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them to live near the Z ′ resonance. Such constraints can be relaxed, however, by turning off

the vector coupling to Standard Model fermions, thus weakening direct detection bounds,

or by resorting to light Z ′ masses, below the Z pole, to escape heavy resonance searches at

the LHC. In this work we investigate both cases, as well as the applicability of our findings

to Majorana dark matter. We derive collider bounds for light Z ′ gauge bosons using the

CLS method, spin-dependent scattering limits, as well as the spin-independent scattering

rate arising from the evolution of couplings between the energy scale of the mediator mass

and the nuclear energy scale, and indirect detection limits. We show that such scenarios

are still rather constrained by data, and that near resonance they could accommodate the

gamma-ray GeV excess in the Galactic center.
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1 Introduction

Non-baryonic dark matter (DM) accounts for about 27% of the energy budget of the

universe [1]. Its particle nature is one of the most pressing puzzles at the interface of

particle physics and cosmology. Several dark matter candidates have been extensively

discussed and reviewed in the literature (see e.g. [2, 3]); among those, Weakly Interacting

Massive Particles (WIMPs) stand out for arising in several compelling particle physics

models, such as supersymmetry, for naturally accounting for the DM abundance in the

universe through the thermal freeze-out paradigm, and for potentially being testable with

current and future experimental probes (see e.g. [4–6]).

The key strategies for WIMP searches are direct, indirect, and collider searches. The

former consist of measuring nuclear scattering events with recoil energies on the order of

the keV in underground laboratories [7–10]. WIMP signals in a direct detection experiment

are directly proportional to the local dark matter density, thus the observation of a signal

can be strongly tied to the presence of WIMP scattering.

Indirect detection attempts to detect the stable Standard Model particle products of

dark matter annihilation, such as gamma-rays, cosmic-rays, or radiation at lower frequency

in the electromagnetic spectrum [11–15]. The signal observed is proportional to the inte-

grated line-of-sight dark matter density squared in the region of interest.
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Finally, collider searches hinge on the fact that high-energy proton-proton collisions

at the LHC can generate dark matter particles in association with other exotic particles.

The associated signature would consist of missing energy in, for instance, monojet or

dijet searches. Whilst not capable to unveil the astrophysical connection of the particles

produced, collider studies can provide a complementary and sometimes more effective way

to constrain dark matter models [16], especially with light dark matter particles.

The efficacy of each detection strategy at probing WIMPs is rather model-dependent;

however, and rather interestingly, for the model we focus on this paper, there is a remarkable

degree of complementarity across direct, indirect, and collider searches.

The observation of WIMP events at any of the detection strategies would be paramount

to understand the laws of nature at fundamental scales, since WIMPs are expected to be

embedded in UV complete models such as the minimal superymmetric standard models or

minimal left-right model [17–20]. In other words, the discovery of WIMPs is tightly related

to uncovering hints about underlying physics beyond the Standard Model.

In order to map the interactions between WIMPs and standard model particles which

are allowed by data, simplified models have become powerful tools. In particular, simplified

models which make use of vector mediators [21].

Models with a Z ′ neutral gauge boson portal between dark and ordinary matter have

attracted significant attention for a variety of reasons: they for instance represent “simpli-

fied model” version of several compelling particle models, and are constrained by data in

a rather stringent way, albeit the couplings of the new boson to dark and ordinary matter

are largely model-dependent [22–32].

Assuming the dark matter particle to be a Dirac fermion, many analysis have been done

in the context of heavy mediators (MZ′ > 1TeV) [33–62]. The key results are that these

models are plagued with restrictive spin-independent direct detection limits as well as LHC

bounds on the Z ′ mass from heavy resonance searches, limiting the allowed parameter space

to the Z ′ resonance, i.e. when the mass of the dark matter is close to half the mass of the Z ′.

In this work, we investigate an alternative scenario by turning off the vector coupling

to Standard Model fermions as proposed in [42] to weaken direct detection bounds, and

by focusing on relatively light Z ′ masses, (MZ′ < 500GeV) , to circumvent the usual

heavy-resonance searches at the LHC.1

The present analysis markedly differs from previous analysis for a variety of reasons:

(i) We focus on a very specific class of Z ′ models, namely those where the Z ′ possesses

purely axial-vector couplings with SM fermions, and we perform a detailed dark

matter phenomenology study;

(ii) We show that the Z ′ mass can be as low as 15GeV, where the heavy resonance

searches at the LHC searches are not applicable. We explicitly compute the collider

limits in that region, with no rescaling, using the CLS method employing dimuon

data from the LHC;

1See also ref. [63] for an study on light Z′ bosons, focused on mono Z
′ signatures at the LHC.
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(iii) We discuss the possibility of accommodating the gamma-ray excess observed in the

Galactic center in the context of this class of models.

