
The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

J. Bosch et al. (eds.), Software Architecture

10.1007/978-0-387-35607-5_15

http://dx.doi.org/10.1007/978-0-387-35607-5_15

30 JoOO Pedro Sousa and David Garlan

One of the most important challenges for architectural design is to sup

port the relatively new quality attribute of user mobility. Ideally, a ubiqui

tous computing infrastructure would allow users to move their computa

tional tasks easily from one environmentl to another. Moreover, users

should be able to take full advantage of the local capabilities and resources

within a given environment, even as other users and devices enter and leave

that environment, and as resources (like available bandwidth) change [30].

Current approaches to user mobility are based on one of four techniques,

none of which fully achieves these goals. One approach is to support as

much of a user's computing needs as possible on a mobile machine. A sec

ond approach is to compute via remote access to a computing server that
"-

stores a users personal state and preferences, much as X-terminals do. A

third approach is to provide standard applications that are ported to and in

stalled in all environments. Those applications are extended to become

aware of user intention and mobility. A fourth approach is to provide stan
dard virtual platforms (such as the Java Virtual Machine) that enable mobile

code to follow the user as needed.

There are two problems with these approaches. First, since to some de

gree they assume a homogenous computing baseline, they cannot take full

advantage of the diverse capabilities of each environment, such as external
displays, processors, and JlO devices. Second, they lack the ability to handle
dynamic variations of capabilities and resources in the environment without

overburdening the user with manual tuning and reconfiguration.

In this paper we propose an alternative approach that enables mobile us
ers to make the most of ubiquitous computing environments, while shielding
those users from managing heterogeneity and dynamic variability of capa
bilities and resources. Specifically, we describe an architectural frameworIc.2

for ubiquitous computing applications with the following key features: flIst,

user tasks become first class entities that are represented explicitly and
autonomously from a specific environment. Second, user tasks are repre
sented as coalitions of abstract services. Third, environments are equipped

to self-monitor and renegotiate task support in the presence of run time

variation of capabilities and resources.

As we will see, this architectural framework has a number of important

benefits. By representing user tasks explicitly, we provide a placeholder to

capture user intent. This knowledge is used to guide the search for suitable
configurations in each new environment. By representing tasks as service

I In this paper, we define "environment" informally as the set of devices and applications

that are accessible to a user standing at a particular location.
2 By "architectural framework" we mean an architectural style for applications and services

together with supporting run-time infrastructure (or middleware) that supports their invo

cation, interaction, and reconfiguration.

Aura: An Architectural Framework 31

coalitions, the infrastructure can recognize when all the essential services in

a task can be supported, instantiating them jointly, or otherwise provide

early warning to the user that that is not possible. By providing an abstract

characterization of the services in a task, the infrastructure can search het

erogeneous environments for appropriate matches to supply those services.

By providing the environment with self-monitoring capabilities, the infra

structure can detect when task requirements (such as minimum response

time) are not met, and search and deploy alternative configurations to sup

port the task.

Section 2 describes the proposed architectural framework, making it con

crete how the intended features are supported by the architectural design.

Section 3 illustrates the workings of the framework using a task migration

scenario as an example. Section 4 details the current state of our research,

discusses the benefits and limitations of what has been achieved, and out

lines future research. Section 5 describes related work, while Section 6

summarizes the main results.

2. AURA'S ARCmTECTURE

The central architectural challenge in supporting computational needs of

mobile users is to satisfy two competing goals. The first is to maximize the
use of available resources - that is, effectively exploiting the increasingly

pervasive computing and communication resources in our environments.

The second is to minimize user distraction and drains on user attention.
Today, a major source of user distraction arises from the need for users to

manage their computing resources in each new environment, and from the

fact that the resources in a particular environment may change dynamically

and frequently.

In Project Aura at Carnegie Mellon University we are developing a new

solution to this problem based on the concept of personal Aura. The intui

tion behind a personal Aura is that it acts as a proxy for the mobile user it

represents: when a user enters a new environment, his or her Aura marshals

the appropriate resources to support the user's task. Furthermore, an Aura

captures constraints that the physical context around the user imposes on

tasks (more on this below). Examples of user tasks (or simply tasks) are:

writing a paper, preparing a presentation or buying a house. Each of these

tasks may involve several information sources and applications.

