
DOI: 10.1007/s00145-016-9248-2
J Cryptol (2017) 30:1276–1324

Authenticated Confidential Channel Establishment and
the Security of TLS-DHE∗

Tibor Jager
Department of Computer Science, Paderborn University, Paderborn, Germany

tibor.jager@upb.de

Florian Kohlar · Sven Schäge · Jörg Schwenk
Horst Görtz Institute for IT Security, Ruhr-University Bochum, Bochum, Germany

florian.kohlar@rub.de, sven.schaege@rub.de, joerg.schwenk@rub.de

Communicated by Hugo Krawczyk.

Received 6 November 2014 / Revised 5 November 2016
Online publication 18 January 2017

Abstract. Transport Layer Security (TLS) is the most important cryptographic pro-
tocol in use today. However, finding a cryptographic security proof for the complete,
unaltered protocol has proven to be a challenging task.We give the first such proof in the
standard model for the core cryptographic protocol underlying TLS cipher suites based
on ephemeral Diffie–Hellman key exchange (TLS-DHE). This includes the cipher suite
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, which is mandatory in TLS 1.0 and
TLS 1.1. It is impossible to prove the TLS Handshake secure in the classical security
models of Bellare–Rogaway and Canetti–Krawczyk. The reason for this is that the fi-
nal Finished messages of the TLS Handshake are encrypted with the session key,
which provides an opportunity to distinguish real keys from random values. Therefore
we start with proving the security of a truncated version of the TLSHandshake protocol,
which has also been considered in previous work on TLS, and give the first proof of
this variant in the standard model. Then we define the new notion of authenticated and
confidential channel establishment (ACCE), which allows the monolithic analysis of
protocols for which a modular security proof is not possible. We show that the combi-
nation of the TLS-DHE Handshake protocol and the TLS Record Layer encryption is
secure in this model. Since the conference publication of this paper, the notion of ACCE
has found many further applications, for example to the analysis of further TLS cipher
suites (Krawczyk et al., Crypto 2013; Li et al., PKC 2014), advanced mechanisms like
secure renegotiation of TLS session keys (Giesen et al., CCS 2013), and other practical
protocols like EMV channel establishment (Brzuska et al., CCS 2013), SSH (Bergsma
et al., CCS 2014), and QUIC (Lychev et al., S&P 2015).

Keywords. Authenticated key exchange, Authenticated confidential channel estab-
lishment (ACCE), SSL, TLS.

∗ This is an extended full version of a conference paper published at Crypto 2012 [52]. This work has been
supported in part by the European Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II.

© International Association for Cryptologic Research 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-016-9248-2&domain=pdf

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1277

1. Introduction

Transport Layer Security (TLS) is the most important Internet security mechanism
today. Due to a subtle interleaving of the TLS Handshake protocol with the data encryp-
tion in the TLS Record Layer, it is impossible to prove the security of TLS using well-
established security models [26,31,35], which define security via indistinguishability of
keys. Prior to this work, there was no security proof for the complete protocol. Instead,
all prior work either considered a modified version of the TLS Handshake [51,75], or
weaker security goals [50].
In this paper, we provide new security results for the core cryptographic protocol of

TLS based on ephemeral Diffie–Hellman key exchange (TLS-DHE). We give the first
formal proof in the standard model that the truncated version of the TLS Handshake
protocol, which has been subject to prior work on TLS [51,75], is an authenticated key
exchange protocol in a security model that extends the Bellare–Rogaway model [26] to
the public-key setting with adaptive corruptions and perfect forward secrecy (cf. [30]).
Then we extend both the model and the proof to cover the combination of the TLS
Handshake protocol with the TLS Record Layer, which allows us to show the security
of the cryptographic core of a full TLS cipher suite.
In our analysis, we assume that the majority of building blocks of TLS-DHE (digi-

tal signature scheme, Diffie–Hellman key exchange, symmetric cipher) meets standard
security properties. Solely for the pseudo-random function, we require an additional
non-standard security assumption (PRF-ODH), which is a variant of the Oracle Diffie–
Hellman assumption [1]. We also explain why such a non-standard assumptions seems
hard to avoid, if a security model with corruptions is considered. Our proofs are stated
for mutual authentication.

Proving Security of TLS The full TLSHandshake does not provide indistinguishable
keys due to an interleavingof the key exchangepart ofTLS (theTLSHandshakeprotocol)
and the data encryption in the TLS Record Layer. This interleaving provides a ‘check
value’ that allows to test whether a given key is ‘real’ or ‘random’. More precisely, the
final messages of the TLS Handshake protocol (the Finished messages), which are
essential to provide security against active adversaries, are first prepended with constant
byte values (which provides us with known plaintext), then integrity protected by a
MAC (which is instantiated with a pseudo-random function) and encrypted with the
keys obtained from the TLS Handshake protocol.
Thus, whenever an adversary receives a challenge key in response to a Test query,

he can try to decrypt the Finished message and check validity of the plaintext. If
this succeeds, he will output ‘real’, and otherwise ‘random’. This makes it difficult to
prove the full TLS Handshake protocol secure in any standard security model based on
indistinguishability of keys. Morissey et al. [75] have therefore introduced a truncated
TLS Handshake protocol, where the final encryption of the Finished messages is
omitted, and have shown its security in the Random Oracle Model.

1.1. Contributions

The paradox that the most important AKE protocol cannot be proven secure in any exist-
ing security model can be solved in two ways. Either one considers a truncated version

1278 T. Jager et al.

of the TLS Handshake by omitting the encryption of the two Finishedmessages, or a
new security model for TLS must be devised. In this paper, we follow both approaches.
First, we give a security proof for the truncated version of the TLS-DHE Handshake

protocol, in the standard model. This allows to compare our results to previous work.
The proof relies on the DDH assumption, an additional assumption called PRF-ODH,
and the assumption that the building blocks of TLS (i.e. the signature scheme and the
pseudo-random function) have certain standard security properties. It remains to analyse
whether the building blocks have the required properties. Here we can partially build on
previous work that analysed particular TLS components, see Sect. 1.2 for details.
Second, we define the notion of authenticated and confidential channel establishment

(ACCE). ACCE protocols are an extension of AKE protocols, in the sense that the
symmetric cipher is integrated into the model. In contrast to AKE protocols, where
one requires key indistinguishability, we demand that a secure ACCE protocol allows
to establish a ‘secure communication channel’ in the sense of stateful length-hiding
authenticated encryption [81]. Loosely speaking, an ACCE channel guarantees that
messages written to this channel are confidential (indistinguishable, and even the length
of messages is concealed up to some granularity), that their integrity is preserved, and
that a sequence of messages read from this channel corresponds exactly to the sequence
of messages sent by the legitimate sender (of course up to dropping messages at the
very end of the sequence, which is always possible). Since the conference publication
of this paper, the notion of ACCE has found many further applications, for example to
the analysis of further TLS cipher suites [61,64,72], advanced mechanisms like secure
renegotiation of TLS session keys [49], and other practical protocols like EMV channel
establishment [28], SSH [9], and QUIC [69,70], or post-quantum ACCE [86].
ACCE captures exactly the properties expected from TLS-like protocols. We prove

that the core of the full TLS-DHE cipher suites, i.e. the combination of the TLS Hand-
shake with the TLS Record Layer, forms a secure ACCE protocol, if the Record Layer
provides security in the sense of stateful length-hiding authenticated encryption [81].
Note that CBC-based Record Layer protocols have been shown to provide length-hiding
authenticated encryption by Paterson et al. [81].
Finally, we discuss the subtle property of TLS-DHE, which seems to make it hard to

prove security without making an additional non-standard assumption, PRF-ODH. We
also discuss several options to obtain a security proof using only standard assumptions,
which include considering a weaker security model that disallows corruptions, andmod-
ifications to TLS-DHE.
Practical Impact Since the first publication of these results in 2012, support for TLS-
DHE has increased significantly, since it is the only family of cipher suites providing
perfect forward secrecy (PFS). Today more than 85% of all TLS servers support at least
one TLS-DHE cipher suite, and the majority of them automatically switches to TLS-
DHE if negotiating with a modern browser.1 At the same time, mutual authentication
is rarely used in practice. Typically, TLS is first used to authenticate the server and to
establish a ’secure communication channel’ between client and server. In the next step,
the client authenticates itself by sending his authentication information over this secure
communication channel to the server.

1SSL Pulse at https://trustworthyinternet.org, retrieved September 2016.

https://trustworthyinternet.org

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1279

We believe that our result is nevertheless of practical value. First, the TLS-DHE-based
cipher suite TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is mandatory for TLS 1.0
and 1.1, which are both still in widespread use. Only the most recent version TLS 1.2
prescribes TLS with encrypted key transport as mandatory. In addition, the next version
of TLS, currently discussed as TLS 1.3, will only support TLS-DHE-based cipher suites,
albeit in a totally different handshake.
Second, in our analysis we can show that TLS-DHE provides perfect forward se-

crecy—a very strong form of long-term security, which basically requires that future
compromises of long-term secrets do not threaten past communication sessions. With
encrypted key transport, as in TLS-RSA, this is not achievable, since an attacker that
compromises the long-term key (the private decryption key) can easily obtain session
keys from previous sessions by just decrypting recorded encryptions of session keys. To
better protect users from the consequences of such key-compromise attacks and offer
better long-term security, service providers might therefore consider to switch to the
(exclusive) use of TLS-DHE.

Interpretation Our results show that the core cryptographic protocol of TLS is cryp-
tographically sound, if the building blocks are suitably secure. By combining our work
with [81], we obtain a standard model security proof of core TLS 1.1 and 1.2 for current
cipher suites if we assume directly that the signature scheme is EUF-CMA secure.2

Our results can also be seen as a ‘stepping stone’ towards a TLS version with a
complete security proof in the standard model. Essentially, we identify certain security
properties and prove that the TLS protocol framework yields a secure ACCE protocol
under the assumption that the TLS building blocks satisfy these properties.

Choice of Security Model Authenticated key exchange is a basic building block
in modern cryptography. However, since many different security models for differ-
ent purposes exist [25,26,30–32,35,37,71], choosing the right model is not an easy
task and must be considered carefully. We have to take into account that we can-
not modify any detail in the TLS protocol. We have chosen an enhanced variant of
the first model of Bellare and Rogaway [26]. Variants of this model have also been
studied by [30,32], in particular by [75]. Detailed reasons for our choice are given in
“Appendix A”.

1.2. Security Requirements on TLS Building Blocks

In our proofs,we reduce the security of ephemeralDiffie–Hellman cipher suites to certain
security properties of the building blocks of TLS. These building blocks (see Sect. 3 for
precise definitions) are:

Pseudo-random function For the pseudo-random function used in TLS, we essen-
tially require that (i) it is secure in the standard sense (seeDefinition 3) and (ii) it meets an
additional requirement, PRF-ODH. The additional requirement on the PRF is related to
the Oracle Diffie–Hellman (ODH) assumption, as introduced by Abdallah, Bellare, and

2To our best knowledge, there is no security proof for the currently used schemes, but also no result
contradicting this assumption.

1280 T. Jager et al.

Rogaway in 2001 to prove security of DHIES [1]. Although the PRF-ODH assumption
is non-standard, it is, in a way, the best we can achieve. We argue in Sect. 8 why we
need this assumption for a proof in our security model. We also remark in Sect. 8 that
we can obtain a proof under the DDH assumption instead of PRF-ODH, if we (a) either
do not allow corruptions or (b) slightly modify the TLS Handshake. However, although
the latter idea might guide future revisions of the TLS standard, it is not an option for the
current work in which we are concerned with the security of the present TLS protocol.
Disallowing corruptions on the other handwouldmake the securitymodel unrealistically
weak.
All TLS versions specify a HMAC-based construction of PRF that relies on differ-

ent cryptographic hash functions. TLS 1.2 prescribes the use of SHA-256 [45], while
previous standards used MD5 [84] and SHA-1 [46]. Foque et al. (Theorems 6,7 in [48])
were able to show that the pseudo-random function of TLS 1.2 constitutes a computa-
tionally strong randomness extractor for two different key spaces simultaneously (albeit
under different security assumptions, which, however, all are related to the fact that the
compression function of the underlying hash function behaves like a pseudo-random
function)—the key may be either a random bit string, or a random element of a prime-
order group (either a group defined over an elliptic curve or a subgroupof Z∗

p). Theirwork
focuses on TLS 1.2, while stressing that the implementation of the key derivation func-
tion is not very different from the previous standards. We believe that similar results can
be obtained for TLS 1.0 and TLS 1.1. Complementing this, Fischlin, Lehmann, andWag-
ner showed that the same function also meets the strong security definition for pseudo-
random functions [47] when used with a uniformly random key. In their analysis, Fis-
chlin et al. relied on a result of Bellare [10] that shows the pseudo-randomness ofHMAC.

Symmetric encryption The purpose of the TLS protocol is to establish an authenti-
cated symmetric secret between two parties first (in the TLSHandshake), and then to use
this secret to provide a ‘secure communication channel’ based on symmetric encryption
(in the TLSRecord Layer).While the informal idea of a ‘secure communication channel’
is simple, defining its security requirements precisely is not so trivial.
For instance, it is well known that using IND-CCA secure encryption in the Record

Layer is not sufficient to provide what is expected from a secure TLS channel, since it
does not prevent many relevant attacks, e.g. it does not rule out replaying, dropping, or
reordering of ciphertexts (cf. [21]). This issue can be solved by using a suitable stateful
encryption scheme [17,18]. TLS uses a ‘MAC-then-Encode-then-Encrypt’ (MEE) ap-
proach where a sequence counter is included in the MAC of each ciphertext. Moreover,
it is well known that sometimes even only the plaintext length may reveal valuable in-
formation to an adversary, such as web browsing habits (e.g. [85]) or spoken phrases
in Voice-over-IP connections (e.g. [88]). Therefore TLS may utilize variable-length en-
coding to conceal the plaintext length up to some granularity.
To capture such requirements, the notion of stateful length-hiding authenticated en-

cryption (stateful LHAE) was introduced by Paterson et al. [81], as a formalization of
the security properties that are expected from the TLS Record Layer encryption. The au-
thors of [81] found that CBC-based Record Layer protocols of TLS 1.1 and 1.2 provably

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1281

meet this security goal under reasonable assumptions.3 The results are not applicable
to TLS 1.0, since it is well known that this version is insecure against chosen-plaintext
attacks [5,6] since initialization vectors are not always chosen at random.

Digital signatures Our analysis furthermore requires that the employed signature
scheme is secure in the standard sense of existential unforgeability under adaptive
chosen-message attacks (seeDefinition2).The currentTLSstandards offer three different
signature schemes for authentication: RSASSA-PKCS#1 v1.5 [56], DSA [67], and
ECDSA [53]. To our knowledge, currently there exists no security proof for these sig-
nature schemes under standard complexity assumptions. In the random oracle model,
DSA and ECDSA are provably secure. More details can be found in [82,87].

1.3. Previous Work on TLS

Because of its eminent role, TLS and its building blocks have been subject to several
security analyses. In 1996, Schneier and Wagner presented several minor flaws and
some new active attacks against SSL 3.0 [89]. Starting with the famous Bleichenbacher
attack [19], many papers focus on various versions of the PKCS#1 standard [56] that
defines the encryption padding used in TLS with RSA-encrypted key transport [34,51,
59,60]. At Crypto’02, Johnson and Kaliski showed that a simplified version of TLS with
padded RSA is IND-CCA secure when modelling TLS as a ‘tagged key-encapsulation
mechanism’ (TKEM) [51] under the strong non-standard assumption that a ‘partial RSA
decision oracle’ is available.
In an independent line of research, severalworks analysed (simplified versions of) TLS

using automated proof techniques in the Dolev–Yao model [44]. Proofs that rely on the
Dolev–Yao model view cryptographic operations as deterministic operations on abstract
algebras. There has been some work on simplified TLS following the theorem proving
and model checking approach. Mitchell et al. used a finite-state enumeration tool named
Murphi [74].Ogata andFutatsugi used the interactive theoremproverOTS/CafeObj [79].
Paulson used the inductive method and the theorem prover Isabelle [80]. Unfortunately
it is not known whether these proofs are actually cryptographically sound.
Bhargavan et al. [11] go two steps farther: first, they automatically derive their formal

model from the source code of anTLS implementation, and second they try to automatize
computational proofs using the CryptoVerif tool. Chaki and Datta [33] also use source
code of TLS, automatically find a weakness in OpenSSL 0.9.6c, and claim that SSL 3.0
is correct.
In 2008, Gajek et al. [50] studied TLS in the Universal Composability (UC) frame-

work [31]. The security definitions given in this paper (the ‘ideal functionalities’) are
strictly weaker than the security guarantees we expect fromTLS: for the Handshake part,
only unauthenticated key exchange is modelled (FKE), and thus the secure communi-
cation channel functionality (FSCS) only guarantees confidentiality, not authenticity of
endpoints. The paper further assumes that RSA-OAEP is used for encrypted key trans-
port, which is not the case for current versions of TLS. Küsters and Tuengerthal [65]

3The proceedings version of [81] contains only a proof of stateless LHAE security. However, as also noted
in [81], it is straightforward to adopt the results to the stateful setting.