The paper is structured as follows. We introduce the model under consideration in

section 2. Section 3 is devoted to a detailed study of the invisible Z ′ searches at LHC,

whereas direct detection constraints are analyzed in section 4. After a discussion on the

Galactic center excess in section 6, we conclude.

2 Model

We investigate here a U(1)X extension of the Standard Model expected to be less con-

strained by collider, direct and indirect detection searches. The model is based on the

gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X . Augmenting the SM by a new Abelian

symmetry implies the existence of a new gauge boson Z ′, which can gain mass in different

ways. To preserve gauge invariance such gauge boson will couple to SM fermion through the

covariant derivatives f̄LγµD
µfL and f̄RγµD

µfR, where D
µ = ∂µ−i gf qfZ

′µ, which lead to,

L ⊃ if̄γµ

[

∂µ − igf
qf L + qf R

2
− igf

qfR − qfL
2

γ5
]

f Z ′µ (2.1)

If qfL = qfR, i.e. the left and right-handed SM fermions transform in the same way

under U(1)X (vector-like fermions), the Z ′ will have only vectorial couplings with SM

fermions, corresponding to a dark photon. Conversely, if qfL = −qfR, only axial-vector

current are non-vanishing. The latter is the scenario we are interested in. The addition

of a Dirac fermion dark matter field is trivial and follows the same logic. Focusing on the

latter the final Lagrangian reads

L ⊃
[

χ̄γµ(gχv + gχaγ
5)χ+ gf f̄γ

µγ5f
]

Z ′
µ, (2.2)

where χ is the dark matter candidate We remark that in order to write a Lagrangian

of the form eq. (2.2) it is necessary to assume that SM fermions be charged under the

U(1)X symmetry. One should also notice that the model is clearly anomalous: due to

the chirality of the SM fermions, the triangle anomalies U(1)3X do not cancel. Anomaly

cancellation generically requires the existence of new fields. The new fields can, however, be

vector-like under the SM gauge group, while being chiral under the new Abelian symmetry.

With appropriate charge assignments one can construct an anomaly-free model where the

Z ′ has only axial-vector coupling to fermions. In ref. [64], the authors have put some effort

in coming up with UV complete models where the eq. (2.2) is realized. We will thus assume

that the exotic fermions needed to cancel the anomalies are sufficiently heavy so as not to

spoil the dark matter phenomenology.2 We emphasize that this assumption is crucial to

the validity of our results, especially because we will be focusing on Z ′ masses below 1TeV.

All the numerical computations will be carried under the assumption gχv = gχa = gχ.

Keeping them in the same order is arguably a natural choice. Mild departures from this

2This is not always possible, as argued in [64], since the exotic fermions may contribute to the renor-

malization group equation and affect the running of the couplings.
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assumption will change neither the relic density nor the annihilation cross section today

since they are both dominated by the vectorial term. As for WIMP-nucleon scattering

rates, the impact is also mild. However, had we set gχv to zero, we would have been

discussing a Majorana fermion, where the annihilation cross section is helicity suppressed,

and the WIMP-nucleon scattering is purely spin-dependent. An overall minus sign between

the couplings will induce no change to our results. Furthermore, this choice conveniently

reduces the number of free parameters of the simplified model. That said, as long as one

does not dramatically deviates from gχv ∼ gχa, our conclusions will readily apply.

3 Collider constraints on light Z
′ models

Searches for high- and low-mass dilepton resonances at the LHC have been an excellent

probe of models containing new neutral vector bosons [65, 66]. In the case where the new

vector boson mediates the interaction between the SM and the dark sector, constraints

from dijets and monojet searches for the Z ′ are complementary in the mass versus coupling

plane [36]. These are the most stringent constraints for leptophobic dark Z ′ models. When

couplings to leptons are sizable, though, dileptons searches have the potential to exclude

larger portions of the models’ parameter space [67–69] compared do dijets. This can be

understood in view of the relative size of the production cross section for dijets and dileptons

and their correspondent irreducible backgrounds: first, both production mechanisms are

electroweak processes; second the dominant backgrounds for dijets and dileptons are the

QCD jet pair production and the Drell-Yan processes, respectively. For universal fermion

couplings as those assumed in this work, the relative number of flavors and color multiplicity

leads to the relation (at LO) σ(pp → Z ′ → jj)/σ(pp → Z ′ → ℓ+ℓ−) = 15, where ℓ denotes

electrons or muons. On the other hand, at LO, for the dominant backgrounds we have

σ(pp → Z → ℓ+ℓ−)/σ(pp → jj) ∼ O(10−4) at the 13TeV LHC [70], and a similar ratio

should be expected at 7 and 8TeV center-of-mass energies.

