
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

Anoop Korattikara AKORATTI@UCI.EDU

School of Information & Computer Sciences, University of California, Irvine, CA 92617, USA

Yutian Chen YUTIAN.CHEN@ENG.CAM.EDU

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Max Welling WELLING@ICS.UCI.EDU

Informatics Institute, University of Amsterdam, Science Park 904 1098 XH, Amsterdam, Netherlands

Abstract

Can we make Bayesian posterior MCMC sam-

pling more efficient when faced with very large

datasets? We argue that computing the likelihood

for N datapoints in the Metropolis-Hastings

(MH) test to reach a single binary decision is

computationally inefficient. We introduce an ap-

proximate MH rule based on a sequential hypoth-

esis test that allows us to accept or reject samples

with high confidence using only a fraction of the

data required for the exact MH rule. While this

method introduces an asymptotic bias, we show

that this bias can be controlled and is more than

offset by a decrease in variance due to our ability

to draw more samples per unit of time.

1. Introduction

Markov chain Monte Carlo (MCMC) sampling has been

the main workhorse of Bayesian computation since the

1990s. A canonical MCMC algorithm proposes samples

from a distribution q and then accepts or rejects these pro-

posals with a certain probability given by the Metropolis-

Hastings (MH) formula (Metropolis et al., 1953; Hastings,

1970). For each proposed sample, the MH rule needs to

examine the likelihood of all data-items. When the number

of data-cases is large this is an awful lot of computation for

one bit of information, namely whether to accept or reject

a proposal.

In today’s Big Data world, we need to rethink our Bayesian

inference algorithms. Standard MCMC methods do not

meet the Big Data challenge for the reason described above.

Researchers have made some progress in terms of making

Proceedings of the 31
st International Conference on Machine

Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

MCMC more efficient, mostly by focusing on paralleliza-

tion. Very few question the algorithm itself: is the standard

MCMC paradigm really optimally efficient in achieving its

goals? We claim it is not.

Any method that includes computation as an essential in-

gredient should acknowledge that there is a finite amount

of time, T , to finish a calculation. An efficient MCMC

algorithm should therefore decrease the “error” (properly

defined) maximally in the given time T . For MCMC algo-

rithms, there are two contributions to this error: bias and

variance. Bias occurs because the chain needs to burn in

during which it is sampling from the wrong distribution.

Bias usually decreases fast, as evidenced by the fact that

practitioners are willing to wait until the bias has (almost)

completely vanished after which they discard these “burn-

in samples”. The second cause of error is sampling vari-

ance, which occurs because of the random nature of the

sampling process. The retained samples after burn-in will

reduce the variance as O(1/T).

However, given a finite amount of computational time, it is

not at all clear whether the strategy of retaining few unbi-

ased samples and accepting an error dominated by variance

is optimal. Perhaps, by decreasing the bias more slowly we

could sample faster and thus reduce variance faster? In this

paper we illustrate this effect by cutting the computational

budget of the MH accept/reject step. To achieve that, we

conduct sequential hypothesis tests to decide whether to

accept or reject a given sample and find that the majority

of these decisions can be made based on a small fraction

of the data with high confidence. A related method was

used in Singh et al. (2012), where the factors of a graphical

model are sub-sampled to compute fixed-width confidence

intervals for the log-likelihood in the MH test.

Our “philosophy” runs deeper than the algorithm proposed

here. We advocate MCMC algorithms with a “bias-knob”,

allowing one to dial down the bias at a rate that optimally

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

balances error due to bias and variance. We only know

of one algorithm that would also adhere to this strategy:

stochastic gradient Langevin dynamics (Welling & Teh,

2011) and its successor stochastic gradient Fisher scoring

(Ahn et al., 2012). In their case the bias-knob was the step-

size. These algorithms do not have an MH step which re-

sulted in occasional samples with extremely low probabil-

ity. We show that our approximate MH step largely re-

solves this, still avoiding O(N) computations per iteration.

In the next section we introduce the MH algorithm and dis-

cuss its drawbacks. Then in Section 3, we introduce the

idea of approximate MCMC methods and the bias variance

trade-off involved. We develop approximate MH tests for

Bayesian posterior sampling in Section 4 and present a the-

oretical analysis in Section 5. Finally, we show our experi-

mental results in Section 6 and conclude in Section 7.

2. The Metropolis-Hastings algorithm

MCMC methods generate samples from a distribution

S0(✓) by simulating a Markov chain designed to have

stationary distribution S0(✓). A Markov chain with a

given stationary distribution can be constructed using the

Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970), which uses the following rule for transi-

tioning from the current state ✓t to the next state ✓t+1:

1. Draw a candidate state ✓
0 from a proposal distribution

q(✓0|✓t)

2. Compute the acceptance probability:

Pa = min

1,
S0(✓

0)q(✓t|✓
0)

S0(✓t)q(✓0|✓t)

�

(1)

3. Draw u ⇠ Uniform[0, 1]. If u < Pa set ✓t+1 ✓
0,

otherwise set ✓t+1 ✓t.