1282 T. Jager et al.

claim to prove composable security for TLS assuming only local session identifiers,
but leave out all details of the proof and only point to [50]. Moreover, Küsters and
Tuengerthal point out that [50] also consider a modified TLS protocol, due to the need
of unique session identifiers in UC.
Morissey et al. [75] analysed, in a paper that is closest to our results, the security

of the truncated TLS Handshake protocol (cf. Sect. 5) in the random oracle model and
provided a modular proof of security for the established application keys. They make
extensive use of the random oracle model to separate the three layers they define in
the TLS Handshake and to switch from ‘computational’ to ‘indistinguishability-based’
security models. The proof of Morissey et al. proceeds in three steps, and the order
of messages of the TLS Handshake is slightly changed to better separate these three
steps. They first consider a very weak class of passively secure key exchange protocols
where the session key cannot be computed from the session transcript. As an example,
when considering encrypted key transport (of the premaster secret) this requirement can
easily be fulfilled if the employed public-key encryption scheme is OW-CPA secure.
Next they define a slightly stronger security notion that additionally protects against
unknown key share attacks and show that it applies to the master secret key exchange of
TLS. Again security of the key is defined in a one-way sense. In the last step, they show
that the ‘application keys’ (i.e. the encryption keys and MAC keys) produced by TLS
fulfil the standard notion of security, namely indistinguishability from random values.
The use of the random oracle model is justified by the authors by the fact that it seems
impossible to prove the PKCS#1 v1.5-based cipher suites of TLS secure in the standard
model.
The work of Morissey et al. [75], which can be seen as a reference for the TLS

Handshake protocol, considers also security of RSA-based cipher suites and thus is
much broader in scope than our paper, but it does not cover our analysis of the TLS-
DHE cipher suite. The modular proof strategy used in this paper is essentially bound
to the random oracle model, since secure protocols for the premaster phase only yield
secure protocols for the master phase if the master secret is derived from the premas-
ter secret by evaluating a random oracle. Thus the ROM is used not only to allow
a security proof for TLS-RSA cipher suites, but also to allow for a modular proof
technique.
Paterson, Ristenpart, and Shrimpton [81] introduce the notion of length-hiding au-

thenticated encryption, which aims to capture the properties from the TLS Record Layer
protocols. Most importantly, they were able to show that CBC-based cipher suites of
TLS 1.1 and 1.2 meet this security notion. This work matches nicely our results on
the TLS Handshake protocol. Their paper extends the seminal work of Bellare and
Namprempre [23,24] on authenticated encryption and on the analysis of different Mac-
then-Encode-then-Encrypt (MEE) schemes analysed by Krawczyk [62] andMaurer and
Tackmann [77].

1.4. Subsequent Work on TLS and ACCE

Applications of ACCE We propose the ACCE security model as a tool for the mono-
lithic analysis of cryptographic protocols when a completely modular security analysis
in simpler security models, like the BR [26] model or the CK [35] model, is not possible.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1283

Subsequent to the publication of the conference version [52] of this paper, many works
have adopted the ACCE model to prove security of other practical protocols that re-
quire a monolithic analysis. Some belong to the TLS family, while some are not directly
related to TLS. In the sequel, we give an overview over recent developments in this
direction.
Krawczyk, Paterson, andWee [61] and concurrentlyKohlar, Schäge, andSchwenk [64]

used the ACCE model to provide security analyses for several other TLS cipher suites.
To this end, they adopted the ACCE model to a setting where only the server is authen-
ticated cryptographically (whereas we consider mutual cryptographic authentication).
Most importantly, they are able to analyse the families of TLS-RSA and TLS-DH cipher
suites. The work of Krawczyk et al. presents a refined analysis of (the cryptographic core
of) TLS, which is more modular than our approach and that of the dedicated analyses
of [64].
Further extending the coverage of various TLS cipher suites, Li et al. [72] give a

security proof for TLS cipher suites with authentication via pre-shared keys (TLS-
PSK). To this end, they extend the ACCE model to also cover authentication mecha-
nisms with symmetric long-term secrets. To model PKI-related attacks, [64,72] extend
the ACCE definition to also allow the adversary register new public (or pre-shared)
keys.
The full TLS protocol suite is much more complex than the cryptographic core con-

sidered in this paper and in [61,64,72]. For instance, it additionally includes features like
interactive agreement on a cipher suite, andmechanisms for renegotiation or abbreviated
handshakes.Recently, the notion ofACCEsecurity has also turned out useful for the anal-
ysis of protocols in suchmore complex settings. At CCS 2013, Giesen et al. [49] describe
an extended ACCE model, which additionally includes a formal treatment of renegoti-
ation in secure channel establishment protocols. Furthermore, Giesen et al. analyse the
security of TLS with renegotiation, in particular the effectiveness of a countermeasure
against the attack of Ray and Dispensa [83] employed in TLS.
The notion of ACCE security and adoptions of it to the specific needs of other practical

protocols have also been used to analyse the security of constructions beyond TLS. At
CCS2013,Brzuska et al. [28] give a security proof for the channel establishment protocol
of EMV. In a paper published at CCS 2014, Bergsma et al. [9] consider the security of
the secure shell (SSH) protocol in a multi-cipher suite setting. Lychev, Jero, Boldyreva,
and Nita-Rotar [69,70] provided a formal security analysis of Google’s QUIC protocol,
based on an ACCE variant for low-latency protocols called ‘QACCE’.
One aspect of the relationship between AKE and ACCE was clarified by Brzuska et

al. in [16]. The authors showed that secure TLS-like ACCE systems, i.e. systems that
use some master secret to derive all subsequent keys, can be used to generate exportable
session keys that are indistinguishable from random values.

Recent work on TLS (as a cryptographic protocol) A reference implementa-
tion of TLS 1.2, called miTLS, was presented by Bhargavan et al. [12], along with
an automated verification of this implementation with the F7 typechecker. Their work
allows to handle many advanced features of TLS, including full and abbreviated hand-
shakes, but relies heavily on automation. In a different paper, Bhargavan et al. [13]
use automated tools to analyse the miTLS reference implementation, including cipher

1284 T. Jager et al.

suite negotiation, key exchange, renegotiation, and resumption, and give a security proof
based on the EasyCrypt [15] tool in combination with F7 typechecking and additional
‘manual’ proofs. An elaborate attack on authentication in TLS, which exploits a subtle
combination of RSA and Diffie–Hellman cipher suites, session resumption, and session
renegotiation (the ‘Triple Handshake Attack’), is described in [8]. A security analysis of
TLS 1.2 and the recent draft of TLS 1.3 in the constructive cryptography framework is
given in a recent paper by Kohlweiss et al. [57].
A different perspective on the PRF-ODH assumption is that this assumption essen-

tially guarantees that the combination of Diffie–Hellman with the PRF in TLS forms
a secure (one-time) key-encapsulation mechanism (KEM). This KEM-based view pro-
vides a more abstract and more modular view on this part of the TLS protocol. It was
introduced and used in [13,61]. A nice feature of this more abstract view is that it makes
the security analysis of TLS more modular and enables the analysis of TLS cipher suites
beyond TLS-DHE, including TLS-RSA and TLS-DH.

Attacks onTLS Itmay seemstrange that security proofs onTLSappear simultaneously
with practical attacks on the protocol. This, however, does not contradict the proofs, since
in each case one of the preconditions of the given security proofs has been violated, or
a more complex scenario has been used.
In [2] and [3], a timing side channel from the Record Layer allows for data decryp-

tion. For CRIME [43], the length-hiding property of the Record Layer was broken. In
POODLE [73], a padding oracle was used to break the Record Layer.
In [8], the combination of three different handshakes was shown to have some weak-

nesses. In [7] and [54], weaknesses in the implementations of some libraries were ex-
ploited, which failed to enforce the correct order of handshake messages, or the use of
the correct EC group in cryptographic computations. In [39], it was assumed that the
same RSA key pair was used in different protocol versions and for different purposes
(encryption and signature verification).
TLS 1.3. The IETF is currently standardizing the successor of TLS1.2, under theworking
title of TLS 1.3. It is a major revision of TLS and changes nearly every aspect of the
protocol, from the handshake layout (only 1.5 RTT instead of 2 RTT for all previous
TLS versions), the supported handshake families (only TLS-DHE will be supported),
the Record Layer (a move to authenticated encryption), and even the security model: the
main components of TLS 1.3 can be shown secure in classical AKE models.
The security of the novel handshake candidates has been studied in [39,40,58], the

security of the novel Record Layer in [22,29]. A cross-version attack on TLS 1.3 has
been described in [55]. A one-round key-exchange (ORKE)-based proposal as TLS 1.3
Handshake candidate, which had great influence on the standardization of Version 1.3,
has been published in [66].

1.5. Alternatives to ACCE

Brzuska et al. [14] proposed relaxed game-based security notions for key exchange.
This independent approach may serve as an alternative to ACCE to circumvent the
impossibility of proving the TLS Handshake secure in a key-indistinguishability-based
security model.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1285

At Crypto 2014, Bhargavan et al. [13] presented the idea of modifying the security
model in a different way in order to allow a security analysis of full TLS. Instead of
including the record layer encryption into the model, as we do for ACCE, they intro-
duce a novel non-standard key-indistinguishability-based security model. Essentially,
the main novel idea behind their model is to release a real-or-random session key to the
adversary immediately after the key is computed in the protocol. In particular, when TLS
is considered in this model, then the key is released before the encrypted Finished-
messages are sent. Bhargavan et al. [13] only consider the TLS Handshake without the
encapsulating record layer. Therefore they essentially consider what we call ‘truncated
TLS’. However, interestingly and importantly the early key release idea seems to enable
a generic composition of truncated TLS with a suitably secure record layer encryption
scheme to establish the security of full TLS. The security definition of [13] focuses on the
handshake and therefore does not define or prove security for record layer encryption.
In contrast, the goal of ACCE is to capture all relevant security properties commonly
expected from the cryptographic core of TLS.

2. Preliminaries and Definitions

We denote with ∅ the empty string and with [n] = {1, . . . , n} ⊂ N the set of integers

from 1 to n. If A is a set, then a
$← A denotes the action of sampling a uniformly random

element from A. If A is a probabilistic algorithm, then we write a
$← A to denote that

A is run with fresh random coins, producing output a.

2.1. The Decisional Diffie–Hellman Assumption

Let G be a group of prime order q, and for b ∈ {0, 1} letExpADDH(b) denote the following
security experiment.

1. Let T0:=(g, gx , gy, gxy) and T1:=(g, gx , gy, gz) for x, y, z
$← Zq .

2. Run b′ $← A(Tb) and output b′.

Definition 1. We say that adversary A (t, εDDH)-breaks the DDH assumption in G, if
A runs in time t and

∣
∣
∣Pr

[

ExpADDH(0) = 1
]

− Pr
[

ExpADDH(1) = 1
]∣
∣
∣ ≥ εDDH

2.2. Digital Signature Schemes

A digital signature scheme is a triple SIG = (SIG.Gen,SIG.Sign,SIG.Vfy), con-

sisting of a key generation algorithm (sk, pk)
$← SIG.Gen(1κ) generating a (public)

verification key pk and a secret signing key sk on input of security parameter κ , signing

algorithm σ
$← SIG.Sign(sk, m) generating a signature for messagem, and verification

algorithm SIG.Vfy(pk, σ, m) returning 1, if σ is a valid signature for m under key pk,
and 0 otherwise.

1286 T. Jager et al.

Consider the following security experiment played between a challenger C and an
adversary A.

1. The challenger generates a public/secret key pair (sk, pk)
$← SIG.Gen(1κ), the

adversary receives pk as input.
2. The adversary may query arbitrary messages mi to the challenger. The challenger

replies to each query with a signature σi = SIG.Sign(sk, mi). Here i is an index,
ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can be made adaptively.

3. Eventually, the adversary outputs a message/signature pair (m, σ).

Definition 2. We say that adversary A (t, εSIG)-breaks the existential unforgeability
under adaptive chosen-message attacks (EUF-CMA) of SIG, if A runs in time t and

Pr
[

(m, σ)
$← AC(pk) : SIG.Vfy(pk, m, σ) = 1 ∧ m �∈ {m1, . . . , mq}

]

≥ εSIG

Note that we have q ≤ t , i.e. the number of allowed queries q is bound by the running
time t of the adversary.

2.3. Pseudo-Random Functions and the PRFODH Assumption

A pseudo-random function is an algorithm PRF. This algorithm implements a deter-
ministic function z = PRF(k, x), taking as input a key k ∈ KPRF and some bit string
x , and returning a string z ∈ {0, 1}μ. Let ExpAPRF(b) denote the following security
experiment.

1. Let F0(·):=PRF(k, ·), where k
$← KPRF is a uniformly random key.

2. Let F1 be a random function with the same domain and range as PRF.

3. Run b′ $← AFb . Whenever A queries an input value x to Fb, respond with z =
Fb(x). Queries can be made adaptively. Finally, output b′.

Definition 3. We say that adversaryA (t, εPRF)-breaks the security of PRF, if it runs
in time t and

∣
∣
∣Pr

[

ExpAPRF(0) = 1
]

− Pr
[

ExpAPRF(1) = 1
]∣
∣
∣ ≥ εPRF

Remark 1. In 2008, Fouque et al. [48] showed that the HMAC-based key derivation
function of TLS is a computationally strong randomness extractor for the source distri-
butions S1 and S2 where (1) S1 is a prime-order group of size |S1| = q that is either
defined over an elliptic curve or as a subgroup of Z

∗
p such that q|p − 1, and (2) S2 is

the set of l-bitstrings S2 = {0, 1}l and l is the size of the master secret (l = 384). The
underlying security assumptions are all related to the fact that the compression function
of the hash function used in HMAC behaves like a pseudo-random function. Addition-
ally, Fischlin et al. showed while relying on the pseudo-randomness of HMAC [10]
that the pseudo-random function used in TLS is a pseudo-random function [47]. In the
following, we will rely on the unifying assumption that the key derivation function in
TLS is a pseudo-random function for key space S1 and S2.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1287

LetG be agroupwith generator g. LetPRFbe adeterministic function z = PRF(X, m),
taking as input a key X ∈ G and some bit string m, and returning a string z ∈ {0, 1}μ.
Let ExpAPRF-ODH(b) be the following security experiment.

1. The adversary A outputs a value m.

2. The experiment samples u, v
$← [q], z1

$← {0, 1}μ uniformly random and sets
z0:=PRF(guv, m). Then it returns zb, gu and gv to the adversary.

3. The adversary may query a pair (X, m′) with X �= gu to the experiment. The
experiment replies with PRF(Xv, m′).

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

Definition 4. We say that adversary A (t, εPRF-ODH)-breaks the PRF-ODH assump-
tion with respect to G and PRF, if it runs in time t and it holds that

∣
∣
∣Pr

[

ExpAPRF-ODH(0) = 1
]

− Pr
[

ExpAPRF-ODH(1) = 1
]∣
∣
∣ ≥ εPRF-ODH

The PRF-Oracle-Diffie–Hellman (PRF-ODH) assumption is a variant of the ODH
assumption introduced by Abdalla, Bellare, and Rogaway in [1], adopted from hash
functions to PRFs. In contrast to allowing a polynomial number of queries as in the
original assumption [1], we allow only a single oracle query.

2.4. Collision-Resistant Hashing

Definition 5. We say that adversary A (t, εH)-breaks the collision resistance of hash
function H, if it runs in time t and it holds that

Pr
[A(H) = (m, m′) : m �= m′ ∧ H(m) = H(m′)

] ≥ εH

2.5. Stateful Length-Hiding Authenticated Encryption

Let us now describe the stateful variant of LHAE security. The following description
and security model were obtained from the authors of [81] via personal communication,
see [81] for a detailed discussion and motivation of this security model.

A stateful length-hiding symmetric encryption scheme consists of three algorithms
StE = (StE.Init,StE.Enc,StE.Dec). Algorithm (ste, std) = StE.Init() initializes all

states used by the encryption scheme.Algorithm (C, st ′e)
$← StE.Enc(k, len, H, m, ste)

takes as input a secret key k ∈ {0, 1}κ , an output ciphertext length len ∈ N, some header
data H ∈ {0, 1}∗, a plaintext m ∈ {0, 1}∗, and the current state ste ∈ {0, 1}∗, and
outputs either a ciphertext C ∈ {0, 1}len and an updated state st ′e or an error symbol ⊥.4

Algorithm (m′, st ′d) = StE.Dec(k, H, C, std) takes as input a key k, header data H , a
ciphertext C , and the current state std ∈ {0, 1}∗ and returns an updated state st ′d and a
value m′ which is either the message encrypted in C , or an error symbol ⊥ indicating
that C is not a valid ciphertext.

4For instance, if the output length len is smaller than the length of message m.

1288 T. Jager et al.

Encrypt(m0, m1, len, H): Decrypt(C, H):
u := u + 1 v := v + 1
(C(0), st

(0)
e) $← StE.Enc(k, len, H, m0, ste) If b = 0, then return ⊥

(C(1), st
(1)
e) $← StE.Enc(k, len, H, m1, ste) (m, std) = StE.Dec(k,H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C �= Cv or H �= Hv, then phase := 1
(Cu, ste) := (C(b), st

(b)
e) If phase = 1 then return m

Return Cu Return ⊥

Fig. 1. Encrypt and Decrypt oracles in the stateful LHAE security experiment.

For b ∈ {0, 1}, let ExpAsLHAE(b) denote the following experiment.

• Choose k
$← {0, 1}κ , and set (ste, std)

$← StE.Init.

• Run b′ $← AEncrypt,Decrypt and output b′.
Here AEncrypt,Decrypt denotes that A has access to two oracles Encrypt and Decrypt.
The encryption oracle Encrypt(m0, m1, len, H) takes as input two messages m0 and
m1, length parameter len, and header data H . It maintains a counter u which is initialized
to 0. Oracle Decrypt(C, H) takes as input a ciphertext C and header H and keeps a
counter v and a variable phase; both are initialized to 0. Both oracles process a query
as defined in Fig. 1.

Definition 6. We say that adversary A (t, εsLHAE)-breaks the stateful symmetric en-
cryption scheme, if A runs in time t and

∣
∣
∣Pr

[

ExpAsLHAE(0) = 1
]

− Pr
[

ExpAsLHAE(1) = 1
]∣
∣
∣ ≥ εsLHAE

Remark 2. The sequence numbers used in the computation of the TLS Record Layer
MACs are contained, for each direction, in the state information ste and std . If they do
not match, decryption will fail. The counters u and v are additional counters needed to
define the security experiment.