3.1 Signal simulation and branching ratios

In order to evaluate the constraints from the 7TeV LHC data [65] below the Z pole, and

above it with 8TeV data [66], we implemented the axial Z ′ model in FeynRules [71] to

simulate our signal events. We also obtained the partial widths for the Z ′ decays to leptons,

jets, dark matter pairs and top pairs. The branching ratios and cross sections depend on

four basic parameters: {MZ′ ,Mχ, gχ, gf}, the mass of the Z ′, the dark matter mass, the

Z ′ coupling to χ, and the (axial) Z ′ coupling to the SM fermions, respectively.

In figure 1 we show the Z ′ branching ratios as function of its mass for some benchmark

points. In the upper left panel we fixed Mχ = 100GeV and gχ = gf = 0.1. We see

that decays to jets dominate, followed by invisible decays, from light to heavy Z ′ masses,

while the branching ratio to leptons (electrons or muons) is of order 3%. We also observe

thresholds when the vector boson is heavy enough to decay to χ and top pairs. The picture

is essentially the same as either χ gets heavier or the couplings are changed but kept equal

to each other, as shown at the upper right panel and the lower left panel. However, the

branching ratio to dark matter reaches almost 90% when gχ ≫ gf . In this regime it is
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Figure 1. The Z ′ branching ratios to jets, leptons (electrons, muons or taus), top quarks and

invisible (DM and neutrinos), as a function of its mass MZ′ . We present four scenarios: at the left

column we fix mχ = 100GeV, in the upper(lower) panel the couplings are chosen as gχ = gf =

0.1(1); at the right upper panel we choose a heavier DM with mχ = 500GeV and gχ = gf = 0.1,

and in the right lower panel we show the branching ratios for an 100GeV DM, gf = 1 and gχ = 4π

at the boundary of the perturbative regime.

possible that a monojet search becomes as competitive as the dileptons concerning the

exclusion constraints from collider data.

In the gf versus MZ′ plane, the branching ratio to leptons (muons or electrons) and

to invisible (DM plus neutrinos) are shown in the figure 2. In the upper, middle, and lower

rows we display the branching ratios for Mχ = 10, 50, and 500GeV, respectively. In the

left(right) column we fixed gχ = 0.1(4π). The panels are split into two sub-panels: at left,

the branching to leptons, and at right, to invisible.

In the weak DM-Z ′ coupling regime (gχ = 0.1) and lighter DM masses (Mχ ≤ 50GeV),

the branching ratio to electrons or muons reaches 4.5% for all gf until the top channel opens.

The DM decays are low for all gf as can be seen at the right subpanels. In these scenarios,

the dijet channel is the dominant one. As the DM masses increases, a heavy Z ′ decays

mainly to DM as gf gets small, reaching a 90% rate for gf ∼ 0.1. At the limit of the

perturbative regime (gχ = 4π), a Z ′ decays to DM predominantly, unless gf & 0.4. The

branching ratio to leptons is considerably suppressed in these scenarios, being at the 1%

level for gf ∼ 1 as we see in the right column of figure 2.
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Figure 2. The branching ratios into leptons (electrons, muons or taus) and DM in the MZ′ versus

gf plane. At each pair of panels, the left one displays the branching to leptons, and the right one

to dark matter. In the first, middle, and last rows we fixed mχ = 10, 50, and 500GeV, respectively.

The left column of plots have gχ = 0.1, while the at right column gχ = 4π. The dashed lines

represent fixed branching ratios in the mass-coupling plane.

3.2 Searches for dimuon resonances at the 7 and 8TeV LHC

Searches for dileptons pairs with invariant masses as low as 15GeV have been performed

by the CMS collaboration [65] at the 7TeV run with 4.5 fb−1. Higher invariant masses up

to 4.5TeV were probed at the 8TeV LHC by ATLAS with ∼ 20 fb−1 [66], for example,

both in the dielectron as in the dimuon channel.