To enable the action of such a personal Aura, we need an architectural

framework that clarifies which new features and interfaces are required at

system- and application-level. The framework must also defme placeholders

for capturing the nature of the user's tasks, personal preferences, and inten

tions. This knowledge is key to configure and monitor the environment, thus

32 Jotio Pedro Sousa and David Garlan

shielding the user from the heterogeneity of computing environments, as

well as from the variability of resources.

Figure 1 shows a bird's-eye view of our architectural framework. There

are four component types: fIrst, the Task Manager, called Prism, embodies

the concept of personal Aura. Second, the Context Observer provides in

formation on the physical context and reports relevant events in the physical

context back to Prism and the Environment Manager. Third, the Environ

ment Manager embodies the gateway to the environment; and fourth, Sup

pliers provide the abstract services that tasks are composed of: text editing,

video playing, etc. From a logical standpoint, an environment has one in

stance of each of the types: Environment Manager, Context Observer and

Task Manager.3 Although the boundaries of an environment are defmed

administratively, they typically correspond to some physical area, like a

floor or a building. Each environment may have several service Suppliers:

the more it has, the richer the environment is. Much like naming servers on

networks do today, Environment Managers cooperate to fInd and marshal

remote Suppliers when that is required by the user's task.

"- Task Manager (Prism)
r ...

Q) A II) ...
8

Supplier Supplier
5 Environment

Manager < text
--

video
(,)

Emacs Xanim
'-------"

Operating System

Figure 1. Aura bird's-eye view

2.1 Task Manager (Prism)

Prism embodies the concept of a personal Aura. It strives to minimize

user distractions in the face of the following four kinds of change:

• The user moves to another environment: Prism coordinates the migration

of all the information related to the user task to the new environment, and

negotiates the task support with the new Environment Manager.

• The environment changes: Prism monitors Quality of Service information

provided by the Suppliers supporting the user's task. Whenever that in

formation becomes incompatible with the requirements of the current

3 An environment may have redundancy of these components for the sake of robustness.

Aura: An Architectural Framework 33

task, or the monitored Supplier fails, Prism queries the Environment

Manager to find an alternative configuration to support the task.

• The task changes: Prism monitors explicit indications from the user and

events announced by the Context Observer. Upon getting indication that

the user intends to interrupt the current task or to switch to a new task,

Prism coordinates saving the state of the interrupted task and instantiates

the intended new task, as appropriate.

• The context changes: task descriptions include constraints on the context,

capturing requirements on privacy, user activity (sitting, driving ...) etc.

When these constraints are not met, Prism coordinates the suspension of

the executing task, or adjusts the parts that are affected by the context

change; for instance, hiding the display of sensitive data when someone

else comes into the user's office.

The key idea behind Prism is a platform-independent description of user

tasks [29]. Earlier research in this area treated tasks as a cohesive collection

of applications. When a user refers to a particular task, the system automati

cally brings up all the applications (and fIles) associated with that task. This

mechanism relieves the user from finding fIles and starting applications in

dividually [18]. In our work, we extend this notion by describing a task as a

coalition of abstract services, such as "edit text" and "play video." This

form of abstraction allows such tasks to be successfully instantiated in dif

ferent environments using different supporting applications. For example, in

a Windows environment Microsoft Word and Media Player might be used to

provide the edit text and play video services, whereas in a Unix environment

Emacs and Xanim could be used.

2.2 Service Suppliers

Suppliers provide the abstract services that tasks are composed of. In
practice, these abstract services are implemented by wrapping existing appli

cations and services to conform to Aura APls. For instance Emacs, Micro

soft Word and Notepad can each be wrapped to become a supplier of text

editing services.