Following this transition rule ensures that the stationary

distribution of the Markov chain is S0(✓). The samples

from the Markov chain are usually used to estimate the ex-

pectation of a function f(✓) with respect to S0(✓). To do

this we collect T samples and approximate the expectation

I = hfiS0
as Î = 1

T

PT

t=1
f(✓t). Since the stationary

distribution of the Markov chain is S0, Î is an unbiased

estimator of I (if we ignore burn-in).

The variance of Î is V = E[(hfiS0
� 1

T

PT

t=1
f(✓t))

2],
where the expectation is over multiple simulations of the

Markov chain. It is well known that V ⇡ �
2
f,S0

⌧/T , where

�
2
f,S0

is the variance of f with respect to S0 and ⌧ is the in-

tegrated auto-correlation time, which is a measure of the in-

terval between independent samples (Gamerman & Lopes,

2006). Usually, it is quite difficult to design a chain that

mixes fast and therefore, the auto-correlation time will be

quite high. Also, for many important problems, evaluating

S0(✓) to compute the acceptance probability Pa in every

step is so expensive that we can collect only a very small

number of samples (T) in a realistic amount of computa-

tional time. Thus the variance of Î can be prohibitively

high, even though it is unbiased.

3. Approximate MCMC and the

Bias-Variance Tradeoff

Ironically, the reason MCMC methods are so slow is that

they are designed to be unbiased. If we were to allow

a small bias in the stationary distribution, it is possible

to design a Markov chain that can be simulated cheaply

(Welling & Teh, 2011; Ahn et al., 2012). That is, to esti-

mate I = hfiS0
, we can use a Markov chain with stationary

distribution S✏ where ✏ is a parameter that can be used to

control the bias in the algorithm. Then I can be estimated

as Î = 1

T

PT

t=1
f(✓t), computed using samples from S✏

instead of S0.

As ✏ ! 0, S✏ approaches S0 (the distribution of interest)

but it becomes expensive to simulate the Markov chain.

Therefore, the bias in Î is low, but the variance is high be-

cause we can collect only a small number of samples in

a given amount of computational time. As ✏ moves away

from 0, it becomes cheap to simulate the Markov chain but

the difference between S✏ and S0 grows. Therefore, Î will

have higher bias, but lower variance because we can collect

a larger number of samples in the same amount of compu-

tational time. This is a classical bias-variance trade-off and

can be studied using the risk of the estimator.

The risk can be defined as the mean squared error in Î ,

i.e. R = E[(I � Î)2], where the expectation is taken over

multiple simulations of the Markov chain. It is easy to show

that the risk can be decomposed as R = B2 + V , where

B is the bias and V is the variance. If we ignore burn-

in, it can be shown that B = hfiS✏
� hfiS0

and V =
E[(hfiS✏

� 1

T
f(✓t))

2] ⇡ �
2
f,S✏

⌧/T .

The optimal setting of ✏ that minimizes the risk depends on

the amount of computational time available. If we have an

infinite amount of computational time, we should set ✏ to

0. Then there is no bias, and the variance can be brought

down to 0 by drawing an infinite number of samples. This

is the traditional MCMC setting. However, given a finite

amount of computational time, this setting may not be op-

timal. It might be better to tolerate a small amount of bias

in the stationary distribution if it allows us to reduce the

variance quickly, either by making it cheaper to collect a

large number of samples or by mixing faster.

It is interesting to note that two recently proposed algo-

rithms follow this paradigm: Stochastic Gradient Langevin

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

Dynamics (SGLD) (Welling & Teh, 2011) and Stochas-

tic Gradient Fisher Scoring (SGFS) (Ahn et al., 2012).

These algorithms are biased because they omit the required

Metropolis-Hastings tests. However, in both cases, a knob

✏ (the step-size of the proposal distribution) is available

to control the bias. As ✏ → 0, the acceptance prob-

ability Pa → 1 and the bias from not conducting MH

tests disappears. However, when ✏ → 0 the chain mixes

very slowly and the variance increases because the auto-

correlation time ⌧ → ∞. As ✏ is increased from 0, the

auto-correlation, and therefore the variance, reduces. But,

at the same time, the acceptance probability reduces and

the bias from not conducting MH tests increases as well.

In the next section, we will develop another class of ap-

proximate MCMC algorithms for the case where the target

S0 is a Bayesian posterior distribution given a very large

dataset. We achieve this by developing an approximate

Metropolis-Hastings test, equipped with a knob for con-

trolling the bias. Moreover, our algorithm has the advan-

tage that it can be used with any proposal distribution. For

example, our method allows approximate MCMC methods

to be applied to problems where it is impossible to com-

pute gradients (which is necessary to apply SGLD/SGFS).

Or, we can even combine our method with SGLD/SGFS, to

obtain the best of both worlds.

4. Approximate Metropolis-Hastings Test for

Bayesian Posterior Sampling

An important method in the toolbox of Bayesian infer-

ence is posterior sampling. Given a dataset of N indepen-

dent observations XN = {x1, . . . , xN}, which we model

using a distribution p(x; ✓) parameterized by ✓, defined

on a space Θ with measure Ω, and a prior distribution

⇢(✓), the task is to sample from the posterior distribution

S0(✓) ∝ ⇢(✓)
Q

N

i=1
p(xi; ✓).