3. Transport Layer Security

The current version of TLS is 1.2 [42]; it coexists with its predecessors TLS 1.0 [38]
and TLS 1.1 [41]. In the following, we give a description of all messages sent during the
TLS Handshake with ephemeral Diffie–Hellman key exchange and client authentication
(i.e. for cipher suites TLS_DHE_*). This description and its illustration in Fig. 2 are
valid for all TLS versions from 1.0 to 1.2. Our description makes use of several ‘state
variables’ (�, k,�, ρ, st). For instance, variable � ∈ {accept,reject} determines
whether one party ‘accepts’ or ‘rejects’ an execution of the protocol, or variable k
stores the session key. These variables will also appear later in our security model
(Sect. 4).

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1289

C S
(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)

m1
$← Client Request() m1

(m2, . . . , m6)
$← Server Response(m1)m2, . . . , m6

(m7, . . . , m11)
$← Client Response(m1, . . . , m6)

m7, . . . , m11

(m12, m13) ← Server Accept(m1, . . . , m11)m12, m13

Client Accept(m1, . . . , m13)

pre-accept phase
| |

post-accept phase StE.Enc(kClient
enc , len, H, data, ste)

StE.Enc(kServer
enc , len, H, data, ste)

Fig. 2. TLS Handshake for cipher suites TLS_DHE_* with client authentication.

The TLS-DHE Handshake Protocol consists of 13 messages, whose content ranges
from constant byte values to tuples of cryptographic values. Not all messages are relevant
for our security proof, we list themmerely for completeness. All messages are prepended
with a numeric tag that identifies the type of message, a length value, and the version
number of TLS. All messages are sent through the TLS Record Layer, which at start-up
provides no encryption nor any other cryptographic transformations (Fig. 3).

Client Hello Message m1 is the Client Hello message. It contains four values,
two of which are optional. For our analysis, the only important value is rC , the random
value chosen by the client. It consists of 32 bytes (256 Bits), where 4 bytes are usually
used to encode the local time of the client. The remaining 28 bytes are chosen randomly
by the client. This is followed by a list cs-list of cipher suites, where each cipher
suite is a tuple of key exchange method, signing, encryption, and MAC algorithms,
coded as two bytes. Data compression is possible before encryption and is signalled by
the inclusion of zero or more compression methods.

Server Hello and Server Key Exchange The Server Hello message m2 has
the same structure as Client Hello, with the only exception that at most one cipher
suite and one compression method can be present. In our analysis, the random value rS

is important. The server may send a TLS session ID s I D to the client. Message m3 may
contain a chain of certificates, starting from the TLS server certificate up to a direct child
of a root certificate. Since we do not include public-key infrastructures in our analysis
(the identity of each party is its public key pkS), one certificate certS containing pkS

(which may be self-signed) is sufficient for this paper. When the certificate certS is
received, the client sets its partner id�:=S. The public key in the certificate must match
the cipher suite chosen by the server. For ephemeral Diffie–Hellman key exchange, the
public key may be any key that can be used to sign messages. The Diffie–Hellman (DH)

1290 T. Jager et al.

Client Request()

ρ := Client
rC

$← {0, 1}λ

m1 := (rC ,cs-list)

Server Response(m1)

ρ := Server
rS

$← {0, 1}λ

tS
$← Zq, TS := gtS mod p

σS := SIG.Sign(skS , rC ||rS ||p||g||TS)
m2 := (rS ,cs-choice)
m3 := certS
m4 := (p, g, TS , σS)
m5 := get-cert
m6 := done

Client Accept(m1, . . . , m13)

α := H(m1|| . . . ||m10||finC ||m12)
fin∗

S := StE.Dec(kClient
dec , H, m13, std)

If fin∗
S = PRF(ms, label4||α)a

Λ := ‘reject’ and abort
else

Λ := ‘accept’ and k := (kClient
enc , kClient

dec)

afin∗
S is also computed over the plaintext hand-

shake messages only

Client Response(m1, . . . , m6)

Π := S, S is determined from certS
if SIG.Vfy(pkΠ, σS , rC ||rS ||p||g||TS) = 0

Λ := ‘reject’ and abort
else

tC
$← Zq, TC := gtC mod p

(m7, m8) := (certC , TC)
σC := SIG.Sign(skC , m1|| . . . ||m8)
pms := T tC

S mod p, ms := PRF(pms, label1||rC ||rS)
KC→S

enc ||KS→C
enc ||KC→S

mac ||KS→C
mac := PRF(ms, label2||rC ||rS)

kClient
enc := (KC→S

enc , KC→S
mac), kClient

dec := (KS→C
enc , KS→C

mac)
(m9, m10) := (σC , f lagenc)
finC := PRF(ms, label3||H(m1|| . . . ||m10))
m11 := StE.Enc(kClient

enc , len, H, finC , ste)

Server Accept(m1, . . . , m11)

Π := C, C is determined from certC
if SIG.Vfy(pkΠ, σC , m1|| . . . ||m8) = 0

Λ := ‘reject’ and abort
else

pms := T tS
C mod p, ms := PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS)
kServer
enc := (KS→C

enc , KS→C
mac), kServer

dec := (KC→S
enc , KC→S

mac)
m12 := flagenc

finS := PRF(ms, label4||H(m1|| . . . ||m10||finC
a||m12)))

m13 := StE.Enc(kServer
enc , len, H, finS , ste)

fin∗
C := StE.Dec(kServer

dec , H, m11, std)
If fin∗

C = PRF(ms, label3||H(m1|| . . . ||m10))
Λ := ‘reject’ and abort

else
Λ := ‘accept’ and k := (kServer

dec , kServer
enc)

aNote, that m11 contains an encryption of finC , and that finS
is computed over plaintext handshake messages only.

Fig. 3. Computation of client/server handshake messages.

key exchange parameters are contained in the Server Key Exchangemessage m4,
including information on the DH group (e.g. prime number p and generator g for a
prime-order q subgroup of Z

∗
p), the DH share TS , and a signature computed over these

values plus the two random numbers rC and rS . The next two messages are very simple:
the Certificate Requestmessage m5 only contains a list of certificate types that
the client may use to authenticate itself, and the Server Hello Done message m6
does not contain any data, but consists only of a constant tag with byte value ‘14’ and a
length value ‘0’.

Client Key Exchange and Client Finished Having received these messages, the
signature σS is verified. If this fails, the client ‘rejects’ and aborts. Otherwise, after suc-
cessful verification, the client is able to complete the key exchange and to compute the
cryptographic keys. The Client Certificatemessage m7 contains a signing cer-
tificate certC with the public key pkC of the client. Message m8 is called Client Key
Exchange and contains the Diffie–Hellman share TC of the client. When the certificate
certC is received by the server, the server sets its partner id �:=C . To authenticate the
client, a signature σC is computed on a concatenation of all previousmessages (up tom8)

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1291

and padded prefixes, thus including the two random nonces and the two Diffie–Hellman
shares. This signature is contained in the Certificate Verify message m9.

The client is now also able to compute the premaster secret pms, from which all
further secret values are derived. After computing the master secret ms, it is stored for
the lifetime of the TLS session, and pms is erased from memory. The master secret ms
is subsequently used, together with the two random nonces, to derive all encryption and
MAC keys as well as the Client Finished message finC . More precisely, the key
material kClientenc :=(K C→S

enc , K C→S
mac) and kClientdec :=(K S→C

enc , K S→C
mac) is computed as

K C→S
enc ||K S→C

enc ||K C→S
mac ||K S→C

mac :=PRF(ms, label2||rC ||rS) (1)

where kClientenc is used to encrypt and authenticate data sent from the client to the server
and kClientdec is used to decrypt and verify data received from the server.
After these computations have been completed, the keys are handed over to the TLS

Record Layer of the client, which is now able to encrypt and MAC any data. To signal
the ‘start of encryption’ to the server, a single message m10 (Change Cipher Spec)
with byte value ‘1’ (f lagenc) is sent unencrypted to S. Then message m11 consists of an
authenticated encryption of the Client Finishedmessage finC which is computed
as

finC :=PRF(ms, label3||H(m1|| . . . ||m10))

where H is a hash function specified by the negotiated cipher suite.

Remark 3. Please note that a padding is applied to finC before encryption and that this
padding allows for (partially) known plaintext attacks on m11. Thus if we analyse TLS
in one of the classical key-indistinguishability-based security models of [26] or [35],
then the answer to a Test query could be determined by simply decrypting m11, and
checking if the resulting plaintext has the appropriate padding. An alternative approach,
based on the idea of ‘early key release’, was described after the conference publication
of this paper in [13].

Server FinishedAfter the server has received messages m7, m8, m9, the server verifies
the signature in m9. If this fails, the server ‘rejects’ (i.e. sets� = ‘reject’) and aborts.
Otherwise it first determines pms and ms. From this the encryption and MAC keys
kServerenc :=(K S→C

enc , K S→C
mac) and kServerdec :=(K C→S

enc , K C→S
mac) are computed as in (1).5 It

can then decrypt m11 and check finC by computing the pseudo-random value on the
messages sent and received by the server. If this check fails, it ‘rejects’ and aborts. If the
check is successful, it ‘accepts’ (i.e. sets � = ‘accept’) and computes the Server
Finished message finS over all plaintext handshake messages as

finS :=PRF(ms, label4||H(m1|| . . . ||m10||finC ||m12))

Then it sends messages m12 (f lagenc) and m13 (the encryption of finS) to the client. If
the check of finS on the client side is successful, the client also ‘accepts’.

5Note that we have kServerenc = kClientdec and kServerdec = kClientenc .

1292 T. Jager et al.

Encrypted Payload Transmission The obtained keys can now be used to transmit
payload data in the TLS Record Layer using a stateful symmetric encryption scheme
StE = (StE.Enc,StE.Dec) (cf. Sect. 2.5). The CBC-based TLS Record Layer proto-
cols work as follows. The state ste of the encryption algorithm consists of a sequence
number, which is incremented on each encryption operation. The encryption algorithm
takes a message m and computes a MAC over m, the sequence counter, and some addi-
tional header data H (such as version numbers, for instance). Then message and MAC
are encoded into a bit string by using a padding to a specified length len and encrypted
(‘MAC-then-Encode-then-Encrypt’).
The state std of the decryption algorithm consists of a sequence number, which is

incremented on each decryption operation. Given a ciphertext, the algorithm decrypts
and verifies the MAC using its own sequence counter.

Remark 4. Our security analysis is not based on any specific details of the CBC-based
record layer protocol. We will only require that the record layer encryption scheme is
sLHAE-secure. Thus, the analysis applies to other record layer encryption schemes as
well, provided that it is possible to prove (or at least reasonable to assume) that it is
sLHAE-secure.

Abbreviated TLS Handshakes, side channels, and cross-protocol attacks In
our analysis, we do not consider abbreviated TLSHandshakes, butwe note that the server
can always enforce a full TLS Handshake. Moreover, we do not consider attacks based
on side channels, such as error messages or implementation issues, or cross-cipher suite
or cross-protocol attacks [78,89]. Please note that cross-version attacks as proposed in
[55] may have real-world impact, as the example of the DROWN attack has shown [4].

4. AKE Protocols

While the established security models for, say, encryption (e.g. IND-CPA or IND-CCA
security), or digital signatures (e.g. EUF-CMA), are clean and simple, a more complex
model is required to model the capabilities of active adversaries to define secure au-
thenticated key exchange. An important line of research [30,35,37,71] dates back to
Bellare and Rogaway [26], where an adversary is provided with an ‘execution environ-
ment’, which emulates the real-world capabilities of an active adversary. In this model,
the adversary has full control over the communication network, which allows him to
forward, alter, or drop any message sent by the participants, or insert new messages.
In the sequel, we describe a variant of this model, which captures adaptive corruptions,
perfect forward secrecy, and security against key-compromise impersonation attacks in
a public-key setting.

4.1. Execution Environment

Consider a set of parties {P1, . . . , P�}, � ∈ N, where each party Pi ∈ {P1, . . . , P�}
is a (potential) protocol participant and has a long-term key pair (pki , ski). To model
several sequential and parallel executions of the protocol, each party Pi is modelled

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1293

by a collection of oracles π1
i , . . . , πd

i for d ∈ N. Each oracle π s
i represents a process

that executes one single instance of the protocol. All oracles π1
i , . . . , πd

i representing
party Pi have access to the same long-term key pair (pki , ski) of Pi and to all public
keys pk1, . . . , pk�. Moreover, each oracle π s

i maintains as internal state the following
variables:

• � ∈ {accept,reject}.
• k ∈ K, where K is the keyspace of the protocol.
• � ∈ {1, . . . , �} containing the intended communication partner, i.e. an index that
points to a public key pk� used to perform authentication within the protocol
execution.6

• Variable ρ ∈ {Client,Server}.
• Some additional temporary state variable st (which may, for instance, be used
to store ephemeral Diffie–Hellman exponents or the transcript of all messages
sent/received during the TLS Handshake).

The internal state of each oracle is initialized to (�, k,�, ρ, st) = (∅,∅,∅,∅,∅),
where V = ∅ denotes that variable V is undefined. Furthermore, we will always assume
(for simplicity) that k = ∅ if an oracle has not reached accept-state (yet), and contains
the computed key if an oracle is in accept-state, so that we have

k �= ∅ ⇐⇒ � = accept (2)

An adversary may interact with these oracles by issuing the following queries.

• Send(π s
i , m): The adversary can use this query to send message m to oracle π s

i .
The oracle will respond according to the protocol specification, depending on its
internal state.
If the adversary asks the first Send-query to oracle π s

i , then the oracle checks
whether m = � consists of a special ‘initialization’ symbol �. If true, then it
sets its internal variable ρ:=Client and responds with the first protocol message.
Otherwise it sets ρ:=Server and responds as specified in the protocol.7

The variables �, k,�, st are also set after a Send-query. When and how depends
on the considered protocol.

• Reveal(π s
i): Oracle π s

i responds to a Reveal-query with the contents of variable
k. Note that we have k �= ∅ if and only if � = ‘accept’, see (2).

• Corrupt(Pi): Oracle π1
i responds with the long-term secret key ski of party Pi .8 If

Corrupt(Pi) is the τ th query issued by A, then we say that Pi is τ -corrupted. For
parties that are not corrupted, we define τ :=∞.

6We assume that each party Pi is uniquely identified by its public key pki . In practice, several keys may be
assigned to one identity. Furthermore, there may be other ways to determine identities, for instance by using
certificates. However, this is out of scope of this paper.

7Note that we do not include the identity of the (intended) communication partner in the Send-query.
Instead, we assume that the exchange of identities of communication partners (which is necessary to determine
the public key used to perform authentication) is part of the protocol.

8Note that the adversary does not ‘take control’ of oracles corresponding to a corrupted party. But he learns
the long-term secret key and can henceforth simulate these oracles. Still, corrupted oracles remain functional,
which is necessary to capture security against KCI attacks.

1294 T. Jager et al.

• Test(π s
i): This query may be asked only once throughout the game. If π s

i has state
� �= accept, then it returns some failure symbol ⊥. Otherwise it flips a fair coin

b, samples an independent key k0
$← K, sets k1 = k to the ‘real’ key computed by

π s
i , and returns kb.

The Send-query enables the adversary to initiate and run an arbitrary number of
protocol instances, sequential or in parallel, and provides full control over the communi-
cation between all parties. TheReveal-query may be used to learn the session keys used
in previous/concurrent protocol executions. The Corrupt-query allows the adversary to
learn ski of party Pi , it may for instance be used byA to impersonate Pi . The Test-query
will be used to define security.

4.2. Security Definition

Bellare and Rogaway [26] have introduced the notion ofmatching conversations in order
to define correctness and security of an AKE protocol precisely.
We denote with Ti,s the sequence that consists of all messages sent and received by

π s
i in chronological order (not including the initialization-symbol �). We also say that

Ti,s is the transcript of π s
i . For two transcripts Ti,s and Tj,t , we say that Ti,s is a prefix

of Tj,t , if Ti,s contains at least one message, and the messages in Ti,s are identical to and
in the same order as the first |Ti,s | messages of Tj,t .

Definition 7. (Matching conversations) We say that π s
i has a matching conversation

to π t
j , if

• Tj,t is a prefix of Ti,s and π s
i has sent the last message(s), or

• Ti,s = Tj,t and π t
j has sent the last message(s).

Remark 5. We remark that matching conversations in the above sense can also be seen
as post-specified session identifiers. The ‘asymmetry’ of the definition (i.e. the fact that
we have to distinguish which party has sent the last message) is necessary, due to the
fact that protocol messages are sent sequentially. For instance, in the TLS Handshake
protocol (see Fig. 2) the last message of the client is the ‘client finished’ message finC ,
and then it waits for the ’server finished’ message finS before acceptance. In contrast,
the server sends finS after receiving finC . Therefore the server has to ‘accept’ without
knowing whether its last message was received by the client correctly. We have to take
this into account in the definition of matching conversations, since it will later be used to
define security of the protocol in the presence of an active adversary that simply drops
the last protocol message.

Security of AKE protocols is now defined by requiring that (i) the protocol is a secure
authentication protocol and (ii) the protocol is a secure key exchange protocol; thus an
adversary cannot distinguish the session key k from a random key.

AKE Game We formally capture this notion as a game, played between an adversary
A and a challenger C. The challenger implements the collection of oracles {π s

i : i ∈
[�], s ∈ [d]}. At the beginning of the game, the challenger generates � long-term key

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1295

pairs (pki , ski) for all i ∈ [�]. The adversary receives the public keys pk1, . . . , pk� as
input. Now the adversary may start issuing Send, Reveal and Corrupt queries, as well
as one Test-query. Finally, the adversary outputs a bit b′ and terminates.

Definition 8. Assume a ‘benign’ adversary A, which picks two arbitrary oracles π s
i

and π t
j and performs a sequence of Send-queries by faithfully forwarding all messages

between π s
i and π t

j . Let ks
i denote the key computed by π s

i and let kt
j denote the key

computed by π t
j . We say that an AKE protocol is correct, if for this benign adversary

and any two oracles π s
i and π t

j always holds that

1. both oracles have � = accept,9 and
2. ks

i = kt
j ∈ K.