Such wrappers play a fundamental role while instantiating a task based

on its platform-independent description: the wrappers map the abstract

service descriptions into application-specific settings. Note however, that

different suppliers for the same type of service will typically have different

capabilities. For instance, a basic text editor may not support spell checking,

or even be aware of what spell checking means. Therefore, the description

of the service must be such that a Supplier is able to extract the information

it can recognize, without having to deal with information it does not know

how to handle.

34 Joiio Pedro Sousa and David Garlan

We address this requirement by using markup formats, specifically

XML-based, for the description of services. The underlying assumption is

that Suppliers of a given service type share a vocabulary of tags and the cor

responding interpretation. Naturally, each service type is characterized by a

distinct vocabulary of tags corresponding to the information relevant for the

service, although there are some commonalities across service types.

2.3 Context Observer

Context Observers provide information about the physical context and

report events in the physical context back to Prism and the Environment
Manager. Examples of such information are user location, recognition
(authentication,) activity, other people in the vicinity, etc. Context Observ
ers in each environment may have different degrees of sophistication, de
pending on the sensors deployed in that environment. The more sophisti
cated a Context Observer, the less Prism has to rely on explicit indications
from a user concerning his intentions. For the purpose of the points illus
trated in this paper, we will not discuss Context Observers in further detail.

2.4 Environment Manager

The Environment Manager component embodies the gateway to the envi

ronment: it is aware of which Suppliers are available to supply which serv
ices, and where they can be deployed. It also encapsulates the mechanisms
for distributed file access.4

When Suppliers are installed in an environment, they become registered
with the local Environment Manager. Such a registry is the base for match
ing requests for services. For Suppliers with limited sharing capacity, such
as those that involve input/output devices, the registry also keeps track of the
available capacity. When instantiating a task in a new environment, the

registry is consulted by location mechanisms for abstract services. Those
mechanisms are built on top of currently available tools [1,4].

In addition to individual service discovery, a sophisticated Environment
Manager evaluates each alternative configuration of service suppliers to se

lect the one that presents a better match to the user's preferences.

2.5 Addressing Ubiquity

When Prism migrates a task from one environment to another, the de

ployment of the Suppliers across devices may be very different. Moreover,

4 The choice of the actual mechanisms for tile access is an implementation issue: one Envi
ronment Manager might require the files to be sent over some protocol like ftp, while an
other might rely on a distributed file system.

Aura: An Architectural Framework 35

even within the same environment, that deployment may change dynami

cally, as component reachability changes.

For example, suppose the user stops typing at a desktop, takes hold of a

wireless PDA, and goes down the hall for coffee. Initially, Prism and the

supplier of text editing were probably both running on the desktop. When

the user leaves the office, Prism has to communicate with a supplier for text

editing on the PDA. From a task viewpoint, however, Prism is still coordi

nating a supplier of text editing, regardless of the particular application that

is providing the service or on which device that application is deployed.

Furthermore, in one environment the available interaction mechanism may

be CORBA, while in another environment it may be COM or RPC.

We use a technique, similar to stub generation, to insulate the compo

nents both from dynamic redistribution and from alternative interaction

mechanisms. That technique is the explicit implementation of connectors.

There are four types of connectors in Aura: between Prism and an arbi

trary Supplier, between Prism and the Environment Manager, between the

Context Observer and Prism, and between the Context Observer and the En

vironment Manager. Each of these connector types is defined by an interac

tion protocol appropriate to the component type it connects. For instance,

the connector type between Prism and the Suppliers supports protocols to

capture and recover the execution state of services.s All the component

types in Aura's architecture have standard interfaces, or ports (represented

by the triangles in Figure 1). For instance, all the ports of Prism that attach

to Suppliers have the same API.

Each connector type may have many implementations, each appropriate

to a specific low-level interaction mechanism and to the distribution of the

components it connects. For example, if the two ends of the connector are

deployed on the same device, an implementation that uses local method calls

is appropriate. If the connector is between two different devices, its imple

mentation is comprised of two code stubs, one in each device. Each of the

stubs makes local method calls to the corresponding port in the attached

component, and uses environment-specific communication mechanisms to

pass control and data to the other end of the connector.

