
Authentic Data Publication over the Internet∗

Premkumar Devanbu, Michael Gertz, Charles Martel Stuart G. Stubblebine
Department of Computer Science Stubblebine Consulting, LLC

University of California 8 Wayne Blvd
Davis, CA 95616 USA Madison, NJ 07940

{devanbu|gertz|martel}@cs.ucdavis.edu stuart@stubblebine.com

Abstract

Integrity critical databases, such as financial information used in high-value decisions, are
frequently published over the Internet. Publishers of such data must satisfy the integrity, au-
thenticity, and non-repudiation requirements of clients. Providing this protection over public
data networks is an expensive proposition. This is, in part, due to the difficulty of building
and running secure systems. In practice, large systems can not be verified to be secure and are
frequently penetrated. The negative consequences of a system intrusion at the publisher can be
severe. The problem is further complicated by data and server replication to satisfy availability
and scalability requirements.

To our knowledge this work is the first of its kind to give general approaches for reducing
the trust required of publishers of large databases. To do this, we separate the roles of data
owner and data publisher. With a few digital signatures on the part of the owner and no trust
required of a publisher, we give techniques based on Merkle hash trees that publishers can use
to provide authenticity and non-repudiation of the answer to database queries posed by a client.
This is done without requiring a key to be held in an on-line system, thus reducing the impact
of system penetrations. By reducing the trust required of the publisher, our solution is a step
towards the publication of large databases in a scalable manner.

1 Introduction

Consider a financial markets database, used by businesses to make high-value decisions. Examples
include financial data about a range of investment vehicles such as stocks, bonds and mortgage-
backed securities. These databases might be resold to “financial portals”, which republish the
information over insecure public networks. This data will be queried at high rates, for example, by
client investment tools. We focus our attention on data which changes infrequently. Examples of
relatively static information include financial earnings reports, market history such as individual
trades, offers and bids, intra- and inter-day highs and volume, and sometimes financial ratings. We
assume extremely high query ratios, with millions of queries executed daily. The data needs to be
delivered promptly, reliably and accurately. One approach to this problem is to digitally sign the
results to a query. Here, σK−1

O
() represents the signature using the private signature key of the

data owner, K−1
O .

1. Client −→ Owner : Query
2. Owner −→Client: Data, Timestamp, σK−1

O
(Data, T imestamp,Query)

∗We gratefully acknowledge support from the NSF ITR Program, Grant No. 0085961.

1



The client may thus be assured of the correctness of the answer, since it is in response to the query,
the data is adequately recent, and it is signed by the owner (and thus satisfies the non-repudiation
requirements). However, there are several issues here: first the owner may not be willing or able
to provide a reliable and efficient database service to query over this data at the scale and the
rates required by clients and republishers of the information. Second, even if the owner is willing
and able to provide a service, the owner needs to maintain a high-level of physical and computer
security required to defend against attacks. This has to be done to protect the signing key, which
must be resident in the database server at all times to sign outgoing data. However, in practice,
most large software systems have vulnerabilities. Some of these can be “patched”, (albeit usually
only partially) with a great deal of skill, effort, time and expense. Cryptographic techniques like
threshold cryptography or using hardware devices to protect the private key help but do not solve
the systems vulnerability problem and are generally too expensive to implement in the application
domains mentioned above.

A more scalable approach to this problem is to use trusted third-party publishers of the data, in
conjunction with a key management mechanism, which allows certification of the signing keys of
the publishers to speak for the owner of the data. The database (DB) and updates are provided
securely to the publishers.

Owner −→ Publishers Pi, i = 1 . . . n : DB,Timestamp, σK−1
O

(DB,T imestamp)

This is followed by the clients accessing the publishers in a query response style similar to the
previous protocol description, with publishers signing answers using K−1

Pi
, i = 1 . . . n.

Presumably, the market for the useful data in DB will motivate other publishers to provide this
service, unburdening owner of the need to do so. The owner simply needs to sign the data once
and distribute it to the publishers. As the demand increases, more such publishers will emerge,
thus making this approach inherently more scalable. However, this approach also suffers from the
problem and expense of maintaining a secure system accessible from the Internet. Furthermore,
a client might worry that a publisher engages in deception. The client has to find a publisher
that she can trust, such as a trusted brand-name belonging to a large corporation. The client
would also have to trust the key-management infrastructure that allowed the keys of the publishers
to be certified. In addition, she would have to believe that the publisher is both competent and
careful with site administration and physical access to the database. Particularly, the client might
well worry that the private signing-key of the publisher would have to be resident at the database
server, and is therefore vulnerable to attacks. To get a client to trust him to provide really valuable
data, the publisher would have to adopt careful and stringent administrative policies, which would
be more expensive for him (and thus also for the client). The abovementioned need for trusted
publishers would increase the reliance on brand-names, which would also limit the tendency of
market competition to reduce costs. Doug Tygar lists this as an important open problem in e-
commerce. He asks [26]: “How can we protect re-sold or re-distributed information...?”. In this
paper, we present an approach to this problem.

Our Approach. We propose a new approach to certifying responses to queries, by which a
completely untrusted publisher can provide a verification object VO to a client, along with the
answer to the query. This VO is generated by the publisher, and provides an independent means of
verifying that the answer to a query is correct. The verification object is based on a small number
of digests (Σs) that are distributed periodically to the clients by the data owner. The digests
are bottom-up hashes computed recursively over tree type indexes for the entire set of records in

2



the owner’s database, signed with K−1
O . Answers to queries are various combinations of subsets

of these records. Given a query, the publisher computes the answer. To show that an answer is
correct the publisher constructs a VO using the same tree structures that were used by owner to
compute the digests. This VO validates an answer set by providing a hard to forge “proof” which
links the answer to the appropriate Σ, which was already signed by the owner. Our techniques
are founded on cryptographic assumptions regarding the security of hash functions and public-key
crypto-systems. Our approach has several features:

1. With the exception of the security at the client host, a client needs only trust the key of the
owner; in addition, the owner only needs to distribute Σ during update cycles. Hence, the
private signing key need not be resident in a “online” machine, and can be better protected,
e.g., it can be ensconced in a hardware token that is used only to sign hash digests during
updates [27].

2. Clients need not trust the publishers, nor their keys.

3. For all the techniques we describe, a VO is always linear in the size of the answer to a query.

4. The VO guarantees that the answer is correct: it contains all the requested records and no
superfluous records.

5. If the publisher evaluates queries using the same data structures used by owner to compute
Σ, publisher’s overhead to compute the VO is relatively minor.

An incorrect answer and VO will almost always be rejected by the client; it is infeasible for publisher
to forge a correct VO for an incorrect answer to a client’s query.

We offer solutions for authenticity in a specific context. We do not directly address the orthogonal
issue of diverse types of access control policies [14], which might restrict queries and updates,
nor issues of confidentiality and privacy. Our techniques focus on data managed in relational
databases, and we handle only some important classes of queries against relational databases. Our
techniques do involve the construction of some complex data structures, although the cost of this
can be amortized over more efficient query processing. Some of the approaches are similar to
view materialization, e.g., [12, 24], which can enable data warehouses to provide efficient query
processing.