We use the low and high mass dimuons from the CMS and ATLAS results, respec-

tively, in order to investigate the collider constraints on the model. Signals for muon pair

production were generated with MadGraph [72] with one extra QCD jet, and then inter-

faced with Pythia [73] for showering and hadronization simulations. Detector effects and

jet clustering were taken into account with Delphes [74]. Jet matching were performed in

the MLM scheme [75]. The backgrounds, as the data, were taken from the experimental

studies [65, 66].
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The dimuons pairs were selected according to the following criteria:

Low mass region. In the 15 < Mℓℓ < 100GeV invariant mass region, CMS 7TeV [65]

adopted very loose criteria to select dimuon pairs:

pT (µ1) > 14 GeV , pT (µ2) > 9 GeV , |ηµ| < 2.4 (3.1)

High mass region. To search for high mass resonances, Mℓℓ > 100GeV, with muon

pairs, ATLAS 8TeV [66] impose somewhat tighter cuts

pT (µ1) > 25 GeV , pT (µ2) > 25 GeV , |ηµ| < 2.47 (3.2)

Moreover, the muons are required to be isolated. We adopted the same isolation criteria

of the experimental collaborations in the Delphes settings. Be aware the slightly stronger

limits are currently available from the LHC run-II with 13TeV using 13.3 fb−1 of data for

mZ′ > 500GeV [76]. We estimate these limits to be stronger by a factor of 1.3 on the Z ′

mass. Since our focus is on light Z ′ gauge bosons, and our conclusions do not change even

with the inclusion of more recent data, we simply keep this older data set.

3.3 Statistical analysis and estimated bounds

To estimate the bounds imposed on the Z ′ masses and couplings we compared the dimuon

invariant mass distributions of signal, background and data in the low and high mass

regions with

χ2(µs) = min
{µb}

∑

i

(di − µssi − µbbi)
2

µssi + µbbi
(3.3)

where di, bi and si represent the i-th bin count of the Mℓℓ distribution for data, background

and signal, respectively. Our model have two free parameters: µs for signal and µb for the

background normalization. The µb parameter is set to the best value that fits the data for

a given µs.

We employ the CLS method [77] to determine the 95% confidence limit regions on

the MZ′ versus gf parameter space. First we calculate the related q-statistic: q(µs) =

χ2(µs)−χ2(µ̂s) if µs > µ̂s, and 0 otherwise, where µ̂s is the best fit for the signal strenght.

After that we obtain the bounds by requiring

CLS =
1− Φ(

√

q(µs))

1− Φ(
√

q(µs))− Φ(
√

qA(µs))
= 0.05 (3.4)

The function Φ is the cumulative probability function of the standard normal distribution

and qA(µs) is the value of the q-statistic calculated assuming di = µ̂bbi, that is, when data

are assumed to be represented by the best background model. Fixing the DM mass and

its coupling gχ to the Z ′ boson, we seek for the solution to eq. (3.4) in the (MZ′ , gf ) plane

as shown in figure 3.

In the upper left panel we show the mχ = 10GeV case for three different gχ values:

the lower green lines for gχ ≤ 0.1, the middle red ones for gχ = 1, and the upper black

ones at the boundary of the perturbative regime gχ = 4π. The lines are discontinued at

MZ′ = 100GeV. The constraints for the MZ′ < 100GeV were derived using the low mass

– 7 –
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region data of [65], whilst those in high mass region MZ′ ≥ 100GeV with data from [66].

First, we observe that the excluded regions get larger as gχ becomes smaller once the DM

cannot compete for decays with leptons and jets as can be seen at the upper row of figure 3.

Note that the bounds saturate for gχ < 0.1.

In the low mass region, the collider constraints are as severe as in high mass region,

concerning the values of gf excluded by the 7 and 8TeV LHC, respectively, up to MZ′ ∼
50GeV. In the Z-pole region, the constraints get softened by virtue of the huge SM Z

background. Also, for heavier Z ′ bosons, the production cross sections drop fast and the

top decays are turned on rendering the σ(pp → Z ′) × BR(Z ′ → µ+µ−) very small and

again escaping the collider constraints.

