
Authenticated Dictionaries for Fresh Attribute
Credentials�

Michael T. Goodrich1, Michael Shin2,3, Roberto Tamassia3, and
William H. Winsborough4

1 Dept. Info. & Comp. Sci., University of California, Irvine
Irvine, CA 92697 USA
goodrich@acm.org

2 Department of Computer Science, Johns Hopkins University
Baltimore, MD 21218 USA

mys@cs.jhu.edu
3 Department of Computer Science, Brown University

Providence, RI 02912 USA
{mys,rt}@cs.brown.edu

4 Network Associates Laboratories
Rockville, MD 20850 USA

willian winsborough@nai.com

Abstract. We describe several schemes for efficiently populating an au-
thenticated dictionary with fresh credentials. The thrust of this effort is
directed at allowing for many data authors, called sources, to collectively
publish information to a common repository, which is then distributed
throughout a network to allow for authenticated queries on this infor-
mation. Authors are assured of their contributions being added to the
repository based on cryptographic receipts that the repository returns
after performing the updates sent by an author. While our motivation
here is the dissemination of credential status data from multiple creden-
tial issuers, applications of this technology also include time stamping of
documents, document version integrity control, and multiple-CA certifi-
cate revocation management, to name just a few.

Keywords authenticated dictionary, certificate revocation, third-party
data publication, authentication of cached data, dynamic data struc-
tures, digital credential, trust management

1 Introduction

Many problems in distributed systems require that content from various au-
thors be validated for authenticity and integrity. One of these problems is au-
thorization in decentralized systems. Traditional authorization systems assume

� Work supported in part by DARPA through AFRL agreement F30602–00–2–0509
and SPAWAR contract N66001–01–C–8005 and by NSF under grants CCR–0098068
and CDA–9703080.



2 Michael T. Goodrich et al.

organizations have a hierarchical structure in which authority emanates from
a single entity. However, this assumption breaks down when independent orga-
nizations engage in collaboration or commerce, particularly in large numbers.
In this case, authority emanates from many entities. Blaze, Feigenbaum, and
Lacy [3] introduced trust management (TM) as a collection of principles for
supporting authorization in such a decentralized environment. TM systems such
as KeyNote [2] use credentials or chains of credentials to represent capabilities,
that is, rights with respect to specific resources. Others, such as SPKI/SDSI [7]
and RT [15], enable entities to manage and combine their judgments about one
another’s authority based on more general entity attributes. What these sys-
tems have in common is that authority is distributed among a potentially large
number of entities, each of which may issue credentials. Additionally, credentials
from several entities may need to be combined to form a proof that a particular
resource request is authorized.
In the authorization systems mentioned above, an entity is typically repre-

sented by a public/private cryptographic key pair. Using its private key, an entity
signs the credentials it issues, enabling authenticity and integrity to be verified.
The assertions carried in credentials may be subject to changing circumstances.
A credential’s validity ends when it expires or is revoked. Updates concerning a
credential’s validity status can be disseminated by the issuer either as positive
revalidations, or as negative revocations.
For convenience here, we assume that Alice is a typical credential issuer.

For example, Alice may be a certification authority5 who has the ability and
responsibility of authenticating various entities. Presumably Alice is motivated
to make her assertions verifiable, since she issues signed certificates. To accept
such a certificate, Bob, a typical agent relying on a certificate issued by Alice,
may require proof that as of a certain time in the recent past, Alice had not re-
voked the certificate. Yet Alice’s strengths may not include the ability to answer
a large volume of online certificate-status queries. Thus, Alice and Bob are both
motivated to utilize a third-party, Charles, who will maintain certificate status
information for Alice and provide verifiable answers to queries from users, such
as Bob, as quickly and efficiently as possible.
In practice, of course, it is impossible to disseminate credential status updates

instantaneously, particularly when invoking a third-party, Charles, to process
updates and queries. The longer it takes, the greater the risk of basing decisions
on stale information. The rate at which risk accumulates depends on the nature of
the information, as well as on the application for which credentials are accepted.
Ultimately, Bob must determine what level of risk is tolerable. Yet whatever that
level may be, we desire a system that will quickly communicate any updates from
Alice to Bob with minimal overhead and minimal additional trust required in
Charles.

5 For our purposes, the terms “certificate” and “credential” are essentially interchange-
able. Historically, a “certificate” has typically carried a binding of a name to a public
key, while “credential” has often been used more broadly for associations with keys.



