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In this paper we propose a solution to delivering scalable real-time physics simulations. Although high performance computing

simulations of physics related problems do exist, these are not real-time and do not model the real-time intricate interactions of rigid

bodies for visual effect common in video games (favouring accuracy over real-time). As such, this paper presents the first approach to

real-time delivery of scalable, commercial grade, video game quality physics. This is achieved by taking the physics engine out of the

player’s machine and deploying it across standard cloud based infrastructures. The simulation world is then divided into sections that

are then allocated to servers. A server maintains the physics for all simulated objects in its section. Our contribution is the ability to

maintain a scalable simulation by allowing object interaction across section boundaries using predictive migration techniques. We

allow each object to project an aura that is used to determine object migration across servers to ensure seamless physics interactions

between objects. The validity of our results is demonstrated through experimentation and benchmarking. Our approach allows player

interaction at any point in real-time (influencing the simulation) in the same manner as any video game. We believe that this is the

first successful demonstration of scalable real-time physics.

CCS Concepts: • Software and its engineering → Interactive games; Cloud computing;

Additional Key Words and Phrases: Real-time physics, cloud computing, distributed virtual environment, games

1 INTRODUCTION

Video games rely on real-time physics engines to provide realistic environments. This is noticeable in 3D gaming where

players expect fast paced interaction. This requirement has produced significant commercial activity resulting in physics

engines for real-time simulation for rigid body dynamics. Although realism is convincing, a degree of mathematical

accuracy is usually sacrificed (causing error) in order to attain real-time delivery within constrained resource settings.

However, with significant commercial effort, the mathematical error has reduced over the years and commercial game

engines are finding their use in other industries (e.g., [Lu and Guan 2017; Shah et al. 2018; Xu et al. 2017]).

Combining physics engines with game engines (e.g., Unity, Unreal), presents a cost-efficient development platform

for developing realistic environments. These gaming environments may be presented to geographically distant players

using server-side scalable technologies. This allows scalable gaming platforms, presenting players with large online

worlds to explore whilst maintaining the visually highly realistic environments generated by the player’s local machine.

Research into delivering scalability in such online worlds is focused on balancing real-time and consistency issues for

enabling player-player interaction. The evolution of such research can be traced back to the earliest work on game area

subdivision [Macedonia et al. 1994] through player-focused game area sub-division (e.g., [Greenhalgh and Benford 1995;

Morgan et al. 2005]) and eventually to the many commercial cloud based solutions as described by [Wu et al. 2014].

The problem of scalable player-player interaction is not a solved problem, as the numerous interaction possibilities

across gaming genres and the latency in networks provides many different possible bespoke solutions. Player interaction
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can be measured in milliseconds, which current networking technology cannot model for all gaming genres in a scalable

manner without giving rise to inconsistency. Therefore, the notion of trying to model real-time physics, which requires

solvers working in iterations measured in microseconds, would be considered a near impossible task. However, achieving

this would allow the physics engine element of the gaming console to be transplanted to the server-side (cloud), freeing

up resources for game-play and rendering on a player’s local machine.

Streamed gaming is an active area of research (e.g., [García-Valls et al. 2014]), where the game is executed on the

server-side and the player interacts remotely (e.g., [Nvidia 2019b; Sony 2019]). The existence of such services suggests

the possibility of real-time interaction for all gaming genres across cloud infrastructures. Therefore, our problem is

concentrated on distributing the physics engine element of such technologies across the server-side while maintaining

the real-time streamed service to players.

Recent developments have demonstrated the importance of software defined networks (SDN) for presenting timely

cloud solutions [Kumar et al. 2017; Wang et al. 2017]. The SDN manages the distribution of messages across servers in

the most economical way possible (e.g., resource usage). The fact that SDNs can produce timely messaging across tightly

coupled server-side deployments (the cloud) suggests the possibility that timely requirements for scalable physics

delivery can be fulfilled.

In the context of current research, we can place ourselves at the juncture of balancing physics calculations across

servers in the cloud for game streaming services. This should provide improved economic use of resources, as current

game streaming services simplymimic themachine requirements of the player without distributing any of the component

parts of the gaming engine. In addition, streamed games may benefit from increased numbers of artefacts (way beyond

what is currently possible in a player’s machine) as other servers may be utilised to solve the physics problems.