Definition 9. We say that an adversary (t, ε)-breaks an AKE protocol �, if A runs in
time t , and at least one of the following two conditions holds:

1. WhenA terminates, then with probability at least ε there exists an oracle π s
i such

that

• π s
i ‘accepts’ when A issues its τ0th query with intended partner � = j , and

• Pj is τ j -corrupted with τ0 < τ j ,10 and
• there is no unique oracle π t

j such that π s
i has a matching conversation to π t

j .

If an oracle π s
i accepts in the above sense, then we say that π s

i accepts maliciously.
2. When A issues a Test-query to any oracle π s

i and

• π s
i ‘accepts’ when A issues its τ0th query with intended partner � = j , and

• Pj is τ j -corrupted with τ0 < τ j , and
• A does not issue a Reveal-query to π s

i , nor to π t
j such that π s

i has a matching
conversation to π t

j (if such an oracle exists),

then the probability thatA outputs b′ which equals the bit b sampled by the Test-
query satisfies

∣
∣Pr[b = b′] − 1/2

∣
∣ ≥ ε

If an adversary A outputs b′ such that b′ = b and the above conditions are met,
then we say that A answers the Test-challenge correctly.

Remark 6. Note that the above definition even allows to corrupt oracles involved in the
Test-session (of course only after the Test-oracle has reached accept-state, in order
to exclude trivial attacks). Thus, protocols secure with respect to this definition provide
perfect forward secrecy. Note also that we allow the ‘accepting’ oracle to be corrupted
even before it reaches accept-state, which provides security against key-compromise
impersonation attacks.

9We do not demand that partner ids � are mutually matching. However, this is required by the security
definition.

10That is, Pj is not corrupted when π s
i ‘accepts’. Recall that uncorrupted parties are τ -corrupted with

τ = ∞.

1296 T. Jager et al.

5. Truncated TLS with Ephemeral Diffie–Hellman is a Secure AKE Protocol

In this section, we prove the security of a modified version of the TLS Handshake
protocol. We consider a ‘truncated TLS’ protocol as in [75,76]. In this truncated version,
we assume that the Finishedmessages are sent in clear, that is, neither encrypted nor
authenticated by aMAC. More precisely, we modify the TLS protocol depicted in Fig. 2
such that

• message m11 contains only finC (instead of StE.Enc(kClientenc , len, H, finC , ste)),
and

• message m13 contains only finS (instead of StE.Enc(kServerenc , len, H, finS, ste)).

This simple modification allows to prove security in the key-indistinguishability-based
security model from Sect. 4.
In the following, we will consider three types of adversaries:

1. Adversaries that make an oracle accept maliciously (in the sense of Definition 9),
such that the first oracle that does so is a Client-oracle (i.e. an oracle with ρ =
Client). We call such an adversary a Client-adversary.

2. Adversaries that make an oracle accept maliciously (in the sense of Definition 9),
such that the first oracle that does so is a Server-oracle (i.e. an oracle with ρ =
Server). We call such an adversary a Server-adversary.

3. Adversaries that do not make any oracle accept maliciously (in the sense of Defi-
nition 9). We call such an adversary a Test-adversary.

Note that any adversary, which is successful in the sense of Definition 9, is either a
Client-adversary, or a Server-adversary, or a Test-adversary.

Theorem 1. From any adversary A that (t ′, εttls)-breaks the truncated ephemeral
Diffie–Hellman TLS Handshake protocol in the sense of Definition 9, we can construct
an adversary APRF that (t, εPRF)-breaks the security of PRF, Asig that (t, εsig)-breaks
the security of the signature scheme, Addh that (t, εDDH)-breaks the DDH assumption in
the group G used to compute the TLS-DHE premaster secret, AH that (t, εH)-breaks the
collision resistance ofH, andAprfodh that (t, εPRF-ODH)-breaks thePRF-ODH-problem
with respect to G and PRF, with t ≈ t ′ and the following lower bounds on the success
probabilities of the constructed adversaries.

• If A is a Client-adversary, then it holds that

εttls ≤ d�

(
d�

2λ
+ � · εsig + d�

(

εPRF-ODH + εPRF + εH + 1

2μ

))

• If A is a Server-adversary, then it holds that

εttls ≤ d�

(
d�

2λ
+ � · εsig + εDDH + 2 · εPRF + εH + 1

2μ

)

• If A is a Test-adversary, then it holds that

εttls ≤ d� · (εDDH + 2 · εPRF)

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1297

Recall here that � denotes the number of parties in the security model, d the number of
sessions per party, μ the length of the FINISHED messages f inS and f inC , and λ the
length of the nonces rC and rS.

Theorem 1 is proven by Lemmas 1, 2, and 3 given as follows.

5.1. Authentication

Lemma 1. From any Client-adversary A that runs in time t ′ with success probability
εclient, we can construct adversariesAsig,Aprfodh,APRF, andAH as in Theorem 1, with

εclient ≤ d�

(
d�

2λ
+ � · εsig + d�

(

εPRF-ODH + εPRF + εH + 1

2μ

))

where all quantities are defined as in Theorem 1.

Proof. The proof proceeds in a sequence of games, following [27]. The first game is the
real security experiment. We then describe several intermediate games that modify the
original game step by step, each time bounding the difference in the success probability
of the adversary between each two successive games.We end up in the final game, where
no adversary can break the security of the protocol.
Let break(1)

δ be the event that occurs when the first oracle accepts maliciously in the
sense of Definition 9 with ρ = Client in Game δ.

Game 0 This game equals the AKE security experiment described in Sect. 4. Thus, for
some εclient we have

Pr
[

break(1)
0

]

= εclient

Game 1 In this game, we add an abort rule. The challenger aborts, if there exists any
oracle π s

i that chooses a random nonce rC or rS which is not unique. More precisely,
the game is aborted if the adversary ever makes a first Send query to an oracle π s

i , and
the oracle replies with random nonce rC or rS such that there exists some other oracle
π s′

i ′ which has previously sampled the same nonce.
In total less than d� nonces rC and rS are sampled, each uniformly random from

{0, 1}λ. Thus, the probability that a collision occurs is bounded by (d�)22−λ, which
implies

Pr
[

break(2)
0

]

≤ Pr
[

break(2)
1

]

+ (d�)2

2λ

Note that noweach oracle has a unique nonce rC or rS , which is included in the signatures.
We will use this to ensure that each oracle that accepts with non-corrupted partner has
a unique partner oracle.

1298 T. Jager et al.

Game 2We try to guess which client-oracle will be the first oracle to accept maliciously.
If our guess is wrong, i.e. if there is another (Client or Server) oracle that accepts
maliciously earlier, then we abort.
Technically, this game is identical to Game 1, except for the following. The challenger

guesses two random indices (i∗, s∗) $← [�]×[d]. If there exists an oracleπ s
i that ‘accepts’

maliciously, and (i, s) �= (i∗, s∗) and π s
i has ρ �= Client, then the challenger aborts the

game. Note that if the first oracle π s
i that ‘accepts’ maliciously has ρ = Client, then

with probability 1/(d�) we have (i, s) = (i∗, s∗), and thus

Pr
[

break(2)
1

]

= d� · Pr
[

break(2)
2

]

Note that in this game the adversary can only break the security of the protocol, if oracle
π s∗

i∗ is the first oracle that ‘accepts’ maliciously and has ρ = Client, as otherwise the
game is aborted.

Game 3 Again the challenger proceeds as before, but we add an abort rule. We want
to make sure that π s∗

i∗ receives as input exactly the Diffie–Hellman value TS that was
selected by some other uncorrupted oracle that received the nonce rC chosen by π s∗

i∗ as
first input (note that there may be several such oracles, since the adversary may send
copies of rC to many oracles).
Technically, we abort and raise event abortsig, if oracle π s∗

i∗ ever receives as in-
put a message m3 = certS indicating intended partner � = j and message m4 =
(p, g, TS, σS) such that σS is a valid signature over rC ||rS||p||g||TS , but there exists no
oracle π t

j which has previously output σS . Clearly we have

Pr
[

break(1)
2

]

≤ Pr
[

break(1)
3

]

+ Pr[abortsig]

Note that the experiment is aborted, ifπ s∗
i∗ does not acceptmaliciously, due to Game 2.

This means that party Pj must be τ j -corrupted with τ j = ∞ (i.e. not corrupted) when
π s∗

i∗ accepts (as otherwise π s∗
i∗ does not accept maliciously). To show that Pr[abortsig] ≤

� · εsig, we construct a signature forger Asig as follows. The forger receives as input a

public key pk∗ and simulates the challenger for A. It guesses an index φ
$← [�], sets

pkφ = pk∗, and generates all long-term public/secret keys as before. Then it proceeds
as the challenger in Game 3, except that it uses its chosen-message oracle to generate a
signature under pkφ when necessary.

If φ = j , which happens with probability 1/�, then the forger can use the signature
received by π s∗

i∗ to break the EUF-CMA security of the signature scheme with success
probability εsig, so Pr[abortsig]/� ≤ εsig. Therefore we have

Pr
[

break(1)
2

]

≤ Pr
[

break(1)
3

]

+ � · εsig

Note that in Game 3 oracle π s∗
i∗ receives as input a Diffie–Hellman value TS such that

TS was chosen by another oracle, but not by the adversary. Note also that there may be

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1299

multiple oracles that issued a signature σS containing rC , since the adversary may have
sent several copies of rC to several oracles.

Game 4 In this game, we want to make sure that we know which oracle π t
j will issue

the signature σS that π s∗
i∗ receives. Note that this signature includes the random nonce

rS , which is unique due to Game 1. Therefore the challenger in this game proceeds

as before, but additionally guesses two indices (j∗, t∗) $← [�] × [d]. It aborts, if the
adversary does not make a Send-query containing rC to π t∗

j∗ , and π t∗
j∗ responds with

messages containing σS such that σS is forwarded to π s∗
i∗ .

We know that there must exist at least one oracle that outputs σS such that σS is
forwarded to π s∗

i∗ , due to Game 3. Thus we have

Pr
[

break(1)
3

]

≤ d� · Pr
[

break(1)
4

]

Note that in this gamewe know exactly that oracleπ t∗
j∗ chooses the Diffie–Hellman share

TS that π s∗
i∗ uses to compute its premaster secret.

Game 5 Recall that π s∗
i∗ computes the master secret as ms = PRF(T tc

S , label1||rC ||rS),
where TS denotes the Diffie–Hellman share received from π t∗

j∗ and tc denotes the Diffie–

Hellmanexponent chosenbyπ s∗
i∗ . In this game,we replace themaster secretms computed

by π s∗
i∗ with an independent random value m̃s. Moreover, if π t∗

j∗ receives as input the

same Diffie–Hellman share TC that was sent from π s∗
i∗ , then we set the master secret of

π t∗
j∗ equal to m̃s. Otherwise we compute the master secret as specified in the protocol.
Suppose there exists an adversary A that distinguishes Game 5 from Game 4. We

show that this implies an adversary Aprfodh that breaks the PRF-ODH assumption.
Adversary Aprfodh outputs (label1||rC ||rS) to its experiment and receives in response

(g, gu, gv, R), where either R = PRF(guv, label1||rC ||rS) or R
$← {0, 1}μ. It runs A

by implementing the challenger forA and embeds (gu, gv) as follows. Instead of letting

π s∗
i∗ choose TC = gtC for random tC

$← Zq , Aprfodh defines TC :=gu . Similarly, the
Diffie–Hellman share TS of π t∗

j∗ is defined as TS :=gv . Finally, the master secret of π s∗
i∗

is set equal to R.
Note thatπ s∗

i∗ computes themaster secret after receiving TS fromπ t∗
j∗ , and then it sends

m8 = TC . If the adversary decides to forward m8 to π t∗
j∗ , then the master secret of π t∗

j∗

is set equal to R. If π t∗
j∗ receives TC ′ �= TC , then Aprfodh queries its oracle to compute

ms′ = PRF(T v
C ′ , label1||rC ||rS), and sets the master secret of π t∗

j∗ equal to ms′.
Note also that in any case algorithm Aprfodh ‘knows’ the master secret of π s∗

i∗ and
π t∗

j∗ , and thus is able to compute all further protocol messages (in particular the finished

messages finC and finS) and answer a potential Reveal-query to π t∗
j∗ as required (note

that there is no Reveal-query to π s∗
i∗ , as otherwise the experiment is aborted, due to

Game 2). If R = PRF(guv, label1||rC ||rS), then the view of A is identical to Game 4,

while if R
$← {0, 1}μ then it is identical to Game 5, which yields

1300 T. Jager et al.

Pr
[

break(1)
4

]

≤ Pr
[

break(1)
5

]

+ εPRF-ODH

Game 6 In this game, we replace the function PRF(m̃s, ·) used by π s∗
i∗ with a random

function. If π t∗
j∗ uses the same master secret m̃s as π s∗

i∗ (cf. Game 5), then the function

PRF(m̃s, ·) used by π t∗
j∗ is replaced as well. Of course the same random function is used

for both oracles sharing the same m̃s. In particular, this function is used to compute the
Finished messages by both partner oracles.
DistinguishingGame 6 fromGame 5 implies an algorithmAPRF breaking the security

of the pseudo-random function PRF, thus

Pr
[

break(1)
5

]

≤ Pr
[

break(1)
6

]

+ εPRF

Game 7 In Game 6, we have replaced the function PRF(m̃s, ·) with a random function.
Thus, the Server-Finished message expected by π s∗

i∗ is

fin∗
S = Fm̃s(label4||H(m1|| · · · ||m10||finC ||m12))

where m1|| · · · ||m10||finC ||m12 denotes the transcript of all messages sent and received
by π s∗

i∗ . In the next game, we would like to argue that the adversary is not able to predict
fin∗

S , unless there is an oracle π t∗
j∗ having a matching conversation to π s∗

i∗ , because Fm̃s

is random. Before we can do so, we need to make sure that oracle π t∗
j∗ (the only other

oracle potentially having access to Fm̃s , due to Game 6) never evaluates Fm̃s on any
input label4||H(m′) with

m′ �= m1|| · · · ||m10||finC ||m12 and H(m′) = H(m1|| · · · ||m10||finC ||m12). (3)

Therefore we add another abort condition. We abort the game, if oracle π t∗
j∗ ever

evaluates the random function Fm̃s on an input m′ such that (3) holds. Since (3) implies
that a collision forH is found, we can construct an adversaryAH finding a hash collision
in time t ≈ t ′ and with success probability εH, where

Pr
[

break(1)
6

]

≤ Pr
[

break(1)
7

]

+ εH

Game 8 Finally, we use that the unique (due to Game 7) hash of the full transcript
of all messages sent and received is used to compute the Finished messages and
that Finished messages are computed by evaluating a truly random function that is
only accessible to π s∗

i∗ and (possibly) π t∗
j∗ due to Game 6. This allows to show that any

adversary has probability at most 2−μ of making oracle π s∗
i∗ accept without having a

matching conversation to π t∗
j∗ .

Thus, this game proceeds exactly like the previous game, except that the challenger
now aborts if oracle π s∗

i∗ accepts without having a matching conversation to π t∗
j∗ . Thus

we have Pr
[

break(1)
8

]

= 0.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1301

The Finished messages are computed by evaluating a truly random function Fm̃s .
This function is only accessible to oracles sharing m̃s, and evaluated on a unique hash
value derived from the full transcript containing all previous messages. Thus, if there is
no oracle having a matching conversation to π s∗

i∗ , the adversary receives no information

about Fm̃s(label4||H(m1|| · · · ||m12)). Therefore we have Pr
[

break(1)
8

]

= 0 and

Pr
[

break(1)
7

]

≤ Pr
[

break(1)
8

]

+ 1

2μ
= 1

2μ

Collecting probabilities from Game 0 to Game 8 yields Lemma 1. �

Lemma 2. From any Server-adversary A that runs in time t ′ with success probability
εserver, we can construct adversaries Asig, Addh, APRF, and AH as in Theorem 1, with

εserver ≤ d�

(
d�

2λ
+ � · εsig + εDDH + 2 · εPRF + εH + 1

2μ

)

where all quantities are defined as in Theorem 1.

Proof. Let break(2)
δ be the event that occurs when the first oracle accepts maliciously

in the sense of Definition 9 with ρ = Server in Game δ.

Game 0 This game equals the AKE security experiment described in Sect. 4. Thus, for
some εserver we have

Pr
[

break(2)
0

]

= εserver

Game 1 In this game, we add an abort rule. The challenger aborts, if there exists any
oracle π s

i that chooses a random nonce rC or rS which is not unique. With the same
arguments as in Game 1 from the proof of Lemma 1, we have

Pr
[

break(2)
0

]

≤ Pr
[

break(2)
1

]

+ (d�)2

2λ

Game 2 This game is identical, except for the following. The challenger guesses two

random indices (i∗, s∗) $← [�] × [d]. If there exists an oracle π s
i that ‘accepts’ mali-

ciously, and (i, s) �= (i∗, s∗) and π s
i has ρ �= Server, then the challenger aborts the

game. Note that if the first oracle π s
i that ‘accepts’ maliciously has ρ = Server, then

with probability 1/(d�) we have (i, s) = (i∗, s∗), and thus

Pr
[

break(2)
1

]

= d� · Pr
[

break(2)
2

]

Note that in this game the adversary can only break the security of the protocol, if oracle
π s∗

i∗ is the first oracle that ‘accepts’ maliciously and has ρ = Server, as otherwise the
game is aborted.

1302 T. Jager et al.

Game 3 The challenger proceeds as before, but we add an abort rule. We want to make
sure that π s∗

i∗ receives as input exactly the Diffie–Hellman value m8 = TC that was
selected by some other uncorrupted oracle.
Technically, we abort and raise event abortsig, if oracle π s∗

i∗ ever receives as input
a message m7 = certC indicating intended partner � = j and message m9 = σC =
SIG.Sign(skC , m1|| . . . , ||m8) such that σC is a valid signature but there exists no oracle
π t

j which has previously output σC . Clearly we have

Pr
[

break(2)
2

]

≤ Pr
[

break(2)
3

]

+ Pr[abortsig]

Note that the experiment is aborted, ifπ s∗
i∗ does not acceptmaliciously, due to Game 2.