When Prism requests support for a task to the Environment Manager, the

latter annotates each service request with three things: a handle for the ap

propriate connector to reach the supplier, supplier location information, and

a handle for the supplier proper. Prism uses the first handle to dynamically

load its end of the connector, and then uses the second and third pieces of

information to initialise that end of the connector. Thereafter, Prism com

municates with the supplier through the connector, oblivious of distribution

issues. If a supplier becomes unable to continue to support the task (e.g.,

S For space reasons, we do not detail the protocols further.

36 Jollo Pedro Sousa and David Garlan

because the user left his desk) Prism just requests for another supplier sub
ject to the new context constraints to the Environment Manager - and again

initialises it and uses it seamlessly. Thus, Aura components need not be
aware of distribution issues: the Environment Manager takes charge of as
sembling and adapting the configurations using the appropriate connectors.

3. AURAATWORK

To illustrate how the Aura architecture achieves its goal of supporting
user mobility, we now describe a simple scenario of task migration, focusing

on the interactions among the components identified in Section 2.

Fred is at home working on the organization of a conference in a remote place.
He's gathering information on possible venues and getting budgets for catering.
The web pages of some of the hotels include short videos featuring virtual visits to
the premises and Fred already downloaded some of these for reference. Fred is
also taking notes on a spreadsheet concerning his appraisal of each venue along
with the alternative catering budgets.

Fred leaves home and heads to his office. Since Fred intends to continue working
on the organization of the conference, Aura sets up that task at Fred's office so that
he can resume his work as soon as he is recognized entering the office: a web
browser over the recently visited pages, the downloaded videos paused at the same
places, and a spreadsheet containing all the entered figures. Since there is a big
screen on the wall of Fred's office, that is preferred to stage the video and web
browsing, releasing monitor space for the spreadsheet.

Fred is working at home when the Home Context Observer6 notices Fred
leaving the house. The Context Observer lets Prism know that Fred is leav
ing - interaction (1) in Figure 2, and that causes Prism to undergo state tran
sition (a), where it realizes it should suspend the task ongoing at home.
Prism then requests to checkpoint the state of each of the services being pro
vided as part of the ongoing task - interaction (2). In interaction (3), the

Home Prism tells the Home Environment to deallocate those services and to

store all the involved files back into a globally accessible file server - inter

action (4).

After checking Fred's schedule, Prism infers that he is likely to head to

the office, and (5) conveys that information along with an estimated time of
arrival to the TM at the office. That triggers state transition (b) in the TM at
the office, causing it to request the Office EM (6) to retrieve the updated de
scription of the tasks Fred has been working on - interaction 7.

6 For convenience, we refer to "component at location," for instance "Home CO," meaning
"the Context Observer at Fred's home."

Aura: An Architectural Framework 37

Figure 2. Fred goes from home to the office

Given that description, Prism at the office extracts which files will be

necessary for Fred to work on, and requests the Office EM to retrieve them -

interaction (8). The Office EM checks if the copies stored locally are up-to

date, retrieving updated copies as necessary (9). As soon as the Context Ob

server at the office recognizes Fred coming into his office, it informs Prism
of that (10) causing Prism to undergo state transition (c). This triggers the

request of suppliers for the services involved in the task (11) and the subse

quent restoring of the execution state at the allocated suppliers (12).

Upon instantiating a task, Prism slices the task description in order to

pass the relevant service descriptions to each of the suppliers. Figure 3

shows an example of the service description exchanged between Prism and a

supplier of text editing services. Notice the two top-level elements, one de
scribing the service, the other the data that the service must access. Within
the service description, there are elements that are specific to the service

type (in the example, pane settings, spelling etc.), and others that are com

mon to all service types: an estimate of the duration of the service supply. In

the example, the user will be happy if the service is provided for 30 minutes

or more, but would rather seek an alternative if it cannot by provided for at

least 10 minutes. This kind of indication can be used to manage finite re
sources like battery charge in mobile platforms [10], giving the user an early

warning when the requirements of the task cannot be met. The material de

scription identifies the origin of the data - typically a file name or URL -

and format. Additionally, the material element includes a description of

where the user left off: in the case of text, the cursor, scrolling and zoom

factor in effect when the editing was interrupted.