Structure of the Paper. In Section 2, we begin with a discussion of the problem space, as we
have framed it, and briefly set the context for the preliminary results presented in this paper, and
open issues that still remain. Next, after a brief background on relational databases, we describe
the essence of our extension of the work of Naor & Nissim [20] to authentic data publication. In
Section 4, we give our basic approach. In Section 5, we present some novel ongoing research for
using multi-dimensional verification objects. More pragmatic issues and related work are discussed
in Section 6. We conclude the paper in Section 7.

2 The Design Space

To begin with, we clarify the problem setting outlined above, and map out the potential design
space of solutions. Our general setting can be described thus:

3



1. The owner populates the relations in the database, does some pre-computation on the database
to construct data structures that support query-processing (such as B+-trees), and computes
digests (i.e., Σs) of these data structures.

2. The owner distributes these Σs securely to clients and the database to the publishers (e.g.,
using a private key).

3. A client sends a query to a publisher. The publisher computes the answer q, a verification
object VO for q, and sends both back to the client.

4. The client verifies the correctness and completeness of the answer q by recomputing Σ using
q and the VO.

Given the general problem of publishing data securely using third parties, different approaches
are possible, which lead to different computing and storage costs for the clients, publishers, and
owners. One extreme approach, for example, would be for the owner to simply deliver the entire
database to all clients and let them do their own query processing. This approach entails huge data
transmission costs and requires a great deal of storage and processing by the clients. The other
extreme is for the owner to pre-compute and sign a whole range of answers to possible queries. The
publishers would simply cache the queries along with the applicable signatures from the owner,
and return the signatures with the answers to the queries. From the client’s perspective, this
approach is attractive: each pre-computed answer comes with a constant-length verification object
(a signature) directly from the owner. However, this approach is not practical in general: there are
simply too many possible queries clients might want to ask.

Our goal is a compromise design: one that does not require pre-computation of arbitrary query
answers, nor shipments of the entire database to clients. Given a particular database, the client
can choose from a potentially infinite set of queries (although constrained by the query patterns
implemented in the applications at the client sites). We adopt the position that requires a certain
amount of effort from all parties: the owner, the publisher, and the client. In all our suggested
techniques, the owner has to do work O(n logd−1 n) time and space in the size n of the database
(where d is a small constant denoting roughly the number of operations, such as selections and
projections, in the query). In particular, simple selections over a particular attribute of a single
relation only require O(n) preprocessing by the owner (where n is the number of tuples in the
relation). However, this work is mostly towards the construction of index structures, which is
amortized over repeated, efficient query processing. These index structures can either be trans-
mitted to the publishers, or (exactly and precisely) recomputed by them. Our query processing
algorithms are similar in performance to those of standard databases. The construction of the
VOs are a small constant overhead over the standard query processing algorithms. Finally, and
perhaps most importantly, the size of the VO grows linearly with the size of the answer set, and
poly-logarithmically with the size of the database. The verification step itself takes time linear in
the size of the VO.

This view suggests that there may be many other perspectives on this problem of authentic data
publication. Differing assumptions on the levels of storage and computational effort expected of the
owner, publishers and clients may lead to different viable solutions to this problem. We believe that
(in addition to the techniques presented below) many useful “operating points” await discovery.

4



3 Preliminaries

In this section, we will discuss the basic notions, definitions and concepts necessary for the ap-
proach presented in this paper. In Section 3.1, we will present the basic notions underlying rela-
tional databases and queries formulated in relational algebra. In Section 3.2, we will discuss the
computation and usage of Merkle Hash Trees.

3.1 Relational Databases

The data model underlying our approach is the relational data model (see, e.g., [8, 25]). That
is, we assume that the data owner and publishers manage the data using a relational database
management system (DBMS). The basic structure underlying the relational data model is the
relation. A relation schema R〈A1, A2, . . . , An〉 consists of a relation name R and an ordered set
of attribute names 〈A1, A2, . . . , An〉, also denoted by schema(R). Each attribute Ai is defined on
a domain Di. An extension of a relation schema with arity n (also called relation, for short) is
a finite subset of the Cartesian product D1 × . . . × Dn. The extension of a relation schema R is
denoted by r. The value of a tuple t ∈ r for an attribute Ai is denoted by t.Ai. We assume that
with each relation schema R a set pk(R) ⊆ {A1, . . . , An} is associated that designates the primary
key. The number of tuples in a relation r is called the cardinality of the relation, denoted by |r|.
The extension of the relation schemas at a particular point in time is called a database instance (or
database).

Queries against a database are formulated in SQL [19, 9]. Such queries are typically translated by
the DBMS query processing engine into expressions of the relational algebra for the purpose of query
optimization and execution. In this paper, we are mainly concerned with providing verification
objects for query results where the queries are formulated as expressions of relational algebra.
Those queries are either simple, containing at most one basic operator, or complex, containing a
composition of basic operators. The basic operators of the relational algebra are as follows (with
R, S being relation schemas):

• Selection (σ): σP (r) := {t | t ∈ r and P (t)} where r is a relation (name), P is a condition of
the form Ai Θ c with Ai ∈ schema(R), c ∈ Di, and Θ ∈ {=, 6=, <,>,≤,≥}.

• Projection (π): πAk,...,Al(r) := {〈t.Ak, . . . , t.Al〉 | t ∈ r}.
• Cartesian Product (×): r × s := {tq | t ∈ r and q ∈ s}.
• Union Operator (∪): r ∪ s := {t | t ∈ s or t ∈ s}. R and S must be union compatible.

• Set Difference Operator (−): r − s := {t | t ∈ r and t 6∈ s}. R and S must be union
compatible.

Additional operators of the relational algebra, which are typically used in complex queries, are
natural join or equi-join 1, condition join or theta-join 1C (with C being a condition on join
attributes), and set-intersection ∩. All these operators can be derived from the above five basic
operators.

3.2 Merkle Hash Trees

We describe the computation of a Merkle Hash Tree [18] for a given relation r with relation schema
R = 〈A1, . . . , An〉. For this, assume that A = 〈Ai, . . . , Ak〉 is a list of attributes from schema(R).

5



The Merkle Hash Tree computed is denoted by MHT (r,A). A Merkle Hash Tree is a binary tree
with |r| leaves and a hash value H(i) associated with each node i of the tree.

1. First, compute the tuple hash ht for each tuple t ∈ r:

ht(t) = h(h(t.A1) || . . . || h(t.An))

The tuple hash (by the collision resistance of the hash function) functions as a “nearly unique”
tuple identifier (for a hash-length of 128 bits, probability of collisions approaches 2−128 ).

The use of the tuple hash in calculations often enables us to keep tuples themselves confiden-
tial, while using the tuple hash for authenticity.

2. Next, compute the Merkle hash tree for relation r. For this, assume that r is sorted by the
values of A. Given two tuples t, t′ in r, the value of t is less than the value of t′, denoted
t.A < t′.A if for some l, i ≤ l ≤ k, t.Al < t′.Al and t.Aj = t′.Aj for i ≤ j < l.

We compute the value H(i) associated with node i as follows:

Leaf-nodes : H(i) = ht(ti) , i = 1 . . . |r|, 0 otherwise

Internal-nodes : H(i) = h(H(L) || H(R)) where L,R are the left and right children of node i

We note that the “root hash”, denoted Hr,A, is a digest of all the data in the Merkle hash tree.

