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ABSTRACT

We have observed six lateL and T dwarfs with the Karl G. Jansky Very Large Array (VLA) to investigate the
presence of highly circularly polarized radio emission, associated with large-scale auroral currents. Previous
surveys encompassing ∼60 L6 or later targets have yielded only one detection. Our sample includes the previously
detected T6.5 dwarf 2MASS10475385+2124234, as well as five new targets selected for the presence of Hα
emission and/or optical infrared photometric variability, which are possible manifestations of auroral activity. We
detect 2MASS10475385+2124234, as well as four of the fivetargets in our biased sample, including the strong
IR-variablesource SIMPJ01365662+0933473 and bright Hα emitter 2MASS12373919+6526148, reinforcing
the possibility that activity at these disparate wavelengths is related. The radio emission frequency corresponds to a
precise determination of the lower-bound magnetic field strength near the surface of each dwarf, and this new
sample provides robust constraints on dynamo theory in the low-mass brown dwarf regime. Magnetic fields
2.5 kG are confirmed for five of six targets. Our results provide tentative evidence that the dynamo operating in

this mass regime may be inconsistent with predicted values from a recently proposed model. Further observations
at higher radio frequencies are essential for verifying this assertion.

Key words: brown dwarfs – planets and satellites: aurorae – planets and satellites: magnetic fields –
radio continuum: stars – stars: individual (SIMP J01365662+0933473) – stars: magnetic field

1. INTRODUCTION

An important outstanding problem in dynamo theory is
understanding how magnetic fields are generated and sustained
in fully convective stellar objects. Prevailing dynamo models
for dwarf stars with an inner radiative zone and an outer
convective envelope, like the Sun, are accepted to rely on the
shearing at the interface between these two layers, where
differential rotation is strongest (Parker 1975). Beyond spectral
type ∼M4, stars are fully convective and no longer possess the
internal structures necessary to sustain such dynamos (Chabrier
& Baraffe 1997). However, flaring Mdwarfs are characterized
by kilogauss fields covering much of the stellar disk (Saar 1994;
Johns-Krull & Valenti 1996), and the fraction of M, L, and T
dwarfs that exhibit strong and persistent Hα emission, a
magnetic activity tracer, rises through lateM dwarfs and peaks
at ∼90% for L0 dwarfs before declining to ∼50% for L5 dwarfs
(Gizis et al. 2000; West et al. 2004, 2008; Schmidt et al. 2015).
Clearly, an alternative dynamo operates in low-mass, fully
convective stars. A number of models for possible dynamo
mechanisms in this regime have been proposed (Chabrier &
Küker 2006; Dobler et al. 2006; Browning 2008; Christensen
et al. 2009; Morin et al. 2011b; Gastine et al. 2013), but
constraining data on magnetic field strengths and topologies
across a wide range of mass, age, rotation, and temperature are
sorely lacking, particularly in the brown dwarf regime.

In a recent breakthrough, scaling laws derived from
planetary dynamo calculations (Christensen & Aubert 2006)
were demonstrated to be empirically consistent with the
magnetic field strengths measured for fully convective stars
(Christensen et al. 2009; hereafter C09). This result argued for
a single unifying principle that governs magnetic activity in
rapidly rotating fully convective objects, spanning the mass

range from stars to planets—specifically, the energy flux
available for generating the magnetic field sets the field
strength. This principle states that the magnetic energy in these
objects should scale approximately as q1 3

0
2 3rµá ñ , where rá ñ is

the mean density in the dynamo region and q0 is the bolometric
flux. However, while this scaling law appears consistent with
magnetic field measurements for solar system planets and fully
convective stars, data from the orders-of-magnitude mass gap
occupied by rapidly rotating brown dwarfs and massive
extrasolar planets are required to validate this principle.
Traditionally, the Zeeman effect has been one of the most

powerful means to measure the strength, filling factor, and even
large-scale field topology of stellar magnetic fields, including
those of fully convective stars. Zeeman broadening of atomic
lines such as Fe I has been successfully used to recover the
large-scale field topologies of active mid-M dwarfs, confirming
that the high levels of coronal and chromospheric activity
observed for these stars are indeed associated with strong
magnetic fields (typically a few kG) covering a large fraction of
the photosphere (with filling factors as high as ∼50%; Johns-
Krull & Valenti 1996). Zeeman Doppler imaging (ZDI),
involving time-resolved high-resolution spectropolarimetry,
has been successfully applied to mid- and lateM dwarf stars,
both above and below the fully convective boundary (Donati
et al. 2006). In some casesstrong, large-scale poloidal fields
are identified, while in other cases weak, large-scale fields with
strong higher-order components are found (Morin et al. 2010),
suggesting that a bistable dynamo may operate in the very
lowmass regime. Probing to even cooler temperatures, Reiners
& Basri (2007) were able to use Zeeman broadening of
magnetically sensitive molecular lines, such as FeH, to
constrain the average surface magnetic fluxes of objects as
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late as M9. While these methods have been successful, a robust
detection of Zeeman broadening has not been established for
objects cooler than late M, as rapid rotational broadening
causes blending of the desired molecular lines (Reiners &
Basri 2006).

In the past decade, observations of the radio emission from
low-mass stars and brown dwarfs have opened a new window
on magnetic activity in this regime. While the initial detection
of quiescent emission from ∼10% of targets (Berger 2006),
possibly consistent with incoherent gyrosynchrotron emission,
was itself anomalous (Berger et al. 2001), the later confirmation
of a second component to the radio emission, manifested as
periodic pulsar-like bursts of 100% circularly polarized
emission, was even more unexpected (Hallinan
et al. 2006, 2007). This emission is attributed to the electron
cyclotron maser (ECM) instabilityand is of the same nature as
the auroral emission produced by the magnetic planets in our
solar system via magnetosphere–ionosphere (M–I) coupling.
However, unlike the planets, where auroral radio emission is
powered by interactions with the solar wind, orbiting satellites,
and corotation breakdown, the nature of the electrodynamic
engine powering auroral activity in ultracool dwarfs remains
unclear (Hallinan et al. 2015).

What is clear is that ECM emission is a very powerful tool
for measuring magnetic fields. Produced at the electron
cyclotron fundamental frequency B2.8MHz Gaussn ~ ´ (Treu-
mann 2006, and references therein), it allows for very accurate
measurements of local magnetic field strengths and rotation
periods, and it has provided some of the first confirmations of
kilogauss fields for late M and L dwarfs (Burgasser & Putman
2005; Hallinan et al. 2006, 2007, 2008; Berger et al. 2009).
Indeed, radio observations have been the only method thus far
capable of direct magnetic field measurements for L dwarfs.
Examining magnetic dynamo action in the mass gap between
planets and stars therefore requires radio data.

Over a dozen low-mass stars and brown dwarfs, ranging in
spectral type from M7 to L5, have been found to be radio
sources in the past decade (Berger et al. 2001; Berger 2002,
2006; Burgasser & Putman 2005; Antonova et al. 2007; Phan-
Bao et al. 2007; McLean et al. 2012; Burgasser et al. 2013,
2015b; Williams et al. 2014). A subset of these objects have
been the subject of lengthy follow-up campaigns that have
revealed the presence of 100% circularly polarized, periodic
pulses, with the pulse period typically 2–3 hr and consistent
with rotation (Hallinan et al. 2006, 2007, 2008; Berger et al.
2009). More recently, magnetic field measurements have been
extended much further, with the detection of the coolest radio
brown dwarf yet detected, the T6.5 dwarf 2MASS J10475385
+2124234 (hereafter 2M1047) by Route & Wolszczan (2012).
They observed individual radio pulses from this object in
multiple short-duration observations at 4.75 GHz with the
Arecibo Observatory, resulting in a confirmed magnetic field
strength of at least 1.7 kG near the surface of this extremely
cool (∼900 K) object. The results of Route & Wolszczan
(2012) highlight the unique capability of radio observations to
measure magnetic fields in the critical L and T dwarf regime
and show that the latest-type brown dwarfs can in fact host
∼kG field strengths.

However, this single detection came at substantial expense.
In previous surveys totaling ∼60 L6 or later type objects, only
one was detected (Antonova et al. 2013; Route & Wolszc-
zan 2013), demonstrating that previous selection strategies

(largely volumelimited) have been inefficient. Motivated by
the radio detection of 2M1047, we present a pilot survey of six
objects ranging in spectral type from L7.5 toT6.5, including
the previously detected T6.5 dwarf 2M1047. We selected our
targets using a new strategy, described in Section 2. We
measure magnetic field strengths of the coolest brown dwarfs
using auroral radio emission, and we study implications on
fully convective magnetic dynamo theory.

