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Abstract

Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The
protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV) domain and a basic zipper (bZIP) domain
that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length
aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted
signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain
further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA
does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR) difference spectrum shows the
characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254,
which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other
LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1.
Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate
crucial changes in interactions between transcription factor and DNA.
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Introduction

Blue-light (BL) photoreceptors play crucial roles in plant

development and phototropism. The recently discovered BL

receptor aureochrome (Aureo) from Vaucheria frigida controls the
light dependent development of these Xanthophytes. Vaucheria
frigida owns two different aureochromes, aureochrome 1 and

aureochrome 2. While aureochrome 1 mediates the BL-induced

branching process of the cell/filaments [1], aureochrome 2

controls the development of a sex organ. Both aureochromes

contain a LOV (light-, oxygen- and voltage-sensitive) domain and

a basic region/leucine zipper (bZIP) domain [2].

LOV domains, a subfamily of the Per-ARNT-Sim (PAS) family,

are common BL sensitive domains, present in many light-sensitive

proteins [3]. These domains show a typical PAS domain fold

consisting of a five-stranded antiparallel b-sheet and four helices. A

non-covalently bound flavin mononucleotide (FMN) moiety

located within this fold acts as the chromophore of the domain

[4]. The ground state (LOV447) of LOV domains has an

absorption maximum at around 447 nm. When a blue photon is

absorbed by the FMN chromophore, the protein undergoes a

photocycle that includes two spectrally distinct intermediate states.

The first intermediate LOV715 is formed on a nano-second

timescale due to intersystem crossing from the exited FMN to the

triplet state. The characteristic absorption maxima are at 650 and

715 nm [5]. Subsequently the triplet state decays through a

neutral radical state [6] into the LOV390 intermediate which is

characterized by a covalent bond between the C4a of the

isoalloxazine ring of FMN and a nearby cysteine residue and an

absorption maximum at 390 nm [5,7]. Depending on the LOV

domain, the lifetime of the covalent adduct ranges from few

seconds to several minutes [7–10].

Typically, LOV domains are connected by a C-terminal a-

helix, the so called Ja-helix, to a downstream effector domain

(Fig.1). The effector domains can have various functions, e.g.

kinase activity, sulfate transporter or transcription factor [11,12].

In contrast, the Ja-helix is not the linker between the two domains

of aureochromes [13] as the effector domain, here a bZIP domain,

is located at the N-terminus. bZIP domains consist of a basic

region that is responsible for DNA recognition and a leucine

zipper helix. This leucine zipper comprises a leucine residue at

each seventh amino acid (minimum three of a kind) and can form

a coiled-coil structure [14,15]. It was shown that aureochrome 1

recognizes the sequence TGACGT and, therefore, was suggested

to belong to the class of S-type bZIP domains [2,16,17].

The combination of a light-sensitive domain with a DNA

binding domain makes aureochrome 1 of particular interest for the

field of optogenetics due to the possibility of controlling gene

expression by light. However, the functional mechanism of signal

transfer from the blue-light absorbing LOV domain to the

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e103307

http://creativecommons.org/licenses/by/4.0/
www.dfg.de
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0103307&domain=pdf


downstream bZIP domain has not been explored, yet. In

phototropin and YtvA the Ja-helix, which is a conserved structure

element between the LOV and the effector domain, plays a crucial

role. Thus, FTIR studies showed that the helix unfold upon

illumination, leading to kinase activation [18,19]. In contrast,

STAS domain activation in YtvA probably takes place via light-

induced dimerization as shown by SEC and CD [20,21]. In fact,

dimerization and structural changes like a-helical unfolding also

seem to play an essential role in the signal transfer of aureochrome

1 as recently shown [22,23]. However, the blue-light activated

dimerization is still under debate. While Herman et al. and

Toyooka et al. claim the Ja-helix to be mandatory for light-induced

dimerization of the isolated LOV domain [16,23], Hisatomi et al.

observed only monomers of this construct, irrespective of

illumination [22]. However, all studies agree on the presence of

dimers independent of illumination as soon as longer constructs

are used, most probably due to disulfide bond formation [22].

These results give evidence that light induced dimerization is not

the activation step for DNA binding. Furthermore, it is discussed,

also for other LOV domains like VVD, that the N-terminal

located a-helical cap can replace the Ja-helix in its function [24].