This means that party Pj must be τ j -corrupted with τ j = ∞ (i.e. not corrupted) when
π s∗

i∗ accepts. To show that Pr[abortsig] ≤ � ·εsig, we construct a signature forgerAsig as
follows. The forger receives as input a public key pk∗ and simulates the challenger forA.

It guesses an index φ
$← [�], sets pkφ = pk∗, and generates all long-term public/secret

keys as before. Then it proceeds as the challenger in Game 3, except that it uses its
chosen-message oracle to generate a signature under pkφ when necessary.

If φ = j , which happens with probability 1/�, then the forger can use the signature
received by π s∗

i∗ to break the EUF-CMA security of the signature scheme with success
probability εsig, so Pr[abortsig]/� ≤ εsig. Therefore if Pr[abortsig] is not negligible,
then εsig is not negligible as well and we have

Pr
[

break(2)
2

]

≤ Pr
[

break(2)
3

]

+ � · εsig

Note that in Game 3 oracle π s∗
i∗ receives as input a Diffie–Hellman value TC such that

TC was chosen by another oracle, but not by the adversary. Note also that this oracle is
unique, since the signature includes the client nonce rC , which is unique due to Game 1.
From now on, we denote this unique oracle with π t∗

j∗ .

Note also that π s∗
i∗ and π t∗

j∗ share a premaster secret pms = T tS
C = T tC

S , where

TC = gtC and TS = gtS for random exponents tS and tC chosen by π s∗
i∗ and π t∗

j∗ ,
respectively.

Game 4 In this game, we replace the premaster secret pms = gtC tS shared by π s∗
i∗

and π t∗
j∗ with a random value gr , r

$← Zq . The fact that the challenger has full control

over the Diffie–Hellman shares TC and TS exchanged between π s∗
i∗ and π t∗

j∗ , due to the
modifications introduced in the previous games, provides us with the leverage to prove
indistinguishability under the Decisional Diffie–Hellman assumption.
Technically, the challenger in Game 4 proceeds as before, but when π s∗

i∗ and π t∗
j∗

compute the premaster secret as pms = gtC tS , the challenger replaces this value with

a uniformly random value p̃ms = gr , r
$← Z

∗
p, which is in the following used by

both partner oracles. Suppose there exists an algorithm distinguishing Game 4 from
Game 3. Then we can construct an algorithm Addh breaking the DDH assumption
as follows. Algorithm Addh receives as input a DDH challenge (g, gu, gv, gw). The

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1303

challenger defines TC :=gu and TS :=gv for the Diffie–Hellman shares chosen by π s∗
i∗

and π t∗
j∗ , respectively. Instead of computing the Diffie–Hellman key as in Game 3, it sets

pms = gw for both the ‘client’ and the ‘server’ oracle. Now if w = uv, then this game
proceeds exactly like Game 3, while ifw is random than this game proceeds exactly like
Game 4. Addh runs in time t ≈ t ′ and (t, εDDH)-breaks the DDH assumption, where
εDDH satisfies

Pr
[

break(2)
3

]

≤ Pr
[

break(2)
4

]

+ εDDH

Note that in Game 4 the premaster secret of π s∗
i∗ and π t∗

j∗ is uniformly random, and
independent of TC and TS . This will provide us with the leverage to replace the function
PRF(p̃ms, ·) with a truly random function in the next game.

Game 5 In Game 5, we make use of the fact that the premaster secret p̃ms of π s∗
i∗ and

π t∗
j∗ is chosen uniformly random, and independent of TC and TS . We thus replace the

value ms = PRF(p̃ms, label1||rC ||rS) with a random value m̃s.
Distinguishing Game 5 from Game 4 implies an algorithm APRF (t, εPRF)-breaking

the security of the pseudo-random function PRF in time t ≈ t ′ with success probability
εPRF, where

Pr
[

break(2)
4

]

≤ Pr
[

break(2)
5

]

+ εPRF

Game 6 In this game, we replace the function PRF(m̃s, ·) used by π s∗
i∗ and π t∗

j∗ with a

random function. Of course the same random function is used for both oracles π s∗
i∗ and

π t∗
j∗ . In particular, this function is used to compute the Finished messages by both

partner oracles.
Distinguishing Game 6 from Game 5 again implies an algorithm APRF (t, εPRF)-

breaking the security of the pseudo-random function PRF in time t ≈ t ′ with success
probability εPRF, where

Pr
[

break(2)
5

]

≤ Pr
[

break(2)
6

]

+ εPRF

Game 7 In Game 6, we have replaced the function PRF(m̃s, ·) with a random function.
Thus, the Client-Finished message expected by π s∗

i∗ is

fin∗
C = Fm̃s(label3||H(m1|| · · · ||m10)),

where m1|| · · · ||m10 denotes the transcript of all messages sent and received by π s∗
i∗ .

Again we would like to argue that the adversary is not able to predict fin∗
C , unless there

is an oracle π t∗
j∗ having a matching conversation to π s∗

i∗ , because Fm̃s is random.

Before we can do so, we need to make sure that oracle π t∗
j∗ (the only other oracle

potentially having access to Fm̃s , due to Game 6) never evaluates Fm̃s on any input
label3||H(m′) with

1304 T. Jager et al.

m′ �= m1|| · · · ||m10 and H(m′) = H(m1|| · · · ||m10). (4)

Therefore we add another abort condition. We abort the game, if oracle π t∗
j∗ ever

evaluates the random function Fm̃s on an input m′ such that (4) holds. Since (4) implies
that a collision forH is found, we can construct an adversaryAH finding a hash collision
in time t ≈ t ′ and with success probability εH, where

Pr
[

break(2)
6

]

≤ Pr
[

break(2)
7

]

+ εH

Game 8 Finally we use that the unique hash of the full transcript of all messages sent
and received by π s∗

i∗ is used to compute the Finished messages and that Finished
messages are computed by evaluating a truly random function that is only accessible to
π s∗

i∗ and π t∗
j∗ due to Game 7. This allows to show that any adversary has probability at

most 1
2μ of making oracle π s∗

i∗ accept without having a matching conversation to π t∗
j∗ .

Thus, this game proceeds exactly like the previous game, except that the challenger
now aborts if oracle π s∗

i∗ accepts without having a matching conversation to π t∗
j∗ . There-

fore we have Pr
[

break(1)
8

]

= 0.

The Finished messages are computed by evaluating a truly random function Fm̃s ,
which is only accessible to oracles sharing m̃s, and the full transcript containing all
previous messages is used to compute the Finished messages. If there is no oracle
having a matching conversation to π s∗

i∗ , the adversary receives no information about
Fm̃s(label3||m1|| · · · ||m10). Thus we have

Pr
[

break(2)
7

]

≤ Pr
[

break(2)
8

]

+ 1

2μ
= 1

2μ

Collecting probabilities from Game 0 to Game 8 yields Lemma 2. �

5.2. Indistinguishability of Keys

Lemma 3. From any Test-adversary A running in time t ′ with success probability
1/2 + εke, we can construct adversaries Addh and APRF as in Theorem 1, with

εke ≤ d� · (εDDH + 2 · εPRF)

where all quantities are defined as in Theorem 1.

Proof. Assume without loss of generality that A always asks a Test-query such that
all conditions in Property 2 of Definition 9 are satisfied. Let break(3)

δ denote the event
that b′ = b in Game δ, where b is the random bit sampled by the Test-query and b′ is
either the bit output by A or (if A does not output a bit) chosen uniformly random by

the challenger. Let Advδ:=Pr
[

break(3)
δ

]

− 1/2 denote the advantage of A in Game δ.

Consider the following sequence of games.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1305

Game 0 This game equals the AKE security experiment described in Sect. 4. For some
εke, we have

Pr
[

break(3)
0

]

= 1

2
+ εke = 1

2
+ Adv0

Recall that we assume that A always asks a Test-query such that all conditions in
Property 2 of Definition 9 are satisfied. In particular, it asks a Test-query to an oracle
π s

i that ‘accepts’ after the τ0th query of A with intended partner � = j , such that Pj

is τ j -corrupted with τ j > τ0. Since we also assume that A does not make any oracle
accept maliciously (note this case is already considered in Lemmas 1 and 2), it will
always hold that for any such oracle π s

i there exists a unique ‘partner oracle’ π t
j such

that π s
i has a matching conversation to π t

j , as the game is aborted otherwise.

Game 1 The challenger in this game proceeds as before, but in addition guesses indices

(i∗, s∗) $← [�] × [d]. It aborts and chooses b′ at random, if the adversary issues a
Test(π s

i)-querywith (i, s) �= (i∗, s∗).With probability 1/(d�),wehave (i, s) = (i∗, s∗),
and thus

Adv0 ≤ d� · Adv1

Note that in Game 1 we know that A will issue a Test-query to oracle π s∗
i∗ . Note also

that π s∗
i∗ has a unique ‘partner’ due to Game 0. In the sequel, we denote with π t∗

j∗ the

unique oracle such that π s∗
i∗ has a matching conversation to π t∗

j∗ , and say that π t∗
j∗ is the

partner of π s∗
i∗ .

Game 2 Let Ti∗,s∗ = gu denote the Diffie–Hellman share chosen by π s∗
i∗ , and let

Tj∗,t∗ = gv denote the share chosen by its partner π t∗
j∗ . Thus, both oracles compute the

premaster secret as pms = guv .
The challenger in this game proceeds as before, but replaces the premaster secret pms

of π s∗
i∗ and π t∗

j∗ with a random group element p̃ms = gw, w
$← Zq . Note that both gu

and gv are chosen by oracles π s∗
i∗ and π t∗

j∗ , respectively, as otherwise π s∗
i∗ would not have

a matching conversation to π t∗
j∗ and the game would be aborted.

Suppose that there exists an algorithm A distinguishing Game 2 from Game 1. Then
we can construct an algorithm Addh breaking the DDH assumption as follows. Addh
receives as input (g, gu, gv, gw). It implements the challenger forA as inGame 1, except
that it sets Ti∗,s∗ :=gu and Tj∗,t∗ :=gv , and the premaster secret of π s∗

i∗ and π t∗
j∗ equal to

pms:=gw. Note that Addh can simulate all messages exchanged between π s∗
i∗ and π t∗

j∗
properly, in particular the finished messages using knowledge of pms = gw. Since all
other oracles are not modified, Addh can simulate these oracles properly as well.
If w = uv, then the view of A when interacting with Addh is identical to Game 1,

while ifw
$← Zq , then it is identical to Game 2. Thus, the DDH assumption implies that

Adv1 ≤ Adv2 + εDDH

1306 T. Jager et al.

Game 3 In Game 3, we make use of the fact that the premaster secret p̃ms of π s∗
i∗ and

π t∗
j∗ is chosen uniformly random. We thus replace the value ms = PRF(p̃ms, label1

||rC ||rS) with a random value m̃s.
DistinguishingGame 3 fromGame 2 implies an algorithmAPRF breaking the security

of the pseudo-random function PRF, thus

Adv2 ≤ Adv3 + εPRF

Game 4 In this game, we replace the function PRF(m̃s, ·) used by π s∗
i∗ and π t∗

j∗ with
a random function Fm̃s . Of course the same random function is used for both oracles
π s∗

i∗ and π t∗
j∗ . In particular, this function is used to compute the key material as

K C→S
enc ||K S→C

enc ||K C→S
mac ||K S→C

mac :=Fm̃s(label2||rC ||rS)

Distinguishing Game 4 from Game 3 again implies an algorithmAPRF breaking the se-
curity of the pseudo-random function PRF. Moreover, in Game 4 the adversary always
receives a random key in response to a Test-query and thus receives no information
about b′, which implies Adv4 = 0 and

Adv3 ≤ Adv4 + εPRF = εPRF.

Collecting probabilities from Game 0 to Game 4 yields Lemma 3 �

6. ACCE Protocols

An authenticated and confidential channel establishment (ACCE) protocol is a protocol
executedbetween twoparties. Theprotocol consists of twophases, called the ‘pre-accept’
phase and the ‘post-accept’ phase.

Pre-accept phase In this phase, a ‘handshake protocol’ is executed. In terms of func-
tionality, this protocol is an AKE protocol as in Sect. 4, that is, both
communication partners are mutually authenticated, and a session
key k is established. However, it need not necessarily meet the se-
curity definition for AKE protocols (Definition 9). This phase ends,
when both communication partners reach anaccept-state (i.e.� =
‘accept’).

Post-accept phase This phase is entered, when both communication partners reach an
accept-state. In this phase, data can be transmitted, encrypted, and
authenticated with key k.

The prime example for an ACCE protocol is TLS. Here, the pre-accept phase consists
of the TLS Handshake protocol. In the post-accept phase, encrypted and authenticated
data are transmitted over the TLS Record Layer.
To define security of ACCE protocols, we combine the security model for authen-

ticated key exchange from Sect. 4 with stateful length-hiding encryption in the sense

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1307

of [81]. Technically, we provide a slightly modified execution environment that extends
the types of queries an adversary may issue.

6.1. Execution Environment

The execution environment is very similar to the model from Sect. 4, except for a
few simple modifications. We extend the model such that in the post-accept phase an
adversary is also able to ‘inject’ chosen-plaintexts by making an Encrypt-query,11 and
chosen-ciphertexts by making a Decrypt-query. Each oracle π s

i keeps as additional

internal state a bit bs
i

$← {0, 1}, chosen at random at the beginning of the game.
Moreover, for the post-accept phase each oracle π s

i keeps additional variables (us
i , v

s
i ,

Cs
i , θ

s
i). Variables us

i , v
s
i are counters, which are initialized to (us

i , v
s
i):=(0, 0). To sim-

plify our notation in the sequel, we additionally define u0
0:=0. Variable Cs

i is a list of
ciphertexts, which initially is empty. We write Cs

i [u] to denote the u-th entry of Cs
i .

Variable θ s
i stores a pair of indices θ s

i ∈ [�] ∪ {0} × [d] ∪ {0}. If oracle π s
i accepts

having a matching conversation to some other oracle π t
j , then θ s

i is set to θ s
i :=(j, t).12

Otherwise it is set to θ s
i :=(0, 0).

In the sequel, we will furthermore assume that the key k consists of two different
keys k = (kρ

enc, kρ

dec) for encryption and decryption. Their order depends on the role
ρ ∈ {Client,Server} of oracle π s

i . This is the case for TLS (see Sect. 3).
An adversary may interact with the provided oracles by issuing the following queries.

• Sendpre(π s
i , m): This query is identical to theSend-query in the AKEmodel from

Sect. 4, except that it replies with an error symbol ⊥ if oracle π s
i has state � =

‘accept’. (Send-queries in an accept-state are handled by the Decrypt-query
below).

• Reveal(π s
i) and Corrupt(Pi): These queries are identical to the corresponding

queries in the AKE model from Sect. 4.
• Encrypt(π s

i , m0, m1, len, H): This query takes as input two messages m0 and m1,
length parameter len, and header data H . If � �= ‘accept’, then π s

i returns ⊥.

Otherwise, it proceeds as depicted in Fig. 4, depending on the random bit bs
i

$←
{0, 1} sampled by π s

i at the beginning of the game and the internal state variables
of π s

i .• Decrypt(π s
i , C, H): This query takes as input a ciphertext C and header data H .

If π s
i has � �= ‘accept’ then π s

i returns ⊥. Otherwise, it proceeds as depicted in
Fig. 4.

Remark 7. Note that in the case of TLS, a message encrypted by some oracle π s
i can

only be decrypted by its ‘partner’ oracle, as different keys are used for the different
communication directions (i.e. a single oracle uses different keys for encryption and
decryption).

11Thismodels that an adversarymay trick one party into sending some adversarially chosen data. A practical
example for this attack scenario is cross-site request forgeries [90] on web servers, or Bard’s chosen-plaintext
attacks on SSL3.0 [5,6].

12If there is more than one such oracle, the first in lexicographical order is chosen.

1308 T. Jager et al.

Encrypt(πs
i , m0, m1, len, H): Decrypt(πs

i , C, H):
(C(0), st

(0)
e) $← StE.Enc(kρ

enc, len, H, m0, ste) (j, t) := θs
i

(C(1), st
(1)
e) $← StE.Enc(kρ

enc, len, H, m1, ste) vs
i := vs

i + 1
If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If bs

i = 0, then return ⊥
us

i := us
i + 1 (m, std) = StE.Dec(kρ

dec, H, C, std)
(Cs

i [us
i], H

s
i [us

i], ste) := (C(bsi), H, st
(bsi)
e) If vs

i > ut
j or C �= Ct

j [v
s
i] or H �= Ht

j [v
s
i],

Return Cs
i [us

i] then phases
i := 1

If phases
i = 1 then return m

Here us
i , v

s
i , b

s
i , ρ, kρ

enc, k
ρ
dec denote the values stored in the corresponding internal variables of π

s
i .

Fig. 4. Encrypt and Decrypt oracles in the ACCE security experiment.

6.2. Security Definition

Security of ACCE protocols is defined by requiring that (i) the protocol is a secure
authentication protocol and (ii) in the post-accept phase all data are transmitted over an
authenticated and confidential channel in the sense of Definition 6.

Again this notion is captured by a game, played between an adversary A and a chal-
lenger C. The challenger implements the collection of oracles {π s

i : i ∈ [�], s ∈ [d]}.
At the beginning of the game, the challenger generates � long-term key pairs (pki , ski)

for all i ∈ [�]. The adversary receives the public keys pk1, . . . , pk� as input. Now the
adversary may start issuing Sendpre,Reveal,Corrupt, Encrypt, andDecrypt queries.
Finally, the adversary outputs a triple (i, s, b′) and terminates.