If the dataset has a billion datapoints, it becomes very

painful to compute S0(.) in the MH test, which has to

be done for each posterior sample we generate. Spend-

ing O(N) computation to get just 1 bit of information, i.e.

whether to accept or reject a sample, is likely not the best

use of computational resources.

But, if we try to develop accept/reject tests that satisfy de-

tailed balance exactly with respect to the posterior distribu-

tion using only sub-samples of data, we will quickly see the

no free lunch theorem kicking in. For example, the pseudo

marginal MCMC method (Andrieu & Roberts, 2009) and

the method developed by Lin et al. (2000) provide a way

to conduct exact accept/reject tests using unbiased estima-

tors of the likelihood. However, unbiased estimators of the

likelihood that can be computed from mini-batches of data,

such as the Poisson estimator (Fearnhead et al., 2008) or

the Kennedy-Bhanot estimator (Lin et al., 2000) have very

high variance for large datasets. Because of this, once we

get a very high estimate of the likelihood, almost all pro-

posed moves are rejected and the algorithm gets stuck.

Thus, we should be willing to tolerate some error in the

stationary distribution if we want faster accept/reject tests.

If we can offset this small bias by drawing a large number

of samples cheaply and reducing the variance faster, we can

establish a potentially large reduction in the risk.

We will now show how to develop such approximate

tests by reformulating the MH test as a statistical deci-

sion problem. It is easy to see that the original MH test

(Eqn. 1) is equivalent to the following procedure: Draw

u ∼ Uniform[0, 1] and accept the proposal ✓0 if the average

difference µ in the log-likelihoods of ✓0 and ✓t is greater

than a threshold µ0, i.e. compute

µ0 =
1

N
log

u
⇢(✓t)q(✓

0|✓t)

⇢(✓0)q(✓t|✓0)

�

, and (2)

µ =
1

N

N
X

i=1

li where li = log p(xi; ✓
0)− log p(xi; ✓t)

(3)

Then if µ > µ0, accept the proposal and set ✓t+1 ← ✓0.

If µ ≤ µ0, reject the proposal and set ✓t+1 ← ✓t. This

reformulation of the MH test makes it very easy to frame

it as a statistical hypothesis test. Given µ0 and a random

sample {li1 , . . . , lin} drawn without replacement from the

population {l1, . . . , lN}, can we decide whether the popu-

lation mean µ is greater than or less than the threshold µ0?

The answer to this depends on the precision in the random

sample. If the difference between the sample mean l̄ and

µ0 is significantly greater than the standard deviation s of

l̄, we can make the decision to accept or reject the proposal

confidently. If not, we should draw more data to increase

the precision of l̄ (reduce s) until we have enough evidence

to make a decision.

More formally, we test the hypotheses H1 : µ > µ0 vs H2 :
µ < µ0. To do this, we proceed as follows: We compute

the sample mean l̄ and the sample standard deviation sl =
q

(l2 − (l̄)2) n

n�1
. Then the standard deviation of l̄ can be

estimated as:

s =
sl√
n

r

1−
n− 1

N − 1
(4)

where
q

1− n�1

N�1
, the finite population correction term,

is applied because we are drawing the subsample without

replacement from a finite-sized population. Then, we com-

pute the test statistic:

t =
l̄ − µ0

s
(5)

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

Algorithm 1 Approximate MH test

Require: ✓t, ✓
0, ✏, µ0, XN , m

Ensure: accept

1: Initialize estimated means l̄ ← 0 and l2 ← 0
2: Initialize n ← 0, done ← false

3: Draw u ∼ Uniform[0,1]

4: while not done do

5: Draw mini-batch X of size min (m, N − n) without

replacement from XN and set XN ← XN \ X
6: Update l̄ and l2 using X , and n ← n+ |X |
7: Estimate std s using Eqn. 4

8: Compute � ← 1− �n�1

✓�

�

�

�

l̄ − µ0

s

�

�

�

�

◆

9: if � < ✏ then

10: accept ← true if l̄ > µ0 and false otherwise

11: done ← true

12: end if

13: end while

If n is large enough for the central limit theorem (CLT) to

hold, the test statistic t follows a standard Student-t dis-

tribution with n − 1 degrees of freedom, when µ = µ0

(see Fig. 7 in supplementary for an empirical verification).

Then, we compute � = 1− �n�1(|t|) where �n�1(.) is the

cdf of the standard Student-t distribution with n−1 degrees

of freedom. If � < ✏ (a fixed threshold) we can confidently

say that µ is significantly different from µ0. In this case, if

l̄ > µ0, we decide µ > µ0, otherwise we decide µ < µ0. If

� ≥ ✏, we do not have enough evidence to make a decision.

In this case, we draw more data to reduce the uncertainty, s,

in the sample mean l̄. We keep drawing more data until we

have the required confidence (i.e. until � < ✏). Note, that

this procedure will terminate because when we have used

all the available data, i.e. n = N , the standard deviation

s is 0, the sample mean l̄ = µ and � = 0 < ✏. So, we

will make the same decision as the original MH test would

make. Pseudo-code for our test is shown in Algorithm 1.