This construction is illustrated in Figure 1. Hi is the tuple hash value of ti (i = 1, 2, 3, 4); e.g.,
H34 is the hash value for tuples 3 and 4. We note that this construction easily generalizes to a
higher branching factor greater 2, such as in a B+-tree; however, for our presentation here, we
primarily use binary trees. In this case, constructing a VO is a very minor overhead over the query
evaluation process itself.

H  = h(H12||H34)

H34=h(H3||H4) H12=h(H1||H2)

H1 H2 H3 H4

r

Figure 1: Computation of a Merkle hash tree

Note that by the cryptographic assumption of a collision-resistant hash function, if the correct
value of the parent is known to the client, the publisher cannot feasibly forge the value of the hash
siblings. Our entire approach flows from the signed, correct value of the root of a Merkle tree, just
as in the work of Naor & Nissim [20].

Definition 1 (Hash Path) Let i be a leaf node in MHT (r,A) corresponding to a tuple ti ∈ r.
The nodes necessary to compute the hash path up to the root hash is denoted as path(ti). Such a
hash path always has the length dlog2(|r|)e and comprises 2 ∗ dlog2(|r|)e − 1 nodes where exactly
two nodes are leaf nodes. Of these, only dlog2(|r|)e+ 1 need be provided to recompute the value at
the root. Hash paths can also be provided for non-leaf nodes. 2

6



The dlog2(| r |)e + 1 nodes in path(ti) constitute the verification object VO showing that ti is
actually in the relation with hash value Hr,A at the root node; the owner’s signature on the root
node certifies its authenticity. Indeed any interior node within the hash tree can be authenticated
by giving a path to the root.

Definition 2 (Boundaries) For a given non-empty contiguous sequence q = 〈ti, . . . , tj〉 of leaf
nodes in a Merkle Hash Tree MHT (r,A), there are two special leaf nodes LUB(q) and GLB(q)
that describe the lowest upper and greatest lower bound values, respectively, of q and are defined
as follows:

(1) GLB(q) := {t | t ∈ r ∧ t.A < ti.A ∧ (¬∃t′ ∈ r : t′.A > t.A ∧ t′.A < ti.A)}
(2) LUB(q) := {t | t ∈ r ∧ t.A > tj .A ∧ (¬∃t′ ∈ r : t′.A < t.A ∧ t′.A > tj .A)} 2

We assume that both GLB(q) and LUB(q) are singletons. This can easily be accomplished by
adding pk(R) to the list A of attributes by which the leaves in MHT (r,A) are ordered.

Definition 3 (Lowest Common Ancestor) For a given non-empty contiguous sequence q =
〈ti, . . . , tj〉 of leaf nodes in a Merkle Hash Tree MHT (r,A), the lowest common ancestor LCA(q)
for q in MHT (r,A) is defined as the root of the minimal subtree in MHT (r,A) that has all tuples
in q as leaf nodes. 2

This situation is illustrated in Figure 2. Given LCA(q), one can show a hash path path(LCA(q))
to the authenticated root hash value. After this is done, (shorter) hash paths from each tuple to
LCA(q) can provide evidence of membership of q in the entire tree. This is also useful to build a
VO showing that two nodes occur consecutively in the tree.

Path "I"

Proximity 
Subtree

LCA(q)

LUB(q)GLB(q)

Figure 2: A Merkle tree with a contiguous subrange q, a least common ancestor LCA(q), and upper
and lower bounds. Note the verifiable hash path “l” from LCA(q) to the root, and the proximity
subtrees (thick lines) for the “near miss” tuples for LUB(q) and GLB(q) which show that q is
complete.

Definition 4 (Proximity Subtree) Consider a consecutive pair of tuples (leaf nodes) s, t in
MHT (r,A), and their lowest common ancestor, LCA(〈s, t〉). This node, along with the two paths
showing that s (respectively, t) is the rightmost (leftmost) element in the left (right) subtree of
LCA(〈s, t〉) constitute the “proximity subtree” of s and t, denoted by ptree(s, t). 2

Proximity subtrees are used in boundary cases, with GLBs and LUBs, i.e., to show a “near-miss”
tuple that occurs just outside the answer set lies next to the extremal tuple in the answer set. In
this case, it is important to note that by construction, we just need to reveal the relevant attribute

7



value in the “near-miss” to show that it is indeed a near miss; with just the hash of the other
attributes, the tuple hash, and the rest of the proximity tree can be exhibited.

We finally define important properties of the answer set q returned by publisher. For this, we
assume that owner can use a database system to process queries from the client in the same fashion
as done by the publisher.

Definition 5 Assume a query Q issued by a client. Let qpub and qowner denote the query result
computed at the data publisher and data owner site, respectively.

qpub is said to be an inclusive answer to Q iff ∀t : t ∈ qpub ⇒ t ∈ qowner holds.

qpub is said to be a complete answer to Q iff ∀t : t ∈ qowner ⇒ t ∈ qpub holds. 2

In the following, we also sometimes use the term correct answer to refer to the combination of both
an inclusive and complete answer.

4 Base level Relational Queries

In this section we outline the computation of VOs for answers to queries. We illustrate the basic
idea behind our approach for selection and projection queries in Section 4.1 and 4.2, respectively.
Slightly more complex types of queries (join queries) and set operators are discussed in Sections
4.3 and 4.4.

4.1 Selections

Assume a selection query of the form σAiΘc(r), c ∈ Di which determines a result set q ⊆ r. Fur-
thermore, assume that the Merkle Hash Tree MHT (r,Ai) has been constructed. For each possible
comparison predicate Θ ∈ {=, 6=, <,>}, we show how the publisher can construct the VO, with
which the client can verify the inclusiveness and completeness of the query answer q. Again, we
emphasize that in all the following cases, if the Merkle hash tree is constructed by owner and
publisher over the same index structures used for querying, the overhead for constructing the VO
is minor. We first consider the cases for the comparison predicate Θ ≡ =.

Case 1. If Ai = pk(R) and q 6= {}, then the VO is just path(t) where t = q is the only tuple that
satisfies the selection condition. In this case, the size of the VO is O(log2 |r|).
Case 2. If Ai = pk(R) and q = {}, then we have to show that no tuple exists that satisfies the
selection. For this, we have to provide paths to the two tuples that would “surround” the non-
existing tuple. The two tuples are determined by GLB(q′) and LUB(q′) with q′ = c. Determining
path(GLB(q′)) and path(LUB(q′)) requires searching the two associated tuples in the leaf nodes
of MHT (r,Ai). The proximity subtree ptree(GLB(q′), LUB(q′)) provides the required evidence
that the answer set is empty. The size of the VO again is O(log2 |r|).
Case 3. Ai is not a primary key and q 6= {}. The result is a set of tuples which build a contiguous
sequence of leaf nodes in MHT (r,Ai). In order to provide a VO for q, the following approach
is taken. First, identify l := LCA(q ∪ GLB(q) ∪ LUB(q)) in MHT (r,Ai), and show a verifiable
path from l to the root. Next, identify proximity subtrees showing that GLB(q) (LUB(q)) occur
consecutively to the smallest (largest) element of q. Now, the entire sub-tree from the elements
of the set q to l can be constructed, using the hash values of the tuples in q. This verifies that
the entire set occurs contiguously in the leaf nodes of the tree. To construct this subtree and to

8



verify the root hash on the LCA(q) of this subtree, the length of the VO is O(|q| + log2(|r|)). The
proximity subtrees establish that no tuples are left out from the answer.