2. TARGET SELECTION STRATEGY

In a departure from previous surveys, we have selected our
objects for tracers of auroral emission at other wavelengths.
This selection strategy is motivated by recent work by Hallinan
et al. (2015) linking periodic auroral radio emission to Hα
emission and optical broadband variability, as well as
corroborating evidence that most radio-pulsing ultracool dwarfs
exhibit weak Hα emission and/or optical/IR variability.
Hαemission and X-ray emission have been known for

decades to scale as power laws of increasing surface rotation or
decreasing Rossby number ( PRo ct~ , where P is the stellar
rotation period and ct is the convective turnover time) for main
sequence F through mid-M stars, until around Ro 0.1~ , when
the activity-rotation scaling appears to saturate at a constant

L Llog X,H bola (Pallavicini et al. 1981; Soderblom et al. 1993;
Stauffer et al. 1994; Delfosse et al. 1998; Pizzolato et al. 2003;
Reiners et al. 2009; McLean et al. 2012). Additionally, flaring
and quiescent radio emission observed in dwarf stars hasbeen
attributed to magnetic activity in the corona (Drake et al. 1989;
White et al. 1989), and in fact, X-ray and radio luminosities for
magnetically active stars are tightly correlated on the Güdel–
Benz relation, spanning 5–6 orders of magnitude and including
F through M stars and solar flares (Güdel & Benz 1993). The
Güdel–Benz relation holds for active stars independent of age,
spectral class, binarity, or rotation period. It suggests that
coronal heating and particle acceleration via magnetic fields are
related processes (Forbrich et al. 2011, and references therein).
However, beyond M7, magnetic activity trends appear to

diverge. L and T dwarfs regardless of age appear to be fast
rotators (Reiners & Basri 2008), suggesting that they do not
spin down with age like M dwarfs. DwarfsM7 also exhibit
systematically weaker Hα emission despite being fast rotators,
while L LX bol decreases with increasing v isin or decreasing
Ro (Mohanty & Basri 2003; Reiners & Basri 2008, 2010;
Berger et al. 2010; McLean et al. 2012). In a similar vein, the
Güdel–Benz relation appears to break down for objects later
than M7 owing to a suppression of X-ray luminosities rather
than radio luminosities, even when taking activity-rotation
saturation into account (Berger et al. 2010; Williams
et al. 2014), suggesting that magnetic activity in L and T
dwarfs is no longer dominated by rotation (Cook et al. 2014;
Williams et al. 2014). Although radio, Hα, and X-ray
luminosities do not necessarily scale with magnetic field
strength, their continued emission requires magnetic fields even
at very low masses. Zeeman broadening and ZDI studies
referenced in Section 1 confirm that ∼kG fields persist in
dwarfs as late as M7. In light of such magneticfields, a simple
explanation for the observed activity breakdowns may be the
decoupling of magnetic fields from increasingly neutral
atmospheres (Mohanty et al. 2002).
However, clearly nonthermal heating of the upper atmo-

spheres of ultracool dwarfs is commonplace and sustained. The
breakdown of activity trends in late-type dwarfs indicates that
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the persistence of Hα, X-ray, and radio emission perhaps
reflects a departure from the standard chromospheric heating
picture where magnetic fields locally interact with hotter and
less neutral atmospheres. Instead, activity may be externally
powered via auroral current systems such as M–I coupling
currents, giving rise to auroral activity (Schrijver et al. 2011;
Nichols et al. 2012; Hallinan et al. 2015). M–I coupling has
been confirmed as a source of power for Jovian, Saturnian, and
terrestrial auroral emissions (Hill 1979; Nichols et al. 2012;
Bagenal et al. 2014; Badman et al. 2015, and references
therein).

Recently, Hallinan et al. (2015) have established that radio
emission may only be one manifestation of auroral activity, as
is observed for the planets in our solar system. These authors
have shown that the M8.5 dwarf LSR J1835+3259 is
simultaneously variable with the same periodicity in broadband
optical, Balmer line, and pulsed radio emission. The radio and
Hα luminosities, together with the synchronized variability, are
consistent with the emission in all bands being powered by the
same auroral currents. Hallinan et al. (2015) also postulated
that there may be a causal relationship between auroral currents
and some examples of the infrared variability (weather)
observed for L and T dwarfs, though they presented no
empirical data to support this hypothesis.

Such synchronized multiwavelength emission has been
previously observed in other radio brown dwarfs.
TVLM513–46546 (M8.5) exhibited anticorrelated Sloan-g¢
and Sloan-i¢ light curves, which Littlefair et al. (2008)
attributed to cloud phenomena, and Hα emission from
2MASSWJ0746425+200032 (L0+L1.5) was variable with
the same periodicity as its pulsed radio emission but at a 1/4-
phase lag (Berger et al. 2009). In fact, all but one of the known
radio-pulsing ultracool dwarfs also exhibit Hα emission, and
several are also confirmed optical/IR variables (Tinney &
Reid 1998; Basri 2001; Delfosse et al. 2001; Hall 2002; Reid
et al. 2002; Mohanty & Basri 2003; Fuhrmeister &
Schmitt 2004; Lane et al. 2007; Schmidt et al. 2007; Littlefair
et al. 2008; Berger et al. 2009, 2010; Reiners & Basri 2010;
Antonova et al. 2013; Harding et al. 2013; Burgasser et al.
2015a, and references therein).

Motivated by the above discussion, we strongly bias our
samples for auroral activity by targeting only those dwarfs in
this spectral range known to exhibit Hα emission and/or
optical/IR variability.

3. TARGETS

2MASS10475385+2124234. Discovered by Burgasser et al.
(1999), 2M1047 was later classified as a T6.5 brown dwarf by
Burgasser et al. (2006b). Burgasser et al. (2003) detected weak
Hα emission at the 2.2σ level with a flux of
f 5.9 2.7 10H

18( )=  ´a
- erg cm−2 s−1. In 2012, 2M1047

became the first T dwarf detected in the radio, when Route &
Wolszczan (2012) detected highly circularly polarized (72%)

and bright flares at 4.75 GHz with ∼1.3–2.7 mJy peak flux
densities using the Arecibo telescope. Until this study, it has
remained the only radio-detected L6 dwarf. A follow-up
study by Williams et al. (2013) at 5.8 GHz using the Very
Large Array (VLA) found quasi-quiescent radio emission from
this source with a flux density of 16.5 5.1 Jym . Williams &
Berger (2015) confirmed quiescent emission for 2M1047,
measuring flux densities of 9.3 1.5 and 1.1 1.5 Jym at
6–10 GHz for Stokes I and V, respectively, with low circular

polarization (28%). They also detected highly leftcircularly
polarized pulses (∼50%–100%) with a periodicity of ∼1.77 hr
up through 10 GHz. We include 2M1047 in our survey as a
known quiescently emitting source and to examine long-term
variability.
SIMPJ01365662+0933473. SIMP0136 was discovered

and classified as a T2.5 dwarf by Artigau et al. (2006). In a
follow-up study, Artigau et al. (2009) reported J- and
Ks-band photometric variability, with a peak-to-peak
amplitude J 50D ~ mmag, an amplitude ratio K JsD D =
0.48 0.06 , and a period P 2.3895 0.0005 hr=  . This was
the first clearly periodic and high-amplitude detection of IR
variability in a T dwarf. They attributed the variability to clouds
that are ∼100 K colder than a surrounding cloud-free atmo-
sphere in the brown dwarf. Using Hubble Space

Telescope (HST) spectral mapping, Apai et al. (2013) found
that models of low-temperature and thick clouds mixed with
warmer and thin clouds can reproduce time-variable changes in
the near-IR colors and spectra of SIMP0136, and they
confirmed that it had a stable variation period.
2MASS10430758+2225236. 2M1043 was discovered and

classified as an unusually red L8 dwarf by Cruz et al. (2007),
which they speculated could be attributed to an unresolved
binary. A follow-up study by Reid et al. (2008) using the
NICMOS N1C1 camera on the HST found that no binary
companion to 2M1043 was resolved, for mass ratios q 0.2>
and angular separations 0. 3q >  . In the discovery paper, the
authors also tentatively report possible Hα emission.
2MASS12373919+6526148. 2M1237 was discovered by

Burgasser et al. (1999) using data from the Two Micron All
Sky Survey (2MASS; Skrutskie et al. 2006) and classified as a
T6.5 dwarf by Burgasser et al. (2002b). Burgasser et al.
(2000b, 2002b) reported abnormally bright and persistent yet
variable Hα emission, which was confirmed again by
Burgasser et al. (2003). With fluxes in the
range f 1 10H ( – )~a 10 17´ - erg cm−2 s−1, the Hα luminos-
ity is an order of magnitude higher than for any other T dwarf.
Burgasser et al. (2002b) found no evidence of short-term J-
band variability and ruled out flaring as a possible variability
mechanism. In contrast, Artigau et al. (2003) reported
variability at J 30D ~ mmag. Liebert & Burgasser (2007)
ruled out a massive companion or youthful chromospheric
activity as additional possible Hα variability mechanisms.
SDSSJ12545393–0122474. SDSS1254 was discovered by

Leggett et al. (2000) and independently classified as a T2 dwarf
by both Burgasser et al. (2002a) and Geballe et al. (2002) and is
the T2 spectral standard (Burgasser et al. 2006b). Burgasser
et al. (2003) reported weak Hα emission with flux
f 7.5 2.5 10H

18( )=  ´a
- erg cm−2 s−1. Artigau et al.

(2003) reported 45±2mmag J-band and 23±4mmag H-
band variability, and similarly, Goldman et al. (2008) reported
variable spectral features at 0.997–1.13 μm, with upper limits
in the peak-to-peak flux variability calculated at the ∼4%–60%
levels. In contrast, Koen et al. (2004) found no evidence of
variability above the 7, 6, and 10mmag levels for J, H, and Ks

bands during a ∼4-hr observation, and Girardin et al. (2013)
found no evidence of J-band variability above 5mmag. We
note here that SDSS1254 appears to be sufficiently over-
luminous for its spectral type that it may in fact be an as-yet-
unresolved tight binary system (Burgasser 2007; Cushing
et al. 2008).
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SDSS04234858–0414035. SDSS0423 was identified by
Geballe et al. (2002) using data from the Sloan Digital Sky
Survey (York et al. 2000). The authors classified it as a T0
dwarf on the basis of its infrared spectrum. However, using its
optical spectrum, Cruz et al. (2003) classified it as an L7.5.
Burgasser et al. (2005) showed that it is in fact a binary system
of two brown dwarfs with spectral types L6±1 and T2±1,
consistent with the previous classifications. Both Burgasser
et al. (2005) and Carson et al. (2011) reported the angular
separation of the binary to be 0. 16 , which we cannot resolve
with our observations. For the purposes of comparing our
magnetic field measurements with previous models, we adopt a
conservative L7.5 classification. Monitoring in Ks band by
Enoch et al. (2003) yielded only a possible detection of
variability, whereas Clarke et al. (2008) reported J-band
photometric variability with a peak-to-peak amplitude of
8.0±0.8mmag and a period of 2 0.4 hr . SDSS0423 is
additionally one of only a handful of late L/T dwarfs to exhibit
Hα emission, for which Kirkpatrick et al. (2008) reported an
equivalent width of 3Å.