To achieve our research goal while remaining relevant to current state-of-the-art physics simulations, this study uses

PhysX (from Nvidia) as the physics engine [Nvidia 2019c]. This ensures a simulation equal in detail to commercial video

game titles. The challenge is to deploy instances of PhysX into a cloud infrastructure (on multiple servers) and allow

objects within a simulation to be seamlessly passed across PhysX instances. We construct messaging services to enable

PhysX instances on different servers to communicate and divide the simulation geographically across such servers. The

challenge of this research is ensuring real-time fidelity can be satisfied when objects migrate across PhysX instances

(from server to server). This problem of object migration is complicated by the possibility of object interaction occurring

during such migration. Considering the assumption of commercial level fidelities of fast paced objects and frame rates

of 60 frames per-second, any anomalous behaviour of objects during migration would be easily discernible to a player.

2 BACKGROUND AND RELATEDWORK

Although there has been research utilising multiple servers to distribute the task of solving physics based problems

(e.g., [Mashayekhi et al. 2018]), to the best of our knowledge there is no literature describing real-time interactive

physics exploiting the addition of servers to gain scalability. The closest work to our research is that carried out to seek

scalability in terms of player numbers in online gaming in the field of Distributed Virtual Environments (DVEs).

There are primarily two ways in which server-side resources can provide scalability in online gaming (e.g., DVEs): (1)

Migratory; (2) Non-migratory. In migratory approaches, a server will assume responsibility for handling in-simulation

objects within a region. When objects traverse region boundaries into a region that is the responsibility of another

server, they will be handed over to the other server. In a non-migratory approach, in-simulation objects are allocated to

the responsibility of a particular server at instantiation time and stay with that server until they are deleted.

Manuscript Submitted



Aura Projection for Scalable Real-Time Physics 3

The benefit of a migratory approach is that tightly coupled objects (interacting frequently) can be co-located on the

same server, reducing interaction latencies. However, the act of moving such objects may be costly in terms of time

required to resolve the hosting requirements of an object. The benefit of a non-migratory approach is that servers are

rarely exhausted but network traffic will result in higher latencies that will inhibit the fidelity of interaction between

objects.

Migratory and non-migratory approaches are now described in greater detail.

2.1 Distributed Virtual Environments

In the migratory approach, a single game world exists, but is divided into geographical regions. Each region is maintained

by a separate server (e.g. [de Senna Carneiro and Arabe 1998; Dong and Yue-Long 2013; Hori et al. 2001; Limited 2019;

Min et al. 1999]). The main drawback of this approach is the complexity of handling interactions between objects in

different regions/servers while maintaining consistency [Yahyavi and Kemme 2013]. A technique to minimise these

issues is to use overlapping regions between spatial partitions. Servers share state information about objects in the

overlapping region (examples include ’zoning’ as described in [Dong and Yue-Long 2013] or ’sub-regions’ as described

in [Hori et al. 2001]). Examples of games using this technology include [NINPO 2019] and [Studios 2019], which use the

SpatialOS platform [Limited 2019]. However, the techniques used by SpatialOS are not described in any literature. Their

demonstration video exhibits unnatural object "jitter", which is possibly a result of network latency.

In the non-migratory approach, the game world is not divided into geographical regions and players are split between

servers in one of two ways: (1) Several instances of the game world run with complete independence from one another

(known as shards e.g.[Blizzard 2019]) and players have no interaction across shards [Yahyavi and Kemme 2013]; (2)

Players are distributed amongst servers by some other non-geographical method and interactions with players on other

servers requiring servers to share messages [Lu et al. 2006].

Although shards allow a degree of scalability in the number of players, it is not suitable for use in scaling real-time

physics simulations as all entities within a real-time physics simulation, in the same geographical region, may interact

with each other.