Here, we start with a mini-batch of size m for the first test

and increase it by m datapoints when required.

The advantage of our method is that often we can make

confident decisions with n < N datapoints and save on

computation, although we introduce a small bias in the sta-

tionary distribution. But, we can use the computational

time we save to draw more samples and reduce the vari-

ance. The bias-variance trade-off can be controlled by ad-

justing the knob ✏. When ✏ is high, we make decisions

without sufficient evidence and introduce a high bias. As

✏ → 0, we make more accurate decisions but are forced to

examine more data which results in high variance.

Our algorithm will behave erratically if the CLT does not

hold, e.g. with very sparse datasets or datasets with extreme

outliers. The CLT assumption can be easily tested empiri-

−20 −10 0 10 200.01

0.05

0.1
0

0.1

0.2

0.3

0.4

Standardized Mean, µ
std

ǫ

P
(E

rr
o

r)

Simulation with 68% CI

Theoretical

Upper Bound

Figure 1. Error E estimated using simulation (blue cross with 1 σ

error bar) and dynamic programming (red line). An upper bound

(black dashed line) is also shown.

cally before running the algorithm to avoid such patholog-

ical situations. The sequential hypothesis testing method

can also be used to speed-up Gibbs sampling in densely

connected Markov Random Fields. We explore this idea

briefly in Section F of the supplementary.

5. Error Analysis and Test Design

In 5.1, we study the relation between the parameter ✏, the

error E of the complete sequential test, the error ∆ in the

acceptance probability and the error in the stationary distri-

bution. In 5.2, we describe how to design an optimal test

that minimizes data usage given a bound on the error.

5.1. Error Analysis and Estimation

The parameter ✏ is an upper-bound on the error of a sin-

gle test and not the error of the complete sequential test.

To compute this error, we assume a) n is large enough

that the t statistics can be approximated with z statis-

tics, and b) the joint distribution of the l̄’s corresponding

to different mini-batches used in the test is multivariate

normal. Under these assumptions, we can show that the

test statistic at different stages of the sequential test fol-

lows a Gaussian Random Walk process. This allows us

to compute the error of the sequential test E(µstd,m, ✏),
and the expected proportion of the data required to reach

a decision ⇡̄(µstd,m, ✏), using an efficient dynamic pro-

gramming algorithm. Note that E and ⇡̄ depend on ✓,

✓0 and u only through the ‘standardized mean’ defined as

µstd(u, ✓, ✓
0)

def
=

(µ(✓, ✓0)− µ0(✓, ✓
0, u))

√
N − 1

�l(✓, ✓0)
where

�l is the true standard deviation of the li’s. See Section A

of the supplementary for a detailed derivation and an em-

pirical validation of the assumptions.

Fig. 1 shows the theoretical and actual error of 1000 se-

quential tests for the logistic regression model described

in Section 6.1. The error E(µstd,m, ✏) is highest in the

worst case when µ = µ0. Therefore, E(0,m, ✏) is an upper-

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

bound on E . Since the error decreases sharply as µ moves

away from µ0, we can get a more useful estimate of E if we

have some knowledge about the distribution of µstd’s that

will be encountered during the Markov chain simulation.

Now, let Pa,✏(✓, ✓
0) be the actual acceptance probability of

our algorithm and let ∆(✓, ✓0)
def
= Pa,✏(✓, ✓

0)−Pa(✓, ✓
0) be

the error in Pa,✏. In Section B of the supplementary, we

show that for any (✓, ✓0):

∆ =

Z 1

Pa

E(µstd(u))du−

Z Pa

0

E(µstd(u))du (6)

Thus, the errors corresponding to different u’s partly can-

cel each other. As a result, although |∆(✓, ✓0)| is upper-

bounded by the worst-case error E(0,m, ✏) of the sequen-

tial test, the actual error is usually much smaller. For

any given (✓, ✓0), ∆ can be computed easily using 1-

dimensional quadrature.

Finally, we show that the error in the stationary distribution

is bounded linearly by ∆max = sup✓,✓0 |∆(✓, ✓0)|. As noted

above, ∆max ≤ E(0,m, ✏) but is usually much smaller.

Let dv(P,Q) denote the total variation distance1 between

two distributions, P and Q. If the transition kernel T0 of

the exact Markov chain satisfies the contraction condition

dv(PT0,S0) ≤ ⌘dv(P,S0) for all probability distributions

P with a constant ⌘ ∈ [0, 1), we can prove (see supplemen-

tary Section C) the following upper bound on the error in

the stationary distribution:

Theorem 1. The distance between the posterior distribu-

tion S0 and the stationary distribution of our approximate

Markov chain S✏ is upper bounded as:

dv(S0,S✏) ≤
∆max

1− ⌘

5.2. Optimal Sequential Test Design

We now briefly describe how to choose the parameters of

the algorithm: ✏, the error of a single test and m, the mini-

batch size. A very simple strategy we recommend is to

choose m ≈ 500 so that the Central Limit Theorem holds

and keep ✏ as small as possible while maintaining a low

average data usage. This rule works well in practice and is

used in Experiments 6.1 - 6.4.