4. OBSERVATIONS

We observed six objects spanning spectral range L7.5–T6.5
with the full VLA array in Cband (4–8 GHz), using the
WIDAR correlator in 3-bit observing mode for 4 GHz
bandwidth observations, in time blocks of 2 or 4 hr for 28
total program hours. Observations were performed between
2013 March and August, during DnC and C configurations. We
summarize target properties and observations in Tables 1 and 2,
respectively.

4.1. Calibrations

We calibrated our measurement sets using standard VLA
flux calibrators 3C 286 and 3C 147 and nearby phase
calibrators. After initially processing raw measurement sets
with the VLA Calibration Pipeline, we manually flagged
remaining RFI. Typical full-bandwidth sensitivity at DnC
configuration for 2 hr on source in Cband is 3 μJy. Typical
3-bit observations reach an absolute flux calibration accuracy
of ∼5%. We obtained absolute flux by bootstrapping flux
densities with standard VLA flux calibrators. Flux calibration
accuracy may be reduced and result in systematically offset
flux densities when gain calibrations interpolated from the
phase calibrator are not sufficient to correct for the variation of
gain phases with time. To account for this, our observations
alternated between a nearby phase calibrator and the target
source with typical cycle times of 30 minutes, and we obtained
gain solutions for the phase calibrators that varied slowly and
smoothly over time, suggesting that this source of error is
negligible.

4.2. Source Motion

The expected positions of the sources were determined using
2MASS coordinates (Skrutskie et al. 2006) and corrected for
proper motion, provided in Table 1. Sources had moved by as
much as 0. 8 owing to proper motion during our observing
program, in comparison to synthesized beam resolutions of at
least a few arcseconds. Orbital motion corrections were not
necessary for SDSS0423, a known binary with an orbital
separation of0. 16 . We compared the expected coordinates of
our objects with their measured position and found that all

Table 1

Survey Targets

Object Name Abbrev. SpT Parallax Distance cosm da md Notes Ref.
Name (mas) (pc) (mas yr−1) (mas yr−1)

2MASS10475385
+2124234

2M1047 T6.5 94.73±3.81 10.56±0.52 −1714±7 −489±4 Hα, detected
prior

(1)–(7)

2MASS01365662
+0933473

SIMP0136 T2.5 K 6.0±0.4 1241±9 −4± 10 IR variability (8)–(10)

2MASS10430758
+2225236

2M1043 L8 K 16.4±3.2 −134.7±11.6 −5.7±17.0 Hα emission (11)–(13)

2MASS12373919
+6526148

2M1237 T6.5 96.07±4.78 10.42±0.52 −1002±8 −525±6 Hα, IR var?a (1), (3), (4),
(14)–(16)

SDSSJ12545393–0122474 SDSS1254 T2 75.71±2.88 13.21±0.50 −479± 3 130±2 Hα, IR var?b,
binary?c

(17), (3), (4),
(18)–(26)

SDSS04234858–0414035 SDSS0423 L7d 65.93±1.7 15.17±0.39 −331± 49 76±11 Hα, IR var,
binaryd

(19), (27)–(33)

Notes.
a

(14) found no evidence of J-band variability, whereas (16) reported variability at a level below the detection limits of (14).
b

(22)–(24) found no IR variability in SDSS1254 above the 5 20–~ mmag level, whereas (20) and (21) reported significant J-band and spectroscopic variability,
respectively.
c See (25), (26), and Sections 6.2 and 3 for further discussion about possible multiplicity in SDSS1254.
d SDSS0423 has a known binary companion of spectral type T2.5 and orbital separation 0. 16 ((31), (32), (33)).
References. (1) Burgasser et al. 1999; (2) Burgasser et al. 2006b; (3) Vrba et al. 2004; (4) Burgasser et al. 2003; (5) Route & Wolszczan 2012; (6) Williams et al.
2013; (7) Williams & Berger 2015; (8) Artigau et al. 2006; (9) Artigau et al. 2009; (10) Apai et al. 2013; (11) Cruz et al. 2007; (12) Schmidt et al. 2010; (13) Pineda
et al. (submitted to ApJ);(14) Burgasser et al. 2002b; (15) Burgasser et al. 2000b; (16) Artigau et al. 2003; (17) Leggett et al. 2000; (18) Burgasser et al. 2002a; (19)
Geballe et al. 2002; (20) Artigau et al. 2003; (21) Goldman et al. 2008; (22) Koen et al. 2004; (23) Girardin et al. 2013; (24) Radigan et al. 2014; (25) Burgasser 2007;
(26) Cushing et al. 2008; (27) Cruz et al. 2003; (28) Kirkpatrick et al. 2008; (29) Enoch et al. 2003; (30) Clarke et al. 2008; (31) Carson et al. 2011; (32) Burgasser
et al. 2005; (33) Burgasser et al. 2006a.
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objects were well within a synthensized beam of their predicted
locations.

5. RESULTS

5.1. Image Detections

We combined measurement sets for objects with multiple
observing blocks using the CASA concat routine and then
produced Stokes I and Stokes V images of each object (total
and circularly polarized intensities, respectively) with the
CASA clean routine, modeling the sky emission frequency
dependence with two terms and using Brigg’s weighting with
the robustness parameter set to 0.0, which we found resulted in
a good trade-off between resolution and sensitivity for our
observations. We searched for a point source at the proper-
motion-corrected coordinates of each target. Figure 1 shows the
Stokes I and Stokes V images for all objects.

In contrast to previous surveys, all but one of our six targets
were detected in Stokes I, with signal-to-noise ratios (S/Ns)
ranging from 4.9 to 24.6 in the mean Stokes I flux density.
Table 3 gives the measured mean flux density and rms noise of
each detected (S/N�3) source. Flux densities and source
positions were determined by fitting an elliptical Gaussian
point source to the cleaned image of each object at its predicted
coordinates, using the CASA task imfit. For the one
undetected target, SDSS1254, we provide the measured mean
Stokes I flux density and rms noise at the expected position of
the source.

5.2. Time Series Pulse Detections and Magnetic Field
Strengths

We checked all targets for highly circularly polarized pulses
in flux density to confirm the presence of ECM emission.
Previous studies have searched for pulsed emission in Stokes I
and V, but we have chosen to search for pulses in the rr and ll
correlations (rightand leftcircularly polarized, respectively)
because S/N is a factor of 2 higher in cases where the pulsed
emission is 100% circularly polarized.

Using the CASA plotting routine plotms to export the real
UV visibilities averaged across all baselines, channels, and
spectral windows of the rr and ll correlations, we created rr and
ll time series for all measurement sets with time resolutions of
10, 60, and 600 s at frequency ranges of 4–6, 6–8, and 4–8 GHz

to check for frequency-dependent ECM emission cutoff. We do
not check for pulses at frequency resolutions smaller than
2 GHz owing to S/N concerns. Figure 2 shows the 4–8 GHz
time series for each object.
Analysis of the time series shows significant evidence of at

least one pulse for 2M1047, SIMP0136, SDSS0423, and
2M1043. Additionally, 2M1237 appears to exhibit very broad
pulses or strongly variable emission. We confirm pulses by
imaging right circularly polarized and/or leftcircularly
polarized emission over the FWHMof each pulse and
measuring integrated flux densities using the CASA routine
imfit at the expected locations of our targets. We find that flux
densities for imaged pulses are consistent with pulses observed
in the time series within 3σ. For all objects except for 2M1237,
we smooth our data over 60, 90, and 180 s to measure the
FWHM. We find that the FWHM is consistent within ∼30 s,
except for the earlier ll pulse on 2013 August 30 for
SDSS0423; when the smoothing is extended to 180 s, the
narrow peak smears out into the broader bump, and the
returned FWHM is accordingly broader. For the purposes of
measuring a mean pulsed flux, we use the narrower FWHM.
Because of the broad nature of the peaks for 2M1237, we
smooth over 180, 270, and 540 s and find that the FWHM is
consistent within ∼450 s.
We measure the mean pulsed Stokes I and V flux densities

by imaging over all of the pulses with peak flux density 3.0
for each object and calculate the highest-likelihood percent
circular polarization of the mean pulsed flux, where negative
and positive percentages correspond to left and right circular
polarization, respectively. We report uncertainties that corre-
spond to the upper and lower limits of the 68.27% confidence
interval. We find that in all cases except for the first peak in
2M1237, the pulsed emission is highly circularly polarized
(48.8%–97.3%), consistent with ECM emission
(Treumann 2006).
We additionally check for quiescent emission by removing

the full width of each pulse from our data and imaging the
remaining emission. We define the full width of the pulse as
beginning and ending at the time bins nearest the pulse
maximum that have flux densities less than or equal to the rms
noise. We find that pulse widths for each object are consistent
within ∼60 s (∼500 s for 2M1237) for all smoothing resolu-
tions, and we select the widest returned width when removing

Table 2

Summary of Observations

Obs. Obs. Time on VLA Synthesized Beam Phase Flux
Object Band Date Block Source Configuration Dimensions rms Calibrator Calibrator

(GHz) (2013) (h) (s) (arcsec×arcsec) ( Jym )

2M1047 4.0–8.0 05/19 4.0 12745 DnC 9.21×3.02 3.1 J1051+2119 3C 286
SIMP0136 4.0–8.0 05/18 4.0 12995 DnC 8.64×3.10 5.4 J0203+1134 3C 147
2M1043 4.0–8.0 05/25 4.0 13042.5 DnC 10.0×5.5 2.0 J1051+2119 3C 286

4.0–8.0 05/27 2.0 5825 DnC 9.82×5.47 4.9 J1051+2119 3C 286
2M1237 4.0–8.0 05/21 2.0 5712.5 DnC 8.22×3.70 2.8 J1313+6735 3C 286
SDSS1254 a 4.0–8.0 05/19 2.0 5685 DnC 9.70×3.55 4.0 J1246–0730 3C 286

4.0–8.0 05/26 2.0 L DnC K K J1246–0730 3C 286
SDSS0423 4.0–8.0 08/30 4.0 13102.5 C 4.91×3.37 3.2 J0423–0120 3C 147

4.0–8.0 05/26 2.0 5907.5 DnC 11.52×5.96 4.0 J0423–0120 3C 147
4.0–8.0 05/25 2.0 5925 DnC 12.92×9.11 3.5 J0423–0120 3C 147

Note.
a Excessive noise prevented successful calibration of the measurement set taken on 2013 May 23.
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each pulse. All objects with pulsed emission also exhibit
quiescent emission with relatively low polarization fractions,
except for 2M1237. In contrast, SDSS1254, for which no pulse
is observed, does not exhibit any detectable quiescent emission
above the rms noise. We report the characteristics of the pulsed
and quiescent emission in Table 3 and show their stokes I and
V images in Figure 3.