Case 4. If Ai is not a primary key and q = {}, we can apply the same approach as for case 2.

With these fundamental techniques, proving that the answers to a selection query over a relation
r are inclusive and complete is simple. First, using normal query evaluation, the answer set q is
determined. Since we only consider simple relational queries here, the answer set q is a contiguous
subset of r based on MHT (r,Ai). We also retrieve two additional tuples, GLB(q) (respectively,
LUB(q)) which is immediately smaller (larger) than the smallest (largest) tuple in r with regard
to the answer set q (using the ordering based on Ai). It should be noted that if the answer set is
empty, these two will occur consecutively in the Merkle tree. The VO uses the values in q plus the
paths to GLB(q) and LUB(q), so has O(|q| + log2(|r|).
For Θ ≡ 6=, we can make the following observation: The answer set to a query of the pattern
σAi 6=c(r) determines at most two contiguous sets of leaf nodes in MHT (r,Ai). For each of these
sets, we have to follow an approach similar to case 3 shown above.

For Θ ∈ {<,>}, the scenario is as follows. The answer set to a query of the pattern σAi<c(r) or
σAi>c(r) determines at most one contiguous set of leaf nodes in MHT (r,Ai). For this set, we have
to follow an approach similar to case 3 discussed above. If q is empty, we just have to give the
VO for the tuple t = {t | t ∈ r ∧ t.A = min{s.A | s ∈ r}} (analogous for Θ ≡ >). Cases for
Θ ∈ {≤,≥} can be handled in a very similar fashion by just shifting the boundaries.

Lemma 6 If publisher cannot engineer collisions on the hash function or forge signatures on the
root hash value, then if client computes the right authenticated root hash value using the VO and
the answer provided for a selection query, then the answer is indeed complete and inclusive. �

The proof can be found in the appendix, along with a more formal discussion of the security
assumptions.

4.2 Projections

For queries of the pattern πA(R),A ⊂ schema(R), the projection operator eliminates some at-
tributes of the tuples in the relation r, and then eliminates duplicates from the set of shortened
tuples, yielding the final answer q. There may be many different possible projections on a relation
R. If the client wishes to choose among these dynamically, it may be best to let the client perform
the projection. The client will then also have to eliminate duplicates because these are not auto-
matically eliminated in SQL, unlike the relational algebra. So in this case, the client is provided
with the whole relation r (or some subset thereof after intermediate selections etc) and the VO for
r before the projection; so the VO will be linear in size |r|, rather than the smaller size |q| of the
final result. Note also that the projection may actually mask some attributes that the client is not
allowed to see; if so, with just the hash of those attributes in each tuple, the client can compute
the tuple hash, and the VO for r will still work.

Consider the case where a particular projection πA(r) (which is used often) projects onto attributes
and where the values for the projected attributes are poorly distributed, i.e., many tuples have the
same values for the attribute(s) A. In this case, duplicate elimination will remove numerous tuples,
leaving behind a small final answer q. Just given the pre-projection tuple set, the client would
have to do all this work. Now, suppose we have a Merkle tree MHT (r,A), i.e., we assume that
the sets of retained attribute values can be mapped to single values (which corresponds to building

9



equivalence classes) with an applicable total order. In this case, we can provide a VO for the
projection step that is linear in the size of the projected result q.

Each tuple t in the result set q potentially results from a set of tuples S(t) ⊆ r. Each tuple in
S(t) has identical values for the projected attribute(s) A. We need to establish that the set q is
inclusive (i.e., each t is indeed in the projection) and complete (i.e., no tuple that should be in q is
missing). This is accomplished as follows.

1. To show that t ∈ q, we find any witness tuple y ∈ S(t) ⊆ r, with the same attribute value
for A, and show the hash path from this tuple to the Merkle Root. This establishes that
the tuple t belongs to the result set q. However, the witness tuple is preferably chosen as a
“boundary” value, as described next.

2. We must show that there are no tuples missing, say between t and t′, (t, t′ ∈ q). To do this,
it is enough to show that the sets S(t) and S(t′) are both in r and occur immediately next
to each other in the sorted order. This is done by showing hash paths, which prove that
two “boundary” tuples y ∈ S(t) and x ∈ S(t′) occur next to each other in the Merkle tree
MHT (r,A).

We observe that both the above bits of evidence are provided by displaying at most 2 |q| hash paths,
each of length dlog2 |r|e. This meets our constraint that the size of the authentication evidence be
bounded by O(|q| log2 |r|).
But how can we assume that a Merkle tree would exist on precisely the intermediate result just
prior to the projection? This can be accomplished by multi-dimensional range trees, which are
discussed in Section 5.

4.3 Joins

Joins between two or more relations are the most common type of operators in relational algebra
used to formulate complex queries. This holds in particular for equi-joins where relations are
combined based on primary/foreign key dependencies. There are many alternative realizations for
Merkle Tree structures that can be used to provide VOs for query results computed from joins.
In this paper, we focus on pairwise joins of the pattern R 1C S where C is a condition on join
attributes of the pattern ARΘAS , AR ∈ schema(R), AS ∈ schema(S),Θ ∈ {=, <,>}. We assume
that the data types underlying AS and AR are compatible with respect to Θ. For Θ being the
equality predicate, we obtain the so-called equi-join.

Given a query of the pattern R 1C S, a Merkle Hash Tree structure that supports the efficient
computation of a VO for the query result is based on the materialization (i.e., the physical storage)
of the Cartesian Product R × S. Note that such a structure has to be constructed by the owner
before a publisher accepts any query from clients. The reason for choosing a materialization of the
Cartesian Product is that this structure supports all three types of joins mentioned above. This is
due to the fact that these joins can be formulated in terms of basic relational algebra operators,
i.e., R 1ARΘAS S := σARΘAS (R × S). The important issue in constructing the Merkle Hash Tree
for queries of the pattern R 1C S is that first the Cartesian Product is determined and then the
resulting tuples are sorted on the difference between the values for AR and AS , assuming such an
operation can be defined. We thus obtain three “groups” of leaf nodes in the Merkle Tree: (1) nodes
for which the difference t.AR − s.AS for two tuples t ∈ R, s ∈ S is 0, thus supporting equi-joins,

10



(2) nodes where the difference is positive, thus supporting the predicate Θ ≡ >, and (3) nodes
where the difference is negative, thus supporting the predicate Θ ≡ <.

For each of the three cases above, assume a query result set q. Our burden again is provide
inclusiveness and completeness evidence for the query result.

1. For each tuple t ∈ q, we provide a hash path in the (sorted) Merkle tree for R × S showing
that tuple is in the relation.

2. To show that no tuples are missing, we show two pairs of boundary hash paths (within and
without) verifying the boundaries of the answer set.

If it is known that the queries will only result in equi-joins against the database, an optimized
Merkle Tree structure can be used. We will only sketch the basic concept for using this structure
here. Instead of a space-consuming materialization of the Cartesian Product R×S, we materialize
the Full Outer Join R A1@ S which pads tuples for which no matching tuples in the other relation
exist with null values (see, e.g., [8, 25]). The result tuples obtained by the full outer-join operator
again can be grouped into three classes: (1) those tuples ts, t ∈ R, s ∈ S, for which the join
condition holds, (2) tuples from r for which no matching tuples in s exist, and (3) tuples from s
for which no matching tuples in r exist. Constructing a VO for the result of a query of the pattern
R 1ARΘAS S then can be done in the same fashion as outlined above.