The more discerning practitioner can design an optimal test

that minimizes the data used while keeping the error below

a given tolerance. Ideally, we want to do this based on a tol-

erance on the error in the stationary distribution S✏. Unfor-

tunately, this error depends on the contraction parameter, ⌘,

1The total variation distance between two distributions P and
Q, that are absolutely continuous w.r.t. measure Ω, is defined as

dv(P,Q)
def
= 1

2

R
θ∈Θ

|fP (θ) − fQ(θ)|dΩ(θ) where fP and fQ
are their respective densities (or Radon-Nikodym derivatives to
be more precise).

of the exact transition kernel, which is difficult to compute.

A more practical choice is a bound on the error ∆ in the ac-

ceptance probability, since the error in S✏ increases linearly

with ∆. Since ∆ is a function of (✓, ✓0), we can try to con-

trol the average value of ∆ over the empirical distribution

of (✓, ✓0) that would be encountered while simulating the

Markov chain. Given a tolerance ∆
⇤ on this average error,

we can find the optimal m and ✏ by solving the following

optimization problem (e.g. using grid search) to minimize

the average data usage :

min
m,✏

E✓,✓0 [Eu⇡̄(µstd(u, ✓, ✓
0),m, ✏)]

s.t. E✓,✓0 |∆(m, ✏, ✓, ✓0)| ≤ ∆
⇤ (7)

In the above equation, we estimate the average data usage,

Eu[⇡̄], and the error in the acceptance probability, ∆, us-

ing dynamic programming with one dimensional numerical

quadrature on u. The empirical distribution for computing

the expectation with respect to (✓, ✓0) can be obtained us-

ing a trial run of the Markov chain. Without a trial run the

best we can do is to control the worst case error E(0,m, ✏)
(which is also an upper-bound on ∆) in each sequential test

by solving the following minimization problem:

min
m,✏

⇡̄(0,m, ✏) s.t. E(0,m, ✏) ≤ ∆
⇤ (8)

But this leads to a very conservative design as the worst

case error is usually much higher than the average case er-

ror. We illustrate the sequential design in Experiment 6.5.

More details and a generalization of this method is given in

supplementary Section D.

6. Experiments

6.1. Random Walk - Logistic Regression

We first test our method using a random walk proposal

q(✓0|✓t) = N (✓t,�
2

RW). Although the random walk pro-

posal is not efficient, it is very useful for illustrating our

algorithm because the proposal does not contain any in-

formation about the target distribution, unlike Langevin or

Hamiltonian methods. So, the responsibility of converging

to the correct distribution lies solely with the MH test. Also

since q is symmetric, it does not appear in the MH test and

we can use µ0 = 1

N
log [u⇢(✓t)/⇢(✓

0)].

The target distribution in this experiment was the poste-

rior for a logistic regression model trained on the MNIST

dataset for classifying digits 7 vs 9. The dataset consisted

of 12214 datapoints and we reduced the dimensionality

from 784 to 50 using PCA. We chose a zero mean spherical

Gaussian prior with precision = 10, and set �RW = 0.01.

In Fig. 2, we show how the logarithm of the risk in esti-

mating the predictive mean, decreases as a function of wall

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

0 50 100 150 200 250 300 350 400
−12

−10

−8

−6

−4

−2

0

Wall Clock Time (secs)

L
o

g
 (

R
is

k
)

 ε =0.00, T = 75484

ε =0.01, T = 133069

ε =0.05, T = 200672

ε =0.10, T = 257897

ε =0.20, T = 422978

Figure 2. Logistic Regression: Risk in predictive mean.

clock time. The predictive mean of a test point x∗ is de-

fined as Ep(θ|XN)[p(x
∗|✓)]. To calculate the risk, we first

estimate the true predictive mean using a long run of Hy-

brid Monte Carlo. Then, we compute multiple estimates of

the predictive mean from our approximate algorithm and

obtain the risk as the mean squared error in these estimates.

We plot the average risk of 2037 datapoints in the test set.

Since the risk R = B2 + V = B2 + σ2f
T

, we expect it to

decrease as a function of time until the bias dominates the

variance. The figure shows that even after collecting a lot

of samples, the risk is still dominated by the variance and

the minimum risk is obtained with ✏ > 0.

6.2. Independent Component Analysis

Next, we use our algorithm to sample from the posterior

distribution of the unmixing matrix in Independent Com-

ponent Analysis (ICA) (Hyvärinen & Oja, 2000). When

using prewhitened data, the unmixing matrix W 2 R
D×D

is constrained to lie on the Stiefel manifold of orthonor-

mal matrices. We choose a prior that is uniform over

the manifold and zero elsewhere. We model the data as

p(x|W) = |det(W)|
QD

j=1

⇥

4 cosh2(12w
T
j x)

⇤−1
where wj

are the rows of W . Since the prior is zero outside the man-

ifold, the same is true for the posterior. Therefore we use

a random walk on the Stiefel manifold as a proposal distri-

bution (Ouyang, 2008). Since this is a symmetric proposal

distribution, it does not appear in the MH test and we can

use µ0 = 1
N
log [u].