Searching for the FWHM of 2M1047 reveals an apparent
double peak, similar to what Williams & Berger (2015)
observe. Based on the periodicity observed by Williams &
Berger (2015), we classify this object as having a single pulse.
However, in measuring the mean pulsed flux densities, we treat
it as a double pulse and average over the FWHM of each pulse.

Two extremely bright sources near SIMP0136 resulted in
poor Stokes I field source subtraction, and our reported Stokes I
flux density is certainly an underestimate of the true flux
density. We attempted to self-calibrate this fieldbut were only
able to achieve ∼10% improvement. Beam squint causes the
nearby bright sources to also appear in Stokes V but with much
lower flux densities, and we therefore consider the Stokes V
flux density of SIMP0136 to be more accurate. Because the
degree of circular polarization cannot be greater than 100%, the
Stokes V flux density in fact gives a lower bound on the actual

Stokes I flux density. From its extremely bright Stokes V flux
density, we conclude that pulses from SIMP0136 are highly
circularly polarized.
We note that our observations only tentatively suggest that

we observe ECM emission from 2M1237. Despite the broad
nature of the peaks in 2M1237, it is possible that the time series
in fact exhibits two pulses rather than simply being variable,
with the broadness arising from a geometric effect. We report
the flux densities and circular polarization fractions for each of
the peaks in the 2M1237 rr time series, and we find that in fact
the circular polarization fraction appears to vary from peak to
peak, from ∼30% to ∼50% on a 2hr timescale. Some of the
variability may arise from the incomplete phase coverage, such
that the earlier peak is averaged down more than the later peak.
Whereas the other radio-detected objects all exhibit marked
differences in polarization fractions between pulsed and
quiescent emission, the “quiescent” emission from 2M1237
exhibits ∼50% circular polarization, which is similar to what
we observe in at least one of the peaks. This could be consistent
with a geometry in which the ECM-emitting region of the
magnetosphere is always visible, which would also explain the
broadness of the peaks. Additional monitoring of 2M1237 for

Figure 1. Stokes I (left) and V (right) images of all objects. Ellipse depicts synthesized beam. Measurement sets for objects with multiple observing blocks were
concatenated prior to imaging. Sources were detected at the proper-motion-corrected location for all objects except for SDSS1254.
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full phase coverage is necessary to determine the nature of
these peaks.

Three possibilities may account for why we do not observe a
pulse from SDSS1254: (1) SDSS1254 does not produce ECM
emission, (2) SDSS1254 produces ECM emission with a cutoff
frequency lower than 4.0 GHz, or (3) we did not observe it
during a pulse and the auroral activity is variable. Table 3
summarizes time series data for all objects. All detected pulses
extend into the 6.0–8.0 GHz band, indicating that observations
at higher frequencies are required to detect and measure an
emission cutoff. We conservatively use the center of the top
band, 7.0 GHz, to calculate corresponding lower-bound max-
imum surface field strengths of 2.5 kG.

6. DISCUSSION

6.1. Auroral Radio Emission as a Precise Tool for Magnetic
Field Measurement

Auroral ECM emission from the planets in our solar system
is produced very close to the fundamental electron cyclotron
frequency local to the source region. Though intrinsically
narrowband ( n nD  ), the emission can be detected over a
wide range of frequencies, as the process operates efficiently
over a range of heights above the planetary surface, which
maps to a range of field strengths. Taking the Jovian case as an
example, auroral radio emission is detected from 10 KHz to
40MHz frequencies, with the lowest-frequency emission
originating in source regions out to >5RJ, and the high-
frequency emission corresponding to the highest-strength
magnetic field regions (14 G) just above the atmosphere in
the auroral polar regions in the northern hemisphere
(Zarka 1998). Observed remotely, independent of knowledge
of the source region or the electrodynamic engine powering the
auroral currents, the high-frequency cutoff of this emission
provides a good means to determine the maximum magnetic
field strength in the magnetospheres of the magnetized planets.

We propose to utilize the highly circularly polarized
component of the radio emission detected from our sample of
cool brown dwarfs to similarly constrain the maximum
magnetic field strengths in their magnetospheres, with a view
to constraining the dynamo mechanism at work in their
interiors. In the absence of a clear cutoff in emission, we note
that any detection can be equated to a robust lower limit on a
maximum surface magnetic field strength. While the detection
of such ECM emission provides exquisite measurement of local
magnetic field strengths at the source of the radio emission, this
must be translated to global parameters of particular use to
dynamo modeling. Similarly, care must be taken in comparing
these measurements with magnetic field measurements pre-
viously obtained for higher-mass objects via Zeeman splitting/
broadening and ZDI, as they are measuring distinct but
complementary properties of the magnetic field. We address
these issues in Section 6.3.
The ECM emission from our sample is detected across the

entire band of our observations, which spans 4–8 GHz. Thus, in
the absence of a clear cutoff in the emission, we can place a
lower limit to the maximum surface magnetic field strength of
2.5 kG for all of our detected sample. This assumes that the
emission is produced at the fundamental electron cyclotron
frequency, rather than a higher harmonic, as is the case for solar
system planets. ECM emission at higher harmonics has been
invoked to explain coherent radio bursts from the Sun and
active stars, where the coronal density is such that second-
harmonic cyclotron absorption may prevent escape of emission
at the fundamental frequency. Indeed, it has been shown that
emission at the second and higher harmonics can dominate
when the ratio of the plasma frequency to the electron cyclotron
frequency exceeds ∼0.3 (Winglee 1985). However, in the case
of our sample, this would require a local plasma density of
∼1011 cm−3, more indicative of hot stellar coronae than the
cool neutral atmospheres of late L and T dwarfs, motivating the

Table 3

Imaging and Time Series Results

Position Mean Pulse Pulse Pulse Pulse Quiescent Quiescent
Object Offset a Stokes I # Stokes I Stokes V S/N Circ. Poln Stokes I S/N Circ. Poln

(sigma) (μJy) (μJy) (μJy) (I, V) (%)
b

(μJy) (%)
b

2M1047 1.46 26.8±3.1 1 123.0±21.0 −95.0±15.0 5.9, 6.3 −75.1 14.9
14.1

-
+ 17.5±3.6 4.9 −40.6 13.2

23.4
-
+

SIMP0136 0.36 34.4±5.4 2 >156.0±39.7 c
−233.0±24.9 3.9, 9.4 −63.6 d 33.3±5.9 5.6 −1.2 d

2M1043 0.79 11.7±2.4 3 87.0±11.8 −69.0±11.7 7.4, 5.9 −77.9 13.0
15.1

-
+ 16.3±2.5 6.5 −13.8 15.9

13.8
-
+

2M1237 e 2.91 64.7±3.7 2? f 83.3±7.6 23.7±6.4 9.5, 3.7 28.2 7.5
9.0

-
+ 43.3±7.3 5.9 53.7 14.6

21.6
-
+

K K K 81.7±8.8 40.3±8.0 9.3, 5.0 48.8 9.7
13.1

-
+

K K K

SDSS1254 K 3.3±4.0 0 K K K K K K K

SDSS0423 g 0.42 54.1±2.2 10 225.4±12.4 220.0±12.2 18.2, 18.0 97.3 9.0
0.8

-
+ 26.7±3.1 8.6 14.4 10.2

11.5
-
+

K K K 135.0±9.8 −67.1±7.9 13.8, 8.5 −49.4 7.8
6.1

-
+

K K K

Notes.
a The distance between the measured and expected coordinates, divided by the amplitude of the error ellipse in the offset direction, using concatenated images for
objects with multiple observing blocks. 2MASS coordinate uncertainties and our own measurement uncertainties were included in error analysis.
b Reported polarization fractions are highest-likelihood values, given the measured Stokes I and Stokes V flux densities. Uncertainties reflect the upper and lower
bounds of the 68.27% confidence intervals. Negative values indicate left circular polarization, and positive values indicate right circular polarization.
c Challenges with field source subtraction result in an underestimate of the true Stokes I flux density. Because circular polarization cannot exceed 100%, the Stokes V
flux density gives a lower bound to the true Stokes I flux density.
d We quote the lower bound of the 99.73% confidence interval for the percent circular polarization of SIMP0136 owing to an underestimated Stokes I flux density.
e Owing to the broadness of the two observed peaks in the rr time series of 2M1237, we report measurements separately for each peak. The top measurement is for the
earlier peak, and the bottom measurement is for the later peak.
f See Section 5.2 for discussion.
g We observe two sets of pulses, six in the rr time series (top) and four in the ll time series (bottom).
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Figure 2. Time series of rr- and ll-correlated (blue for right circularly polarized and red for leftcircularly polarized, respectively) flux densities for all calibrated
measurement sets. Axis scales are constant for time series for objects with multiple observing blocks. For presentational clarity, data areaveraged over 60 s intervals;
time interval for raw data was 5s, and all analysis was done with data averaged over 10 s. Black error bars represent rms noise obtained in images and scaled to time
bin lengths for a single correlation. Gray regions indicate FWHM of pulses with peak flux density 3.0 , and all pulses have been verified with imaging. Total intensity
is given by the Stokes I flux density, where I=(rr+ll)/2. Circularly polarized intensity is given by the Stokes V flux density, where V=(rr-ll)/2.
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Figure 3. Stokes I and Stokes V flux densities for pulsed and quiescent emission. Pulsed emission for 2M1237 is averaged only over the later pulse, and SDSS0423
pulsed emission is averaged over the rr pulses only.
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assumption of emission at the fundamental electron cyclotron
frequency.