4.4 Set Operations

All set operations involve two relations u and v. We may assume that u and v are intermediate
results of a query evaluation, and are subsets of some relations r and s respectively, and that r and
s are each sorted (possibly on different attributes) and have their own Merkle trees MHT (r,A)
and MHT (s,A′), the root of which is signed as usual. We consider the set operations union and
set intersection.

Union. In this case, the answer set is q = u ∪ v. Evidence that u ∪ v is inclusive and complete
is straightforward; it is sufficient to provide verification paths for each tuple in u ∪ v showing that
it belongs to one of the sets. Additionally, a single pass over the union can show that no tuple
of u or v is omitted. This can be done with a VO of size O(|q | log2(max{|r |, |s|}). If u and v
are presented as contiguous subsets of r and s, inclusiveness can be done even faster; all that is
necessary to check the union is the order in which the tuples of u ∪ v occur in r and/or s, along
with the authenticating information for the sets u and v within r and s, respectively. Given this
order, inclusiveness and completeness can be evidenced by a VO of linear size.

Intersection. The approach for union, however, does not produce compact VOs for set inter-
section. Suppose q = u ∩ v where u and v are as before. Inclusiveness is easy, with the VO
providing O(|q |) verification paths, as before, showing tuples of q belong to both u and v; but
completeness is harder. The client needs assurance that all tuples of u or v that belong in q are
present. One can pick the smaller set (say u) and for each tuple t in u− q, construct a VO to show
that /∈ v. In general, if u and v are intermediate results not occurring contiguously in the same
Merkle tree, such a VO is linear in the size of the smaller set. Consider, for example, a set of tuples
〈name, age, salary〉, where one wishes to select tuples in a specific salary and age range. Assume
then that u has been obtained by performing a selection based on salary, and v based on age. u

11



and v would be verified by VOs resulting from different Merkle hash trees: one sorted by salary,
and one sorted by age. Computing the intersection u ∩ v would result in a VO with size linear in
|u|. This VO would provide inclusiveness evidence (in u and v) for each tuple of u ∩ v, and shows
completeness by showing that each remaining tuple in (u− (u ∩ v)) is not in v. This again leaves
us with the unsatisfactory situation of a VO being linear in the size of a potentially much larger
intermediate result (if |u|>>|u ∩ v| ). A similar problem occurs with set differences u− v.

We have not solved the general problem of constructing VOs linear in the size of the result for
intersections and set differences. Indeed, the question remains as to whether (in general) linear-size
VOs can even be constructed for these objects. However, in the following section, we provide an
approach to constructing linear-size VOs for a specific type of intersection, so-called range query.
This is accomplished using a data structure drawn from computational geometry called a multi-
dimensional range tree. This approach also works for set differences over range queries on different
attributes.

5 Multi-dimensional Verification Objects

In d-dimensional computational geometry, when one is dealing with sets of points in d-space, one
could ask a d-space range query. Consider a spatial interval (〈x1

1, x
1
2〉 . . . 〈xd1, xd2〉): this represents

an axis-aligned rectilinear solid in d-space. A query could ask for the points that occur within this
solid. Such problems are solved efficiently in computational geometry using so-called Range Trees
(See [4], Chapter 5). We draw an analogy between this problem and a database query of the form

σc11<A1<c21
(r) ∩ · · · ∩ σc1d<Ad<c2d(r)

where {A1, . . . Ad} ⊆ schema(R) for a relation R. We use the multi-dimensional range tree (mdrt)
data structure to provide compact verification objects.

12,1,5 23,2,4 45,3,3 13,5,6

v2

A2

1,... 4,... 5,... 9,... 12,1,5 13,5,6 23,2,4 45,3,3

A1

45,3,3 13,5,6

A3

v1

Figure 3: Excerpt of a 3-dimensional range tree, sorted by attributes A1, A2 and A3

Consider the example mdrt shown in Figure 3. Let us assume a relation schema R, with 3 attributes
A1, A2, A3 on which we want to perform combined selections and provide a VO for the final answer.
Consider the first, 3-dimensional mdrt (labeled A1). This is simply a tree which sorts the tuples
according to attribute A1 (primary key values are underlined). Each inner node in tree A1 is the
ancestor of a set of tuples. Consider such an inner node v1, which is the ancestor of tuples with
primary key values 12, 13, 23, and 45. An mdrt now contains a link from v1 to the root of an

12



associated tree A2, denoted as Tassoc(v1, A2). This 2-dimensional mdrt A2 contains the same set
of tuples with primary keys 45, 11, 23, and 13; however, in this tree, they are sorted according to
attribute A2. Likewise each inner node vi in A1 is the ancestor to a set of tuples, and contains
a pointer to an associated 2-dimensional mdrt Tassoc(vi, A2) which sorts the tuples in the subtree
below vi by attribute A2. In general, each node vji of a {d − j + 1}-dimensional mdrt contains a
pointer to a {d − j}-dimensional mdrt. The nodes of the final 1-dimensional tree, corresponding
to attribute Ad, do not have such pointers.

Given a 2-dimensional range query σx1
1≤A1≤x1

2
(r) ∩ σx2

1≤A2≤x2
2

(r) the structure is used as follows.
First, the tuple set q ⊆ r with values for attribute A1 in the range 〈x1

1, x
1
2〉 is identified using tree

A1. For simplicity, let us assume (we relax this assumption later) that the tuples in q form the
leaves of a balanced tree with root LCA(q). With |r|= n, this range can be found in roughly time
O(log2 n), the time it takes to find the two end-points of the interval in the first tree. We now
follow the link to the associated tree for attribute A2; this tree sorts just the tuple set q according
to attribute A2. So we can find the subset of q satisfying x2

1 ≤ A2 ≤ x2
2 also in O(log2 n) time.

This gives the intuition behind the efficient processing of conjunctive range queries using mdrts.
We now relax the assumption that the result of the first selection q includes just the leaves of a
balanced tree.

Let us call the leaves of the subtree rooted at node v the canonical subset of v, denoted as P (v).
If v is a leaf, P (v) = v. In [4] (pp. 103-107) it is shown that any subset of leaves which lies in a
range can be expressed as a disjoint union of O(log2 n) canonical subsets for the given range query.
The roots of these can be found in O(log2 n) time in the process of finding the bounding paths for
the interval. Given a range 〈x, x′〉, we search for them in the tree until we find node vsplit where
the paths split. Now we search x (x′) in the left (right) subtree. At every point in the search for
x where the path goes left, the right subtree belongs to the range; the search for x′ goes just the
opposite way. The result is a quick identification of roots of the canonical subtrees that precisely
cover the leaves whose values are in the interval (see Figure 4).

vsplit

CCRs CCRs

x x’

Figure 4: Finding the canonical covering roots (CCRs)

We call these the covering canonical roots (CCRs). Consider, for example, a 2-dimensional range
query over attributes A1 and A2. First, the CCRs in tree A1 for the given range in attribute A1

are found; there are O(log n) of these. Then for each of the CCRs, we go to the associated trees for
attribute A2, and find the CCRs in that tree for the given range over A2. This results in O(log2 n)
CCRs in tree A2. The union of all the leaves under these CCRs in A2 constitutes the answer.
In general, it is shown [4] that d-dimensional range queries can be computed in time O(logd−1 n).
Range trees require O(n logd−1 n) storage space, and can be constructed in time O(n logd−1 n).