To perform a large scale experiment, we created a synthetic

dataset by mixing 1.95 million samples of 4 sources: (a)

a Classical music recording (b) street / traffic noise (c) &

(d) 2 independent Gaussian sources. To measure the cor-

rectness of the sampler, we measure the risk in estimating

I = Ep(W |X) [dA(W,W0)] where the test function dA is

the Amari distance (Amari et al., 1996) and W0 is the true

unmixing matrix. We computed the ground truth using a

long run (T = 100K samples) of the exact MH algorithm.

Then we ran each algorithm 10 times, each time for ⇡ 6400

secs. We calculated the risk by averaging the squared er-

0 1000 2000 3000 4000 5000 6000 7000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Wall Clock Time (secs)

L
o

g
 (

R
is

k
)

ε = 0, T = 5992

ε = 0.01, T = 11320

ε = 0.05, T = 40973

ε = 0.1, T = 171917

ε = 0.2, T = 1894000

Figure 3. ICA: Risk in mean of Amari distance

ror in the estimate from each Markov chain, over the 10

chains. This is shown in Fig. 3. Note that even after 6400

secs the variance dominates the bias, as evidenced by the

still decreasing risk, except for the most biased algorithm

with ✏ = 0.2. Also, the lowest risk at 6400 secs is obtained

with ✏ = 0.1 and not the exact MH algorithm (✏ = 0). But

we expect the exact algorithm to outperform all the approx-

imate algorithms if we were to run for an infinite time.

6.3. Variable selection in Logistic Regression

Now, we apply our MH test to variable selection in a lo-

gistic regression model using the reversible jump MCMC

algorithm of Green (1995). We use a model that is simi-

lar to the Bayesian LASSO model for linear regression de-

scribed in Chen et al. (2011). Specifically, given D input

features, our parameter ✓ = {�, �} where � is a vector

of D regression coefficients and � is a D dimensional bi-

nary vector that indicates whether a particular feature is in-

cluded in the model or not. The prior we choose for � is

p(�j |�, ⌫) = 1
2ν exp

n

�
|βj |
ν

o

if �j = 1. If �j = 0, �j

does not appear in the model. Here ⌫ is a shrinkage pa-

rameter that pushes �j towards 0, and we choose a prior

p(⌫) / 1/⌫. We also place a right truncated Poisson prior

p(�|�) /
�k

�

D
k

�

k!
on � to control the size of the model,

k =
PD

j=1 �j We set � = 10−10 in this experiment.

Denoting the likelihood of the data by lN (�, �),
the posterior distribution after integrating out ⌫ is

p(�, �|XN , yN ,�) / lN (�, �)k�k−k
1 �kB(k,D � k + 1)

where B(., .) is the beta function. Instead of integrating

out �, we use it as a parameter to control the size of the

model. We use the same proposal distribution as in (Chen

et al., 2011) which is a mixture of 3 type of moves that are

picked randomly in each iteration: an update move, a birth

move and a death move. A detailed description is given in

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

0 1000 2000 3000 4000
−9

−8

−7

−6

−5

−4

−3

−2

−1

Wall Clock Time (secs)

L
o

g
 (

R
is

k
)

ε = 0, T = 24583

ε = 0.01, T = 137375

ε = 0.05, T = 245906

ε = 0.1, T = 419090

Figure 4. RJMCMC: Risk in predictive mean

Supplementary Section E.

We applied this to the MiniBooNE dataset from the UCI

machine learning repository(Bache & Lichman, 2013).

Here the task is to classify electron neutrinos (signal) from

muon neutrinos (background). There are 130,065 data-

points (28% in +ve class) with 50 features to which we

add a constant feature of 1’s. We randomly split the data

into a training (80%) and testing (20%) set. To compute

ground truth, we collected T=400K samples using the ex-

act reversible jump algorithm (✏ = 0). Then, we ran the

approximate MH algorithm with different values of ✏ for

around 3500 seconds. We plot the risk in predictive mean

of test data (estimated from 10 Markov chains) in Fig. 4.

Again we see that the lowest risk is obtained with ✏ > 0.

The acceptance rates for the birth/death moves starts off

at ⇡ 20% but dies down to ⇡ 2% once a good model is

found. The acceptance rate for update moves is kept at

⇡ 50%. The model also suffers from local minima. For

the plot in Fig. 4, we started with only one variable and

we ended up learning models with around 12 features, giv-

ing a classification error ⇡ 15%. But, if we initialize the

sampler with all features included and initialize � to the

MAP value, we learn models with around 45 features, but

with a lower classification error ⇡ 10%. Both the exact re-

versible jump algorithm and our approximate version suffer

from this problem. We should bear this in mind when in-

terpreting “ground truth”. However, we have observed that

when initialized with the same values, we obtain similar

results with the approximate algorithm and the exact algo-

rithm (see e.g. Fig. 13 in supplementary).