To best inform our comparison of our results to dynamo
models, we also estimate the relevant physical parameters for
our brown dwarfs, as discussed in Section 6.2.

6.2. Estimating Physical Parameters of Brown Dwarfs

Effective temperatures (Teff) and surface gravities (log g)
were estimated for our sample following an updated version of
the method described in Burgasser et al. (2006a). We used low-
resolution near-infrared spectra from (a) the SpeX Prism
Library (Burgasser 2014); (b) data from Burgasser et al.
(2004, 2008), Cruz et al. (2004), Liebert & Burgasser (2007),
and Siegler et al. (2007); and (c) the indices H2O–J and K/H
defined in Burgasser et al. (2006a, 2006b), which are
orthogonally sensitive to temperature and surface gravity
variations in T dwarf near-infrared spectra. The indices were
measured on solar-metallicity BTSettl08 spectral models
(Allard et al. 2011) spanning Teff=600–1300 K and

log g=3.5–5.5 dex (cgs units). To calibrate these indices,
we used the spectra of two brown dwarf companions with
broadband model-fit parameters: Gliese570D (T7.5; Burgasser
et al. 2000a),for which Geballe et al. (2001) determine
Teff=804±20 K and log g=5.14±0.14 dex,and
HNPegB (T2.5; Luhman et al. 2007), for which Leggett
et al. (2008) determine Teff=1115 K and log g=4.81 dex.
Scaling the corresponding model indices to be in agreement
with these sources, we then identified the locus of model
parameters for which these indices agree with the measured
values for our six sources to within 3σ.
Results are shown in Table 4, which compares values from

each of the calibrators separately. For 2M1047, SIMP0136,
2M1237, and SDSS1254 we adopt the mean parameters from
both Gliese570D and HNPegB calibrations. Note that values
for 2M1237 are in agreement with those reported in Liebert &
Burgasser (2007), while we find a slightly cooler Teff for
SDSS1254 and a log g on the low end of values reported by
Cushing et al. (2008). The uncertainties for 2M1043 are fairly
large and are most likely due to substantial differences between

Table 4

Brown Dwarf Physical Parameters

Adopted Adopted Adopted Adopted
Object SpT Teff

a log g
a Age b Mass b

Teff
c log g

c Age c Mass c

(K) (cm s−2) (Gyr) (M) (K) (cm s−2) (Gyr) (M)

2M1047 T6.5 888 33
33

-
+ 5.34 0.46

0.11
-
+ >2.5 >0.026 869 29

35
-
+ 5.29 0.28

0.10
-
+ >2.5 >0.026

850 47
62

-
+ 5.23 0.25

0.18
-
+ >2.5 >0.026 L L L L

SIMP0136 T2.5 1104 63
51

-
+ 4.78 0.40

0.35
-
+ 0.6 0.3

1.1
-
+ 0.022 0.012

0.015
-
+ 1089 54

62
-
+ 4.79 0.33

0.26
-
+ 0.6 0.3

1.1
-
+ 0.022 0.012

0.015
-
+

1073 87
112

-
+ 4.79 0.52

0.39
-
+ 0.7 0.3

1.1
-
+ 0.022 0.012

0.015
-
+

L L L L

2M1043 d L8 1012 90
64

-
+ 3.94 0.09

0.13
-
+ 0.6 0.3

3.4
-
+ 0.011 0.005

0.011
-
+ 1390±180 K 0.6 0.3

4.6
-
+ 0.011 0.005

0.011
-
+

1229 260
212

-
+ 4.28 0.34

0.49
-
+ 0.6 0.3

4.6
-
+ 0.011 0.005

0.011
-
+

L L L L

2M1237 T6.5 851 32
36

-
+ 5.39 0.26

0.08
-
+ >3.4 >0.028 831 27

31
-
+ 5.34 0.17

0.08
-
+ >3.4 >0.028

810 43
51

-
+ 5.28 0.21

0.15
-
+ >3.4 >0.028 L L L L

SDSS1254 T2 1079 63
56

-
+ 4.52 0.35

0.41
-
+ 0.49 0.21

0.51
-
+ 0.017 0.008

0.015
-
+ 1070 52

69
-
+ 4.57 0.27

0.30
-
+ 0.49 0.21

0.51
-
+ 0.017 0.008

0.015
-
+

1061 83
127

-
+ 4.62 0.40

0.43
-
+ 0.49 0.21

0.48
-
+ 0.017 0.008

0.015
-
+

L L L L

SDSS0423 e L7+T2.5 1084 41
71

-
+ 4.25 0.18

0.34
-
+ 0.42 0.17

0.62
-
+ 0.015 0.006

0.021
-
+ 1678 137

174
-
+

K 0.43 0.17
0.62

-
+ 0.015 0.006

0.021
-
+

1150 114
198

-
+ 4.50 0.35

0.57
-
+ 0.43 0.17

0.61
-
+ 0.014 0.006

0.020
-
+

L L L L

Gl 570D T7.5 817 36
32

-
+ 5.02 0.48

0.19
-
+ 2.4 1.7

1.6
-
+ 0.024 0.010

0.011
-
+ 799 32

40
-
+ 4.96 0.32

0.18
-
+ 2.4 1.7

1.6
-
+ 0.024 0.010

0.011
-
+

781 53
73

-
+ 4.90 0.37

0.32
-
+ 2.4 1.7

1.6
-
+ 0.024 0.010

0.011
-
+

L L L L

HN Peg B T2.5 1054 66
51

-
+ 4.60 0.44

0.37
-
+ 0.6 0.3

0.6
-
+ 0.018 0.009

0.016
-
+ 1043 51

59
-
+ 4.64 0.32

0.28
-
+ 0.6 0.3

0.6
-
+ 0.018 0.009

0.017
-
+

1032 77
107

-
+ 4.67 0.45

0.40
-
+ 0.6 0.2

0.6
-
+ 0.017 0.009

0.015
-
+

L L L L

Notes.
a

(Top) cf. Gl570D, (bottom) see HNPegB. Calibrators Gliese570D and HNPegB included for reference. Minus and plus errors define the 68.27% confidence
interval.
b Mass and age estimates from evolutionary models of Baraffe et al. (2003), using input parameters determined from (top) cf. Gl570D and (bottom) cf. HNPegB.
Minus and plus errors define the 68.27% confidence interval, determined from 10,000 samples. In cases where >20% of input parameter samples fall outside of the
Baraffe et al. (2003) models, lower limits are within 84.13% confidence.
c Adopted values are averages from cf. Gl570D and cf. HNPegB, except for 2M1043 and SDSS0423.
d Assuming no detection of Li in the optical spectrum in Cruz et al. (2007). Owing to poor fit calibration for this object, we adopt instead Teff calculated by applying
the Liu et al. (2010) bolometric correction to 2MASS H-band magnitude, typical brown dwarf radius 0.90 0.15RJ , and conservative mass estimate 70±10MJ. We
do not adopt a value for log g and instead use the adopted mass and radius to calculate rá ñ in Figure 4.
e Parameter fits are based on the unresolved spectrum of the binary system and are thus highly suspect. We adopt instead Teff calculated from bolometric magnitude in
Vrba et al. (2004), typical brown dwarf radius R0.90 0.15 J , and conservative mass estimate 70±10MJ. We do not adopt a value for log g and instead use the
adopted mass and radius to calculate rá ñ in Figure 4.
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source and calibrator spectral types (a suitable late L dwarf
calibrator was not available). Finally, while we report results
for SDSS0423, these are highly suspect given the binary nature
of this source (Burgasser et al. 2005). Reported parameter
uncertainties reflect uncertainties in the parameters selected to
represent the calibrators Gliese570D and HNPegB and
define the lower and upper bounds of the range relative to
the central value that account for 68.27% of the set.

The high surface gravities inferred for 2M1047 and 2M1237
indicate old ages and relatively high (substellar) masses. These
were estimated from evolutionary models of Baraffe et al.
(2003) by drawing 10,000Teff–log g pairs from each distribu-
tion to determine the mean and standard deviations. In both
cases, >50% of input parameter samples fall outside of the
Baraffe et al. (2003) models and may result in significantly
skewed mean values, so we give lower limits within 84.13%
confidence. For these sources we infer ages of >2.5 and
>3.4Gyr and masses of >0.026 and >0.028M within
84.13% confidence, respectively. In contrast, SDSS1254 is
matched to a very young age (∼500Myr) and low mass
(∼0.017M). Note that Cushing et al. (2008) report disagree-
ment in log g values based on evolutionary models
(log g= 4.7–4.9) and spectral model fits (log g= 5.0–5.5),
which these authors speculate may be due to unresolved
multiplicity. Our difficulties in inferring the properties of
2M1043 may be related to this source’s unusual cloud
properties, as it is one of the reddest L8 dwarfs known
(J K 1.97 0.08s- =  ). Its reported optical spectrum shows
no indication of Li I absorption (Cruz et al. 2007), implying a
mass of ∼0.011M and age of ∼600Myr, although this
feature may have been masked by poor continuum detection.