Here, we describe studies of the photoreaction of full-length

aureochrome 1 by time-resolved UV/Vis spectroscopy. The

kinetics of the decay of the triplet state as well as of the adduct

state were determined. The full-length aureochrome 1 shows a

longer life time of the signaling state compared to the isolated

LOV domain. Furthermore, light-induced FTIR difference

spectroscopy was used to elucidate the influence of binding the

target DNA to aureochrome 1 on the photocycle intermediate

LOV390. We were able to demonstrate interactions of arginine and

lysine side chains of aureochrome 1 with the phosphate group of

the DNA backbone. Based on homology we propose formation of

a Y shaped DNA-aureochrome 1 complex, where the DNA is

bound in between the two basic regions of the bZIP domain in the

major grove.

Material and Methods

Protein Expression and Purification
A codon optimized synthetic construct (GenScript) of full length

aureochrome1 (Uniprot ID: A8QW55) was cloned into pET28a

(Novagen) containing an N-terminal 6xHis-tag and a Thrombin

cleavage site. One plate of freshly transformed E.coli BL21(DE3)

cells were used to inoculate the main culture consisting of 2 l LB

media. Cells were grown in the dark at 37uC to an OD600nm of

0.6. The temperature was changed to 20uC and protein expression

was induced using 0.5 mM IPTG. After 18 h cells were harvested

by centrifugation (4uC, 30 min 3000*g), flash frozen in liquid

nitrogen and stored at 280uC.

Cells of a 2 l expression culture were suspended in 50 ml buffer

A (50 mM Na2HPO4/NaH2PO4, 300 mM NaCl, 10 mM imid-

azole, 2 mM b-mercaptoethanol, pH 8.0) containing DNase,

lysozyme (2 mg/ml, final concentration) and protease inhibitors.

The solution was stirred for 1 h in the dark at 4uC and cells were

disrupted by a microfluidizer (Microfluidics). Unbroken cells and

debris were removed by centrifugation (SS-34, 4uC, 16000 rpm,

1 h). The supernatant was loaded to 3.5 ml Ni-NTA beads

(Qiagen) equilibrated in buffer A. The column was washed with

40 ml buffer A followed by 40 ml buffer A supplemented with

29.6 mM imidazole. Protein was eluted with 10 ml buffer B

(50 mM Na2HPO4/NaH2PO4, 300 mM NaCl, 500 mM imidaz-

ole, 2 mM b-mercaptoethanol, pH 8.0). Directly after elution b-

mercaptoethanol was added to a final concentration of 10 mM

and the protein was dialyzed against 26500 ml buffer C (10 mM

Na2HPO4/NaH2PO4, 200 mM NaCl, 2 mM EDTA, 10% (v/v)

glycerol, 10 mM b-mercaptoethanol, pH 8.0). The dialyzed

sample was loaded on a 5 ml Heparin HiTrap column (GE

Healthcare) equilibrated with buffer D (10 mM Na2HPO4/

NaH2PO4, 100 mM NaCl, 10% (v/v) glycerol, 10 mM b-
mercaptoethanol, pH 8.0). Protein was eluted using a liner

gradient to 1 M NaCl in buffer D. Fractions containing

aureochrome 1 were concentrated (30 kDa cutoff (Amicon)) and

further purified using a Superose 6 column (23 ml, GE

Healthcare) equilibrated in buffer E (10 mM Na2HPO4/

NaH2PO4, 100 mM NaCl, 10% (v/v) glycerol, 10 mM DTE,

pH 8.0). The pure protein with a ratio of A280/A450=2.8 was

concentrated to 10 mg/ml, flash frozen in liquid nitrogen and

stored at 280uC.

Time-resolved UV/VIS absorption spectroscopy
The sample of aureochrome 1 was diluted to a concentration of

20 mM in buffer F (10 mM Na2HPO4/NaH2PO4, 200 mM NaCl,

10 mM DTE, 10% glycerol, pH 8, 20uC). Concentrations of the

samples were determined by the absorption at 450 nm with an

estimated extinction coefficient of FMN of about

12500 M21
?cm21. The sample was illuminated for 5 s with a

light emitting diode (LED from Luxeon Star, emission maximum

at 455 nm and 30 nm FWHM, power density of 10 mW/cm2)

while the spectrum was recorded from 250–700 nm using a UV/

Vis spectrometer (SHIMAZU UV-2450). After switching-off the

LED, spectra were collected at 45 s intervals. Up to five kinetic

experiments were averaged to improve the signal-to-noise ratio of

the spectra.