6.4. Stochastic Gradient Langevin Dynamics

Finally, we apply our method to Stochastic Gradi-

ent Langevin Dynamics(Welling & Teh, 2011). In

each iteration, we randomly draw a mini-batch

Xn of size n, and propose ✓0 ⇠ q(.|✓,Xn) =

N

✓

✓ +
↵

2
rθ

⇢

N

n

P

x2Xn

log p(x|✓) + log ⇢(✓)

�

,↵

◆

.

The proposed state ✓0 is always accepted (without con-

ducting any MH test). Since the acceptance probability

approaches 1 as we reduce ↵, the bias from not conducting

the MH test can be kept under control by using ↵ ⇡ 0.

However, we have to use a reasonably large ↵ to keep

the mixing rate high. This can be problematic for some

distributions, because SGLD relies solely on gradients of

the log density and it can be easily thrown off track by

large gradients in low density regions, unless ↵ ⇡ 0.

As an example, consider an L1-regularized linear regres-

sion model. Given a dataset {xi, yi}
N

i=1
where xi are pre-

dictors and yi are targets, we use a Gaussian error model

p(y|x, ✓) / exp
�

�λ

2
(y � ✓Tx)2

and choose a Laplacian

prior for the parameters p(✓) / exp(��0k✓k1). For peda-

gogical reasons, we will restrict ourselves to a toy version

of the problem where ✓ and x are one dimensional. We use

a synthetic dataset with N = 10000 datapoints generated

as yi = 0.5xi + ⇠ where ⇠ ⇠ N (0, 1/3). We choose � = 3
and �0 = 4950, so that the prior is not washed out by the

likelihood. The posterior density and the gradient of the log

posterior are shown in figures 5(a) and 5(b) respectively.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

θ

p
(θ

|D
a
ta

)

(a) Posterior density

0 0.01 0.02 0.03 0.04 0.05 0.06
−2000

0

2000

4000

6000

8000

10000

θ

∇
θ
 l
o

g
 p

(θ
|D

a
ta

)

(b) Gradient of log posterior

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

θ

p
(θ

|D
a
ta

)

SGLD

True

(c) SGLD

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

θ

p
(θ

|D
a
ta

)

ε = 0.5

True

(d) SGLD + MH, ✏ = 0.5.

Figure 5. Pitfalls of using uncorrected SGLD

An empirical histogram of samples obtained by running

SGLD with ↵ = 5 ⇥ 10�6 is shown in Fig. 5(c). The ef-

fect of omitting the MH test is quite severe here. When the

sampler reaches the mode of the distribution, the Langevin

noise occasionally throws it into the valley to the left, where

the gradient is very high. This propels the sampler far off

to the right, after which it takes a long time to find its way

back to the mode. However, if we had used an MH accept-

reject test, most of these troublesome jumps into the valley

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

would be rejected because the density in the valley is much

lower than that at the mode.

To apply an MH test, note that the SGLD proposal

q(✓0|✓) can be considered a mixture of component kernels

q(✓0|✓,Xn) corresponding to different mini-batches. The

mixture kernel will satisfy detailed balance with respect to

the posterior distribution if the MH test enforces detailed

balance between the posterior and each of the component

kernels q(✓0|✓,Xn). Thus, we can use an MH test with

µ0 =
1

N
log

u
⇢(✓t)q(✓

0|✓t,Xn)

⇢(✓0)q(✓t|✓0,Xn)

�

.

The result of running SGLD (keeping ↵ = 5 × 10�6

as before) corrected using our approximate MH test, with

✏ = 0.5, is shown in Fig. 5(d). As expected, the MH test

rejects most troublesome jumps into the valley because the

density in the valley is much lower than that at the mode.

The stationary distribution is almost indistinguishable from

the true posterior. Note that when ✏ = 0.5, a decision is al-

ways made in the first step (using just m = 500 datapoints)

without querying additional data sequentially.

10
−3

10
−2

10
−1

10
−4

10
−2

Target Average Error

T
e
s
t
A

v
e
ra

g
e
 E

rr
o
r

Avg−Design

Avg−Design Fix m

WC−Design

Target

(a) Test Average Error

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

Target Average Error

A
v
e
ra

g
e
 D

a
ta

 U
s
a
g
e

Avg−Design

Avg−Design Fix m

WC−Design

(b) Average Data Usage

Figure 6. Test average error in Pa and data usage Eu[⇡̄] for the

ICA experiment using average design over both m and ✏ (�),

with fixed m = 600 (4), and worst-case design (⇤).

6.5. Optimal Design of Sequential Tests

We illustrate the advantages of the optimal test design pro-

posed in Section 5.2 by applying it to the ICA experiment

described in Section 6.2. We consider two design methods:

the ‘average design’ (Eqn. 7) and the ‘worst-case design’

(Eqn. 8). For the average design, we collected 100 samples

of the Markov chain to approximate the expectation of the

error over (✓, ✓0). We will call these samples the training

set. The worst case design does not need the training set as

it does not involve the distribution of (✓, ✓0). We compute

the optimal m and ✏ using grid search, for different val-

ues of the target training error, for both designs. We then

collect a new set of 100 samples (✓, ✓0) and measure the

average error and data usage on this test set (Fig. 6).