Service suppliers parse these descriptions when instantiating a task, ex

tracting as much information as they can map to the settings of the specific

application. Such descriptions are updated when Prism requests a service

checkpoint. The update process is conservative with respect to the existing

information. For instance, even if a simple text editor could not instantiate

the spell-check settings, it preserves that part of the description so that a

more sophisticated editor in another environment can use it down the line.

38

<auraTask id="demo">
<service type="editText">

Joiio Pedro Sousa and David Garlan

<duration unit="minutes" bad="10" good="30"/>
<settings pane_height="360" pane_width="200">

<spelling enabled="yes" ignoreAllCaps="yes"/>
<editing overstrike="no" replaceSelection="yes"/>

</settings>
</service>
<material origin="myTextFile" format="txt">

<state cursor="104" scroll="2S" zoom="100"/>
</material>

</auraTask>

Figure 3. Description of a text editing service

4. DISCUSSION AND FUTURE WORK

The current implementation of the architecture in Figure 1 supports the
migration of simple user tasks interchangeably between personal computers

running Windows or Linux. As a proof of concept, we have wrapped Mi

crosoft Word and Emacs as suppliers of text editing services, and Media
Player and Xanim as suppliers of video playing services. The current im

plementation of the Environment Manager has rudimentary service registry
abilities, and relies on distributed file systems like Coda or AFS [23,24] for

ftle access across environments. We have not yet integrated research on

context observation: Prism reacts to explicit task suspend and resume com
mands issued by the user.

By describing tasks as coalitions of abstract services, we rely on the abil

ity to migrate those descriptions between resource-rich environments. This

approach imposes fewer requirements on platform compatibility than an ap

proach that relies on the ability to migrate executable code.

While the current implementation shows the feasibility of automated task
migration, it is limited by the granularity of the task components (full appli

cations working separately from each other) and by its inability to anticipate
or infer what the user wants to do next. To address these problems, we have

begun to develop support for finer-grained tasks and richer models of user
intent. In its ultimate form we anticipate the need for Aura to support a
spectrum of task models ranging from simple invocation of applications to
sophisticated models that can anticipate immediate needs of users, or even
assist them in accomplishing some complex multi-step activity (like finan

cial planning, travel assistance, or health management.) Ongoing work on

Project Aura builds on research in computer-human interaction and machine

learning, exploring semiautomatic learning of richer models of tasks [16,26].

Aura: An Architectural Framework 39

A key enabler both for capturing sophisticated models of tasks and for

enacting them is the integration of physical context observation: the user

location, what activities are competing for a user's attention, who else is in

the vicinity, etc. [5,8,14]. If the user has to specify every detail of a task,

then no one will use Aura. On the other hand, systems are notoriously poor

at automatically capturing user intent. Hence, Aura must strike a balance

between user involvement and automatic inference of user intent. Our as

sumption is that an Aura should prove useful even with no deeper knowl

edge of the task beyond the coalition of services currently being used. Fur

thermore, our approach should prove useful only with rudimentary context

awareness, specifically recognizing a user entering and leaving a given envi

ronment.

The self-awareness and adaptability of the environment is addressed at

two levels. At the higher level, the infrastructure monitors the availability

and performance of whole components and of the communications infra

structure, evaluating possible alternatives for supporting a user task when the

requirements for such a task are not met by the current configuration. This

coarse-grain adaptation builds on monitoring and adaptation mechanisms

like the ones described in [9] and is currently subject of research for integra

tion into the architecture described in Section 2.