13



We now show how to produce a verification object VO of size O(logd n + |q|) for an intersection
query with answer q of the form

σc11<A1<c21
(r) ∩ · · · ∩ σc1d<Ad<c2d(r)

using mdrts. First, we construct a Merkle hash tree over a d-dimensional mdrt. Assume that the
associated tree for a node i (for the next attribute) in a range tree is given by A(i), and the hash
value of a node i is given by H(i).

Base Case For the base (1-dimensional) mdrts, we build the Merkle hash tree as before.

Induction Given the root hashes for the {l − 1}-dimensional mdrts, we begin with the leaves
(height j = 0) of the l-dimensional mdrt, and compute the tuple hashes, in the usual way.
For a node i at height j > 0, we compute the hash value thus. First, we append the hashes
of all the children of i (say i1, i2) together, and also the hash of the root of the associated
l − 1-dimensional range tree, and then hash the result.

H(i) = h(H(i1) || H(i2) || H(A(i)))

This construction can be completed in time O(n logd−1 n), and can be overlapped with the con-
struction of the range tree itself.

Now consider the construction of a VO for a d-way intersection range selection query. The VO
essentially follows the search algorithm. In any given tree, a range query corresponding to an
interval results in a set of CCRs. The VO for this group of O(log n) CCRs is presented by providing
a verification path for the node vsplit to the root, and verifiable paths (length O(1)) from each CCR
to the path to vsplit. In addition, it can readily be seen that by construction of the path from the
CCRs to vsplit, the canonical subtrees of the CCRs form a contiguous non-overlapping sequence
over of the answer set. We also provide proximity trees for the LUB and GLB of the interval
and the smallest and largest contained intervals; finally, we must show that each of the k, k =| q |
selected answer tuples, belongs under a CCR. This process needs to repeat, showing verification
paths for all the O(logd−1 n) CCRs found in the process of evaluating the d-way intersecting range
selection query. This contributes size O(logd n) to the VO. In addition, the O(logd−1 n) searches in
the final tree will each use paths of size O(log n) and in addition will use the k tuple values returned
to produce the root digests for each CCR. This gives us a total VO size of O(k + logd n), which
would show that the k tuples belong to the answer q, and that the O(logd−1 n) CCRs together
cover the intervals prescribed by the query. In situations where the results of each selection may
be large and the final intersection is small, this approach gives us attractively small VOs.

6 Pragmatic Issues and Related Work

We now examine some pragmatic considerations in using our approach and discuss related work.

6.1 Canonical Join-Select-Project Queries

A typical SQL “select . . . from . . . where . . .” can be thought of as one or more joins, followed
by a (combined) selection, followed by a projection. We describe how an mdrt can be used for
both efficient evaluation and construction of compact VOs for such queries. Specifically, consider
a query that involves the join of two relations R and S, followed by a series of selections and a

14



final projection. Let us assume a Theta-join over attribute A1 (A1 occurring in both relations),
followed by selections on attributes A2 and A3, and a final projection on several attributes, jointly
represented by A4 (as discussed in Section 4.2).

A1sorted over join attribute 

A2

sorted over selection 

attribute 
sorted over selection 

attribute A3

sorted over projection
attribute A4

Figure 5: Excerpt of a 3-dimensional range tree, sorted by attributes A1, A2 and A3

We begin this construction (see Figure 5) with the first range tree constructed over the join attribute
A1, as explained in Section 4.3. Then follow the trees sorted by A2 and A3, and finally on the
projected attributes. Given a query, the evaluation plan (and the construction of the VO) follows
this set of range trees as described above, leading to both efficient evaluation of all the steps, and
a VO linear in the size of the final query result.

6.2 Query Flexibility

For efficient verification of query answering, we make use of different trees over sorted tuple sets.
Without such trees, our approach cannot provide small verification objects. This points to a
limitation of our approach—only queries for which Merkle trees have been pre-computed can be
evaluated with compact verification objects. Our approach cannot support arbitrary interactive
querying with compact verification objects. Arbitrary interactive querying, however, is quite rare
in the presence of fixed applications at client sites.

In practice, however, data-intensive applications make use of a fixed set of queries. Indeed, via
mechanisms such as embedded SQL (see, e.g., [25]) database queries are compiled into applications.
These queries can still make use of parameters entered by a user and which are typically used
in selection conditions. Our approach is compatible with such applications. Essentially, client
applications commit a priori to queries they wish to execute; the owner and the publisher then
pre-compute the required Merkle hash trees to produce short verification objects.

So while our approach cannot provide compact verification objects in the context of arbitrary
interactive database querying, it is quite compatible with the widely-used practice of embedding
pre-determined (and parameterizable) queries within data-intensive applications.

6.3 Conventions

It is important to note that all interested parties: the owner, publisher and clients, share a consistent
schema for the databases being published. In addition there needs to be a secure binding between
the schema, the queries and the query evaluation process over the constructed Merkle trees. A
convention to include this information within the hash trees needs to be established. All parties
also need to agree on the data structures used for the VO. It is also important that the publisher

15



and the clients agree upon the format in which the VO together with the query result is encoded
and transmitted. Tagged data streams such as XML provide an attractive option.

6.4 Recent Query Evaluations

Verifiers must verify that query evaluation is due to an “adequately recent” snapshot of the database
and not an old version. We assume the technique of recent-secure authentication for solving this
problem. Risk takers (e.g., organizations relying on the accuracy of the data) specify freshness
policies on how fresh the database must be. The digital signatures over the database include a
timestamp of the last update as well as other versioning information. Based on assumptions con-
cerning trusted synchronization paths and synchronization bounds, clients interpret the timestamps
and verify the database is adequately recent with respect to their freshness policies.

6.5 Related Work

The use of Merkle hash trees for authentication of data is not new. This work is most closely related
to the work of Naor & Nissim [20] for revocation. Haber and Stronetta [13] use similar techniques
for timestamping. Similar schemes have also been used for micro-payments [23]. All these schemes
(including ours) share a common theme of leveraging the trust provided by a few digital signatures
from a trusted party over multiple hashes, hash paths or hash trees, with the goal of protecting
the integrity of the content, with efficient verification, since hashes are more efficient than digital
signatures. However, the use of such trees for authentic data publication is new.

There is quite bit of related work in the general area of database security, particularly on access con-
trol, statistical querying etc. [7, 16]. Anderson [3] discusses an approach to third-party publication
of data in files, but without querying over the contents. Again, to our knowledge, this particular
problem of authentic database publication has remained unexamined. Finally, our approach can
be viewed as providing “proof-carrying” [21] answers to database queries.

7 Conclusions and Future Work

We have explored the problem of authentic third party data publication. In particular, we have
developed several techniques that allow untrusted third parties to provide evidence of inclusive
and complete query evaluation to clients without using public-key signatures. In addition, the
evidence provided is linear in the size of the query answers, and can be checked in linear time. Our
techniques may involve the construction of complex data structures, but the cost of this construction
is amortized over more efficient query evaluation, as well as the production of compact verification
objects. Such pre-computation of views and indexing structures are not uncommon in, e.g., data
warehousing applications [22].