In the case of architectures not using shards, Interest Management is required to prevent message passing growing

polynomially as players increase (e.g. [Bezerra et al. 2008] and [Lu et al. 2006]). [Bezerra et al. 2008] proposes the A3

algorithm, an interest management technique for distributed simulations aiming to significantly reduce the necessary

bandwidth required between servers. A3 uses a combination of a circular area of interest and field of view combined with

a relevance gradient. [Lu et al. 2006] proposes a Behavioural Interest Management Technique that allocates resources

based on player interactions. Auras (an area of interest/influence) are used to determine player message exchanges,

reducing message passing while promoting player number scalability.

Despite DVE being a popular area of research, the literature is restricted to modelling player interaction across

servers and balancing their support on different servers. Clearly, the interaction patterns of players are significantly

less demanding in terms of timeliness than that of interacting physical objects.

2.2 Streamed Gaming

Streamed Gaming (also know as Gaming as a Service) consists of cloud servers streaming to a player’s device with

player input being returned to the cloud server. The player’s device acts as a thin client. The main benefit is that a

player does not require expensive, powerful hardware, and games can be played on any operating system (e.g. Android,

Linux and Mac). However, these benefits come at the cost of bandwidth and latency requirements [Wu et al. 2014].
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Streamed Gaming services currently available include [Nvidia 2019b] and [Sony 2019]. NVIDIA GRID technology is

targeted specifically at Streamed Gaming [Nvidia 2019a].

A drawback to streamed gaming is the requirement for a significantly more powerful machine at the server-side

than what would be required if the game was played solely at the client side. This is because the server not only has to

run the game, but has to process the video and audio stream into a suitable format for streaming. In addition, real-time

player interaction requires low latency and high bandwidth resulting in networking infrastructure more expensive

than would be expected for regular streaming services.

In streamed gaming, each game instance resides on a single server. There is no technology to balance the real-time

requirements of the game across multiple servers. The core problem is that all gaming technology is built and designed

for single console/PC install and the greatest bottleneck is the inability to share physics calculations across machines.

2.3 Background Summary

In physics simulations, there must be an object present in the solving phase for it to be considered in the overall solution

of the scenario. A non-migratory approach requires a "ghost" representation of the object in a remote server to enable

interaction. Given the calculations and discretisation steps, a "ghost" object takes up just as many resources in deriving

a solution as a real object. This rules out the non-migratory approach for our problem. This leaves migratory.

Migratory approaches are concerned with managing the network traffic for those entities that could possibly exist

on two servers but can only be solved on one. Such objects need to be placed with an owning server while minimising

the effect of thrashing (where an algorithm frequently transfers objects between servers). In the rest of this paper,

we describe our approach to solving this algorithmically, present how a working implementation was achieved, and

present results evidencing our work. This is the first presentation of literature that can demonstrate real-time scalable

server-side physics modelling and is a significant contribution to reducing the cost of commercialised streamed gaming.

3 PROBLEM DEFINITION AND PROPOSED SOLUTION

Our approach allows servers to assume responsibility for objects within a real-time simulation without hindering the

fidelity of such a simulation. In order to maintain scalability, the extra processing overhead must be less than that

gained by distributing the simulation workload.

3.1 Naive Approach

To provide a comparison and to demonstrate our contribution to the field, a naive approach is described first. The naive

approach is used to highlight the challenges faced when solving this problem.

Assuming a migratory approach in which servers are responsible for a geographic area, when one object crosses

a boundary between geographic areas, such an object’s hosting must be transferred to the appropriate server. It is

handling this transfer that is the underlying problem.

Accomplishing a transfer with a simple message from one server to another is charged with many problems: (1) the

message may be lost and the object disappears; (2) the message may be delayed and the object disappears and reappears;

(3) there may be more than one candidate server for hosting (if object travelling quickly) resulting in duplication of

an object; (4) the server an object leaves may be unaware of when it should stop simulating the object (resulting in

duplicated objects)[D’Amora et al. 2006]; (5) an object may be colliding with another object across the boundary which

would be lost if both objects are hosted on different servers (objects may pass through each other).
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Fig. 1. Aura Projection Scenarios

For additional clarity consider objects A and B in Fig. 1. Each server is aware of the objects they host but not other

objects. As such, objects A and B would not interact and not collide with each other, creating a time-space inconsistency.