For measurements in the presence of DNA, oligomers with the

target sequence 59-TCTGACGTGA-39 and 59-TCACGTCAGA-

39, purchased from Eurofins MWG (HPLC purified), were used.

The reverse and forward single-strand oligomer were mixed,

concentration each 10 mg/ml, and incubated for 10 minutes on

ice. This double-stranded DNA (dsDNA) was added to aureo-

chrome 1 solution in stoichiometric amounts and incubated for

1 hour on ice.

Flash photolysis experiments
For UV/Vis experiments with ns time resolution, 59 mM

aureochrome 1 in buffer F was excited by a 10 ns laser pulse at

475 nm from a solid-state laser (Nd:YAG driven OPO, energy

density of 5 mJ/cm2, one pulse every 30 minutes). The measuring

light was the emission from a halogen bulb passing a monochro-

mator set to the desired wavelength. The time-dependent

absorption changes of the sample were detected by a photo-

multiplier tube and recorded by two separate transient recorders

with digitization rates of 100 MHz and 2 MHz, respectively. Data

were averaged on a quasi-logarithmic time-scale and merged to

yield time traces covering the time range from 10 ns to 1 s. Three

kinetic traces were averaged at each wavelength selected (390, 660

and 715 nm).

Figure 1. Schematic domain drawing of aureochrome 1 and
YtvA. Domain organization of full-length aureochrome 1 from
Vaucheria frigida and of YtvA from Bacillus subtilis. The LOV domains
are coloured in blue, while the effector domains are colored in orange.
The Ja-helix is located C-terminal to the LOV domains (shown as a black
bar).
doi:10.1371/journal.pone.0103307.g001
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FTIR spectroscopy
Light-induced FTIR difference spectroscopy was performed as

previously described [25]. Briefly, 10 mL of the sample (330 mM)

in buffer F was concentrated on a BaF2 window using a gentle

stream of dry air. After drying, the sample was still well hydrated

(amide I/amide II ratio 2:1). Sample excitation was performed by

the same LED as for the UV/Vis experiments (see above).

Infrared experiments were performed on an IFS 66v/S spectrom-

eter (Bruker Optics, Ettlingen, Germany). FTIR difference spectra

were calculated by subtraction of the dark state spectra from the

spectra recorded under photo-stationary conditions. Spectra were

recorded at a spectral resolution of 4 cm21 and represent the

average of 100,000 scans.

Results

Kinetics of the aureochrome 1 photocycle
The absorption spectrum of aureochrome 1 exhibits two major

absorption bands, in the UVA (380 and 315 nm) and in the blue

region (410–490 nm, Fig.2A). The long wavelength absorption at

447 nm shows the typical vibronic fine structure of oxidized FMN

with side maxima at 425 nm and 474 nm, when harbored in the

peptide environment of a LOV domain. Like the LOV2 domain

from plant-type phototropin [4], aureochrome 1 lacks the double-

peak structure and shows only one band with a maximum at

378 nm.

Upon absorption of a blue photon, the band feature at around

450 nm is bleached. Bleaching is fully reversible when illumination

is switched off and the spectrum of the dark state is recovered in

about 45 min. Isosbestic points at 387 and 409 nm indicate that

the recovery reaction represents a transition between two states

(Fig. 2A). Absorption changes were followed at 446 nm to

determine the kinetics of the recovery reaction of the initial dark

state. Experiments were carried out in the absence and presence of

a 10-bp double-stranded DNA oligomer which carried the binding

motif of the aureochrome 1 bZIP domain. For both samples, the

plot of the absorption at 446 nm versus time indicates a mono-

exponential recovery of the ground state (Fig. 2B). The time

constant is 2261 min (at 20uC) and is not influenced by the

presence of the target DNA oligomer (data not shown).