Definition 10. Assume a ‘benign’ adversary A, which picks two arbitrary oracles π s
i

and π t
j and performs a sequence of Sendpre-queries by faithfully forwarding all mes-

sages of the pre-accept phase between π s
i and π t

j . Let ks
i = (kClientenc , kClientdec) denote the

key computed by π s
i and let kt

j = (kServerdec , kServerenc) denote the key computed by π t
j . We

say that an ACCE protocol is correct, if for this benign adversary and any two oracles
π s

i and π t
j always holds that

1. both oracles have � = accept,
2. ks

i = kt
j ∈ K.

Furthermore we require that for all messages m ∈ {0, 1}∗, lengths fields len ∈ N

with len ≥ |m|, roles ρ ∈ {Client,Server}, keys k = (kρ
enc, kρ

dec), headers H ∈
{0, 1}∗, and encryption/decryption states ste, std ∈ {0, 1}∗ holds that StE.Dec(kρ

dec, H,

StE.Enc(kρ
enc, len, H, m, ste), std) = m.

Definition 11. We say that an adversary (t, ε)-breaks an ACCE protocol, if A runs in
time t , and at least one of the following two conditions holds:

1. WhenA terminates, then with probability at least ε there exists an oracle π s
i such

that

• π s
i ‘accepts’ when A issues its τ0th query with partner � = j , and

• Pj is τ j -corrupted with τ0 < τ j , and

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1309

• A did not issue a Reveal-query to π s
i , or to an oracle π t

j , such that π
t
j accepted

while having a matching conversation to π s
i (if such an oracle exists) and

• there is no unique oracle π t
j such that π s

i has a matching conversation to π t
j .

If an oracle π s
i accept in the above sense, then we say that π s

i accepts maliciously.
2. When A terminates and outputs a triple (i, s, b′) such that

• π s
i ‘accepts’ when A issues its τ0th query with intended partner � = j , and

• Pj is τ j -corrupted with τ0 < τ j , and
• A did not issue a Reveal-query to π s

i , nor to π t
j such that π s

i has a matching
conversation to π t

j (if such an oracle exists),

then the probability that b′ equals bs
i is bounded by

∣
∣Pr[bs

i = b′] − 1/2
∣
∣ ≥ ε

If an adversary A outputs (i, s, b′) such that b′ = bs
i and the above conditions are

met, then we say that A answers the encryption-challenge correctly.

We say that anACCEprotocol is (t, ε)-secure, if it is correct and there exists no adversary
that (t, ε)-breaks it.

Remark 8. In comparison with the AKE Definition (Definition 9), we included an
additional condition in Definition 11. Namely, we require thatA did not issue aReveal-
query to an oracle π t

j , such that π t
j accepted while having a matching conversation to

π s
i , to prevent a trivial attack, which is possible for all ACCE protocols in which the

last message (of the pre-accept phase) mx is computed by some probabilistic algorithm

mx
$← F(k, in, r), where k is the session key k, in is some publicly known input (like

for instance the transcript of all messages), and r is the randomness of the algorithm. For
simplicity, we assume that some server-oracleπ t

j sends the lastmessage to a client-oracle
π s

i (its intended partner). The adversary can now proceed as follows:
By definition, π t

j has to accept after sending mx (without knowing if this message
was faithfully received by π s

i). Without the additional restriction, it would be possible
to ask a Reveal-query to π t

j and thus to learn the session key k. Note that an active
adversary at this point may have dropped the message mx . A can now use the key k,
compute a similar message m′

x by evaluating the same function with fresh randomness

r ′ as m′
x

$← F(k, in, r ′) over the same input in that π t
j used and send m′

x �= mx to π s
i .

If mx �= m′
x , then π s

i will accept without having a matching conversation to π t
j . This

issue was pointed out to us by [68] and observed independently in [28].

Remark 9. Also note that the above definition even allows to corrupt the oracle π s
i

whose internal secret bit the adversary tries to determine (Property 2). Thus, protocols
secure with respect to this definition provide perfect forward secrecy. Similar to the AKE
definitions,we again allow the ‘accepting’ oracle to be corrupted even before it reaches an
accept-state, which provides security against key-compromise impersonation attacks
(Property 1).

1310 T. Jager et al.

Also note that by explicitly differentiating between authentication and confidentiality,
we are able to model KCI attacks against protocols without perfect forward secrecy.

6.3. Relation to the AKE Security Definition from Sect. 4

Note that an ACCE protocol can be constructed in a two-step approach.

1. (AKE part) First an authenticated key exchange (AKE) protocol is executed. This
protocol guarantees the authenticity of the communication partner and provides
a cryptographically ‘good’ (i.e. for the adversary indistinguishable from random)
session key.

2. (Symmetric part) The session key is then used in a symmetric encryption scheme
providing integrity and confidentiality.

Thismodular approach is simple and generic, and therefore appealing. It can be shown
formally that this two-step approach yields a secure ACCE protocol, if the ‘AKE part’
meets the security in the sense of Definition 9, and the ‘symmetric part’ consists of a
suitable authenticated symmetric encryption scheme (e.g. secure according to Defini-
tion 6).

However, if the purpose of the protocol is the establishment of an authenticated confi-
dential channel, then it is not necessary that the ‘AKE part’ of the protocol provides full
indistinguishability of session keys. It actually would suffice if encrypted messages are
indistinguishable, and cannot be altered by an adversary. These requirements are strictly
weaker than indistinguishability of keys in the sense of Definition 9, and thus easier to
achieve (possibly from weaker hardness assumptions, or by more efficient protocols).
We stress that our ACCE definition is mainly motivated by the fact that security

models based on key indistinguishability do not allow for a security analysis of full
TLS, as detailed in “Introduction”. We do not want to propose ACCE as a new security
notion for key exchange protocols, since it is very complex and the modular two-step
approach seems more useful in general.

6.4. Relation to the Notion of Secure Network Channels

Our notion of authenticated and confidential channel establishment protocols is related to
but different from the notion of secure network channel protocols provided byCanetti and
Krawczyk [35]. Roughly, they define a network channel protocol to be a combination of a
secure (with respect to key indistinguishability) key exchange protocol and a symmetric
authentication or encryption scheme that is used for message exchange. At the same
time they strictly separate the key exchange phase from the message exchange phase
by requiring that the keys produced in the key exchange protocol expire in the key
exchange protocol before they are used in the symmetric primitive. We stress that this,
as detailed before, does not allow to prove the security of protocols like TLS where
the two protocol phases overlap. The adversary’s capabilities to access the encryption
and decryption algorithms are similar to ours. A noteworthy difference is that they deal
with replay attacks rather informally by requiring that each message contains a unique
message identifier that can be checked by the receiver. Through the incorporation of the
stateful LHAE definition into our model, we cover replay attacks explicitly.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1311

7. TLS with Ephemeral Diffie–Hellman Is a Secure ACCE Protocol

Again we will consider three types of adversaries:

1. Client-adversaries that succeed in making a client-oracle accept maliciously.
2. Server-adversaries that succeed in making a server-oracle accept maliciously.
3. Adversaries that do not make any oracle accept maliciously. We call such an ad-

versary an encryption-adversary.

Theorem 2. From any adversary that (t ′, εtls)-breaks the truncated ephemeral Diffie–
Hellman TLS Handshake protocol in the sense of Definition 11, we can construct an
adversary APRF that (t, εPRF)-breaks the security of PRF, Asig that (t, εsig)-breaks the
security of the signature scheme, Addh that (t, εDDH)-breaks the DDH assumption in
the group G used to compute the TLS-DHE premaster secret, AH that (t, εH)-breaks the
collision resistance of H, Aprfodh that (t, εprfodh)-breaks the PRF-ODH-problem with
respect to G and PRF, and AsLHAE that (t, εsLHAE)-breaks the stateful symmetric en-
cryption scheme, with t ≈ t ′ and the following lower bounds on the success probabilities
of the constructed adversaries.

• If A is a Client-adversary, then it holds that

εtls ≤ d�

(
d�

2λ
+ � · εsig + d�

(

εprfodh + εPRF + εH + εslhae + 1

2μ

))

• If A is a Server-adversary, then it holds that

εtls ≤ d�

(
d�

2λ
+ � · εsig + εDDH + 2 · εPRF + εH + εslhae + 1

2μ

)

• If A is an encryption-adversary, then it holds that

εtls ≤ d� (εDDH + 2 · εPRF + εsLHAE)

Recall here that � denotes the number of parties in the security model, d the number of
sessions per party, μ the output length of PRF, and λ the length of the nonces rC and
rS.

We prove Theorem 2 by the following three lemmas.

Lemma 4. From any Client-adversary A that runs in time t ′ with success probability
εclient, we can construct adversaries Asig, Addh, APRF, AH, and AsLHAE as in Theo-
rem 2, with

εclient ≤ d�

(
d�

2λ
+ � · εsig + d�

(

εprfodh + εPRF + εH + εslhae + 1

2μ

))

where all quantities are defined as in Theorem 2.

1312 T. Jager et al.

Lemma 5. From any Server-adversary A that runs in time t ′ with success proba-
bility εserver, we can construct adversaries Asig, Addh, APRF, AH, and AsLHAE as in
Theorem 2, with

εserver ≤ d�

(
d�

2λ
+ � · εsig + εDDH + 2 · εPRF + εH + εslhae + 1

2μ

)

where all quantities are defined as in Theorem 2.

The bounds on εclient and εserver in Lemma 4 and Lemma 5 are derived almost exactly
as in the proofs of Lemma 1 and Lemma 2. We only extend both proofs by one game-
hop that exploits the sLHAE security of the encryption scheme. This is necessary, as
an adversary can violate the matching conversations definition and thus make an oracle
maliciously accept, by creating a new, valid encryption of finC (or finS), which is distinct
from the ciphertext output by the corresponding client (or server) oracle.

Remark 10. Note that although in the non-truncated version of TLS the Client Finished
message finC is sent encrypted, the Server Finished message is always computed over
the plaintext handshake messages. Thus, the Server Finished message computed in the
unmodified version of TLS equals the Finishedmessage that is computed in the truncated
TLS version (assuming that the same parameters, randomness, etc. are used). In order
to follow the same reasoning in the ACCE setting, we only need to make sure that the
adversary is not able to produce new valid symmetric encryptions of finished messages.
This is provided by the sLHAE security of the symmetric encryption scheme.

Lemma 6. From any encryption-adversaryA running in time t ′ with success probabil-
ity 1/2+εenc, we can construct adversaries Addh, APRF, and AsLHAE as in Theorem 2,
with

εenc ≤ d� (εDDH + 2 · εPRF + εsLHAE)

where all quantities are defined as in Theorem 2.

The proof of this lemma again extends the proof of Lemma 3 by one game-hop that
exploits the sLHAE security of the encryption scheme.

Proof. Assume without loss of generality that A always outputs (i, s, b′) such that all
conditions in Property 2 of Definition 11 are satisfied. Let break(4)

δ denote the event that
b′ = bs

i in Game δ, where bs
i is the random bit sampled by π s

i , and b′ is either the bit
output by A or (if A does not output a bit) chosen uniformly random by the challenger.
Let Advδ:=Pr[break(4)

δ] − 1/2 denote the advantage of A in Game δ. Consider the
following sequence of games.

Game 0 This game equals the ACCE security experiment described in Sect. 6. For some
εenc, we have

Pr
[

break(3)
0

]

= 1

2
+ εenc = 1

2
+ Adv0

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1313

Recall that we consider an encryption-adversary, which does not make any oracle
accept maliciously and that we assume that A always outputs (i, s, b′) such that all
conditions in Property 2 of Definition 11 are satisfied. In particular, it outputs (i, s, b′)
such that π s

i ‘accepts’ after the τ0th query of A with intended partner � = j , and Pj

is τ j -corrupted with τ j > τ0. Note that in Game 0 for any such oracle π s
i there exists a

unique ‘partner oracle’ π t
j such that π

s
i has a matching conversation to π t

j , as the game
is aborted otherwise.

Game 1 The challenger in this game proceeds as before, but in addition guesses indices

(i∗, s∗) $← [�]×[d]. It aborts and chooses b′ at random, if the adversary outputs (i, s, b′)
with (i, s) �= (i∗, s∗). With probability 1/(d�) we have (i, s) = (i∗, s∗), and thus

Adv0 ≤ d� · Adv1
Note that in Game 1 we know that A will output (i∗, s∗, b′). Note also that π s∗

i∗ has a
unique ‘partner’ due to Game 0. In the sequel, we denote with π t∗

j∗ the unique oracle

such that π s∗
i∗ has a matching conversation to π t∗

j∗ , and say that π
t∗
j∗ is the partner of π s∗

i∗ .

Game 2 The challenger in this game proceeds as before, but replaces the premaster

secret pms of π s∗
i∗ and π t∗

j∗ with a random group element p̃ms = gw, w
$← Zq . Note

that both gu and gv are chosen by oracles π s∗
i∗ and π t∗

j∗ , respectively, as otherwise π s∗
i∗

would not have a matching conversation to π t∗
j∗ and the game would be aborted. With the

same arguments as in Game 2 in the proof of Lemma 3, we can construct an adversary
Addh which runs in time t ≈ t ′ and such that

Adv1 ≤ Adv2 + εDDH

Game 3 As in Game 3 in the proof of Lemma 3, we now make use of the fact that the
premaster secret p̃ms of π s∗

i∗ and π t∗
j∗ is chosen uniformly random. We thus replace the

value ms = PRF(p̃ms, label1||rC ||rS) with a random value m̃s.
DistinguishingGame 3 fromGame 2 implies an algorithmAPRF breaking the security

of the pseudo-random function PRF; thus

Adv2 ≤ Adv3 + εPRF

Game 4 As in Game 3 in the proof of Lemma 3, we replace the function PRF(m̃s, ·)
used by π s∗

i∗ and π t∗
j∗ with a random function Fm̃s . Of course the same random function

is used for both oracles π s∗
i∗ and π t∗

j∗ . In particular, this function is used to compute the
key material as

K C→S
enc ||K S→C

enc ||K C→S
mac ||K S→C

mac :=Fm̃s(label2||rC ||rS)

Distinguishing Game 4 from Game 3 again implies an algorithm APRF breaking the
security of the pseudo-random function PRF, thus we have

Adv3 ≤ Adv4 + εPRF

1314 T. Jager et al.

Note that in Game 4 the key material K C→S
enc ||K S→C

enc ||K C→S
mac ||K S→C

mac of oracles π s∗
i∗ and

π t∗
j∗ is uniformly random and independent of all TLS Handshake messages exchanged

in the pre-accept phase.

Game 5 Now we use that the key material K C→S
enc ||K S→C

enc ||K C→S
mac ||K S→C

mac used by
π s∗

i∗ and π t∗
j∗ in the stateful symmetric encryption scheme uniformly at random and

independent of all TLS Handshake messages.
In this game, we construct a simulatorAsLHAE that uses a successful ACCE adversary

A to break the security of the underlying sLHAE-secure symmetric encryption scheme
(Definition 6). By assumption, the simulatorAsLHAE is given access to an encryption or-
acle Encrypt and a decryption oracleDecrypt.AsLHAE embeds the sLHAE experiment
by simply forwarding all Encrypt(π s∗

i∗ , ·) queries to Encrypt, and all Decrypt(π t∗
j∗ , ·)

queries to Decrypt. Otherwise it proceeds as the challenger in Game 4.
Observe that the values generated in this game are exactly distributed as in the previous

game. We thus have

Adv4 = Adv5

If A outputs a triple (i∗, s∗, b′), then AsLHAE forwards b′ to the sLHAE experiment.
Otherwise it outputs a random bit. Since the simulator essentially relays all messages
it is easy to see that an adversary A having advantage ε′ yields an adversary AsLHAE
against the sLHAE security of the encryption scheme with success probability at least
1/2 + ε′.

Since by assumption any adversary has advantage at most εsLHAE in breaking the
sLHAE security of the symmetric encryption scheme, we have

Adv5 ≤ 1/2 + εsLHAE

�

8. On Proving Security of TLS-DHE from Standard Assumptions

In this section, we illustrate why we had to make the PRF-ODH assumption in the
proofs of Lemmas 1 and 4 and why it is possible to prove Lemmas 2 and 5 based on the
standard DDH assumption. In order to allow a comprehensive exposition, let us consider
the simplified protocol described in Fig. 5 as an abstraction of the TLS-DHEHandshake.

Suppose we are given an adversary which always makes Client-oracle C :=π s
i (i.e. a

particular oracle π s
i with ρ = Client) accept maliciously with intended partner � = S.

Wewill call this type of adversary aClient-adversary. Suppose wewant to argue that the
adversary is not able to forge the finS-message received by C (which we would have to,
since the finS-message is the only message that cryptographically protects all messages
previously received by π s

i , and thus is required to ensure that π s
i has a matching con-

versation), and that we want to assume only that the PRF is secure in the standard sense
(Definition 3). Then at some point in the proof we would have to replace the premaster
secret computed by π s

i as pms = T tC
S = gtC tS with an independent random value.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1315

Client C Server S

rC
$← {0, 1}λ

−−−−−−−−−−−−−−− m1 := rC →−−−−−−−−−−−−−−−−−−−−−−−−−−−
rS

$← {0, 1}λ

tS
$← Zq, TS := gtS mod p

σS := SIG.Sign(skS , (rC , rS , TS))

−−−−−−−−−−−−−−←
m2 := (rS , TS , σS)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tC
$← Zq, TC := gtC mod p

ms := PRF(T tC
S mod p, label1||rC ||rS)

finC := PRF(ms, m1||m2||(TC , σC))
σC := SIG.Sign(skS , (rC , rS , TS , TC))

−−−−−−−−−−−−−
m3 := (TC , σC , finC)

→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ms := PRF(T tS

C mod p, label1||rC ||rS)
finS := PRF(ms, m1|| . . . ||m3)

−−−−−−−−−−−−−−−←
m4 := finS−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 5. Abstraction of the TLS-DHE Handshake.

