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ABSTRACT

We present a www server for AUGUSTUS, a novel
software program for ab initio gene prediction in
eukaryotic genomic sequences. Our method is
based on a generalized Hidden Markov Model with a
new method for modeling the intron length distri-
bution. This method allows approximation of the
true intron length distribution more accurately than
do existing programs. For genomic sequence data
from human and Drosophila melanogaster, the
accuracy of AUGUSTUS is superior to existing
gene-finding approaches. The advantage of our pro-
gram becomes apparent especially for larger input
sequencescontainingmore thanonegene.Theserver
is available at http://augustus.gobics.de.

INTRODUCTION

The first step in genome annotation is to predict all gene
structures in a given genomic sequence. The development
of gene-finding methods is, therefore, an important field in
biological sequence analysis. For eukaryotes this problem is
far from trivial, since eukaryotic genes usually contain large
introns, i.e. non-coding regions. Most gene-prediction pro-
grams are based on stochastic models such as Hidden Markov
Models (HMMs). These models describe the statistical fea-
tures of different regions and signals in genomic sequences,
such as introns, coding exons, UTRs, promoters, etc. A large
number of gene-finding programs have been proposed since
the 1980s, e.g. GENIE (1), GENSCAN (2) and GENEID (3).
GENSCAN is widely used and has been found in earlier stud-
ies (4,5) to be one of the most accurate gene-prediction pro-
grams. All these tools are routinely used for automatic genome
annotation. Despite considerable efforts in the bioinformatics
community, the performance of existing gene-prediction tools
is still not satisfactory. A study by Guig�oo et al. (6) has shown

that these tools are accurate if applied to rather short sequences
that contain single genes together with short flanking inter-
genic regions. However, their performance drops dramatically
if they are applied to long input sequences. Experiments with
semi-artificial sequences showed that GENSCAN tends to
predict many more genes than are actually present in genomic
sequences.

A major problem in gene prediction is the correct modeling
of the intron length distribution for a given organism. Other
HMM-based gene-finding programs, such as GENSCAN (2),
GENIE (1), DOUBLESCAN (7) and TWINSCAN (8), can
only model a geometric intron length distribution, in which
the probabilities decline exponentially with the length. This
approach is computationally more efficient than explicitly
modeling the actual non-geometric length distribution.

However, the assumed geometric intron length distribution
is the reason why a single gene is often split into two or more
predicted genes (1) and a reason why large introns are very
unlikely to be correctly identified.

AUGUSTUS—A NEW APPROACH TO HMM-BASED
GENE PREDICTION

AUGUSTUS is based on a generalized Hidden Markov Model
(GHMM). This model defines probability distributions for the
various sections of genomic sequences. Introns, exons, inter-
genic regions and so on correspond to states in the model, and
each state is thought to create DNA sequences with certain
pre-defined emission probabilities. Like other HMM-based
gene finders, AUGUSTUS finds an optimal parse of a
given genomic sequence, i.e. a segmentation of the sequences
into states that is most likely according to the underlying
statistical model. The default version of the model consists
of 47 states, of which 23 states model genes on the reverse
strand and are symmetric copies of corresponding states which
model genes on the forward strand. We probabilistically model
separately the sequence around the splice sites, the sequence of
the branch point region, the bases before the translation start,
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the coding regions, the non-coding regions, the first coding
bases of a gene, the length distribution of single exons, initial
exons, internal exons, terminal exons, intergenic regions, the
distribution of the number of exons per gene and the length
distribution of introns.

In our intron length model, which is described in (9,10), we
combine explicit length modeling with a geometric distribu-
tion. For introns shorter than a few hundred bases (human 584,
Drosophila 929), we use explicit length modeling. Only for
introns exceeding this length does the probability decline ex-
ponentially, but at a slower rate than if the whole distribution
was geometric. In the explicitly modeled part of the distribu-
tion, intron lengths have probabilities that have been estimated
from observed frequencies. This way, our program is com-
putationally efficient but is able to model intron lengths much
more realistically than standard approaches do.

Our model parameters have been estimated using training
sequences with known genes. For the human version we used
1284 single-gene training sequences; for the Drosophila ver-
sion we used 400 single-gene training sequences. For each
species, we use one of 10 different sets of parameters accord-
ing to the average GC content of the input sequence.

The performance of AUGUSTUS has been extensively
evaluated on sequence data from human and Drosophila
(9,10). These studies showed that, especially for long input
sequences, our program is considerably more accurate than
existing approaches. Table 1 shows the prediction accuracy of
AUGUSTUS, GENEID and GENIE on the Drosophila Adh
region, which has been carefully annotated and has been used
in the Genome Annotation Assessment Project (11).

To make our tool available for the research community, we
set up a www server at GOBICS (Göttingen Bioinformatics
Compute Server), where AUGUSTUS is accessible through a
user-friendly interface.

WEB SERVER DESCRIPTION

The AUGUSTUS web server allows a DNA sequence to be
uploaded in FASTA format or as multiple sequences in multi-
ple FASTA format or by pasting a sequence into the web form.
It is also possible to paste the sequence part of the GENBANK
format (which follows the ORIGIN keyword) into the web
form because spaces and digits are ignored by the program.