At the lower level, system components themselves are endowed with the

ability to adjust their operation following the variation of available resources

like CPU, bandwidth, battery charge, etc. Aura's architecture addresses the

problem of representing the adaptation policy that is appropriate to a user's

intent using the notion of utility functions - see for instance [22]. Suppose,

for example, that a user is viewing a video over a network connection for

which the bandwidth suddenly drops. A fidelity-aware component can deal

with resource limitations by reducing the fidelity of (the results of) the com

putation, but in the example should it reduce the frame-update rate or the

image quality? For watching a sports video, it should preserve higher frame

rates at the expense of image quality; but for watching a tour of a museum, it

should do the opposite.

We are currently working on the integration of mechanisms for coarse

grained adaptation of configurations [9], and for fine-grained adaptation of

computation fidelity in components [6]. The latter is closer to being fully

integrated into the architecture described in Section 2. Both mechanisms are

driven by representations of user intent that reside at the task level. By pro

viding a placeholder to capture user intent, task descriptions enable a clean

separation of concerns between determining the appropriate fidelity

adaptation policies, at task description level, and the mechanisms to enact

those policies, at the level of applications and operating system extensions.

40 loao Pedro Sousa and David Garlan

5. RELATED WORK

Flexible partitioning of applications in a wide-area setting is addressed

by research in distributed computing [11,17,28]. However, applying those

results in ubiquitous computing environments is likely to lead to systems

that are hard to deploy and manage. This is due to scale, heterogeneity, and

rate of change within those environments. Other infrastructures that specifi

cally target ubiquitous computing take the approach of deploying standard

virtual platforms in every device [12,13]. Such infrastructures enable code

mobility and therefore enable applications to follow and serve mobile users.

It is not clear, however, how much such mobile applications will be able to

leverage the diversity of devices and available interaction modes in local
environments. On the other hand, trying to build super-applications that deal
with a multitude of device capabilities and interaction modalities has obvi

ous software engineering implications.

Applications can also be extended to capture models of user intent [2,15].

However, addressing this problem at the application level has obvious limi

tations in the face of user mobility through heterogeneous environments.

For instance, if the user intent information concerning text editing is cap

tured within Microsoft Word, it cannot be used when the user comes into an

environment where Emacs is the only available text editor. By having the

knowledge captured in an application-independent way by the infrastructure,
we are able to use that knowledge in heterogeneous environments.

Another example comes from research in fidelity-aware computing.
With the goal of providing better quality of service to the user and better

resource management, applications are commonly extended to incorporate
the mechanisms for resource adaptation [10,20]. Determining the adaptation
policy that best serves the intent of the user then becomes a hard problem.

We claim that such problem is best addressed at the task level [6].

To the authors' best knowledge, Aura's approach is novel in building

high-level, application-independent models of user tasks, and in using those
models to setup and adapt ubiquitous computing environments.

Aura's architecture uses connectors as first-class entities not only at the
design level, but also at the implementation level [25,27]. The explicit en

coding of connectors delivers encapSUlation of interaction mechanisms and

of distribution issues, making it much easier to design and build the compo
nents. Of course, middleware and distributed computing infrastructures

have addressed such issues in a generic form [7,21]. However, we pull the
use of such generic mechanisms out of the application and infrastructure

components, and into architecture-specific connectors. By doing so, we cre

ate added flexibility to adapt to the existence of different interaction mecha
nisms in different environments, and to dynamically choose the most appro
priate mechanism to reach a particular component.

Aura: An Architectural Framework 41

6. CONCLUSION

In this paper we have described an architectural framework that solves

two of the hard problems in developing software systems for ubiquitous

computing. First, it attacks the problem of allowing a user to preserve conti

nuity in his/her work when moving between different environments. The key

advantage of this framework over other traditional approaches is that it al

lows the system to tailor the user's task to the resources in the environment.

Second, it attacks the problem of adapting the on-going computation of a

particular environment in the presence of dynamic resource variability. As

resources come and go, the computations can adapt appropriately.

The key ingredients of the architectural framework are explicit represen

tations of user tasks as collections of services, context observation that al

lows the task to be configured in a way that is appropriate to the environ

ment, and environment management that assists with resource monitoring

and adaptation. Each of these capabilities is encapsulated in a component of

the architectural framework (the task manager, environment manager, and

context observer, respectively). The services needed to support a user's task

are carried out by a set of components termed service suppliers. Service

suppliers typically are implemented as wrappers of more traditional applica

tions and services. Finally, interactions between the parts are carried out by

explicit connectors that hide details of distribution and heterogeneity of

service suppliers.