Note that in order to replace pms with a random value and argue in the proof with
indistinguishability, we must not know any of the exponents tC and tS in TC = gtC and
TS = gtS , as otherwise we can trivially distinguish the real pms = gtC tS from a random
pms′. The problematic property of TLS-DHE is that an adversary may test whether the
challenger ‘knows’ tS , and then make Client-oracle π s

i accept maliciously only if this
holds. This works as follows.

1. The adversary establishes a communication between two oracles π s
i (representing

the clientC) and π t
j (representing the server S) by simply forwarding the messages

m1 and m2 between C and S.
2. C will respond with m3 = (TC , σC , finC). This message is not forwarded.
3. Instead, the adversary corrupts some party P∗ �∈ {Pi , Pj } and obtains the secret

key sk∗ of this party. Then it computes

(a) T ∗:=gt∗ mod p for random t∗ $← Zq ,
(b) σ ∗:=SIG.Sign(sk∗; (rC , rS, TS, T ∗)) using the corrupted key sk∗,
(c) ms∗:=PRF(T t∗

S , label1||rC ||rS) using knowledge of t∗, and
(d) fin∗

C :=PRF(ms∗, m1||m2||(T ∗, σ ∗)).
and sends m∗

3:=(T ∗, σ ∗, fin∗
C) to S. Note that S cannot determine that its com-

munication partner has changed, because any messages previously received by S
were perfectly anonymous.

4. If S respondswith a correct fin∗
S message (note that the adversary is able to compute

all keys, in particular pms∗:=T t∗
S , since it ‘knows’ t∗, and thus is able to verify

the validity of fin∗
S), then adversary concludes that the challenger ‘knows’ tS and

forges the required finS-message (e.g. by breakingCDH) tomakeπ s
i acceptwithout

matching conversations. Otherwise the adversary aborts.

1316 T. Jager et al.

Note that the above adversary is a valid, successful adversary in the real security exper-
iment. It does not issue any Reveal-query and only one Corrupt-query to an unrelated
party, such that the intended communication partner � = S of C = π s

i remains uncor-
rupted, but still it makes C = π s

i ‘accept’ and there is no oracle that C has a matching
conversation to.
However, we will not be able to use this adversary in a simulated security experiment

where the challenger does not know the exponent tS of TS = gtS . Intuitively, the reason
is that in this case the challenger would first have to compute the Finished-message
fin∗

S , where

fin∗
S = PRF(ms, m1|| . . . ||m3) and ms = PRF(T t∗

S , label1||rC ||rS),

but ‘knowing’ neither tS = log TS , nor t∗ = log T ∗. This is the technical problemwe are
faced with, if we want to prove security under a standard assumption like DDH. Under
the PRF-ODH assumption, we can, however, use the given oracle to compute first ms,
and from this the Finished-message fin∗

S .

Server-adversaries Interestingly, the above technical problem does not appear if we
consider Server-adversaries (i.e. adversaries that make an oracle π s

i accept maliciously
with ρ = Server) instead of Client-adversaries. This is due to the asymmetry of the
TLS-DHEHandshake protocol. The reason is that in this case the adversary is not allowed
to corrupt the intended partner of the server (in order to exclude trivial attacks), and is
therefore not able to inject an adversarially chosen Diffie–Hellman share T ∗. Note here
that the signature sent from the client to the server is computed over bothDiffie–Hellman
shares received and chosen by the client. Therefore in this case the server is able to verify
whether its intended partner has received the correct Diffie–Hellman share, and thus the
standard DDH assumption is sufficient to prove Lemma 2.

Disallowing corruptions One possibility to circumvent the above problem, and thus
to avoid the PRF-ODH assumption, is to consider a weaker security model. If we
disallow Corrupt-queries in the model, then the adversary will not be able to inject
an adversarially chosen, validly signed Diffie–Hellman share. This prevents the above
‘test’ and again allows a proof under the DDH assumption. However, a security model
without corruptions is rather weak. Albeit it may be reasonable for certain applications,
it is certainly not adequate for the way how TLS-DHE is used on the Internet.

Adopting �0 to TLS. In [36] Canetti and Krawczyk describe a protocol called �0,
which exhibits many similarities to the TLS-DHEHandshake protocol and the simplified
protocol from Fig. 5, but is provably secure under standard assumptions (in particular
under DDH instead of PRF-ODH). Let us discuss why the differences between �0 and
TLS-DHE, albeit subtle, are crucial.
In Fig. 6, we describe a simple variant � of �0, which essentially extends �0 with

a server nonce rS and replaces the MAC computed over identities in �0 with a MAC
(implemented withPRF) computed over all previous protocol messages. Note that these
messages include the identities, so the security analysis of �0 carries over to �.
The major difference between �0 and TLS-DHE is that the client ‘accepts’ already

after receiving m2. There is no message m4 sent from the server to the client (which

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1317

Client C Server S

rC
$← {0, 1}λ

tC
$← Zq, TC := gtC mod p

−−−−−−−−−−−−−−−
m1 := (rC , TC)

→−−−−−−−−−−−−−−−−−−−−−−−−−−−
rS

$← {0, 1}λ

tS
$← Zq, TS := gtS mod p

σS := SIG.Sign(skS , (rC , rS , TC , TS))
ms := PRF(T tS

C mod p, label1||rC ||rS)
finS := PRF(ms, m1|| . . . ||m3)

−−−−−−−−−−−−−←
m2 := (rS , TS , σS , finS)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ms := PRF(T tC
S mod p, label1||rC ||rS)

finC := PRF(ms, m1||m2||(TC , σC))
σC := SIG.Sign(skS , (rC , rS , TS , TC))

−−−−−−−−−−−−−−
m3 := (TC , σC , finC)

→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 6. Provably secure TLS-DHE adopting �0 variant, adopted to the client/server setting and our notation.
Note that meanwhile TLS 1.3 has adopted a similar handshake design.

thus need not be simulated in a security experiment). This m4-message is not required
in �0, since the client Diffie–Hellman share gc is sent already in message m1 (before
m2!), and thus finS can be contained in m2.

We stress that one could make TLS-DHE provably secure under DDH by making it
more similar to �0:

1. Include the client Diffie–Hellman share gc in

• the first message m1 of TLS-DHE and
• in the signature sent from client to server.

2. Include all data in m4 of TLS-DHE into message m2 of TLS-DHE, and omit m4.

This modification would allow to carry the security analysis of �0 from [36] over to
TLS-DHE, and thus allow a security proof under DDH instead of PRF-ODH (and the
additional standard assumptions on the security of the PRF, the signature scheme, and
(considering full TLS-DHE) the stateful encryption scheme).
This would of course require changes to the TLS-DHE protocol, and may therefore

be unrealistic. This section should therefore merely be seen as an additional discussion
of the issue analysed in this section.

Including identities in the clientnonceAnotherway (the ‘engineering-approach’)
to circumvent the problem, and thus allow a proof under the DDH assumption instead
of PRF-ODH, is to modify TLS such that the client C is able to verify that the server
has indeed intended partner C , and not some third party C ′. Note that the client nonce
rC is included in both signatures, in particular in the signature σS sent from the server
to the client. According to [38,41,42], the nonce rC consists of 28 random bytes (=224
bits). The only requirement on the nonces in the proof is that a collision occurs with

1318 T. Jager et al.

sufficiently small probability, for which 160 bits should be sufficient in practice. One
could use the remaining 64 bits to encode an ‘identity’ that refers uniquely to the client
certificate. The server would have to check whether this identity matches the received
client certificate. This would, again, require changes to the TLS-DHE protocol and may
therefore be unrealistic, even though these changes are minimal.

9. Conclusions

In this paper, we have shown that the core cryptographic protocol underlying TLS with
ephemeral Diffie–Hellman (DHE) provides a secure establishment of confidential and
authenticated channels. Contrary to what previous analyses might suggest, the random
oracle model is not required to show that the composition of cryptographic building
blocks in TLS is secure, if we make the (non-standard) PRF-ODH assumption.
PRF-ODH vs. the Random Oracle model Let us explain what we consider as the
main advantage of proofs in the ‘standard model with a non-standard assumption’ like
PRF-ODH over proofs in the random oracle model. A typical proof in the random
oracle abstracts a hash function in a very strong way, by guaranteeing unconditionally
that the hash function has ‘essentially all properties required from a good cryptographic
hash function’ (the formulation is intentionally vague here, because the random oracle
model does not clarify precisely which concrete properties are guaranteed: think of
programmability, true randomness of outputs, independence of function values from the
function input, etc.).
In contrast, a proof in the standard model with a non-standard assumption forces

the prover to specify the non-standard properties required from the considered building
blocks concretely and in a mathematically precise way. A major advantage of this con-
creteness is, for example, that it enables researchers to falsify (or verify) whether the
concrete instantiation of a cryptographic primitive (like the concrete PRF used in TLS)
meets the required specific hardness assumption.

Subsequent and future work on TLS The whole TLS protocol suite is much more
complex than the cryptographic protocol underlying TLS-DHE. It is very flexible, as it
allows to negotiate cipher suites at the beginning of the TLS Handshake, or to resume
sessions using an abbreviated TLS Handshake. We need to leave an analysis of these
features for future work, since the complexity of the protocol and security model grows
dramatically.
The goal of this work is to analyse TLS-DHE as a cryptographic protocol. As common

in cryptographic protocol analyses, we therefore have ignored implementational issues
like error messages, which of course might also be used to break the security of the
protocol. We leave it as an interesting open question to find an adequate approach for
modelling such side channels in complex scenarios like AKE involving many parties
and parallel, sequential, and concurrent executions. Another important open problem is
to consider cross-protocol attacks that exploit for instance possible subtle connections
between different cipher suites. While the example of [89] is impractical, there may be
other sophisticated attacks, see [78] for example.

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1319

So clearly the security analysis of TLS is not finished yet, there are still many open
questions. Subsequent to the conference publication of this paper, major steps towards a
better understanding of the security of TLSweremade in [12,13,49,61,72], for example.
We consider all these results as strong indicators for the soundness of the TLS protocol.
We believe that future revisions of the TLS standard should be guided by provable
security—ideally in the standard model.

Acknowledgements

We would like to thank Dennis Hofheinz, Håkon Jacobsen, Yong Li, Kenny Paterson,
ZhengYang, HoeteckWee, and the anonymous reviewers of Crypto 2012 and the Journal
of Cryptology for helpful comments and discussions.

Appendix A: On Choosing the Right Model

Authenticated key exchange (AKE) is a basic building block in modern cryptography.
Many secure protocols for two-party and group key agreement have been proposed,
including generic compilers that transform simple key agreement protocols into authen-
ticated key agreement protocols, with many additional security properties. However,
since many different formal models for different purposes exist, choice of the right
model is not an easy task, and must be considered carefully.
The main guideline for this choice is the fact that we cannot modify any detail of the

TLS protocol, nor of the network protocols preceding it.
First, we want to use a model where entity authentication is addressed as a security

goal. This goal is often omitted in newer models, in order to make them suitable for two-
party authenticated key agreement protocols [63]. However, explicit authentication is an
important security goal for TLS; in many practical applications, authentication is more
important than encryption. For example, in a Single Sign-On scenario, an encrypted
security token may be passed from the identity provider through the browser to a relying
party. Since the security token itself is encrypted, confidentiality is not an issue, but the
authenticity of the channel through which this token was received is crucial.
Second, there is no way to modularize the security proof of TLS in the sense of [35],

since several protocol messages of TLS come without authenticator. Thus we cannot use
the authenticated link model (AM).
Third, we have chosen not to use a Universal Composability (UC) [31] approach.

We think that a formalization in the UC model first requires a thorough analysis in the
standard model. Since the exchange of nonces rC and rS in the first two messages of
the TLS Handshake can be regarded as an instantiation of the Barak compiler [20], it
seems in principle possible to model TLS within the UC framework. We refer to [57]
for a recent analysis of TLS 1.2 and the current draft of TLS 1.3 in the constructive
cryptography framework.

On the other hand, we have to make a choice about the enhanced adversarial ca-
pabilities newer models offer. We allow for RevealKey queries, but do not take into
account RevealState queries. The reason for this omission is that in TLS there are

1320 T. Jager et al.

several successive internal states: computation of the premaster secret, computation
of the master secret, computation of the session keys. After transition from one state
to another, internal data are erased. So to be precise, we would have to specify several
differentRevealState queries, which would have added tremendous complexity to both
the model and the proof and rendered the paper unreadable.
Thus we have chosen in essence the first model of Bellare and Rogaway [26], adopted

to the public-key setting, and enhanced with adaptive corruptions and perfect forward
secrecy. Similar variants of this model have been used in [30,35,75], for example.

References

[1] M. Abdalla, M. Bellare, P. Rogaway, The oracle Diffie–Hellman assumptions and an analysis of DHIES,
in Topics in Cryptology—CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, San
Francisco, CA, USA, ed. by D. Naccache (Springer, Berlin, Germany, April 8–12, 2001), pp. 143–158

[2] M.R. Albrecht, K.G. Paterson, Lucky microseconds: a timing attack on Amazon’s s2n implementation
of TLS, in EUROCRYPT (1) (2016), pp. 622–643

[3] N.J. AlFardan, K.G. Paterson, Lucky thirteen: Breaking the TLS and DTLS record protocols, in 2013
IEEE Symposium on Security and Privacy, Berkeley, California, USA, May 19–22, 2013 (IEEE Com-
puter Society Press, 2013), pp. 526–540

[4] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,M. Dankel, J. Steube, L. Valenta, D. Adrian, J. Alex
Halderman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels, C. Paar, Y. Shavitt, DROWN: breaking TLS
using sslv2, in 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10–12,
2016 (2016), pp. 689–706

[5] G. V. Bard, The vulnerability of SSL to chosen plaintext attack, in Cryptology ePrint Archive, Report
2004/111 (2004), http://eprint.iacr.org/

[6] G.V. Bard, A challenging but feasible blockwise-adaptive chosen-plaintext attack on SSL, in SECRYPT,
ed. by M. Malek, E. Fernández-Medina, J. Hernando (INSTICC Press, 2006), pp. 99–109

[7] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub,
J.K. Zinzindohoue, A messy state of the union: taming the composite state machines of TLS, in 2015
IEEE Symposium on Security and Privacy (IEEE Computer Society Press, 2015), pp. 535–552

[8] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, P.-Y. Strub, Triple handshakes and cookie
cutters: breaking and fixing authentication over TLS, in 2014 IEEE Symposium on Security and Privacy
(IEEE Computer Society Press, 2014), pp. 98–113

[9] F. Bergsma, B. Dowling, F. Kohlar, J. Schwenk, D. Stebila, Multi-ciphersuite security of the secure shell
(SSH) protocol, in ACM CCS 14: 21st Conference on Computer and Communications Security (ACM
Press, 2014), pp. 369–381

[10] M. Bellare, New proofs for NMAC and HMAC: security without collision-resistance, in Advances in
Cryptology—CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, Santa Barbara, CA,
USA, ed. by C. Dwork (Springer, Berlin, Germany, August 20–24, 2006), pp. 602–619

[11] K. Bhargavan, C. Fournet, R. Corin, E. Zalinescu, Cryptographically verified implementations for TLS,
in ACM CCS 08: 15th Conference on Computer and Communications Security, Alexandria, Virginia,
USA, ed. by P. Ning, P.F. Syverson, S. Jha (ACM Press, October 27–31, 2008), pp. 459–468

[12] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, Implementing TLS with verified
cryptographic security, in IEEE S&P (2013), pp. 445–459

[13] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, S.Z. Béguelin, Proving the TLS hand-
shake secure (as it is), in Advances in Cryptology—CRYPTO 2014, Part II, volume 8617 of Lecture
Notes in Computer Science, Santa Barbara, CA, USA, ed. by J.A. Garay, R. Gennaro (Springer, Berlin,
Germany, August 17–21, 2014), pp. 235–255

[14] C. Brzuska, M. Fischlin, N.P. Smart, B. Warinschi, S.C. Williams, Less is more: relaxed yet composable
security notions for key exchange, Int. J. Inf. Sec., 12(4):267–297, 2013

[15] G. Barthe, B. Grégoire, S. Heraud, S.Z. Béguelin, Computer-aided security proofs for the working
cryptographer, in Advances in Cryptology—CRYPTO 2011, volume 6841 of Lecture Notes in Computer

http://eprint.iacr.org/

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1321

Science, Santa Barbara, CA, USA, ed. by P. Rogaway (Springer, Berlin, Germany, August 14–18, 2011),
pp. 71–90

[16] C. Brzuska, H. Jacobsen, D. Stebila, Safely exporting keys from secure channels: on the security of
EAP-TLS and TLS key exporters, in EUROCRYPT (1) 2016, pp. 670–698

[17] M. Bellare, T. Kohno, C. Namprempre, Authenticated encryption in SSH: provably fixing the SSH
binary packet protocol, in ACM CCS 02: 9th Conference on Computer and Communications Security,
Washington D.C., USA, ed. by V. Atluri (ACM Press, November 18–22, 2002), pp. 1–11

[18] M. Bellare, T. Kohno, C. Namprempre, Breaking and provably repairing the SSH authenticated encryp-
tion scheme: A case study of the encode-then-encrypt-and-mac paradigm, ACM Trans. Inf. Syst. Secur.,
7:206–241, May 2004

[19] D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS#1, inAdvances in Cryptology—CRYPTO’98, volume1462 ofLectureNotes inComputer Science,
Santa Barbara, CA, USA, ed. by H. Krawczyk (Springer, Berlin, Germany, August 23–27, 1998), pp.
1–12

[20] B. Barak, Y. Lindell, T. Rabin, Protocol Initialization for the Framework of Universal Composability,
Cryptology ePrint Archive, Report 2004/006 (2004). http://eprint.iacr.org/

[21] C. Boyd, A. Mathuria, Protocols for Authentication and Key Establishment. Information Security and
Cryptography (Springer, Berlin, 2003)