The maximal total length of the sequences submitted to the
server is 3 million bp. Currently, AUGUSTUS has two spe-
cially trained parameter sets that can be chosen on the web site:
human and Drosophila. We can generate parameter sets for
other species automatically from annotated GENBANK files
of these species and plan to add them to the web site. For the

moment, we recommend using the human version also for
other vertebrates.

AUGUSTUS reports predicted genes of the input DNA
sequence on the forward strand, the reverse strand or on
both strands, depending on the user’s choice. Usually the
default version of the program is the best choice, but in
some cases additional evidence about the gene structure sug-
gests deviating from the default program behavior. For these
cases the user has two ‘expert options’.

The first ‘expert option’ is a choice by radio button from one
option from the following list:

(i) predict any number of ( possibly partial) genes,
(ii) only predict complete genes,
(iii) only predict complete genes—at least one,
(iv) predict exactly one gene.

The first of these options is the default setting. AUGUSTUS
may predict no gene at all, one gene or more than one gene.
Here, the first and the last predicted gene may be partial.
‘Partial’ means that the gene is incomplete and not all of the
exons of the gene are contained in the input sequence. The last
three options assume that the boundaries of the input sequence
lie in the intergenic region and, thus, AUGUSTUS predicts
only complete genes including both the start and stop codon.
When the second option is chosen AUGUSTUS predicts zero
or more complete genes. When the third option is chosen,
AUGUSTUS is forced to predict at least one gene if possible.
However, predicted genes may be filtered out if the coding
sequence is unrealistically short. The last option forces
AUGUSTUS to predict one gene and not more than one
gene. If it is known that the boundaries of the input sequence
are within an intergenic region, then choosing the option ‘only
predict complete genes’ can significantly increase the predic-
tion accuracy as Table 2 shows. In particular, the gene-level
accuracy increases. This is because in sequences where the
first exon of a gene is close to a sequence boundary often this
first exon is missed with the default setting and the gene is
predicted as a partial gene.

The other ‘expert option’ is a checkbox that, if checked, tells
AUGUSTUS to ignore conflicts between the gene structures of
the two strands. By default this option is not chosen and
AUGUSTUS assumes that genes on opposite strands do not
overlap (as well as genes on the same strand). This assumption
is usually satisfied, and making it helps to avoid finding ‘sha-
dow genes’, i.e. false positive genes on a certain strand, at a
position where the true gene is actually on the other strand. In
some cases the assumption is not satisfied, and a gene is con-
tained in an intron of a gene on the other strand as in Figure 1a.
In this case the default setting cannot produce the correct

Table 1. Accuracy results on a 2.9 million bp long sequence from the Drosophila Adh region

Program Base level Exon level Gene level
Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

AUGUSTUS 98 93 85 65 68 38
GENEID 96 92 71 62 47 33
GENIE 96 92 70 57 40 29

Foreachof the threeprograms the sensitivitywasmeasuredusinga set of annotations, called std1,whichcontains38genes.Thespecificitywasmeasuredusinganother
set of annotations, called std3,which contains 222 genes. For testingwe used release 2 ofAUGUSTUS and version 1.1 ofGENEID.The results forGENIEwere taken
from (11).
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prediction. In the case of the particular pair of nested genes of
Figure 1, the default version of AUGUSTUS correctly predicts
the included gene but splits the including gene into two pre-
dicted genes as shown in Figure 1b. In a case with evidence
about nested genes, e.g. derived by expressed sequence tag
(EST) alignments, the ‘ignore conflicts’ option should be cho-
sen. With this option the predictions are made independently
on the two strands. In this example the two genes are then
predicted almost correctly (Figure 1c).

When one of the ‘expert options’ is changed from the
default setting the maximal total sequence length is 400 kb.
This limit will be suspended soon. The running time for a
200 kb input sequence is approximately 30 s when the server
is otherwise idle.

OUTPUT DESCRIPTION

AUGUSTUS outputs its results in both graphics and text for-
mat. The results page of the web server shows for each
sequence a clickable thumbnail which links to a postscript
image similar to the one in Figure 1. The pictures are generated
with the program gff2ps (13) from the text output. The text
output is in the ‘General Feature Format’ (GFF) proposed by
Richard Durbin and David Haussler. The Sanger Institute lists
at http://www.sanger.ac.uk/Software/formats/GFF a large
number of tools which work with the GFF. In this format

the results contain one line for each exon with data fields
separated by a TAB character. These data fields include the
start and end positions of the exon, a name for the sequence, a
name for the gene and whether it is on the forward or reverse
strand. A detailed description of the output is in the Supple-
mentary Materials to this article.