For objects whose parameters are not well constrained by the
above method, we follow Vrba et al. (2004) and adopt a typical
radius of R0.90 0.15 J from the Burgasser (2001) study of
radius distribution in Burrows et al. (1997) L and T
dwarf evolutionary models. We adopt a typical late L mass
range of 70±10MJ. For 2M1043, we apply a bolometric
correction calculated for spectral type L8 using the polynomial
fit from Liu et al. (2010) to the 2MASS H-band magnitude.
Using M 4.7554 0.0004,bol =  mag and L ,bol

4
=

3.827 0.0014 1033( ) ´ erg s−1, we convert the bolometric
magnitude to an effective temperature T 1390 180eff =  K.
For SDSS0423, we adopt T 1678eff 137

174= -
+ K as derived by Vrba

et al. (2004). We include these parameters in Table 4.

6.3. A Simple Formalism for Comparing Magnetic Field
Measurements

6.3.1. Magnetic Field Topology

Radio observations of highly circularly polarized pulsed
emission yield precise measurements of local magnetic field
strengths in the magnetospheres of our objects. However,
translating them to a global field strength useful for evaluating
dynamo models requires topological information that is
difficult to determine from radio observations alone.

Lynch et al. (2015) attempted to constrain the field
topologies for two pulsing radio dwarfs by modeling their
radio dynamic spectra, inferring localized loops and loss-cone
ECM from their modeling. In contrast, Kuznetsov et al. (2012)

similarly model the radio pulses of one of the dwarfs examined
by Lynch et al. (2015) and found that a highly inclined dipole
model with active longitudes for shell-type electron distribu-
tions reproduces the pulses with greater fidelity than a loss-
cone distribution. Others have inferred dipole-dominated (Yu
et al. 2011), quadrupole-dominated (Berger et al. 2009), or
small-scale-dominated (Cook et al. 2014; Williams et al. 2014)
field geometries for pulsing radio dwarfs. Similar extrapola-
tions have been made for Jovian radio emission using ExPRES
(Exoplanetary and Planetary Radio Emissions Simulator) by
Hess et al. (2008, 2011). However, the latter use a plethora of
additional information to help constrain their calculation,
including information on the radio source distribution, the
beaming in the planetary environment, a planetary magnetic
field model, and precise knowledge of the planetary inclination
to the line of sight, none of which are currently available for the
dynamic spectra of ultracool dwarfs. We do not attempt to
recover the field topologies of our objects here.
Instead, we consider the case where a dipole drives the

observed emission. Although direct confirmation of the
electrodynamic engine(s) at work in our objects is required to
infer whether our magnetic field measurements are indeed of
the dipole component or are instead from higher-order
components, we note that detailed observations of the
magnetized solar system planets show that the dipole
component is most likely to produce auroral emission.
Specifically, interactions between the large-scale planetary
magnetic field with the solar wind (Isbell et al. 1984), the
planetary field with orbiting moons such as the Jupiter-Io
current system (Goldreich & Lynden-Bell 1969), and corota-
tion breakdown of a plasma sheet in the planetary magneto-
sphere drive the electrodynamic engines of the solar system
planets (Cowley & Bunce 2001; Hill 2001; Bagenal et al. 2014;
Badman et al. 2015, and references therein). In all cases, energy
is coupled into the upper atmosphere from distances sufficient
for the planetary dipole components to dominate.
For our objects, M–I coupling via corotation breakdown and

satellite interaction have been proposed as likely drivers
(Schrijver et al. 2011; Nichols et al. 2012; Hallinan
et al. 2015). We first consider satellite interaction. For a brown
dwarf with a rocky satellite, the Roche limit occurs at ∼3.7R

*
(Murray & Dermott 1999). Even at this minimum distance,
dipole fields dominate over higher-order fields that are a factor
of 3 stronger at the surface. In comparison, corotation
breakdown occurs at 30–50RJ for Jupiter (Cowley &
Bunce 2001; Hill 2001; Vogt et al. 2011, and references
therein)and at 3–4RS for Saturn (Stallard et al. 2010). In these
cases, dipole fields of surface field strengths ∼2–50 times
weaker than a quadrupole surface field would dominate at the
corotation breakdown radius.
ZDI by Morin et al. (2010, hereafter JM10) suggests that

objects significantly below the fully convective boundary with
∼kilogauss large-scale fields are dipoledominated, with the
majority of their magnetic energy lying in the dipole
component. Specifically, they find that magnetic topologies
of 11 M5–M8 dwarfs fall into either a strong or weak large-
scale field regime (strong LSF and weak LSF, respectively). In
the strong LSF regime, the large-scale field is of order
kilogauss with 66%–90% of the reconstructed magnetic energy
in the dipole component and is temporally stable over at least
∼3 yr, the length of the study. In the weak LSF regime,
multipolar field topologies with much weaker ∼0.1 kG large-

4 Adopted from Eric Mamajekʼs Star Notes: https://sites.google.com/site/
mamajeksstarnotes/basic-astronomical-data-for-the-Sun.
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scale fields vary significantly on yearly timescales. If the results
of Morin et al. (2010) apply to late L and T dwarfs, then objects
in the strong LSF regime are unlikely to host quadrupolar fields
a factor of three or more times stronger than the dipole
component, and the dipole field would drive the M–I coupling
currents.

In contrast, Williams et al. (2014) argue that weak LSF
objects may be X-ray dim/radio bright (departing from the
Güdel–Benz relation) instead of X-ray bright/radio dim (more
aligned to the Güdel–Benz relation). They suggest that objects
in the weak LSF regime likely experience less magnetic
activity than objects in the strong LSF regime, hypothesizing
that the decreased magnetic activity in weak LSF objects
results in correspondingly underluminous X-ray emission, but
that small-scale reconnection events can provide a source of
radio-emitting electrons. However, we note that in the standard
reconnection model of chromospheric heating, X-ray and radio
luminosities are tightly correlated (Güdel & Benz 1993;
Güdel 2002; Benz & Güdel 2010; Forbrich et al. 2011, and
references therein), except for extremely small solar flares,
which are in fact comparatively radio underluminous rather
than X-ray dim/radio bright. Accordingly, the presence of
small-scale reconnection events from a strong small-scale field
(as in the weak LSF regime) would result in objects that adhere
more closely to the Güdel–Benz relation.

Instead, the lowering of fractional ionization can explain
the relative decrease in X-ray luminosities (Mohanty
et al. 2002). This does not necessarily impact the radio
emission, which is produced above the photosphere or
chromosphere irrespective of the mechanism by which it is
produced and does not necessarily have the same dependence
on fractional ionization as coronal heating. It is also
important to note that previous Zeeman broadening studies
for 9 of the 11 stars studied in JM10 measured mean surface
field magnitudes of order kilogauss (Reiners & Basri 2007;
Reiners et al. 2009), regardless of which field regime the star
occupied. This implied that the small-scale fields rather than
the large-scale ones are quite strong in the weak-field regime.
However, in such a scenario, we note that even though the
current understanding of M–I coupling does not require the
fields to be dipolar, they must be large-scale and strong
(kilogauss or stronger to fit observations), precluding the
possibility that even strong small-scale fields could drive the
M–I coupling.

In the case that JM10 does not extend to our objects, late L
and T dwarfs may in fact be more analogous to gas giant
planets than to M dwarfs. Jupiter and Saturn are both
dipoledominated, with the quadrupole and octupole moments
at ∼20% of the dipole moment in Jupiter (Acuna & Ness 1976),
and the quadrupole moment in Saturn only ∼7% of its dipole
moment (Russell 1993). Despite significant higher-order
moments present in the Jovian field, the auroral radio emission
produced by Jupiter is thought to be dominated by the dipolar
field component (Hill 2001).

While it is possible for higher-order components to drive
M–I coupling currents, it is clear that the dipole field can
efficiently generate auroral currents. Therefore, we treat the
dipole case and will revisit alternatives when additional
information on the magnetic fields of ultracool dwarfs becomes
apparent.