However, our techniques are restricted currently to the relational model. Our techniques do not
allow interactive querying, but can be used with embedded queries in applications. We cannot
currently construct linear-size VOs for general SQL queries, such as ones including arbitrary in-
tersections; we also leave open the (lower-bound) question as to whether such VOs are possible.
We believe, however, that our techniques are a start on an important problem area. Several recent
extensions of this work show that our techniques can be used in broader contexts.

Recent results have shown many new settings in which data structures can be efficiently digested

16



and answers verified: skip lists [11] and persistent dictionaries [1]. In addition, a broad class of data
structures was shown to be suitable for efficient use in authentic publication [17]. These results
show that our approach to authentic publication may be useful in an increasingly wide range of
settings.

We are currently investigating an authentic data publication framework in the context of the
eXtended Markup Language (XML [6]), since XML is becoming a major factor in the representation
and exchange of data over the Internet. A complicating factor in providing verification objects to
queries over such hierarchically structured data is to come up with concise and compact structures
that allow for an efficient computation of VOs. In [10], we have presented an authentic publication
framework for XML data using document type definitions (DTD). A similar approach, which does
not assume the presence of a DTD, has been presented in [15]. We are currently implementing
prototypes of the proposed frameworks for both relational and XML data. A major focus of our
research currently is the extension of the queries supported by our approach.

References

[1] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent Authenticated Dictionaries
and Their Applications. In Proc. Information Security Conference (ISC 2001), Lecture Notes
in Computer Science, vol. 2200, 379-393, 2001

[2] N.M. Amato and M.C. Loui. Checking Linked Data Structures. In Proceedings of the 24th
Annual International Symposium on Fault-Tolerant Computing (FTPS), 164–173, 1994.

[3] R. J. Anderson. The Eternity Service. In Proceedings of Pragocrypt, 1996.

[4] M. D. Berg , M. V. Kreveld, M. Overmars and O. Schwarzkopf. Computational Geometry.
Springer-Verlag, New York.

[5] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Noar. Checking the Inclusiveness of
Memories. Algorithmica, 12(2/3):225–244, 1994.

[6] T. Bray, J. Paoli, C. Sperberg-McQueen. Extensible Markup Language (XML) 1.0. W3C
Recommendation, February 1998.

[7] S. Castano, M. Fugini, G. Martella, P. Samarati. Database Security. Addison-Wesley, 1995

[8] C.J. Date. An Introduction to Database Systems (7th Ed), Addison-Wesley, 1999.

[9] C.J. Date and H. Darwen. A Guide to the SQL Standard (4th Ed), Addison-Wesley, 1997.

[10] P. Devanbu, M. Gertz, A. Kwong, C. Martel, S. Stubblebine. Flexible Authentication of XML
Documents. In Proceedings of the 8th ACM Conference on Computer and Communications
Security (CCS-8), ACM, 136–145, 2001.

[11] M. Goodrich, R. Tamassia, A. Schwerin. Implementation of an Authenticated Dictionary
with Skip Lists and Commutative Hashing. In Proceedings of the 2nd DARPA Information
Survivability Conference and Exposition (DISCEX II), 2001.

[12] A. Gupta, I.S. Mumick. Maintenance of Materialized Views: Problems, Techniques, and
Applications. Data Engineering Bulletin 18(2): 3-18, 1995,

17



[13] S. Haber and W. S. Stornetta. How to Timestamp a Digital Document. Journal of Cryptology,
3(2), 1991.

[14] S. Jajodia, P. Samarati, V. S. Subramanian, E. Bertino. A Unified Framework for Enforcing
Multiple Access Control Policies. In Proceedings ACM SIGMOD International Conference on
Management of Data, 474-485, 1997.

[15] A. Kwong and M. Gertz: Authentic Publication of XML Document Data. In 2nd International
Conference on Web Information Systems Engineering (WISE 01), 331–340, IEEE Computer
Society, 2001.

[16] T. Lunt, (Ed.) Research Directions in Database Security. Springer-Verlag, 1992

[17] C. Martel, G Nuckolls, P. Devanbu, M. Gertz, A. Kwong, S. Stubblebine. A General Model for
Authenticated Data Structures. Technical Report CSE-2001-9, December 2001, Department
of Computer Science, University of California, Davis, 2001.

[18] R.C. Merkle. A Certified Digital Signature. In Advances in Cryptology – CRYPTO ’89, 9th
Annual International Cryptology Conference, Lecture Notes in Computer Science, vol. 435,
218-238, 1989.

[19] J. Melton, A.R. Simon. SQL: 1999 - Understanding Relational Language Components. Morgan
Kaufmann, 2001.

[20] M. Naor and K. Nissim. Certificate Revocation and Certificate Update. In Proceedings of the
7th USENIX Security Symposium, 1998.

[21] G. Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ACM Press, 106-119, 1997.

[22] W.H. Inmon. Building the Data Warehouse John Wiley & Sons, 1996.

[23] S. Charanjit and M. Yung. Paytree: Amortized Signature for Flexible Micropayments. In
Proceedings of the Second Usenix Workshop on Electronic Commerce, 1996.

[24] N. Roussopoulos. Materialized Views and Data Warehouses. SIGMOD Record 27(1): 21-26,
1998.

[25] A. Silberschatz, H. Korth, S. Sudarshan. Database System Concepts (4th Edition), McGraw-
Hill, 2002.

[26] J. D. Tygar. Open Problems In Electronic Commerce. In Proceedings of the Eighteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1999.

[27] B. Yee and D. Tygar. Secure Coprocessors in Electronic Commerce Applications In Proceedings
of The First USENIX Workshop on Electronic Commerce, New York, 1995.

18



Appendix: Proof of correctness for selection verification

For now, we include here only the proof that simple selections are hard to forge. This proof is an
induction on the height of the Merkle tree corresponding to that selection. The full proof shows
that checks for all other operators are also hard to forge; then we need another induction on the
nesting depth of the operators in the query. This proof is also only for binary trees, but is easily
extended to multiway trees such as B-trees.

We assume that the client knows Hr, the correct root hash value for the Merkle tree associated
with our relation/attribute. We also assume that the client has a program (including the hash
function h) which will correctly check the VO and the answer. We now show that as long as an
adversary cannot forge values which cause collisions in h (more precision on this below), the client
will never verify an incorrect answer.

Before giving the proof we need some preliminaries that describe the process and syntax in more
detail than we had in Section 4.1. Let the correct answer S to a selection query on relation r be
the tuples tj ≤ tj+1 . . . ≤ tk. If tj isn’t the smallest tuple in r we also return tj−1, and if tk isn’t
the largest tuple in r we return tk+1, which are the largest and smallest tuples not in S. We call
this larger set Sb (S plus the boundary tuples). We assume that the tree also may have two special
tuples which are smaller than anything in r and larger than anything in r (in case the smallest
tuple is a right child or the largest a left child). Note that this assures that the root always has
two children. In addition to Sb, the client is provided with the hash values of some internal nodes
in the Merkle tree. Specifically, the answer (which is both data and the VO) can be computed by
the publisher as follows by initially calling the procedure Answer with u = R the root of the tree.
Note that we assume a syntax for the VO of the form: [Al], [Ar] where Al is the VO for the left
subtree and Ar is the VO for the right subtree.