For the same target error on the training set, the worst-case

design gives a conservative parameter setting that achieves

a much smaller error on the test set. In contrast, the average

design achieves a test error that is almost the same as the

target error (Fig. 6(a)). Therefore, it uses much less data

than the worst-case design (Fig. 6(b)).

We also analyze the performance in the case where we fix

m = 600 and only change ✏. This is a simple heuristic we

recommended at the beginning of Section 5.2. Although

this usually works well, using the optimal test design en-

sures the best possible performance. In this experiment,

we see that when the error is large, the optimal design uses

only half the data (Fig. 6(b)) used by the heuristic and is

therefore twice as fast.

7. Conclusions and Future Work

We have taken a first step towards cutting the compu-

tational budget of the Metropolis-Hastings MCMC algo-

rithm, which takes O(N) likelihood evaluations to make

the binary decision of accepting or rejecting a proposed

sample. In our approach, we compute the probability that a

new sample will be accepted based on a subset of the data.

We increase the cardinality of the subset until a prescribed

confidence level is reached. In the process we create a bias,

which is more than compensated for by a reduction in vari-

ance due to the fact that we can draw more samples per

unit time. Current MCMC procedures do not take these

trade-offs into account. In this work we use a fixed deci-

sion threshold for accepting or rejecting a sample, but in

theory a better algorithm can be obtained by adapting this

threshold over time. An adaptive algorithm can tune bias

and variance contributions in such a way that at every mo-

ment our risk (the sum of squared bias and variance) is as

low as possible. We leave these extensions for future work.

Acknowledgments

We thank Alex Ihler, Daniel Gillen, Sungjin Ahn, Babak

Shahbaba and the anonymous reviewers for their valu-

able suggestions. This material is based upon work sup-

ported by the National Science Foundation under Grant No.

1216045.

Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

References

Ahn, S., Korattikara, A., and Welling, M. Bayesian poste-

rior sampling via stochastic gradient Fisher scoring. In

International Conference on Machine Learning, 2012.

Amari, Shun-ichi, Cichocki, Andrzej, Yang, Howard Hua,

et al. A new learning algorithm for blind signal sepa-

ration. Advances in neural information processing sys-

tems, pp. 757–763, 1996.

Andrieu, Christophe and Roberts, Gareth O. The pseudo-

marginal approach for efficient Monte Carlo computa-

tions. The Annals of Statistics, 37(2):697–725, 2009.

Bache, K. and Lichman, M. UCI machine learning repos-

itory, 2013. URL http://archive.ics.uci.

edu/ml.

Brémaud, P. Markov chains: Gibbs fields, Monte Carlo

simulation, and queues, volume 31. Springer, 1999.

Chen, Xiaohui, Jane Wang, Z, and McKeown, Martin J.

A Bayesian Lasso via reversible-jump MCMC. Signal

Processing, 91(8):1920–1932, 2011.

Fearnhead, Paul, Papaspiliopoulos, Omiros, and Roberts,

Gareth O. Particle filters for partially observed diffu-

sions. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 70(4):755–777, 2008.

Gamerman, Dani and Lopes, Hedibert F. Markov chain

Monte Carlo: stochastic simulation for Bayesian infer-

ence, volume 68. Chapman & Hall/CRC, 2006.

Green, Peter J. Reversible jump Markov chain Monte

Carlo computation and Bayesian model determination.

Biometrika, 82(4):711–732, 1995.

Hastings, W Keith. Monte Carlo sampling methods using

Markov chains and their applications. Biometrika, 57(1):

97–109, 1970.

Hyvärinen, Aapo and Oja, Erkki. Independent component

analysis: algorithms and applications. Neural networks,

13(4):411–430, 2000.

Lin, L, Liu, KF, and Sloan, J. A noisy Monte Carlo algo-

rithm. Physical Review D, 61(7):074505, 2000.

Metropolis, Nicholas, Rosenbluth, Arianna W, Rosenbluth,

Marshall N, Teller, Augusta H, and Teller, Edward.

Equation of state calculations by fast computing ma-

chines. The journal of chemical physics, 21:1087, 1953.

O’Brien, Peter C and Fleming, Thomas R. A multiple test-

ing procedure for clinical trials. Biometrics, pp. 549–

556, 1979.

Ouyang, Zhi. Bayesian Additive Regression Kernels. PhD

thesis, Duke University, 2008.

Pocock, Stuart J. Group sequential methods in the design

and analysis of clinical trials. Biometrika, 64(2):191–

199, 1977.

Singh, Sameer, Wick, Michael, and McCallum, Andrew.

Monte Carlo MCMC: efficient inference by approximate

sampling. In Proceedings of the 2012 Joint Conference

on Empirical Methods in Natural Language Process-

ing and Computational Natural Language Learning, pp.

1104–1113. Association for Computational Linguistics,

2012.

Wang, Samuel K and Tsiatis, Anastasios A. Approximately

optimal one-parameter boundaries for group sequential

trials. Biometrics, pp. 193–199, 1987.

Welling, M. and Teh, Y.W. Bayesian learning via stochastic

gradient Langevin dynamics. In Proceedings of the 28th

International Conference on Machine Learning (ICML),

pp. 681–688, 2011.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