6.3.2. Relating Magnetic Fields Measured from Auroral Radio

Emission to Zeeman Techniques

Under the assumption that auroral emission can be
associated with the dipole component of the magnetic field,
we now relate our magnetic field measurements to those
obtained from Zeeman broadening and ZDI observations so
that we may compare our ECM measurements to the
C09results, which use Zeeman-based measurements. To
begin, it is important to understand what information each
technique yields and its limitations, and we refer the reader to
more detailed discussion in Reiners (2012) and Morin (2012)
and the references therein.
Zeeman broadening measurements from spectral observa-

tions of magnetically sensitive lines provide mean surface field
magnitudes Bs, averaged over the photospheric surface of stars,
or in rare cases, averaged over the magnetically active regions
of the star. For stars where the Zeeman splitting of the σ

components can be resolved, both the mean magnetic field
magnitude Bs and filling factor f may be measured from the
magnitude of the splitting and the relative depths of the σ and π
components, respectively (Valenti et al. 1995; Johns-Krull &
Valenti 1996, 2000). This requires atomic lines to be relatively
isolated for comparison with continuum flux. M5 or later-type
objects suffer from spectra increasingly contaminated by
molecular lines, and lines become dominated by pressure
broadening. In cases where the Zeeman splitting cannot be
resolved from the intrinsic line width, the filling factor remains
entangled with the mean field, and it is possible to measure
only B B fZs = . Reiners & Basri (2007) were able to measure
mean field magnitudes by comparing the FeH features of 24
M2–M9 stars to reference spectra with known B fZ , with
∼15%–30% uncertainties (Shulyak et al. 2010; Reiners 2012).
The method described by Reiners & Basri (2006) is limited by
the reference spectra; B fZ is measured in reference to a zero-
field spectrum and a 3.9 kG spectrum, so only fields less than
3.9 kG can be quantified, though it is unlikely that the object
serving as the zero-field reference is in fact magnetically
inactive. Finally, Zeeman broadening techniques have yet to be
successfully applied to objects beyond M9, where rotational
broadening blends useful molecular lines. Despite limitations,
Zeeman broadening provides a straightforward and convenient
framework within which to interpret measurements when
testing dynamo predictions.
ZDI provides approximate reconstructions of surface field

topologies, allowing estimates of the magnetic energy in
different field components (for example, the dipole). However,
as applied with existing instruments, ZDI measurements are
only sensitive to larger-scale fields, especially in very dim and
fast rotators such as our objects. The sensitivity of ZDI is
limited by current abilities to adequately resolve polarized flux.
Inadequate resolution can lead to the apparent canceling out of
observational signatures of opposite-polarity fluxes and mask
magnetic fields at smaller spatial scales. For this reason, ZDI is
more sensitive to large-scale field structures that can be fully
resolved by existing instruments (Reiners & Basri 2009; Yadav
et al. 2015), and JM10 have found that the dipole energy can
vary by ∼10%–30%, with significant confusion between the
dipole and quadrupole components. Additionally, instruments
used to map the magnetic fields of cool stars were limited to
two of the four Stokes parameters (I, V) until very recently
(Rosén et al. 2015), which further limits the sensitivity of ZDI
in fully capturing magnetic field topologies. Finally, ZDI maps
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can vary widely depending on the particular entropy weighting
prescription used when phase coverage is insufficient. None-
theless, the sensitivity of ZDI to large-scale fields has provided
vital insight into large-scale fields. Field topologies of stars
appear to change from being dominated by a weak nonaxisym-
metric toroidal field to a strong axisymmetric poloidal field as
they cross into the fully convective regime (Donati et al. 2008;
Morin et al. 2008), and JM10 found evidence for bistable field
topologies in late M dwarfs, as discussed in Section 6.3.1.

Using either of the Zeeman techniques to measure magnetic
fields is currently impossible for objects beyond spectral type
M9, yet the mass regime occupied by L and T dwarfs is critical
for probing the efficacy of any fully convective dynamo model.
Radio observations of ECM emission provide a new window
for probing magnetic activity in a mass regime where Zeeman
broadening techniques cannot currently reach. Because the
measured magnetic field magnitudes are dependent only on the
frequency of the emission cutoff, measurements from radio
observations are not subject to the same sources of uncertainty
that affect the accuracy of Zeeman broadening measurements.
However, ECM measurements also have limitations. Rather
than measuring an average field strength, radio observations
give a single measurement with great accuracy of the local
magnetic field strength in the region of the magnetosphere
corresponding to the emission. Additionally, they are likely
primarily sensitive to large-scale fields, and the data in isolation
are not sufficient for reconstructing the field topology. Finally,
without observing emission cutoffs, we are limited to
interpreting our measurements as lower bounds to global
maximum surface field strengths.

To estimate the lowest possible bound on the global rms
surface field strength of an object from a single local radio-
derived measurement, we consider an idealized dipole case,
which we will adjust as additional topological information
becomes available. Our interest in obtaining a conservative
lower limit allows us to assume the following simplifications
for all of our objects:

1. The magnetic field is perfectly dipolar (the presence of
higher-order fields will positively contribute to the rms
surface field).

2. The lower-bound field strength measured from our ECM
observations, BECM, is the field strength at the magnetic
pole at the photosphere. In reality, the emission likely
samples the field at a location that does not correspond
exactly with the magnetic pole. Moreover, until we
observe a frequency cutoff, the emission corresponds to a
location in the magnetosphere that is a nonzero altitude
above the photosphere, so the actual surface polar field
strength can only be equal or greater in all cases.

3. Brown dwarfs are perfect spheres.

We calculate the mean surface dipole field, beginning with the
expression for a dipole field,
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where r rn̂ ∣ ∣= is the unit vector in the direction to the point
on the sphere for which the field strength is calculated and m is
the magnetic dipole moment. Averaging over the surface of the
star shows that the mean squared surface field strength due to

the dipole field is
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In the case where our objects have purely dipolar fields,
Bs,dip

1 2á ñ would be equivalent to the mean surface field
magnitude B B fZs = as measured by Zeeman broadening, with
a filling factor of 100%. Where our objects do not have purely
dipolar fields, we consider two cases. If higher-order fields are
anti-aligned with the dipole field, such that they contribute
negatively to the magnetic flux at the pole, then Bs,dip

1 2á ñ as
calculated above will underestimate the lower bound of the
mean surface field magnitude. If higher-order fields are aligned
with the dipole such that they contribute positively to the flux at
the magnetic pole, then the field strength measured from radio
emission will overestimate the rms surface dipole field.
To understand the severity of such a possible overestimation,

we return to the Morin et al. (2010) study. While Morin et al.
(2011a, 2011b) interpret the result as possible evidence for a
dynamo bistability, Kitchatinov et al. (2014) have also
proposed that it is evidence of an M-dwarf magnetic cycle.
No objects have been observed to be in a transition between the
strong-field and weak-field regimes, suggesting that if such a
transition occurs, as in a magnetic cycle, the transition is very
fast and is unlikely to impact the interpretation of our field
measurements. We know from the observed ECM emission and
our discussion in Section 6.3.1 that our objects likely occupy
the strong LSF regime of a possible bistable dynamo or
magnetic cycle. This implies relatively weak higher-order
fields, limiting any overestimation of the mean surface field
magnitude.

6.4. An Application to Dynamo Models: Comparison to
Christensen 2009 Model

We now attempt to test the scaling law presented by C09.
C09 showed that for planets and fully convective and rapidly
rotating (P<4 days) stars, the convected energy flux available
may generate the magnetic field strength. In a departure from
prevailing dynamo scaling laws, the central tenet to their model
was an energy balance between kinetic and magnetic energies
and ohmic dissipation and convective heat transport, rather
than a force balance between the Coriolis, Lorentz, buoyancy,
and pressure forces (Christensen & Aubert 2006). Surprisingly,
they found that the magnetic field strength is independent of
both magnetic diffusivity and rotation rate and instead depends
strongly only on the buoyancy flux and dynamo size. In
particular, they show that for Jupiter, Earth, and a sample of
stars including T Tauri stars, old M dwarfs, and main sequence
stars with P<4 days, the following relation is empirically
consistent:

B cf Fq2 . 32
0 ohm

1 3
0

2 3( ) ( ) ( )m rá ñ = ñ

Here B2á ñ is the squared magnetic field averaged over the
whole volume of the dynamo region rather than the surface of
the star. fohm is the ratio of ohmic dissipation to total dissipation
and is nominally assumed to be f 1ohm » . F is a volume
average of the temperature scale height divided by the length
scale of the largest convective structures, and for their
purposes, C09 assume F=1 and 1.19 for stars and Jupiter,
respectively. For the purposes of our analysis, we adopt F=1.
Parameterq0 is the bolometric flux at the outer boundary of the
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dynamo regions, which C09 obtain from the effective surface
temperatures of the stars. Finally, 0m is permeability, rá ñ is the
mean density of the dynamo region, and c is a proportionality
constant. Figure 4 reproduces this scaling law. Significantly,
the wide mass range that the above empirical relation describes
tantalizingly hints that the scaling law may be generalizable for
all convection-driven dynamos.

The C09model calls for the mean internal field strength Bá ñ
of dynamo regions, and an ideal test of their model would
utilize direct measurements of the magnetic field inside the
dynamo itself. However, measuring these data is impossible.
Instead, they estimate Bá ñ in several ways. The most direct
observational tests available to C09are Zeeman broadening
measurements from spectral observations of Ti I lines in T
Tauri stars by Johns-Krull (2007) and K and M stars by Saar
et al. (1996) and FeH lines in M dwarfs by Reiners & Basri
(2007). C09additionally adapt ZDI data of mid-M dwarfs by
Morin et al. (2008).

The lower-bound mean surface field magnitude Bs,dip that we
calculated for our objects allows us to very straightforwardly
compare our field measurements with those predicted by C09.
We treat Bs,dip for each object as a lower-bound Zeeman
broadening measurement Bs and convert it to Bá ñ by following
C09 and multiplying by a factor of B B 3.5sá ñ » , which they
report is the typical ratio found in their geodynamo simulations.
In a recent study of 2M1047, Williams & Berger (2015)
detected a pulse at ∼10 GHz, corresponding to a lower-bound
surface field strength of 3.6 kG for this object. We adopt this
value in our comparison to field strengths predicted by C09.