Answer(u)
begin

If all leafs in the subtree rooted at u are in Sb, then return the single tuple if u is a leaf,
otherwise return the values of all the leaves in the form: [leaves in left subtree], [leaves in
right subtree];

If no leaf in the subtree rooted at u is in Sb, then return the hash value of u in the Merkle
tree;

If some but not all leaves in the subtree rooted at u are in Sb, then return [Answer(left-
child(u)) ], [Answer(right-child(u))];

end

Note that this construction algorithm for the answer implies a simple checking mechanism: compute
the hash value vl for the left child ul of the root using the string in the left group of [ ], then compute
the right child value vr, finally compute Hr using these two values. To check validity the client will
also compute a status variable for the current subtree rooted at u. A node’s status can be

empty: no tuples under u were returned;

right-terminated (RT): a tuple too large to be in S is under u;

right-full (RF): valid, but not right-terminated;

left-full (LF) and left-terminated (LT) are defined similarly;

19



left right parent
empty empty invalid
empty LF,R invalid
empty LT,R LT, R

non-empty LT,R invalid
L,RF LF,R L,R
L,RT empty L,RT
L,RF empty invalid
L,RT non-empty invalid.

invalid: the tuples under v are known to be an invalid answer.

The status makes sure that an answer is put together properly, e.g., if the left subtree of a node
u is right-terminated then no tuples from the right subtree of u can be in the answer, so the right
subtree status must be empty.

We compute the status as follows: a leaf is both left-full and right-full if it is in S; left-terminated
and right-full if too small; and left-full and right-terminated if too large.

In general, for a node u, if either child is invalid, u will also be invalid. If both children are valid
the following table shows how to get the parent’s status. L stands for LT or LF and R for RT or
RF. If an L or R appears as a child and parent it has the same status both times. Note that each
valid, non-empty node has two status values (for its left and right subtrees).

Attack Model We assume that the owner has constructed a Merkle hash tree of a relation r over
the selection attribute A, and the client knows the correct root hash value Hr.

We assume that publisher is the adversary, has access to the relation r, and can construct the same
Merkle hash tree; we also assume that the hash function chosen by owner cannot be feasibly forged.
Specifically, we make the following assumption about the adversary. For any selection query there
is a correct answer which the client is supposed to receive, and a correct verification computation.
In the course of the correct verification computation the client first hashes each tuple given, and
then creates a sequence of triples xj , yj , zj where zj = h(xj , yj) is the result of the jth application
of the hash function. We assume that the adversary is prohibited from

1. providing a tuple t such that t is not in r and h(t) = h(tj) for tj in r,

2. providing an answer such that in the course of the protocol client would compute zj = h(aj , bj)
and aj 6= xj or bj 6= yj (intuitively this would mean the adversary has found an alternate pair
of values which hash to the same answer), and

3. providing an answer such that in the course of the protocol client would compute h(aj , bj) = h(tj)
for tj in r (we don’t need this if the client knows the height of the tree).

Lemma 7 Under the above cryptographic assumptions, when client executes the verification pro-
tocol on an answer ADV provided by publisher, if client computes the correct root hash value Hr

and the root status is valid, ADV is in fact the correct answer and the status of the root is correct.
�

Basis We show this by induction. Consider a Merkle hash tree of height 1; this must be a root with
just two leaves t1, t2. Since the root hash Hr is known, by definition, the final step of an accepting

20



protocol must be to compute h(vl, vr) = Hr where vl = h(t1) and vr = h(t2) are the correct
hash values of the left and right subtrees. By our security assumption the only way the protocol
could get vl, vr is either by being given them directly or by being given a correct value of t1 or t2
and hashing them. The protocol cannot be given both vl and vr directly since this would mean Sb
is empty which the client knows is impossible. Thus the only way ADV might be accepted is if it
provides two tuples or one tuple and a value.

Case 1: The answer ADV is [t1], [t2] where the two tuples t1 and t2 are children of the root (if r has
only one tuple the other tuple will be the dummy tuple for maximum/minimum attribute value, if
r is empty both tuples will be dummy). Thus t1 and t2 are both claimed to be in Sb. The client will
always be able to look at the tuples to see which are actually part of the correct answer and which
are boundary tuples. The user than computes vl = h(t1), vr = h(t2), and finally V = h(vl, vr).
By our assumption this is the only hash computation that can occur while processing ADV which
can have Rh as its answer. Furthermore, no hash computation other than those listed above can
have vl or vr as its results. Thus V = Hr if and only if t1 and t2 are the correct tuple values and
no other values are provided. The protocol also has a completeness proof. For example, if t1 is in
S and t2 is too large to be in r, since the client knows that t2 is t1’s right sibling, t1 must be the
largest tuple in S. In this case the root status would be left-full, right-terminated.

Case 2: The adversary might also get the correct root value computed by providing ADV = [t1], [vr].
This is one tuple value (t1), and the hash value of the other tuple (in essence claiming that Sb =
{t1}). However, this means the protocol would see the right subtree as empty, so the root is only
valid if the left subtree is right-terminated. This would only be the case if t1 is too large to be in
S, and since the algorithm has the correct value of t1 it will know if this is the case.

The setting where ADV is [vl], [t2] is analogous.

Induction Step We now assume that the lemma holds for any tree of height less than i, namely
that when we apply our protocol to a non-empty tree of height less than i, we get the correct root
value and valid status if and only if we are given a correct answer (tuples and hash values) for that
tree.

Now consider a Merkle hash tree of height i rooted at R of height i ≥ 2, with two immediate
subtrees rooted at ul and ur with hash values vl and vr. ADV must be of the form [Al], [Ar] where
Al and Ar are answer strings which our Answer protocol can parse. If the answer does not have this
high level form it will be immediately rejected since a correct answer cannot be empty (it always
has the boundary tuples).

As the final step of an accepting protocol we must compute Hr = h(vl, vr). By our assumption, the
only way the protocol when run on ADV can yield Hr as its final value is if the protocol evaluates
Al to vl and Ar to vr and ends with a valid status for both nodes.

The trees rooted at ul and ur are of height less than i. Furthermore, the protocol treats non-empty
subtrees exactly as it does the entire tree. Thus by the induction hypothesis, if Al is non-empty,
and produces the correct hash value and a valid status, then it must include the correct tuples and
end with the correct status for ul (and similarly for ur).

If Al, Ar are both non-empty, evaluate to the correct hash values, and have a valid status, they are
the correct trees and thus must fit together in a valid way (e.g., we will never have them both be
right-terminated). However, if one of the trees is empty we cannot apply our induction hypothesis
to it (since this only works for non-empty trees). So suppose that we have simply been given
Al = vl as part of ADV (this is easy for the adversary since vl is known). In order for the root to
get a valid status, the status of ur must be left-terminated (we don’t care if its right-terminated or

21



full, either is OK). However, if ur is left-terminated and correct, we know that ul should be empty,
and we are again correct to conclude that the root status is valid. The case where ur is empty is
analogous.

Thus in all cases we can extend the correctness of our protocol to a tree of height i and the lemma
follows.

22