A time-space inconsistency is defined as two objects occupying the same space at the same time. If Object B has a

velocity directed towards the boundary, it would continue at its initial velocity until it traversed the boundary, at which

point it would migrate to server 0. Upon completion of the migration, objects A and B would overlap far more than

would be expected in a typical simulation, resulting in inappropriate collision response.

3.2 Proposed Solution

We term our approach Aura Projection (AP). AP tackles the problem of maintaining consistency across regions while

ensuring timeliness of a simulation. In particular, AP provides the building blocks of a scalable solution to server-side

physics simulations by handling all configurations of boundary cases in migratory approaches.

In AP, an object maintains an aura, an area of interest around the object, that indicates its possible future location

and, therefore, aids in identifying near future interactions. Objects with colliding auras are highlighted as candidates

to be co-hosted on the same server in the near future. The presence of an aura allows: (1) the prediction of future

hosting requirements allowing time to transfer objects; (2) a narrowing of interest in only considering a subset of objects

promoting a scalable solution; (3) an unhindered physics simulation for existing objects; (4) limiting communications

requirements between servers based on focusingmessage passing overhead on interacting objects (promoting scalability).

In essence, AP ensures that any two objects that may be interacting are always being simulated on the same server. For

example, objects C and D illustrated in Fig. 1. Object C projects its aura into Server 1, Object D collides with the aura

and is migrated to Server 0, allowing continued interaction to occur.

Messages are sent between servers where aura overlap occurs across a geographic boundary. We term this phase of

the algorithm as an object projecting its aura onto another server.
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In the context of real-time physics simulations, auras appear on the receiving server as a trigger volume (non-

physically interacting volume). For each simulation step that an object is projecting an aura, the object’s position and

calculated aura are sent. As a network optimisation, if the boundary object is not moving, no details are sent and the

aura on at a receiving server is unaltered.

When an aura is no longer being projected for an object (boundary not overlapped), the server simulating that object

sends a message to any servers receiving the aura to remove the aura of that object.

3.3 Aura Calculation

Calculating an aura size is key to creating a scalable solution balanced against consistency: (1) Auras that are too small

will result in a faster simulation but with more missed interactions; (2) Auras that are too large will include more

calculations that are simply not required, increasing server load and decreasing scalability. Therefore, how auras are

calculated will be carefully described and justified.

Spheres are used to represent auras. This bounding volume is computationally efficient as rotational calculations are

not required in determining its correct alignment. Auras accommodate the displacement of objects using an estimated

network latency based on historic monitoring, in addition to the distance a remote object may be predicted to penetrate

an aura (considering velocities).

Fig. 2 demonstrates the sequence of events involved when an aura is sent, received, and collided with, resulting in an

object migration.

To lower inconsistencies during migration, the following user-defined tolerances are used for the aura calculations:

maximum speed; maximum latency time; maximum frame-time. If velocities, latencies, or frame-time are above these

tolerances, then stability is no longer guaranteed. This enables AP to deterministically indicate to the overall simulation

when latency may be influencing the mutually consistent views of the servers, which in turn manifests as errors in the

physics.

To calculate the radius of an aura, the maximum distances travelled by objects within the delay time between

simulations must first be calculated. To calculate the maximum distance an object may travel for a given time, the

following formula is used: △s = v · △t , where △s is distance, v is speed, and △t is time. In this context, △v is substituted

with maximum speed tolerance, and △t will be a multiple of the physics step time (to accommodate discrete time

step calculations in the physics engine). △t can be calculated using the maximum frame-time and maximum latency

tolerance, discussed below.

There is a time delay between the aura being created on a host and being created on a receiving server, which is

made up of: up to one frame before sending the aura creation message; inter-server latency; up to one frame from

the message being received and acted upon; the time delay between the aura being created and the detection of the

collision between a potential remote object and the aura by the physics update step. This last time delay is accounted

for by rounding the previous delays up to the nearest physics time step.