The architecture has been implemented in prototype form, permitting

task migration for a small set of services between Unix- and Windows-based

environments. While this implementation is only a fIrst step, already it

demonstrates that certain kinds of task migration and adaptation can be sup

ported in the Aura architecture. However, complete evaluation of the archi

tecture will only be possible once we have populated the environment with

additional service suppliers, increased the number of environments sup

ported by the framework (e.g., PDAs and smart rooms), and developed a

number of more complex task descriptions.

ACKNOWLEDGEMENTS

We thank Takahide Matsutsuka and Tadashi Okoshi for implementing

the supplier wrappers in the current prototype. We would also like to thank

Rajesh Balan, Jason Flinn, Dushyanth Narayanan, So Young Park, Mahadev

Satyanarayanan, and Bradley Schmerl for fruitful discussions. This research

is supported by DARPA under Grants N66001-99-2-8918 and F30602-OO-2-

0616. Views and conclusions contained in this document are those of the

42 JoOO Pedro Sousa and David Garlan

authors and should not be interpreted as representing the official policies,

either expressed or implied, of DARPA.

REFERENCES

1. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley. The design and implementa

tion of an intentional naming system. Proceedings of the Seventeenth Symposium on

Operating System Principles. Kiawah-Island Resort, North Carolina, December 1999.

2. D. Albrecht, I. Zukerman, A. Nicholson, A. Bud. Towards a Bayesian model for key

hole plan recognition in large domains. Proc. 6th Int. Conference on User· Modeling
(UM '97), pp 365-376. SpringerWien, Jameson, Paris and Tasso (Eds.) New York, 1997.

3. V. Ambriola, P. Ciancarini, C. Montenegro. Software Process enactment in Oikos. Pro
ceedings of the Fourth ACM SIGSOFT Symposium on Software Development Envi
ronments. SIGSOFT Software Engineering Notes, pp 183-192, Irvine, California, 1990.

4. K. Arnold, B. O'Sullivan, R. Scheifler, J. Waldo, A. Wollrath. The Jini Specification.

Addison-Wesley, 1999.
5. S. Baker, T. Kanade. Hallucinating faces. Proceedings of the Fourth International Con

ference on Automatic Face- and Gesture-Recognition, Grenoble, France, March 2000.
6. R. Balan, J. Sousa, M. Satyanarayanan. Meeting the Software Engineering Challenges

of Adaptive Mobile Applications. Submitted for publication, March 2002.

7. A. Birrell, B. Nelson. Implementing remote procedure call. ACM Transactions on Com
puter Systems, 2(1), pp 39-59, ACM Press, New York, February 1984.

8. P. Castro, P. Chiu, T. Kremenek, R. Muntz. A Probabilistic Room Location Service.
Proc. Ubicomp 2001: Ubiquitous Computing. Atlanta, Georgia, September 2001.

9. S. Cheng, D. Garlan, B. Schmerl, J. Sousa, B. Spitmagel, P. Steenkiste, N. Hu. Software
Architecture-based Adaptation for Pervasive Systems. International Conference on Ar

chitecture of Computing Systems Trends in Network and Pervasive Computing,
Karlsruhe, Germany, April 8-11, 2002. To appear in LNCS, Volume 2299.

10. J. Flinn, M. Satyanarayanan. Energy-aware adaptation for mobile applications. Pr0-

ceedings of the 17th ACM Symposium on Operating Systems Principles, Kiawah Island
Resort, South Carolina, December 1999.

11. I. Foster, C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Super-computer Applications and High Performance Computing, 11(2), pp
115-128, 1997.

12. J. Gosling, B. Joy, G. Steele. The Java Language Specification. Addison-Wesley, 1996.

13. R. Grimm, T. Anderson, B. Bershad, D. Wetherall. A system architecture for pervasive

computing. Proceedings of the 9th ACM SlOOPS European Workshop, pp 177-182,

Kolding, Denmark, September 2000.