FUTURE WORK

Currently, the AUGUSTUS web server makes its predictions
ab initio, i.e. without making use of external evidence about
the gene structure of the input sequence. However, a natural
and flexible generalization of the GHMM of AUGUSTUS that
allows the integration of uncertain extrinsic information from
various sources has already been developed (10). This has
been tested with extrinsic information which the program
AGRIPPA (14) has constructed from the results of searching
the input DNA sequence against protein and EST databases.
The approach also allows such user constraints as ‘This inter-
val of the sequence must be part of an exon’ to be set. A
publication presenting the promising results of the integration
of EST and protein database search results is in preparation.

During recent years, a number of comparative gene-finding
tools have been proposed (15–19). These tools work by com-
paring genomic sequences from related organisms to each
other, e.g. human and mouse. They use the phylogenetic

Figure 1.Anexamplewhere the option ‘ignore conflictswith other strand’ helps. The lines in (a) show twonestedDrosophilagenes as annotated in FlyBase (12). The
nine-exon gene on the forward strand includes a two-exon gene on the reverse strand within a long intron. The lines in (b) show the prediction with the default
parameters. The gene on the forward strand is split into two genes by introducing two very short false positive exons so that the three predicted genes do not overlap.
The lines in (c) show the predictionwith the option ‘ignore conflictswith other strand’,which is identical to the annotation except for a shortmissed exon.This graphic
has been obtained using gff2ps (13) from http://genome.imim.es/software/gfftools/GFF2PS.html.

Table 2. Comparison of prediction accuracy on 178 human single-gene sequences

Program Base level Exon level Gene level
Sensitivity(%) Specificity(%) Sensitivity(%) Specificity(%) Sensitivity(%) Specificity(%)

AUGUSTUS, default 93 90 80 81 48 47
AUGUSTUS, complete 92 91 82 83 58 58
GENSCAN 97 86 83 75 40 36

The first line shows the results with the default settings of AUGUSTUS. The second line shows the results with the option ‘only predict complete genes’, which are
much better on the gene level. For comparison with the default version of AUGUSTUS (release 2) the results of GENSCAN (version 1.0), which may predict partial
genes, are shown.
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footprinting principle, i.e. they exploit the fact that function-
ally important parts of sequences are usually more conserved
than non-functional parts of the genome. Comparative meth-
ods try to identify evolutionarily conserved parts of the
sequences and then search for signals such as splice sites
near these conserved sequences.

Some authors have combined intrinsic and comparative
gene-finding approaches (7,8,20,21). We also plan to utilize
the homology information produced by the alignment program
DIALIGN (22) for the above-mentioned generalization of
AUGUSTUS. DIALIGN has been used in the past for genome
sequence analysis; it has been shown that local sequence
similarities returned by DIALIGN are highly correlated to pro-
tein-coding exons (23). A new version of the program has been
implemented that is considerably faster than theoriginalversion
and can therefore be applied to larger sequence data (24).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

REFERENCES

1. Reese,M.G.,Kulp,D., Tammana,H. andHaussler,D. (2000)Gene finding
in Drosophila melanogaster. Genome Res., 10, 529–538.

2. Burge,C.B. (1997) Identification of genes in humangenomicDNA.Ph.D.
Thesis, ‘Stanford University’, Stanford, CA, USA.

3. Parra,G., Blanco,E. and Guig�oo,R. (2000) GeneID in Drosophila.
Genome Res., 10, 511–515.

4. Rogic,S., Mackworth,A.K. and Ouellette,F.B.F. (2001) Evaluation of
gene-finding programs on mammalian sequences. Genome Res.,
11, 817–832.

5. Claverie,J.-M. (1997) Computational methods for the identification
of genes in vertebrate genomic sequences. Hum. Mol. Genet.,
6, 1735–1744.

6. Guig�oo,R., Agarwal,P., Abril,J., Burset,M. and Fickett,J.W. (2000) An
assessment of geneprediction accuracy in largeDNAsequences.Genome
Res., 10, 1631–1642.

7. Meyer,I.M. and Durbin,R. (2002) Comparative ab initio prediction of
gene structures using pair HMMs. Bioinformatics, 18, 1309–1318.

8. Korf,I., Flicek,P., Duan,D. and Brent,M.R. (2001) Integrating genomic
homology into gene structure prediction. Bioinformatics, 1(Suppl. 1),
S1–S9.

9. Stanke,M. and Waack,S. (2003) Gene prediction with a hidden Markov
model and new intron submodel. Bioinformatics, 19(Suppl. 2),
ii215–ii225.

10. Stanke,M. (2004) Gene prediction with a hidden markov model.
Ph.D. Thesis, ‘University of Göttingen’, Germany.

11. Reese,M.G.,Hartzell,G.,Harris,N.L.,Ohler,U.,Abril,J.F. andLewis,S.E.
(2000) Genome annotation assessment in Drosophila melanogaster.
Genome Res., 10, 391–393.

12. The FlyBase Consortium (2003) The FlyBase database of the Drosophila
genome projects and community literature. Nucleic Acids Res.,
31, 172–175, http://flybase.org/.

13. Abril,J.F. and Guig�oo,R. (2000) gff2ps: visualizing genomic annotations.
Bioinformatics, 16, 743–744.
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