Using the time delays mentioned above and substituting the relevant tolerances, the maximum displacement time

(MaxDT ) of a remote object is calculated using the following equation:

TR =

⌈
2 ·TF +TL

TP

⌉
TP (1)

TR is theMaxDT of a remote object, TF is the frame-time tolerance, TL is the latency tolerance and TP is the physics

step time.
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Fig. 2. Aura and migration sequence diagram

The aura has to account for the maximum displacement of both the object on the host server and a potential object

on the remote server. The totalMaxDT will be the sum of: a) theMaxDT of a remote object, subtracting one physics

time step, as the aura only needs to account for the displacement of the host object after the creation of the aura; b)

The following time delays: a time delay of up to one frame time between the physics step of the remote server and

the remote server update loop sending the migration message from the migration buffer; a time delay of the latency

between servers; a time delay of up to one frame time between the message being received by a host and a host acting

on the migration message and creating the migrated object in the physics engine; a delay between the migrated object

being created and the collision being detected by the physics update step. This last time delay is accounted for by

rounding the previous delays up to the nearest physics time step.

TheMaxDT of the object on the host that is projecting the aura is therefore calculated using the following equation:

TH = TR −TP +

⌈
2 ·TF +TL

TP

⌉
TP (2)

TH is theMaxDT of the object on the host.

The totalMaxDT is therefore TR +TH , which can be simplified to the following equation:

TT = (3

⌈
2 ·TF +TL

TP

⌉
− 1)TP (3)

TT is the totalMaxDT .

The aura of an object can then be calculated using the following equation:

Ra = Ro + (Vt ·TT ) (4)

Ra is the radius of the aura inm, Ro is the bounding sphere of the object, Vt is the speed tolerance inm·s−1 and TT is

the totalMaxDT in s .

3.4 Thrashing

An object may be overlapping two auras from different servers. Given appropriate velocity, this could result in object

migration, followed by aura collision, followed by migration and then repeating the process again. For example, Objects
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K, L and M in Fig. 1. Object K lies inside the auras of both Object L and M. The common term ‘thrashing’ will be used to

describe such a scenario.

In order to prevent thrashing, when an object is migrated, it is also migrated with any objects found that lie within

the aura of the object or have an existing aura which overlaps the migrating object’s aura. This is carried out recursively

to ensure all objects that are overlapping are migrated at the same time.

3.5 Islands

When an object traverses a region boundary, the object is migrated only if it does not overlap an aura projected by an

object from the same server. In the context of migrations, an island is defined as two or more objects located outside of

their host server’s region (i.e. have traversed a region boundary) but are each within the aura projected from objects

owned by the same host. For example, Objects H, I, and J illustrated in Fig. 1. No objects in the island are migrated as

each object is within the aura of another object in the island. This should be prevented as it causes processing and

networking overhead and is unnecessary as all objects lie within the region of Server 2 and are not interacting with any

other objects from Server 0.

To prevent islands, a search is performed at each time step to determine if an object is part of an island. A search is

performed to determine if a potential migratory object is within a group of objects with overlapping auras, of which

none are positioned within the hosting server region. If the group of objects has no members within the hosting server

region then the object is part of an island and the entire island of objects is migrated. Otherwise, no action is taken.

For example, in Fig. 1 Object I has overlapping auras with Objects H and J. H and J are checked for overlap with the

Server 0 - Server 1 region boundary and for overlap with auras from Server 0 that are intersecting the Server 0 - Server

1 boundary. In this scenario, H and J are found to be part of an island, so H, I, and J are all migrated to Server 2. If

objects are found to not be part of an island, no action is taken. For example, Objects E, F, and G in Fig. 1. Object F is

found to have an overlapping aura with Object E, but Object E intersects the Server 0 - Server 1 boundary, so E, F, and

G are found to not be part of an island and therefore no action is taken. This solution is shown in Algorithm 2 and the

problem of islands can therefore be considered solved.

3.6 Corner Case

This section discusses how AP handles corner cases, i.e., where the boundary of more than two servers meet.

An example of the corner case is illustrated in Fig. 1. Object N, hosted on Server 2, sends an aura to Server 0. Object

O, on Server 1, sends an aura to Server 0. Object N’s aura overlaps with Object O’s on server 0. Server 2 is unaware of

Object O and Server 1 is unaware of Object N. As the two auras overlap, there is a potential interaction between the

objects, yet the two objects remain on separate servers. To solve this problem, auras from boundaries between two

neighbouring servers are shared. In the region layout in Fig. 1, auras from a boundary are received by interested servers.