We overlay our most conservative field constraints from
auroral radio emission on our reproduction of the C09 scaling
law in Figure 4. All of our T dwarfs depart mildly from the C09
scaling relation, suggesting four possibilities: (1) parameters

beyond convective flux and dynamo size may influence
magnetic fields in brown dwarfs, (2) brown dwarfs have a
systematically larger value for the parameter converting
external field to internal field, (3) their fields are systematically
stronger at the poles than what a dipole predicts, or (4) their
field topologies are not dominated by dipoles. These possibi-
lities would not necessarily undermine the basic premises of the
proposed scaling law but simply add more uncertainty to the
precision with which it can be applied.
It is important to remember that dynamo scaling laws are

powerful tools for elucidating which general physical char-
acteristics and behaviors matter, but they describe an inherently
chaotic process, and the laws are not deterministic. It is
possible that C09 may in fact be largely conceptually correct in
the scaling law that they propose, but the parameters on which
their law depends may differ from group to group. For instance,
the dynamo region extends over ∼6–10 orders of magnitude in
density in low-mass stars (Saumon et al. 1995). The outermost
part of the dynamo action is in a region that is much less dense
than the mean density of the dynamo region, yet that could well
be the region that determines the observed field because it is
closest to the outer boundary. Another possibility is that the
appropriate density to use may be defined differently between
brown dwarfs and low-mass stars. Additionally, parameters
such as B Bsá ñ depend on boundary conditions, rotation rate,
density structure, specific properties of the outer insulating
shell (present in Jupiter and brown dwarfs, but not in low-mass
stars), etc. Finally, the C09 model is specific to dipole-
dominated fields (>35% of field strength in the dipole
component), so a departure from the relation may indicate
field topologies dominated by higher-order fields.
Nevertheless, it is notable that some of our objects have

lower-bound field strengths that are systematically higher than
what C09 predict when using parameter definitions that they
adopted. The dynamo surface in Jupiter is at ∼0.85RJ (Guillot
et al. 2004), whereas it is near the surface of M dwarfs. For our
objects, the dynamo surface may be more interior than in M
dwarfs, causing the adopted values of q0, rá ñ, and Bs to
increase. However, B2 rises faster than q1 3

0
2 3( )rá ñ as a

function of internal radius, independent of field topologies, so
our T dwarfs may in fact depart more dramatically. Pushing
subsequent studies to higher frequencies to observe emission
cutoffs will be necessary for obtaining the best possible
constraints on field measurements derived from auroral radio
emission.

6.5. Implications of Auroral Radio Emission Correlated with
Brown Dwarf Weather and Hα Emission

Prior to our work, radio surveys of ∼60 L6 or later objects
yielded only one detection (Antonova et al. 2013; Route &
Wolszczan 2013), resulting in a detection rate of just ∼1.4%. In
contrast, we have achieved a notably higher detection rate of
four of five objects, not including the previously detected
2M1047, by departing from previous target selection strategies
and biasing our targets for previously confirmed Hα emission,
or in the case of SIMP0136, optical/IR variability. Several of
our objects also exhibited tentative IR variability. Selection
effects from inclination angles or increased instrument
sensitivity may contribute to our dramatically higher success
rate, but it is also clear that biasing our sample for optical
auroral emission provides a good means to finding radio-
emitting brown dwarfs.

Figure 4. Reproduction of Figure 2 from C09, showing their proposed dynamo
scaling relation with 3σ uncertainties for fully convective, rapidly rotating
objects (black solid line and dashed lines, respectively). Gray points represent
T Tauri stars and old M dwarfs. Black points represent Earth and Jupiter. The
brown ellipse indicates the predicted position for a 1500 K brown dwarf, and
the gray ellipse indicates the predicted position for a 7 MJ exoplanet. Our
detected targets are overplotted, with upward-pointing arrows to indicate that
our measurements are lower bounds and horizontal bars to indicate estimated
uncertainties. The inset shows more clearly our estimated uncertainties. We
adopt a minimum surface field strength of 2.5 kG for our newly detected
objects. For 2M1047, we adopt 3.6 kG as measured by Williams &
Berger (2015).
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While the relationship between IR variability and auroral
radio emission remains uncertain, our results are intriguing
when viewed in the context of brown dwarf weather. J-band
variability appears to be common in L and T dwarfs (Enoch
et al. 2003; Clarke et al. 2008; Buenzli et al. 2014;
Radigan 2014; Radigan et al. 2014; Metchev et al. 2015).
Included in our target sample is the canonical dust-variable T
dwarf SIMP0136, which exhibits large-amplitude (>5%) IR
variability. Also included were tentatively low-amplitude
variable objects SDSS0423, 2M1237, and SDSS1254. Clouds
in brown dwarf atmospheres have been proposed to interpret
observed photometric and spectroscopic variability, and where
objects have been observed at multiple wavelengths, some
proposed models rely on patchy clouds of variable thicknesses
and temperatures (Marley et al. 2010; Apai et al. 2013;
Burgasser et al. 2014) to explain wavelength-dependent
variability. Our results point to the possibility that an additional
variability mechanism may be at play, as postulated by
Hallinan et al. (2015).

The success of our selection strategy is especially compel-
ling in light of simultaneous radio and optical spectroscopic
observations of the M8.5 dwarf LSRJ1835+3259 (hereafter
LSR J1835) by Hallinan et al. (2015), whose results in fact
motivated our selection strategy. Their study shows features in
the radio dynamic spectrum and in the optical spectrum that
vary in either phase or anti-phase with each other, with a
2.84 hr period that corresponds to the known rotation period of
LSRJ1835. Hallinan et al. (2015) assert that auroral current
systems can explain the Balmer line emission and observed
multiwavelength periodicity. Specifically, they argue that the
downward-spiraling population of electrons that gives rise to
the observed ECM emission also causes collisional excitation
of the neutral hydrogen in the atmosphere upon impact, with
subsequent de-excitation via line emission powering the
observed Balmer emission. Additionally, the electron current
supplies the brown dwarf atmosphere with excess free
electrons, possibly contributing to increased H− opacity in
the auroral feature. The increased H− opacity would cause the
upper atmosphere of the auroral feature to become optically
thick, appearing lower in temperature than the photosphere.
Such an auroral H− “cloud” could explain the phased and anti-
phased light curves at various wavelengths observed in both
LSRJ1835 and TVLM513–46546 (Littlefair et al. 2008),
another M8.5 brown dwarf known to emit both quiescent and
periodically pulsing radio emission, as well as Hα, with a
lasting ∼0.4-period offset between the optical emission and the
radio pulses (Hallinan et al. 2007; Berger et al. 2008;
Wolszczan & Route 2014; Lynch et al. 2015).

Our results corroborate the unified auroral model proposed
by Hallinan et al. (2015) for even the coolest dwarfs. In late L
and T dwarfs such as our targets, molecular hydrogen
dominates the atomic hydrogen in the atmosphere, and
observed photometric variability may in part be explained by
localized heating of the atmosphere within the auroral feature
by the precipitating electron beam. Morley et al. (2014) showed
that heating of the atmosphere at different depths perturbs the
pressure versus temperature profile and can indeed cause
spectral variability. Regardless of where in the atmosphere
heating occurs, the highest amplitude variability occurs in
absorption features redward of ∼2.2 μm, which could lead to
variability in the K and L bands. Encouragingly, Ks-band
variability has been observed in SIMP0136, as well as

tentatively for SDSS0423, and Metchev et al. (2015) report
that 36 %17

26
-
+ of T dwarfs vary by0.4% at 3–5 μm. However,

the incidence rate for dust variability is much higher than for
auroral emission (Kirkpatrick et al. 2000, 2008; Burgasser
et al. 2003; Cruz et al. 2007; Buenzli et al. 2014; Radigan 2014;
Radigan et al. 2014; Heinze et al. 2015; Metchev et al. 2015;
Pineda et al. submitted to ApJ), suggesting that auroral
emission may only play a role in some cases, such as the
highly variable SIMP0136. Finally, we note that even in the
absence of atomic hydrogen, Hα emission can still occur. The
incoming populations of free electrons and protons can
recombine to excited states, or the molecular hydrogen may
dissociate to excited atomic hydrogen, subsequently de-
exciting via Balmer emission.
In addition to the possible correlation with IR variability, all

previous detections of pulsed radio emission from ultracool
dwarfs have been accompanied by detectable levels of
quiescent radio emission, with no reported detections of pulsed
emission in isolation. Although the properties of the quiescent
emission are consistent with incoherent synchrotron or
gyrosynchrotron emission, the physical processes governing
the pulsed and quiescent emission are likely causally related,
with the possibility of a shared electrodynamic engine power-
ing the emission.
To better understand the relationship between Hα, radio, and

IR variability, additional simultaneous multiwavelength obser-
vations and detailed models investigating atmospheric heating
from the auroral currents are needed.

7. CONCLUSIONS

We detected five of sixlate L/T dwarfs in the 4–8 GHz
band, including first detections for four objects, quintupling the
number of radio-detected objects later than spectral type L6.
For four of our objects, including previously detected 2M1047,
we observe highly circularly polarized pulsed emission. We
also tentatively observe circularly polarized pulsed emission
from a fifth object, 2M1237. All of our objects with pulsed
emission also exhibit quiescent emission, as is the case for all
previously detected radio brown dwarfs. This suggests that
pulsed and quiescent phenomena are almost certainly related,
though the mechanism for quiescent emission is still unclear.
Biasing our sample for Hα emission or optical/IR variability

provides a good means to finding these objects, implying that
the Hα emission may be the optical counterpart of auroral
activity observed in the radio. We additionally note that several
of our objects are either confirmed or tentative IR-variable
sources, including the well-known dust-variableT dwarf
SIMP0136. Viewed in light of recent studies by Hallinan
et al. (2015) and Morley et al. (2014), our radio detections hint
that auroral activity may also be related to brown dwarf
weather in some cases.
Our data confirm kilogauss magnetic fields down to spectral

type T6.5, demonstrating the efficacy of ECM as a tool for
probing the magnetic fields of the coolest dwarfs in a mass gap
that is critical for informing fully convective dynamo models.
We develop a framework for comparing magnetic field

measurements derived from ECM emission with measurements
derived from Zeeman broadening and ZDI techniques. Using
our framework, we provide strong constraints for rms surface
field strengths in late L/T dwarfs and demonstrate that our T
dwarfs have magnetic fields that may be inconsistent with the
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C09model. This suggests that parameters beyond convective
flux may influence magnetic field generation in brown dwarfs.
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