As χ gets heavier, the constraints become increasingly insensitive to the coupling to the

Z ′, once the DM channel remains closed until MZ′ ≥ 2mχ. This can be seen in mχ = 50,

500 and 5000GeV panels of figure 3. For sufficiently heavy DM or with suppressed couplings

to Z ′, couplings between the vector mediator and SM fermions as low as ∼ 5 × 10−3 are

excluded at 95% CL for MZ′ ∼ 30 and 200GeV as we observe in figure 3. These particular

masses are a result of the trade off among the size of Z ′ cross section, the branching ratio

to leptons, and the relative distance of the Z-pole mass region.

Comparing our 95% CL limits on gf with those of ref. [69] for the Z − Z ′ mixing

parameter ǫ, after translating their gffZ′ coupling in terms of our gf , we found agreement

in their order of magnitude in the small mass region. The agreement is better for larger κ

which parametrizes the level of backgrounds systematics in ref. [69]. It should be noted that

the mixed Z ′ model [69] assumes vector-axial couplings between Z ′ and the SM fermions,

but it makes a little difference concerning the collider bounds.

4 Dark matter phenomenology

In this section we compare limits from collider searches with the constraints arising from

DM phenomenology. These constraints consist in the requirement of the correct DM relic

density and the compatibility with limits from both Direct (DD) and Indirect (ID) DM

searches. The constraints are individually briefly illustrated below.

4.1 Relic density and indirect detection

The DM relic density is determined, for the range of couplings considered in our study,

by the paradigm of thermal decoupling; as a consequence the experimentally favored value

Ωh2 ≈ 0.11 [1] corresponds to a suitable value of the DM thermally averged pair annihila-

tion cross-section. The DM features two types of annihilation channels. The first is into

SM fermions. The corresponding cross-section, originated by s-channel exchange of the Z ′,

is given by:

σ =
∑

f

nc

12π
[

(

s−m2
Z′

)2
+m2

Z′Γ2
Z′ΓZ′

]

√

1− 4m2
f/s

1− 4m2
χ/s

(4.1)

×g2f

[

g2χa

{

4m2
χ

[

m2
f

(

7− 6s

m2
Z′

+
3s2

m4
Z′

)

−s

]

+s
(

s−4m2
f

)

}

+g2χv(s−4m2
f )(2m

2
χ+s)

]

,
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Figure 3. The 95% CL exclusion regions from the searches for dimuon resonances at the 7 and

8TeV LHC. Four different DM masses and three DM-Z ′ couplings were chosen to illustrate the

collider bounds from those experiments. The constraints for the various gχ degenerate into a single

bound in the region MZ′ ≤ 2mχ. The lines are discontinued at MZ′ = 100GeV, the point we chose

to switch from the CMS 7TeV data [65] to the ATLAS 8TeV data [66].

where nc = 3 (1) for annihilations to quarks (leptons),
√
s is the center-of-mass energy of

the collision, and ΓZ′ is width of the Z ′:

Γ(Z ′) =
∑

f

θ(mZ′ − 2mf )
ncmZ′

24π

√

1−
4m2

f

m2
Z′

[

g2f

(

1−
4m2

f

m2
Z′

)

+ g2f

(

1 + 2
m2

f

m2
Z′

)]

×θ(mZ′ − 2mχ)
mZ′

24π

√

1−
4m2

χ

m2
Z′

[

g2χa

(

1−
4m2

χ

m2
Z′

)

+ g2χv

(

1 + 2
m2

χ

m2
Z′

)]

(4.2)

An analytic expression of the thermally averaged cross-section can be obtained through

the velocity expansion [67, 78]:

σv ≈
nc

√

1−m2
f/m

2
χ

2πm4
Z′

(

m2
Z′ − 4m2

χ

)2 g2f

[

m2
fg

2
χa

(

m2
Z′ − 4m2

χ

)2
+ 2g2χvm

4
Z′

(

m2
χ −m2

f

)

]

(4.3)

− ncv
2

48πm4
Z′m2

χ

√

1−m2
f/m

2
χ

(

4m2
χ −m2

Z′

)3
g2f

[

g2χa
(

m2
Z′ − 4m2

χ

)

×
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×
(

m4
f

(

−72m2
Z′m2

χ+17m4
Z′+144m4

χ

)

+m2
f

(

48m2
Z′m4

χ−22m4
Z′m2

χ−96m6
χ

)

+8m4
Z′m4

χ

)

−2g2χvm
4
Z′

(

m2
f −m2

χ

)

(

4m2
χ

(

m2
Z′ − 17m2

f

)

+ 5m2
fm

2
Z′ + 32m4

χ

)

]

.