After blue-light absorption, aureochrome 1 undergoes a

photocycle in which the first intermediate is formed within a few

nanoseconds. This intermediate exhibits a massively red-shifted

absorption maximum characteristic for the triplet state of the

FMN cofactor [5]. We monitored the decay of the triplet state by

recording absorption changes at 715 nm with a time resolution of

50 ns after pulsed laser excitation (Fig. 3). A single exponential

decay was observed and the fit yielded a time constant of

1.460.2 ms. Again, addition of the target DNA to aureochrome 1

resulted in identical kinetics (data not shown).

Response of the LOV domain
Structural changes occurring upon conversion of the dark state

to the blue-shifted intermediate state (LOV390) were monitored by

vibrational spectroscopy. As the lifetime of the LOV390 interme-

diate is very long (vide supra), the vibrational changes can be

recorded under photo-stationary conditions without the need for

time-resolved experimentation. Positive bands in the light-dark

FTIR difference spectra correspond to the long-lived adduct

intermediate LOV390 and negative bands to vibrations of dark-

state LOV447. Most of the difference bands are due to vibrations of

the chromophore because FMN undergoes the largest dipolar

changes of the holoprotein [25].

Band assignment is facilitated by the comparison to other LOV

domain proteins. For this purpose, FTIR differences of full-length

YtvA recorded under identical conditions [26] are included in

Figure 4 (lower trace). YtvA from Bacillus subtilis comprises a

LOV domain and a downstream STAS domain, which is involved

in general stress response of this bacterium [27–29]. The sequence

identity between both LOV domain is 52%. As expected, the two

Figure 2. Kinetic of the ground state recovery. A) Absorption spectra of aureochrome 1 recorded during the recovery of the dark state. The
sample was illuminated with blue-light and spectra were taken at intervals of 45 s. The arrows indicate the increase and decrease of the maxima of
the LOV445 and LOV390 states, respectively. B) Kinetics of recovery of the absorbance at 446 nm of aureochrome 1 after 5 s blue light illumination. The
continuous line represents a single exponential fit to the data (dots). The time constant for the ground state recovery was determined to 2261 min.
doi:10.1371/journal.pone.0103307.g002
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spectra share similarities but detailed inspection reveals crucial

differences. Particularly differing features are observed in the

amide I (1690–1620 cm21) and amide II (1570–1520 cm21)

regions indicating changes in secondary structure. The negative

band at 1676 cm21 of dark-state YtvA is absent in the spectrum of

aureochrome 1 and the intensity of the positive peak at 1684 cm21

is decreased. In contrast, the negative band at 1641 cm21, which

is assigned to the n(C=C) vibration of ring I of the isoalloxazine

moiety [25], is more intense than in the YtvA spectrum. We

suspect contributions from changes in the amide I band, which are

indicative for changes in the secondary structure of aureochrome

1, and overlap with the chromophore mode. Furthermore, the

stretching vibration of C4=O4 oscillates with a frequency of

1712 cm21, the in-plane bending vibration of N3-H at 1374 cm21

and the ring vibration involving mainly n(C4-N3), n(C2-N3), n(C4-

C4a), n(C2-N1), d(C2=O2) at 1246 cm21. In aureochrome 1, the

atoms O4, N3 and O2 of ring III of the FMN form hydrogen bonds

with the side chains of N286, N296 and Q317, residues that are

highly conserved in LOV domains [13]. Thus, the vibrations of

ring III are influenced by the strength of the hydrogen bonds. The

observed shift by 3 to 5 cm21 to lower wavenumbers corresponds

to an increase of the strength of the hydrogen bond network

formed with the chromophore.

The adduct state is characterized by a covalent bond between

the C4a of the isoalloxazine ring of FMN and the sulfur of a nearby

cysteine. Since the cysteine is protonated in the ground state, the

S-H stretching vibration appears as a negative band in the FTIR

difference spectrum. In fact, a negative band at 2563 cm21 is

observed and, thus, assigned to C254 of the ground state of

aureochrome 1 (Fig.5). The frequency of the S-H stretching

vibration of C254 is downshifted by 7 cm21 in comparison to the

corresponding vibrations in YtvA, LOV1 and LOV2 of photo-

tropin at 2570 cm21 [26], The position of this band rather fits to a

shoulder at 2562 cm21 that was observed in the spectra of LOV1

domain. The appearance of this shoulder was interpreted as the

band of the second rotamer configuration of the side chain of

cysteine. One rotamer is closer to FMN (distance S to N5 is 3.5 Å

instead of 3.9 Å [30]) and in a more polar environment as the

other rotamer, which is in close vicinity (distance 3.3 Å) to the

methyl group of a nearby leucine residue (L257 in aureochrome 1).