14. A. Harter, A. Hoper, P. Steggles, A. Ward, P. Webster. The Anatomy of a Context

Aware Application. Proceedings of the Fifth ACMlIEEE International Conference on
Mobile Computing and Networking, pp 59-68, Seattle, Washington, August 1999.

15. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, K. Rommelse. The Lumiere project:

Bayesian user modeling for inferring the goals and needs of software users. Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp 256-265,

Madison, Wisconsin, 1998.

16. N. Kushmerick, S. Hanks, D. Weld. An Algorithm for Probabilistic Least-Commitment
Planning. Proceedings of the Twelfth National Conference on Artificial Intelligence. Se
attle, Washington, July 1994.

Aura: An Architectural Framework 43

17. M. Lewis, A. Grimshaw. The core Legion object model. Proceedings of the Fifth IEEE

International Symposium on High Performance Disbibuted Computing, pp 551-561,

Syracuse, New York, August 1996.

18. B. MacIntyre, E. Mynatt, S. Voida, K.Hansen, J. Tullio, G. Corso. Support For Multi

tasking and Background Awareness Using Interactive Peripheral Displays. Proc. ACM
User Interface Software and Technology (UlST'OI), Orlando, Florida, November 2001.

19. H. Nii. Blackboard Systems. AI Magazine, 7(3), pp 38-53 and 7(4), pp 82-107, 1986.

20. B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, K. Walker. Agile

Application-Aware Adaptation for Mobility. Proceedings of the 16th ACM Symposium

on Operating System Principles, October 1997, St. Malo, France.

21. Object Management Group. The Common Object Request Broker: Architecture and

Specification, 2.6 edition,

http://www.omg.orgltechnology/documentslformallcorba....iiop.htm. 2001.

22. R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek. Practical Solutions for QoS-Based

Resource Allocations. Proceedings of the 19 th IEEE Real-Time Systems Symposium,

Madrid, Spain, December 1998.
23. M. Satyanarayanan. Mobile Information Access. mEE Personal Communications, Vol.

3, No.1, February 1996.
24. M. Satyanarayanan. Scalable, Secure, and Highly Available Distributed File Access.

IEEE Computer, May 1990, Vol. 23, No.5.

25. M. Shaw. Procedure Calls are the Assembly Language of Software Interconnection:

Connectors Deserve First-Class Status. Studies of Software Design, Proc. 1993 Work
shop, LNCS No. 1078, Springer-Verlag, D.A. Lamb (Ed.), 1996.

26. S. Shearin, H. lieberman. Intelligent Profiling by Example. Proc. International Confer

ence on Intelligent User Interfaces (lUI 2001). Sante Fe, New Mexico, January 2001.

27. B. Spitznagel, D. Garlan. A Compositional Approach for Constructing Connectors. Pro
ceedings Working IEEFJIFIP Conference on Software Architecture (WICSA'OI), Royal

Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands, August 2001

28. M. van Steen, P. Homburg, A. Tanenbaum.. Globe: A wide-area disbibuted system. mEE

Concurrency, 7(1), pp 70-78, 1999.

29. Z. Wang, D. Garlan. Task Driven Computing. Carnegie Mellon University Technical
Report CMU-CS-OO-I54, http://reports-archive.adm.cs.cmu.edulcs2000.html, May 2000.

30. M. Weiser. The Computer for the Twenty-First Century. Scientific American, pp 94-100,
September 1991.

	Aura: An Architectural Framework for User Mobility in Ubiquitous Computing Environments
	1. INTRODUCTION
	2. AURA'S ARCmTECTURE
	2.1 Task Manager (Prism)
	2.2 Service Suppliers
	2.3 Context Observer
	2.4 Environment Manager
	2.5 Addressing Ubiquity

	3. AURAATWORK
	4. DISCUSSION AND FUTURE WORK
	5. RELATED WORK
	6. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