In addition, if mχ > mZ′ , the t-channel induced χ̄χ → Z ′Z ′ process is kinematically

allowed. The analytic expression of σ(s) is rather contrived. We will then just report the

velocity expansion given by:

〈σv〉Z′Z′ ≈
(

(

m2
χ −m2

Z′

)3/2 (
g4aχm

2
Z′ + 2g2aχg

2
vχ

(

4m2
χ − 3m2

Z′

)

+m2
Z′g4vχ

)

πmχ

(

m3
Z′ − 2m2

χmZ′

)2

+

√

m2
χ −m2

Z′

4πmχ

(

m3
Z′ − 2m2

χmZ′

)4

(

m6
Z′g4vχ

(

76m4
χ + 23m4

Z′ − 66m2
χm

2
Z′

)

−2g2aχm
2
Z′g2vχ

(

160m8
χ + 21m8

Z′ − 182m2
χm

6
Z′ + 508m4

χm
4
Z′ − 528m6

χm
2
Z′

)

×g4aχ
(

128m10
χ + 23m10

Z′ − 118m2
χm

8
Z′ + 172m4

χm
6
Z′ + 32m6

χm
4
Z′ − 192m8

χm
2
Z′

)))

. (4.4)

These analytical approximations have been validated by numerically computing the

thermally averaged cross-sections through the package Micromegas [79].

Few remarks are in order:

(i) Notice that as long as gχv is not much smaller than gχa the annihilation cross-section

into SM fermions is s-wave dominated, with the dark matter annihilating nearly

equally to all SM fermions, except for the color index, which makes the overall anni-

hilation to be mostly into quarks;

(ii) The term that goes with g2χv, not helicity suppressed, gives rise to a detectable indirect

detection signal at Telescopes.

(iii) The terms proportional to gaχ in the first part of the eq.(4.3) is not velocity sup-

pressed, whereas the latter is;

(iv) When the annihilation into Z ′ pairs is turned on, even the term proportional to gaχ
is no longer velocity suppressed.

(v) If we had taken gχv = 0, as would occur for Majorana dark matter, the Z ′ resonance

would not have been present, since the pole (m2
Z′ − 4m2

χ) in the numerator cancels

out with the denominator.

Keeping that in mind, we have delimited the region that sets the right relic abundance

as well as the indirect detection limits from the Fermi-LAT telescope from the observation

of dwarf spheroidal galaxies [80].3

3See [81–86] for competitive limits.

– 10 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
4

Figure 4. Results for mχ = 10GeV and gχ = 4π, 1 and 0.1. Combined upper bounds on the

model under study, in the bidimensional plane (mZ′ , gf ) for the assignations of the DM mass

mχ and coupling gχ reported in the different panels. The black lines delimit the correct relic

density parameter space. The blue, red and green regions are excluded by LHC data. The orange

region represents spin-dependent PANDA-X exclusion region, whereas the dashed curve the spin-

independent LUX limit, while in purple FERMI-LAT bound.

4.2 Direct dark matter detection

In the case of of a Z ′ with purely axial couplings to quarks one would expect only the

spin-dependent interaction between DM and nucleons to be sizable. These are induced

by the combination of the axial couplings of the Z ′ with DM and light quarks and the

corresponding cross-section is given by (we will consider only the case of scattering on

neutrons since it suffers at the moment the most stringent constraints. Notice that in the

case of flavor universal couplings the scattering cross sections on protons and neutrons are

substantially equal.):

σSD (per neutron) ≈
3µ2

χneut

π

g2χa
m4

Z′

[

gua∆
neut
u + gda

(

∆neut
d +∆neut

s

)

]2
, (4.5)

where gua, gda are the vector-axial couplings between the Z’ and the up and down quarks

respetively, which we assume to be gf according to eq. (2.2), µχn is the WIMP-nucleon

reduced mass while ∆neut
q are the quark spin fractions of the neutron. We will take these

to be ∆neut
u = −0.42, ∆neut

d = 0.85, ∆neut
s = −0.08 [87].