This interpretation is in line with the frequency shift of the S-H

stretching vibration to lower wavenumbers when organic thiols are

dissolved in polar solvents [31]. Therefore, we infer from our IR

study that C254 of aureochrome 1 seems to prefer the rotamer

configuration that is closer to N5 of the isoalloxazine ring of FMN.

DNA target binding
In addition to the light-absorbing LOV domain, aureochrome 1

contains a bZIP domain which binds the target DNA. We studied

the effect of the substrate DNA by recording IR difference spectra

of aureochrome 1 in the absence (upper trace in Figure 6) and in

the presence (lower trace) of its target DNA. The difference spectra

share the typical FMN bands but some signals are significantly

increased. Bands at 1684 and 1655 cm21 almost double their

intensities and a shoulder at 1670 cm21 appears in the difference

spectrum in the presence of DNA. Beside the amide I vibrations

that are sensitive to structural changes, the C4=O4 stretching

vibration of thymine bases (1671–1655 cm21 for T, ds) and the

C6=O6 stretching vibration of guanine bases (1678–1689 cm21

for G, ds) appear in this frequency range [32]. In addition to the

shoulder at 1670 cm21, a positive band rises at 1630 cm21. These

two vibrational bands absorb in the region of the asymmetric and

symmetric vibrations of arginine side chains, respectively [33,34].

A positive band appears at 1539 cm21 which may be indicative for

the symmetric N-H deformation vibration of the terminal amino

groups of lysine side chains (about 1530 cm21) [33]. The

asymmetric deformation vibration of the NH3
+ group lies at

around 1629 cm21 and probably overlaps with the symmetric one

of the arginine side chain [35]. In the phosphate/sugar region, two

Figure 3. Kinetic of the triplet state decay. Kinetics of the
absorbance changes at 715 nm (absorption band of the triplet state) of
aureochrome 1 after a 10 ns laser flash. Three recordings with a time
delay of 30 min after each laser flash have been averaged. The
continuous line is the single exponential fit to the data yielding a time
constant of t= 1.560.1 ms.
doi:10.1371/journal.pone.0103307.g003

Figure 4. FTIR difference spectrum of aureochrome 1 in the
region of 1800 to 1100 cm21. FTIR difference spectrum (light-dark)
of aureochrome 1 (top spectrum) recorded under continuous
illumination with blue-light (light emitting diode with lmax=455 nm).
For comparison, the difference spectrum of YtvA (from Bacillus subtilis)
is also shown (bottom spectrum, re-plotted from [26]). The numbers
indicate the frequencies of vibrational bands discussed in the text and
the vertical dashed lines point to bands that are identical in both
spectra.
doi:10.1371/journal.pone.0103307.g004
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bands at 1193 (pos) and 1131 (neg) cm21 appear due to DNA

addition. In this region PO2 stretching vibrations of the DNA

backbone occur. The frequency of 1193 cm21 corresponds to

P=O stretch of a POOH group, while at 1131 cm21 P-O

stretching vibrations with a single bond character are located.

Discussion

The photoreaction of full-length aureochrome 1 from Vaucheria
frigida was studied by molecular spectroscopy. The visible

absorption spectrum shows only one broad band in the UVA

region, which indicates that the LOV domain of aureochrome1

resembles the LOV2 domain of phototropin [4] and LOV domain

of YtvA [36]. This is in line with the fact that T222 and N229 in

aureochrome 1, which strongly influence the spectral features in

the UVA range [37] are conserved in LOV2 domains. Time-

resolved UV/Vis measurements were performed to determine the

kinetics of the photocycle intermediates. The decay of the LOV715

triplet state is characterized by a time constant of 1.460.2 ms. This

value agrees fairly well with the time constant of 2.8 ms as derived

by light-induced transient-grating (TG) spectroscopy [16] and is in

the range of other LOV domains like phototropin1 LOV1 (4 ms),

LOV2 (1.9 ms) and YtvA (2 ms) [7,9,10]. Unfortunately, it was

impossible to record the rise kinetics of the LOV390 state due to

the triplet state LOV715 absorption in this region that cancels the

former changes [5].