In the Object N and O example, Server 2 would send Object N’s aura to Server 1; when Object O collides with Object

N’s aura, migration to Server 2 occurs.

A server has to receive the auras of all objects from neighbouring boundaries, as objects being simulated by a server

can exist anywhere in a neighbouring server’s region. Our assumption is that a region a server simulates is sufficiently

large enough to prevent the aura overlap of objects from non-neighbouring servers.

4 IMPLEMENTATION

This section will discuss an implementation of AP using PhysX and RakNet.
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Fig. 3. Server Architecture

4.1 System Architecture

The simulation space is partitioned into regions, with each region consisting of its own instance of PhysX running

on a dedicated GPU-enabled machine in the cloud. The boundary between regions is defined as a vertical plane,

two-dimensionally dividing the simulation space into one region per server. The network library RakNet is used for all

message passing between servers. RakNet ensures messages exhibit best effort and are received in sent order.

When objects project auras they are added to a send aura buffer that is sent to all servers associated to the boundary

of concern. Each object has a unique identifier (ID). When an aura is received by a server, an aura is created if it does

not already exist, otherwise the aura is updated using the data received. When an object is no longer projecting its aura,

the ID of that object is added to the delete buffer which is then sent to all servers neighbouring the boundary.

When objects traverse region boundaries, they are added to a migration buffer with all information required to

duplicate an object at a neighbouring server. The contents of a migration buffer are sent to a server now responsible for

hosting an object. When migration messages are received an object is created within the server’s simulation.

Clients may connect to any server and are provided with a streamed visualisation of the simulation in real-time.

Clients may also interact with and influence the simulation, providing a comprehensive solution for real-time interactive

physics. The client system was built using the Unreal Engine. Once a client is connected, the position and states (replicas)

of all objects in the simulation are sent from each server to the client via the RakNet Replica Manager.
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4.2 Algorithms

AC is called when an object collides with an aura. A recursive search is performed in order to find all objects that would

lie within each object’s aura, preventing thrashing as discussed in 3.4. Once the recursive search is complete, all objects

are added to the send buffer.

Algorithm 1 Object Migrate - Aura Collision (AC)

1: procedure OnAuraEnter ▷ A callback on an object

2: ▷ Track visited objects to prevent infinite recursion

3: visited := {}
4: ▷ Recursively send object with objects that would lie within each object’s aura

5: SendWithOverlaps(thisObject, visited)
6:

7: procedure SendWithOverlaps(object, visited)
8: ▷ Get objects whose auras overlap this object’s aura

9: overlaps := GetAuraOverlaps(object)
10:

11: for each object ∈ overlaps do :

12: if object < visited then:
13: visited := visited + object
14: SendWithOverlaps(object, visited)
15:

16: AddToSendBuffer(object)

BT is called when an object traverses a boundary. In order to prevent ‘islands’ forming (for example Objects H, I and

J in Fig. 1), a recursive search is carried out to determine is an object is part of an island or not. If an object is found to

not be part of an island, the entire cluster of objects is added to the send buffer, otherwise no action is taken.

OBC is called when an object collides with a boundary. The object’s aura is calculated and added to the boundary’s

send aura buffer. A host aura is also created, to allow for the checking of mutual aura overlaps and prevent thrashing, if

this is the first boundary intersection.

OBU is called once per frame that an object is intersecting a boundary. If the object is not ‘sleeping’, a new aura is

calculated and added to the boundary’s send buffer and the host aura is updated.

The isSleeping() function returns true if an object is sleeping. From the PhysX documentation: An object is considered

‘sleeping’ when an actor does not move for a period of time. (The default PhysX period of time is 0.4s and this is the

value used in our approach). Objects are ‘woken up’ when they are touched by an awake object.

OBE is called when an object is no longer intersecting a boundary. The object is added to the boundary’s remove

aura buffer. If the object is no longer intersecting any boundaries, the host aura is deleted.

BNU is called once per network connection between servers. It is responsible for sending and receiving object

migrations and auras between servers, including the sending and receiving of auras from boundaries between other

neighbouring remote servers.