The vectorial coupling between the dark matter fermion and the Z ′, gχv, is completely

irrelevant for the spin-dependent scattering as one can see in eq. (4.5). Although, this
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coupling even if negligible in the initial Lagrangian, eq. (2.2), will be non zero, at the typical

energy scales of the scattering processes since they are generated through by computing the

renormalization group equations (RGE) as shown in ref. [88] so that a spin-independent

cross section is actually induced with,

σSI (per nucleon) ≈
a2µ2

χn

π

[Zfprot + (A− Z)fneut
A

]2

fprot ≡
gχv
m2

Z′

(2g̃uv + g̃dv)

fneut ≡
gχv
m2

Z′

(g̃uv + 2g̃dv) (4.6)

where guv, gdv are the vector couplings between the Z’ and the up and down quarks re-

spetively, which we are computed through RGE effects.

Because of the coherent scattering produced by spin-independent WIMP-nucleon in-

teraction, the spin-independent limits are much more restrictive than the spin-dependent

ones, for this reason, the spin-independent scattering even if radiatively induced may pro-

vide stronger limits in certain regions of the parameter space we we will show below. For

the RGE induced g̃u,dv = g̃u,dv(µN ), µN ∼ 1 GeV couplings we have adopted, for simplicity,

the analytical approximation provided in appendix B of [88], retaining only the dominant

contribution, induced by top quark loops, present only above the EW scale, i.e. mZ′ & mZ .

For mZ′ < mZ the spin-dependent limits from PANDA-X are more restrictive and for this

reason the spin-independent ones below the Z-pole are not shown in the figures. In the

figures we have considered the most recent limits from spin-dependent limits from the

PANDA-X experiment [89], spin-independent from LUX [90].

Note that had we started with a Majorana dark matter particle from the beginning,

gvχ would always have vanished, and the RG running effect would have been irrelevant.

In this case, only spin-dependent limits would be applicable, the dark matter relic density

annihilation cross section would not significantly change, as well as the collider bounds

agreeing with [91]. Altough, we have a sizable change as far as indirect dark matter

detection is concerned since in the case of Majorana (or more in general only axial couplings

of the DM with the Z’) DM the s-wave component of the annihilation cross-section is helicity

suppressed so at late times the annihilation cross-section of the DM is small.

That said, our findings are also applicable to Majorana Dark Matter, with mild quan-

titative changes, by simply ignoring the Fermi-LAT limits, as well as the spin-independent

limits arising from the RG running and keeping the PANDA-X spin-dependent bounds. At

the end, the model would be less constrained by data, since the spin-independent limits

from LUX rule out a significant region of the parameter space.

4.3 Summary of results

The results of our DM analysis are summarized in figures 4–6. Here we have superimposed,

for the benchmarks considered in figure 3, the collider limits from di-muon searches with the

isocontours of the correct DM relic density, the limits from spin-dependent cross-section,

as recently determined by the PANDA-X experiment [89], spin-independent cross-section,
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Figure 5. Results for mχ = 50GeV and gχ = 4π, 1 and 0.1. Combined upper bounds on the

model under study, in the bidimensional plane (mZ′ , gf ) for the assignations of the DM mass

mχ and coupling gχ reported in the different panels. The black lines delimit the correct relic

density parameter space. The blue, red and green regions are excluded by LHC data. The orange

region represents spin-dependent PANDA-X exclusion region, whereas the dashed curve the spin-

independent LUX limit, while in purple FERMI-LAT bound.

as given by LUX [90], and the most recent limits from indirect searches of DM gamma-ray

signals in DSPh [80].4

As already indicated, despite the radiative origin, SI interaction give stronger con-

straints with respect to SD ones for certain Z ′ masses. SD limits provide nevertheless a

solid complement, especially at light Z ′ masses. Direct detection limits are competitive, or

even stronger that the one from LHC for gχ & 1 while the latter dominate for lower values

of the DM couplings. Once the FERMI exclusion limit is taken into account, the light DM

benchmark, mχ = 10GeV is completely ruled out for gf ≤ 10−3. Thermal DM is still in

tension with ID limits for mass of 50GeV ad exception of the pole region, mχ ∼ mZ′/2,

where mismatch between the annihilation cross-section at freeze-out and at present times

is induced by the so called thermal broadening [94, 95].

Viable thermal DM can be obtained, far from the pole region, for higher values of the

mass, e.g. mχ = 500GeV, as considered in the last row of figure 6. Notice that, with the

exception of the case gχ = 0.1, there are no regions with the viable DM relic density for

4Low energy observables, such as the muon magnetic moment, also give rise to constraints on the Z
′

mass, but these lie around 100GeV for couplings of order one, thus not relevant for our reasoning [92].