The decay of LOV390 proceeds in full-length aureochrome 1

with a time constant of 22 min. This is significantly longer than the

lifetimes of the isolated AuLOV domain, irrespective if the Ja-helix

is absent (4.9 min) [2] or present (8 min) [2,13]. Thus, we

conclude that the presence of the bZIP domain prolongs the

lifetime of the signaling state LOV390. Studies of constructs of

aureochrome1a from Phaeodactylum tricornutum reported an

increase of the decay constant from 6 to 38 min due to the

presence of the Ja-helix [23]. However, experiments on the full-

length protein were not reported.

The light-dark FTIR difference spectrum exhibited the typical

bands of the FMN chromophore in the range of 1000 to

1800 cm21. However, the ring III vibrations of the FMN show

a shift to lower wavenumbers in comparison to YtvA, which is an

indication for a stronger hydrogen-bonding to the oxygen of the

carbonyls of ring III. The H-bonded network is comprised of

residues N286, N296 and Q317. Such minute structural differ-

ences are usually not resolved in the crystal structures.

The light-induced FTIR difference spectrum shows a negative

band at 2563 cm21 that corresponds to the S-H stretching

vibration of C254 in dark-state aureochrome 1. The downshift of

this band by 7 cm21 in comparison to other LOV domains

Figure 5. FTIR difference spectrum of aureochrome 1 in the
region of 2500 to 2600 cm21. Light-dark difference spectra of
aureochrome 1 (upper line) and full-length YtvA (lower line) from
Bacillus Subtilis in the region between 2500 and 2600 cm21 [26]. The
negative bands correspond to the S-H stretching vibration of a cysteine
in the dark state which is lost upon formation of the adduct state (C254
in aureochrome 1 and C62 in YtvA).
doi:10.1371/journal.pone.0103307.g005

Figure 6. FTIR difference spectrum of aureochrome 1 (1800–
1100 cm21) with bound DNA. Light-dark FTIR difference spectra of
aureochrome 1 in the absence (top) and presence (bottom) of dsDNA
oligomer (10 bp) with the target sequence TGACGT. The numbers
indicate the position of the positive and negative bands and the vertical
dashed lines identify bands with same position in both spectra. Bands
labeled by black numbers indicate new bands that appear due to the
target DNA binding. Grey labeled bands are invariant to the presence of
DNA.
doi:10.1371/journal.pone.0103307.g006

Figure 7. Sequence alignment of aureochrome 1 with GCN4. Sequence alignment of the bZIP domains of aureochrome 1 from Vaucheria
frigida and of GCN4 from S. cerevisiae. The red marked amino acids are involved in the binding of the protein to the ribose phosphate backbone of
the target DNA. The blue marked residues interact with the nucleobases [14]. The yellow marked arginines interact with both. The sequences show
the typical N-X7-R/K motive with the hepta-repeat of leucines (colored in green) positioned exactly nine amino acids toward the C-terminus [17].
doi:10.1371/journal.pone.0103307.g007
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indicates a more polar environment of the S-H group compared to

other LOV domains. We infer that the conformer where the S-H

is closer to the N5 of the isoalloxazine ring, is the dominant

conformer in aureochrome 1 (see Bednarz et al. for a discussion

[26]). The high resolution structures of Cr-phot-LOV1 and YtvA

show two rotamer configurations for the corresponding cysteine

with a closer distance of 3.5 Å to the N5 and 3.3 Å to the terminal

methyl group of a close-by leucine [21,30]. The crystal structure of

Aureo1-LOV was determined at 2.8 Å resolution [13], which does

not allow for the identification of alternative configurations. The

rotamer configuration of C254 identified by Mitra et al.

corresponds to the rotamer pointing towards L257 with a distance

of the sulfur to N5 of the isoalloxazine ring of 3.8 Å [13].

Upstream of the LOV domain, aureochrome 1 harbors a bZIP

domain. The latter is known to bind DNA after dimerization of

the leucine zipper domain with its basic region at the major grove.

By formation of a coiled coil of two helices, a Y shape structure is

created that can bind the target DNA by specific interactions of

the C-terminal basic region with the DNA, mostly via hydrogen

bonds (see Fig.6 left).