5 EXPERIMENTS AND RESULTS

This study aims to demonstrate scalability. When more servers are added, the timeliness of the simulation improves

and more objects may be supported. The performance measure of interest is the maximum frame time of a server as
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Algorithm 2 Object Migrate - Boundary Traverse (BT )

1: ▷ Update called on each boundary

2: procedure BoundaryUpdate
3: checked := {} ▷ Used to prevent duplicate checks

4:

5: ▷ Loop over fully traversed objects from latest update

6: for each object ∈ traversed do :

7: if object ∈ checked then:
8: continue
9: island := {}
10: isIsland := IslandQuery(object, island)
11: ▷ IslandQuery() returns true if object is part of an island and a list of objects in the island

12: if isIsland = true then:
13: SendGroup(island)
14: checked := checked + island
15:

16: function IslandQuery(object, visited)
17: visited := visited + object
18: if object.overlapsHostRegion = true then
19: return false
20:

21: ▷ Get objects whose auras overlap this object’s aura

22: overlaps := GetMutalAuraOverlaps(object)
23:

24: ▷ If all objects with overlapping auras are islands, then this object is an island

25: isIsland := true
26: for each object ∈ overlaps do :

27: if object < visited then:
28: isIsland &= IslandQuery(object,visited)
29: return isIsland

Algorithm 3 Create Aura - Object boundary collision (OBC)

1: ▷ A callback on an object, called when an object collides with a boundary

2: procedure OnBoundaryEnter(boundary)
3: AddToAuraBuffer(boundary, this)
4:

5: ▷ Create ‘host aura’ so GetMutalAuraOverlaps() will detect this object’s aura

6: if boundaryIntersections = 0 then
7: CreateHostAura()

8: boundaryIntersections := boundaryIntersections + 1

this indicates if the simulation can be maintained when object numbers increase (keeping a low frame-time is the goal).

Therefore, an injection rate is used, that spawns moving objects into the simulation as time passes.

Experiments were performed on two layouts of servers: column layout and corner layout. The column layout experi-

ment was performed using an increasing number of servers from 1 to 10. The regions were laid out in a column configu-

ration as shown in Fig. 4. Objects are injected at a constant rate, both near and far from boundaries. Injected objects are

randomly selected from the following types: sphere (radius: 0.3m), cuboid (0.3m×0.3m×1.0m) and capsule (radius: 0.3m,

Manuscript Submitted



12 Brown, Ushaw and Morgan

Algorithm 4 Update Aura - Object boundary update (OBU )

1: ▷ A callback on an object, called per step per boundary the object is colliding with

2: procedure onBoundaryUpdate(boundary)
3: if this.isSleeping = true then
4: return
5: ▷ Send Aura Delta

6: AddToAuraBuffer(boundary, this)
7: UpdateHostAura()

Algorithm 5 Destroy Aura - Object boundary exit (OBE)

1: ▷ A callback on an object, called when an object exits a boundary

2: procedure onBoundaryExit(boundary)
3: AddtoDeleteAuraBuffer()

4:

5: ▷ If object is no longer sending an aura, no need to keep a ‘host aura’

6: boundaryIntersections := boundaryIntersections - 1
7: if boundaryIntersections = 0 then
8: DeleteHostAura()

Algorithm 6 Boundary Network Update (BNU )

1: ▷ Update called once per network connection

2: procedure Network Update

3: ▷ Exchange migrations with target server

4: SendObjectsInBuffer

5: ReceiveObjects

6:

7: ▷ Send aura state updates to all neighbours

8: for each neighbour ∈ neighbours do :

9: SendAurasInBuffer

10: SendDeleteAurasInBuffer

11: ReceiveAuras

12: ReceiveDeleteAuras

height: 2m) and start with a random velocity from the uniform distribution of: (−10<x<10,−10<y<0,−10<z<10)m·s−1.

50% of objects are injected in a volume of 20m×20m×150m centred 12m away from a boundary and 15m above the

ground plane. 50% of objects are injected in the centre of a server’s region in a volume of 20m×20m×20m, 15m above

the ground plane.