Moreover notice that our Z
′ model is not ison-spin violating, otherwise a different set of bounds would be

applicable [93].
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Figure 6. Results for mχ = 500GeV and gχ = 4π, 1 and 0.1. Combined upper bounds on the

model under study, in the plane (mZ′ , gf ) for the a given DM mass mχ and coupling gχ, as reported

in the different panels. The black lines delimit the correct relic density parameter space. The blue,

red and green regions are excluded by LHC data. The orange region represents spin-dependent

PANDA-X exclusion region, whereas the dashed curve the spin-independent LUX limit; finally the

purple region indicates the FERMI-LAT bound.

mχ > mZ′ . Indeed because of the m2
χ/m

2
Z′ enhancement and of the high values of the

couplings, the DM acquires a very large annihilation cross-section into Z ′ pair as soon as

this channel becomes kinematically accessible, so that its relic density is largely suppressed

with respect to the experimental expectations. For this same reason, contrary to figure 3,

there are no plots relative to mχ = 5TeV since, in this case, the DM relic density results

always several order of magnitude below the correct value, for the couplings choices.

We stress that our results are also applicable to Majorana dark matter, because had

we adopted a Majorana dark matter fermion the vectorial coupling gvχ would have al-

ways been zero, and the RG running effect would have been irrelevant. In this case, only

spin-dependent limits would have been applicable, with mild changes to the annihilation

cross section and collider bounds. As one can see from the figures, the Majorana dark

matter setup has a larger region of parameter space allowed by data, if one takes a more

conservative indirect detection limit from Fermi-LAT (as we discuss in the next section).

In particular, if Fermi-LAT limits are weakened, for mχ = 50GeV, gχ = 1 as displayed in

figure 5, a much larger region of the parameter yielding the right relic abundance would

be allowed by data.
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5 Galactic center excess

An excess in the GeV range has been observed in the Galactic center using data from the

Fermi-LAT satellite [96–107]. There are several possible astrophysical explanations for,

or caveats to, this excess. An attractive particle physics solution happens to be through

annihilations of 30 − 60GeV WIMPs into quarks with an annihilation cross section of

1−3×10−26 cm3s/s normalized to a dark matter local density of 0.4 GeV/cm3, i.e. slightly

below the canonical value [104]. For the light Z ′ model discussed here, the preferred

annihilation final states is mostly to quarks, and at the resonance the annihilation cross

section today is in the right ballpark of e.g. the results in [108].

Thus, the model under consideration here can indeed accommodate the GeV excess.

However, current constraints from the observation of Dwarf Galaxies using Fermi-LAT data

place stringent limits on the annihilation cross section today into quarks [109]. Without

including uncertainties in the dark matter content of dwarf galaxies, the WIMP interpre-

tation for the GeV excess is excluded at face value. However, a recent reassessment of

the J-factor from the Fermi-LAT team, taking into account systematic uncertainties in

the J-factors, weakens their limits by a factor of 2-3, thus showing that there might be

still a bit of room left for the WIMP-annihilation hypothesis [80]. Our model thus offers

a possible dark matter interpretation for the GeV excess, as long as a conservative limit

from Fermi-LAT observation is considered.5

6 Note

Before submission of our paper we noted the work in [91] which partially overlaps with

ours, but neither incorporated the spin-independent limits resulting from RG running and

indirect detection limits, nor performed a detailed collider phenomenology.

7 Conclusions

Dirac fermion dark matter models in the context of heavy vector mediators are forced to

live near the Z ′ resonance due to the a combination of spin-independent and LHC bounds.

One may switch off the Z ′-fermions vectorial coupling, however, as indeed occurs in some

UV-complete models, and consider light Z ′ masses to circumvent spin-independent direct

detection limits and LHC bounds on heavy resonance searches.

In this work, we have demonstrated that by including the evolution of the vector

coupling between the energy scale of the mediator mass and the nuclear energy scale, this

coupling, which becomes non-zero, gives rise to stringent independent limits, and that by

properly deriving LHC bounds on vector mediators using the CLS method, the scenario is

still rather constrained by data.

Considering a variety of data, stemming from spin-independent and spin-dependent

direct detection, collider, and indirect detection, we showed that only the parameter space

5We decided not to go into the details of the astrophysical uncertainties surrounding the GeV excess

itself which might shift the favored region downwards, to smaller annihilation cross section today [106].
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near the Z ′ resonance region survives, and that one could possibly accommodate the

gamma-ray excess for mχ = 50GeV. Moreover, we have discussed the applicability of

our results to Majorana dark matter models.
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