 

All the animal studies and usage of clinical data were conducted under the ethics regulation of 

Tsinghua University and the PLA General Hospital, China. 

Fluorescence imaging setup 

In both imaging experiments through the scalp and abdomen, the excitation light was provided 

by a 785 nm laser source (Changchun New Industries) coupled to an 8 mm collimator. Light 

was expanded and adjusted by an iris to illuminate the entire mouse head or abdomen area. The 

excitation power density at the imaging plane was about 29 mW·cm-2 in our experiments. The 

emitted fluorescence was filtered by an 810 - 890 nm bandpass filter (Thorlabs, FBH850-40) 

and captured by a CMOS camera (Blackfly, BFS-U3-120S4M-CS) through a lens with a focal 

length of 25 mm. The camera was set to expose continuously in a frame rate of 25 f.p.s. to the 

fluorescence illumination process. 

Animal preparation 

All animal experiments were performed in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal 

Care and Use Committee of Tsinghua University, China. BALB/c mice were purchased from 

Guangdong Medical Laboratory Animal Center. Adult BALB/c mice (male, 4-6 weeks old) 

were housed at 22 ± 2 °C with half-to-half light-dark cycle and were used with randomization 

or blinding. The mice were intraperitoneally injected at a dosage of 240 mg/kg body weight 

(bw) 1.25% avertin at once. Before imaging, the hair on the heads and abdomens of the mice 

was removed by using the human depilatory cream. 

Cerebral thrombosis mice model 

BALB/c mice were anesthetized by isoflurane, and the hair over the scalp was removed. Then 

the mouse was intravenously injected Rose bengal at a dosage of 10 mg/kg body weight (bw) 

at once. The mouse head was exposed under a 532 nm laser for 5 min and the radius of the spot 

was about 2.5 mm. Rose Bengal irradiated with green excitation light generates the production 

of reactive oxygen species, which subsequently activates tissue factor, an initiator of the 
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coagulation cascade. The induction of the coagulation cascade produces an ischemic lesion that 

is pathologically relevant to clinical stroke48. After 1 day, the mice were used to conduct the 

cerebral vasculature imaging. 

Ulcerative colitis mice model 

BALB/c mice were randomly assigned to the experimental or control groups (n = 5 - 6). For 

the experimental group, 5 wt% dextran sodium sulfate (DSS) in double-distilled water (DDW) 

was provided as drinking water for 2, 4 or 6 days. For the control group, DDW was always used 

as the drinking water. The treated and untreated mice were imaged on the abdomen on the same 

day.  

Vasculature imaging 

A BALB/c mouse with the hair removed on the head or abdomen was anesthetized by isoflurane 

and fixed under the camera and lens. The range of interest(head or abdomen) was exposed 

under a 785 nm laser source. Then, the mouse was intravenously injected Indocyanine 

green(ICG) at a dosage of 8 mg/kg body weight (bw) at once. The ICG molecules transport 

rapidly with the circulation, and the vasculature became fluorescent almost instantaneously 

after the intravenous injection. Camera acquisition of the fluorescence images started right 

before the intravenous injection to record the illumination process.  

Preparation for the DSA imaging dataset 

We collected our angiography data set of 35 patients from the Chinese PLA General Hospital, 

Beijing, China. For each patient, 3-6 images during the dynamic process containing the vascular 

information were annotated the real bleeding point region(true label) and 2-3 normal yet 

suspicious regions(false label). To perform the bleeding detection task, DSA images of 15 

patients were used for training and images of 20 patients were used for testing. 

Learning algorithm 

To perform the training and testing of biomedical data with limited volume and enriched 

diversity, we innovated the unsupervised neural network to emphasize feature reconstruction 

for vascular disease diagnosis, denoted as VasNet. The success was attributed to the adaptation 

and modification of the domain-transfer network and selection of the standard dataset of a 
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retinal vascular network as the reference for imaging generation. The incorporation of a 

multiscale fusion strategy with DANN loss function creates a biased reconstruction on vascular-

relevant patterns. Consecutively, VasNet significantly improved vasculature extraction and 

reduced the misinterpretation of the heterogeneous noises. 

Network structure 

As shown in Figure2, VasNet decouples the structural information zBc  and zAc  from the source 

domain (B) and destination domain (A) by the encoders EA2zc  and EB2zc  and the irrelevant 

content zBa  by the encoder EB2za . The destination image domain is expected to contain the 

vascular structure of interest. Besides the vasculature content, the source image domain suffers 

from various types of degradations, such as non-uniform background and non-uniform degree 

of scattering, decoupled by the decoder EB2za . In order to effectively decouple the vasculature 

content, i.e. the small gap between the distributions of zBc  and zAc ., we propose to penalize the 

domain invariance between zBc  and zAc  by the domain adversarial loss proposed in the 

DANN36. In addition, since the DANN loss may lead to a small gap between two feature 

distributions, none of which is fixed, the oscillation in the training process commonly existed, 

as mentioned by Tzeng et al.49. To deal with it, the domain adversarial loss adopted a cross-

entropy loss function against random guess result. Such domain adversarial loss encourages the 

emergence of indiscriminative structural information from both source and destination domains. 

Since the mutual information between zBc  and zAc  is the vasculature, the domain adversarial 

training scheme ensures the success of vasculature-aware unsupervised learning algorithm for 

the case of non-uniform background and scattering.  

Considering the existence of various width of the blood vessels, we further utilize a coarse-to-

fine scheme by fusing the predictions of the input pyramid with different scales for both wide 

and narrow vessels. Another way to tackle the problem is training with multiple networks for 

each input scale. Unfortunately, we find that it significantly slows down the training process 

and dramatically requires large data volume. In contrast, taking advantage of the fact that 

various scales of the vasculature share the similar topology and width distribution, our 
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multiscale fusion strategy leads to considerably complete and accurate vasculature 

reconstruction. 

Training data preparation: In order to bias the vasculature-aware pattern reconstruction, we 

explicitly collect the destination domain images based on the desired structure features. The 

publicly available retinal vasculature dataset CHASE_DB150 and DRIVE51 with manual 

segmentation is selected as the destination domain image. Since the vascular structure of 

different scale shares similar topology, the algorithm merely requires for inputting small 

patches (128x128) cropped from the raw large images. Similarly, the source domain images, 

which are from different modalities and have various degrees of scattering, are also cropped 

into small patches. The criteria to determine the patch scale is to make the histogram of average 

vascular branches length from the two domains resemble each other.  
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