The experiments were run for 60 seconds with an injection rate of 160 objects per second. For all experiments, a speed

tolerance of 32m·s−1 was used, which was the maximum expected speed for any object (based on maximum injection

height and velocity, and gravity). The latency tolerance for these experiments was set to 2ms (based off measurements

of latency between servers) and frame-time tolerance was set to 15ms (based off preliminary performance results). A

time of 16ms was used for the physics time-step. Each experiment was repeated 50 times at various times of day to

account for differing performance in cloud resources at different times. For each iteration, the maximum frame time of

any server was aggregated for each 5s period. The mean of the aggregated maximum frame times of the iterations was

then calculated and plotted.

Manuscript Submitted



Aura Projection for Scalable Real-Time Physics 13

Server 0 Server 1
...

Server N-1

Injection VolumeRegion Boundary

Fig. 4. Column Layout

Fig. 5. Performance of increasing numbers of servers with an accumulating number of objects (in column layout)

Experiments were conducted using AWSG2.2xlarge servers located within the same geographical region. A G2.2xlarge

instance uses a 2.60GHz Intel Xeon E5-2670 CPU with 16GB RAM and an NVIDIA GRID K520 (Kepler) GPU running

Amazon Linux AMI 2017.09.

Fig. 5 shows the performance of our system with rising server numbers from 1 to 10. The graph clearly shows that

the addition of servers lowers the frame time throughout the experiment. This is increasingly noticeable later in the

simulation when a greater number of objects are present. For higher server numbers the reduction in maximum frame

time is less than for lower numbers, which is as expected as in the ideal case the workload per server would be 1/n of

the total workload, where n is the number of servers.

From these observations it may be declared that this system is scalable in column configuration as the addition of

servers results in increased performance.

Experiments were also carried out using servers in a corner layout. The layouts of 3 and 4 servers are shown in Fig.

6, in which the 4 server case is a 2x2 grid with a single corner intersection in the centre. The 9 server case is a 3x3 grid

with 4 corner intersections. Injection rates and volume dimensions remain the same as in the column based experiments.

Fig. 7 shows the graph describing performance. The graph demonstrates that increasing the number of servers lowers

the frame time. The additional processing overhead of exchanging more messages with more neighbouring servers in

the 9 server experiment is outweighed by the performance gains of additional servers.
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Server 0 Server 1

Server 2

Region Boundary

Injection Volume

(a) 3 Server Corner Layout

Server 0 Server 1

Server 2 Server 3

(b) 4 Server Corner Layout

Fig. 6. Corner Layouts

Fig. 7. Performance of increasing numbers of servers with an accumulating number of objects (in corner layout)

From these observations it may be declared that this system is scalable in corner configuration as the addition of

servers results in increased performance.

6 CONCLUSIONS AND FUTUREWORK

An approach to networked real-time physics simulations that is scalable and alleviates the processing limitation of a

single server has been presented. Only open-source software has been used in our approach and our algorithm has

been developed in a way that is agnostic to any specific application technology.

Our experiments establish that the approach is scalable, as demonstrated by the addition of servers improving the

performance of the system when simulating an increasingly large number of objects. This study has demonstrated

that a standard real-time physics engine (in this case, PhysX) may be incorporated into our scalable real-time physics

system and achieve performance that is acceptable for real-time distributed simulations such as networked games.

Our continuing work will be to carry out experiments to determine the effects that increasing latency and packet

loss, and varying user defined latency and speed tolerances, have on the scalability and stability of our approach. This

will provide data, which may inform a dynamically adapting messaging layer that may manage cloud resources more

efficiently depending on the distribution of object interaction within a simulated world.
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We are currently seeking to extend our approach to support large jointed objects that could span multiple servers.

For example, a suspension bridge could be modelled in fine detail using multiple servers. This requires our approach to

be extended to ensure some jointed elements may span section boundaries to connect independent objects on different

servers.

Future work will enable boundaries between regions to evolve dynamically allowing load-balancing to occur, further

lowering the maximum frame time across servers. In addition to load-balancing, dynamic boundaries can routinely

repartition the regions between servers to avoid or reduce the number of objects interacting over region boundaries.

This will reduce both network and processing overhead by avoiding the need for auras and migrations to be exchanged

between servers, further improving the performance and scalability of our approach.
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