[22] C. Badertscher, C. Matt, U. Maurer, P. Rogaway, B. Tackmann, Augmented secure channels and the
goal of the TLS 1.3 record layer, in ProvSec 2015: 9th International Conference on Provable Security,
Lecture Notes in Computer Science (Springer, Berlin, 2015), pp. 85–104

[23] M. Bellare, C. Namprempre, Authenticated encryption: relations among notions and analysis of the
generic composition paradigm, in Advances in Cryptology—ASIACRYPT 2000, volume 1976 of Lecture
Notes inComputer Science,Kyoto, Japan, ed. byT.Okamoto (Springer, Berlin,Germany,December 3–7,
2000), pp. 531–545

[24] M. Bellare, C. Namprempre, Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm, Journal of Cryptology, 21(4):469–491, 2008

[25] M. Bellare, D. Pointcheval, P. Rogaway, in Authenticated Key Exchange Secure Against Dictionary
Attacks, in Advances in Cryptology—EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, Bruges, Belgium, ed. byB. Preneel (Springer, Berlin, Germany,May 14–18, 2000), pp. 139–155

[26] M. Bellare, P. Rogaway, Entity authentication and key distribution, in Advances in Cryptology—
CRYPTO’93, volume 773 of Lecture Notes in Computer Science, Santa Barbara, CA, USA, ed. by
D.R. Stinson (Springer, Berlin, Germany, August 22–26, 1994), pp. 232–249

[27] M. Bellare, P. Rogaway, The security of triple encryption and a framework for code-based game-playing
proofs, in Advances in Cryptology—EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, St. Petersburg, Russia, ed. by S. Vaudenay (Springer, Berlin, Germany, May 28–June 1, 2006),
pp. 409–426

[28] C. Brzuska, N.P. Smart, B. Warinschi, G.J. Watson, An Analysis of the EMV Channel Establishment
Protocol, in ACM CCS 13: 20th Conference on Computer and Communications Security, ed. by A.-R.
Sadeghi, V. D. Gligor, M. Yung (ACM Press, Berlin, Germany, November 4–8, 2013), pp. 373–386

[29] M. Bellare, B. Tackmann, The multi-user security of authenticated encryption: AES-GCM in TLS 1.3,
in Advances in Cryptology—CRYPTO 2016, Part I, Lecture Notes in Computer Science, Santa Barbara,
CA, USA (Springer, Berlin, Germany, August 2016), pp. 247–276

[30] S. Blake-Wilson, D. Johnson, A. Menezes, Key agreement protocols and their security analysis, in 6th
IMA International Conference on Cryptography and Coding, volume 1355 of LectureNotes in Computer
Science, Cirencester, UK, ed. by M. Darnell (Springer, Berlin, Germany, December 17–19, 1997), pp.
30–45

[31] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in 42nd
Annual Symposium on Foundations of Computer Science, Las Vegas, Nevada, USA (IEEE Computer
Society Press, October 14–17, 2001), pp. 136–145

[32] K.K.R. Choo, C. Boyd, Y. Hitchcock, Examining indistinguishability-based proof models for key estab-
lishment protocols, in Advances in Cryptology—ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, Chennai, India, ed. by B.K. Roy (Springer, Berlin, Germany, December 4–8, 2005),
pp. 585–604

http://eprint.iacr.org/

1322 T. Jager et al.

[33] S. Chaki, A. Datta, Aspier: an automated framework for verifying security protocol implementations, in
Computer Security Foundations Symposium, 2009. CSF ’09. 22nd IEEE, (July 2009), pp. 172 –185

[34] J.-S. Coron, M. Joye, D. Naccache, P. Paillier, in New attacks on PKCS#1 v1.5 encryption (In Preneel
[84]), pp. 369–381

[35] R. Canetti, H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels,
in Advances in Cryptology—EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
Innsbruck, Austria, ed. by B. Pfitzmann (Springer, Berlin, Germany, May 6–10, 2001), pp. 453–474

[36] R. Canetti, H. Krawczyk, Security analysis of IKE’s signature-based key-exchange protocol, inAdvances
in Cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, Santa Barbara, CA,
USA, ed. by M. Yung (Springer, Berlin, Germany, August 18–22, 2002), pp. 143–161. http://eprint.iacr.
org/2002/120/

[37] C.J.F. Cremers, Session-state reveal is stronger than ephemeral key reveal: attacking the NAXOS au-
thenticated key exchange protocol, in ACNS 09: 7th International Conference on Applied Cryptography
and Network Security, volume 5536 of Lecture Notes in Computer Science, Paris-Rocquencourt, France,
ed. by M. Abdalla, D. Pointcheval, P.-A. Fouque, D. Vergnaud (Springer, Berlin, Germany, June 2–5,
2009), pp. 20–33

[38] T. Dierks, C. Allen, The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard), Obsoleted by RFC
4346, updated by RFCs 3546, 5746 (January 1999)

[39] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A Cryptographic Analysis of the TLS 1.3 Handshake
Protocol Candidates, in ACM CCS 15: 22nd Conference on Computer and Communications Security
(ACM Press, New York, 2015)

[40] B. Dowling,M. Fischlin, F. Günther, D. Stebila, inA Cryptographic Analysis of the TLS 1.3 Draft-10 Full
and Pre-shared Key Handshake Protocol. Cryptology ePrint Archive, Report 2016/081 (2016). http://
eprint.iacr.org/2016/081

[41] T. Dierks, E. Rescorla, in The Transport Layer Security (TLS) Protocol Version 1.1. RFC 4346 (Proposed
Standard). Obsoleted by RFC 5246, updated by RFCs 4366, 4680, 4681, 5746 (April 2006)

[42] T. Dierks, E. Rescorla, in The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard) (August 2008), Updated by RFCs 5746, 5878

[43] T. Duong, J. Rizzo, in The Crime Attack. https://docs.google.com/presentation/d/
11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/ (2012)

[44] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–207, 1983.

[45] D. Eastlake III, T. Hansen, in US Secure Hash Algorithms (SHA and HMAC-SHA), RFC 4634 (Informa-
tional) (July 2006)

[46] D. Eastlake III, P. Jones, in US Secure Hash Algorithm 1 (SHA1). RFC 3174 (Informational), Updated
by RFC 4634 (September 2001)

[47] M. Fischlin, A. Lehmann, D. Wagner, Hash function combiners in TLS and SSL, in Topics in
Cryptology—CT-RSA 2010, volume 5985 of Lecture Notes in Computer Science, San Francisco, CA,
USA, ed. by J. Pieprzyk (Springer, Berlin, Germany, March 1–5, 2010), pp. 268–283

[48] P.-A. Fouque, D. Pointcheval, S. Zimmer, HMAC is a randomness extractor and applications to TLS,
in ASIACCS 08: 3rd Conference on Computer and Communications Security, Tokyo, Japan, ed. by M.
Abe, V. Gligor (ACM Press, March 18–20, 2008), pp. 21–32

[49] F. Giesen, F. Kohlar, D. Stebila, On the security of TLS renegotiation, in ACM Conference on Computer
and Communications Security 2013, pp. 387–398

[50] S.Gajek,M.Manulis,O. Pereira,A.-R. Sadeghi, J. Schwenk, inUniversally composable security analysis
of TLS ProvSec, volume 5324 of LNCS, ed. by J. Baek, F. Bao, K. Chen, X. Lai (Springer, 2008), pp.
313–327

[51] J. Jonsson, B.S. Kaliski Jr, On the security of RSA encryption in TLS, in Advances in Cryptology—
CRYPTO 2002, pp. 127–142

[52] T. Jager, F. Kohlar, S. Schäge, J. Schwenk, On the security of TLS-DHE in the standard model, in
Advances in Cryptology—CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, Santa
Barbara, CA, USA, ed. by R. Safavi-Naini, R. Canetti (Springer, Berlin, Germany, August 19–23, 2012),
pp. 273–293

[53] D. Johnson, A. Menezes, S. Vanstone, The Elliptic Curve Digital Signature Algorithm (ECDSA), Int. J.
Inf. Secur., 1(1):36–63, August 2001

http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2016/081
http://eprint.iacr.org/2016/081
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/

Authenticated Confidential Channel Establishment and the Security of TLS-DHE 1323

[54] T. Jager, J. Schwenk, J. Somorovsky, Practical invalid curve attacks onTLSECDH, inACM CCS 15: 22nd
Conference on Computer and Communications Security (ACM Press, New York, 2015), pp. 407–425

[55] T. Jager, J. Schwenk, J. Somorovsky, in On the Security of TLS 1.3 and QUIC Against Weaknesses in
PKCS #1 v1.5 Encryption (ACM CCS 2015), pp. 1185–1196

[56] B. Kaliski, PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational), Obsoleted by RFC 2437
(March 1998)

[57] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, D. Venturi, in (De-)Constructing TLS. Cryptology
ePrint Archive, Report 2014/020 (2014). http://eprint.iacr.org/

[58] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, D. Venturi, (De-)constructing TLS 1.3, in Progress in
Cryptology—INDOCRYPT 2015: 16th International Conference in Cryptology in India, Lecture Notes
in Computer Science (Springer, Berlin, Germany, 2015), pp. 85–102

[59] E. Kiltz, A. O’Neill, A. Smith, Instantiability of RSA-OAEP under chosen-plaintext attack, in Advances
in Cryptology—CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, Santa Barbara,
CA, USA, ed. by T. Rabin (Springer, Berlin, Germany, August 15–19, 2010), pp. 295–313

[60] E. Kiltz, K. Pietrzak, On the security of padding-based encryption schemes—or—why we cannot prove
OAEP secure in the standard model, in Advances in Cryptology—EUROCRYPT 2009, volume 5479
of Lecture Notes in Computer Science, Cologne, Germany, (Springer, Berlin, Germany, April 26–30,
2009), pp. 389–406

[61] H. Krawczyk, K.G. Paterson, H. Wee, On the security of the TLS protocol: a systematic analysis, in
Advances in Cryptology—CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science,
Santa Barbara, CA, USA, ed. by R. Canetti, J.A. Garay, (Springer, Berlin, Germany, August 18–22,
2013), pp. 429–448

[62] H.Krawczyk, The order of encryption and authentication for protecting communications (or: How secure
is SSL?), in Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, Santa Barbara, CA, USA, ed. by J. Kilian, (Springer, Berlin, Germany, August 19–23, 2001),
pp. 310–331

[63] H. Krawczyk, HMQV: a high-performance secure Diffie-Hellman protocol, inAdvances in Cryptology—
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, Santa Barbara, CA, USA, ed. by
V. Shoup (Springer, Berlin, Germany, August 14–18, 2005), pp. 546–566

[64] F. Kohlar, S. Schäge, J. Schwenk, in On the security of TLS-DH and TLS-RSA in the standard model.
Cryptology ePrint Archive, Report 2013/367 (2013). http://eprint.iacr.org/

[65] R. Küsters, M. Tuengerthal, Composition theorems without pre-established session identifiers, in ACM
CCS 11: 18th Conference on Computer and Communications Security, Chicago, Illinois, USA, ed. by
Y. Chen, G. Danezis, V. Shmatikov (ACM Press, October 17–21, 2011), pp. 41–50

[66] H. Krawczyk, H. Wee, The OPTLS protocol and TLS 1.3, in IEEE European Symposium on Security
and Privacy, EuroS&P 2016, Saarbrücken, Germany (March 21–24, 2016), pp. 81–96

[67] G. Locke, P. Gallagher, in FIPS PUB 186-3 Federal Information Processing Standards Publication
Digital Signature Standard (DSS) (2009)

[68] Y. Li, Personal Communication (2012)
[69] R. Lychev, S. Jero, A. Boldyreva, C. Nita-Rotaru, How secure and quick is QUIC? Provable security

and performance analyses, in IEEE S&P (2015 [53]), pp. 214–231
[70] R. Lychev, S. Jero, A. Boldyreva, C. Nita-Rotaru, How secure and quick is QUIC? Provable security and

performance analyses, in Cryptology ePrint Archive, Report 2015/582 (2015). http://eprint.iacr.org/
[71] B.A. LaMacchia, K. Lauter, A. Mityagin, Stronger security of authenticated key exchange, in ProvSec,

volume 4784 of LNCS, ed. by W. Susilo, J.K. Liu, Y. Mu (Springer, 2007), pp. 1–16
[72] Y. Li, S. Schäge, Z. Yang, F. Kohlar, J. Schwenk, On the security of the pre-shared key ciphersuites of

TLS, in PKC 2014: 17th International Workshop on Theory and Practice in Public Key Cryptography,
volume 8383 of Lecture Notes in Computer Science, Buenos Aires, Argentina, ed. by H. Krawczyk
(Springer, Berlin, Germany, March 26–28, 2014), pp. 669–684

[73] B. Möller, T. Duong, K. Kotowicz, This Poodle Bites: Exploiting the ssl 3.0 fallback, PDF online (2014)
[74] J.C. Mitchell, Finite-state analysis of security protocols, in CAV, volume 1427 of LNCS, ed. by A.J. Hu,

M.Y. Vardi (Springer, 1998), pp. 71–76
[75] P. Morrissey, N.P. Smart, B. Warinschi, A modular security analysis of the TLS handshake protocol,

in Advances in Cryptology—ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science,
Melbourne, Australia, ed. by J. Pieprzyk (Springer, Berlin, Germany, December 7–11, 2008), pp. 55–73

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

1324 T. Jager et al.

[76] P. Morrissey, N.P. Smart, B. Warinschi, The TLS handshake protocol: A modular analysis, J. Cryptol.,
23(2):187–223, April 2010

[77] U.Maurer, B. Tackmann, On the soundness of authenticate-then-encrypt: formalizing the malleability of
symmetric encryption, in ACM CCS 10: 17th Conference on Computer and Communications Security,
Chicago, Illinois, USA, ed. by E. Al-Shaer, A.D. Keromytis, V. Shmatikov (ACM Press, October 4–8,
2010), pp 505–515

[78] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, B. Preneel, A cross-protocol attack on the TLS
protocol, in ACM CCS 12: 19th Conference on Computer and Communications Security, Raleigh, NC,
USA, ed. by T. Yu, G. Danezis, V.D. Gligor (ACM Press, October 16–18, 2012), pp. 62–72

[79] K. Ogata, K. Futatsugi, in Equational Approach to Formal Analysis of TLS, ICDCS (IEEE Computer
Society, 2005), pp. 795–804

[80] Lawrence C. Paulson. Inductive Analysis of the Internet Protocol TLS. ACM Trans. Inf. Syst. Secur.,
2(3):332–351, 1999.

[81] K.G. Paterson, T. Ristenpart, T. Shrimpton, Tag size does matter: attacks and proofs for the TLS record
protocol, in Advances in Cryptology—ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, Seoul, South Korea, ed. by D.H. Lee, X. Wang (Springer, Berlin, Germany, December 4–8,
2011), pp. 372–389

[82] D. Pointcheval, S. Vaudenay, inOn Provable Security for Digital Signature Algorithms, Technical report,
Ecole Normale Superieure (1996)

[83] M. Ray, S. Dispensa, in Renegotiating TLS (2009). http://extendedsubset.com/Renegotiating_TLS
[84] R. Rivest, in The MD5 Message-Digest Algorithm. RFC 1321 (Informational) (April 1992)
[85] Q. Sun, D.R. Simon, Y.-M. Wang, W. Russell, V.N. Padmanabhan, L. Qiu, Statistical identification of

encrypted web browsing traffic, in IEEE Symposium on Security and Privacy (2002), pp. 19–30
[86] J.M. Schanck, W. Whyte, Z. Zhang, Circuit-extension handshakes for Tor achieving forward secrecy in

a quantum world, Proc. Priv. Enhancing Technol., 4:219–236, 2016
[87] S. Vaudenay, The security of DSA and ECDSA, in Public Key Cryptography—PKC 2003, 6th Interna-

tional Workshop on Theory and Practice in Public Key Cryptography, volume 2567 of LNCS (2003),
pp. 309–323

[88] C.V. Wright, L. Ballard, S.E. Coull, F. Monrose, G.M. Masson, Spot me if you can: uncovering spoken
phrases in encrypted voip conversations, in IEEE Symposium on Security and Privacy (IEEE Computer
Society, 2008), pp. 35–49

[89] D. Wagner, B. Schneier, Analysis of the SSL 3.0 protocol, in Proceedings of the Second USENIX
Workshop on Electronic Commerce (USENIX Association, 1996), pp. 29–40

[90] W. Zeller, E.W. Felten, in Cross-Site Request Forgeries: Exploitation and Prevention. Technical report
(October 2008). Available at http://from.bz/public/documents/publications/csrf

http://extendedsubset.com/Renegotiating_TLS
http://from.bz/public/documents/publications/csrf

	Authenticated Confidential Channel Establishment and the Security of TLS-DHE
	1. Introduction
	1.1. Contributions
	1.2. Security Requirements on TLS Building Blocks
	1.3. Previous Work on TLS
	1.4. Subsequent Work on TLS and ACCE
	1.5. Alternatives to ACCE

	2. Preliminaries and Definitions
	2.1. The Decisional Diffie–Hellman Assumption
	2.2. Digital Signature Schemes
	2.3. Pseudo-Random Functions and the PRFODH Assumption
	2.4. Collision-Resistant Hashing
	2.5. Stateful Length-Hiding Authenticated Encryption

	3. Transport Layer Security
	4. AKE Protocols
	4.1. Execution Environment
	4.2. Security Definition

	5. Truncated TLS with Ephemeral Diffie–Hellman is a Secure AKE Protocol
	5.1. Authentication
	5.2. Indistinguishability of Keys

	6. ACCE Protocols
	6.1. Execution Environment
	6.2. Security Definition
	6.3. Relation to the AKE Security Definition from Sect. 4
	6.4. Relation to the Notion of Secure Network Channels

	7. TLS with Ephemeral Diffie–Hellman Is a Secure ACCE Protocol
	8. On Proving Security of TLS-DHE from Standard Assumptions
	9. Conclusions
	Acknowledgements
	Appendix A: On Choosing the Right Model
	References