The interaction of DNA and the bZIP domain is reflected in the

FTIR difference spectrum (see Fig.6, lower trace). We observe a

negative band at 1131 cm21 that is assigned to the P-O stretching

vibration with single bond character [38]. Formation of a

hydrogen bond to one of the phosphate oxygens leads to

strengthening of the double bond character of the other P-O

bond. As a consequence, the P=O stretching vibration with a

double bond character shows up at 1193 cm21 [38]. Furthermore,

asymmetric and symmetric C=N stretching vibrations assigned to

arginine side chains are observed at 1630 and 1670 cm21. At the

present stage, we are not able to assign the vibrations to specific

arginine residues due to the lack of proper point mutants.

Additionally, peaks at 1539 and 1630 cm21 corresponding to the

asymmetric and symmetric deformation vibration of the NH3
+

group, indicate the involvement of lysine side chains. The rise of

these bands reflects the formation of hydrogen bonds between the

terminal NH3
+ groups of lysine residues and the P-O2 groups of

the phosphate sugar backbones. The increase in intensities of the

bands in the amide I and II region that are overlapping with the

C=O stretching region of the nucleotide bases, are indicative for

structural changes of the apoprotein as well as changes in the

hydrogen bonded network itself. The structural changes probably

include the partially unfolding of the Ja-helix which was suggested

to be involved in the internal signal transduction as concluded

from previous FTIR studies [23]. Furthermore, a similar reaction

mechanism as in EL222 might be valid for aureochrome 1 as well.

EL222 consists of a LOV domain that is coupled to an N-terminal

HTH domain. In the dark state the DNA binding domain is

bound to the b-sheet of the LOV domain [39]. This surface is

directly interacting with the FMN chromophore and, consequent-

ly, illumination releases the HTH domain which is followed by

dimerization and DNA binding. Aureochrome 1 might react in

Figure 8. Homology model of aureochrome 1 bound to DNA. Homology model of aureochrome 1 interacting with its target DNA strand
created by SWISS-Model [40,41]. The structure was modeled on the basis of the GCN4 crystal structure (PDB:1YSA [14]). Left: Overall structure of the
bZIP domain (blue) with the leucine zipper shown as spheres and the DNA as sticks (orange). The LOV domain is connected to the bZIP domain
downstream of the basic region. Right: Zoom into the basic region. The image represents a rotated view on the binding complex. Protein and DNA
backbones are shown as transparent cartoons. The lysine and asparagines that interact with the backbone and nucleobases of the DNA are shown as
sticks and are labeled. For the bases C2’L and T3L the whole nucleotide is drawn as sticks, while for T1’L, G09 and T5L only the phosphates of the
backbone are shown. The dashed lines represent hydrogen bonds with the corresponding distances in Å.
doi:10.1371/journal.pone.0103307.g008
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similar way, although the crystal structure of the LOV domain

shows that the Ja-helix is attached loosely to the b-sheet surface
[13].

Aureochrome 1 shares high homology with the general control

protein (GCN4) from S. cerevisiae (PDB entry: 1YSA [14]) not

only in its primary sequence (Fig. 7) but also in the sequences of

the respective target DNA which is ATGACTCAT for GCN4 and

TGACGT for aureochrome 1, respectively. Thus, the homology

model of aureochrome 1 is meaningful and allows for a structural

interpretation of the FTIR data. Figure 8 (right panel) shows that

three arginine residues are involved in the interaction with the

target DNA: R128 forms a hydrogen bond to the phosphate of

T1’L, R141 to the phosphate of T3L and R130 to T5L. Although

the distance of 4.8 Å might be too long for a hydrogen bond,

K136 is interacting with the phosphate group of G09. Besides this

backbone interaction, the important N131 is hydrogen bonded to

the bases C2’L and T3L. This interaction is reflected by the

increased intensity of the band at 1655 cm21 in the FTIR

difference spectrum.

In conclusion, the FTIR experiments elucidated the interactions

between the bZIP domain of full-length aureochrome 1 and its

target DNA during illumination. Specific residues that are

involved in the binding complex were identified by their

vibrational marker bands. Subsequent studies to address the

crucial role of these amino acid residues will help elucidating the

mechanism of this potential optogenetic tool.
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