Authenticated Dictionaries for Fresh Attribute Credentials 3

1.1 Considering Many Credential Issuers

Prior work in the area of distributed data authentication (see, e.g., [1, 4–6, 10–
13, 18]) has focused primarily on disseminating updates from a single, trusted
source (merging the roles of Alice and Charles). Providing a high degree of
availability through these previous solutions, a small-scale credential issuer would
incur significant start-up cost. Economies of scale would suggest that credential
issuers could contain their costs by using a shared infrastructure to disseminate
credential status data. If we consider credential issuers to be the authors of
credential status data, then several authors may use the same publisher, Charles.
In this case, the authors entrust to the publisher the dissemination of credential
status data to its consumers, the authorization agents. In the current paper, we
present algorithms that can be used for this purpose. Our design goals are as
follows:

– Authors must be able to determine whether their updates are being published
in a timely manner.

– Determination that updates are occurring should be done efficiently and
without requiring trust in the responders.

– The repository should provide cryptographic receipts verifying that updates
are occurring.

– Update receipts should be small, so as to minimize network traffic, and
should be easy to verify.

In addition, the following client user-interface design goals are shared with prior
work:

– Answers to client queries must be highly available, meaning that it should
be possible to obtain answers at any time without prior arrangement.

– Answers must be validated efficiently for authenticity and integrity.
– Client users must be able to reliably determine the time at which data they
receive in answers was certified by its authors.

– Clients need not trust responders.

1.2 Our Contributions

In this paper, we describe how to extend prior authenticated dictionary tech-
niques [1, 4–6, 10–13, 18] to show how a publication service can make highly
available the current, authenticatable validity status of each credential issued by
one of a large number of credential authors. Our techniques for supporting many
authors involve the novel use of efficient authenticated data structures. More-
over, we offer an author, Alice, a trade-off between how much state she wishes to
maintain for her data and the size of the receipts that the publication repository,
Charles, provides to prove he is processing her updates correctly. An important
feature of our solutions is they allow Alice to delegate computations and data
archiving to Charles without delegating large degrees of trust to him. Indeed,
the protection of trust in a distributed environment is an important principle in
our work.



4 Michael T. Goodrich et al.

User 3

User 2

Responder
3Author 3

Author 2

Author 1
(Alice)

Repository
(Charles)

Responder
2

User 1
(Bob)

publish

Broadcast

Responder
1

Query/response

Fig. 1. Entities in a multi-authored authenticated dictionary

The paper is organized as follows. We begin with a general discussion of
background and motivation for multi-authored authenticated data repositories.
We follow this discussion, in Section 3, with a presentation of two simple-minded
schemes for providing for multiple authors in an authenticated setting, showing
that both of these schemes have serious drawbacks. We then present, in Sec-
tion 4, three variations on a novel intermediate scheme, showing its efficiency
with respect to several measures. Finally, in Section 5, we describe a number of
extensions to our scheme.

2 Background and Motivation

As mentioned above, the framework we are addressing in this paper involves
several groups of entities operating in a distributed environment, as illustrated
in Figure 1.

– An author (Alice). The authors are the issuers of credentials and/or cre-
dential status information. They are assumed to be online only during their
interaction with the data repository. They may have limited storage and
processing abilities; hence, they do not wish to process queries for users.

– A user (Bob). The users are consumers of credential and/or credential status
information. They desire quick response for a query requesting a credential or



Authenticated Dictionaries for Fresh Attribute Credentials 5

the revocation status of an existing credential. They have trust in the issuer
of a credential or credential status information, but they do not necessarily
trust the publishing system that is archiving and providing query responses
for this information.

– The publication repository (Charles). The publication repository stores the
credential and/or credential status information for the authors. Charles pro-
cesses updates for authors, providing them with receipts that confirm his
acceptance of these updates. He also broadcasts these updates out to the
responders, who perform the actual processing of user requests.

– The responders. The responders accept updates from the publication repos-
itory, Charles, and answer queries on this data for users. In addition to the
answers that responders provide, they also provide cryptographic proofs,
derived from basis information provided by Alice and Charles, that their
answers are as accurate as if they had come directly from Alice and Charles.

We assume Alice has some recourse in the event that Charles fails to fulfill
his publishing obligations correctly. It may satisfy Alice’s purposes to presume
that should Charles fail, Alice would make this known, thus damaging Charles’s
reputation to such a degree as to act as a sufficient deterrent. However, if Alice’s
ability to conduct her operations would be significantly compromised, stronger
assumptions may be required. For instance, Alice could maintain a minimal on-
line presence, operating a site, referred to in the credentials she issues, that gives
instructions about how to contact responders operated by her current publisher.
This level of indirection would enable Alice to replace Charles should he fail to
meet his publishing obligations. Depending on the contract Alice and Charles
enter into, Alice may also have legal recourse. Thus, we have a spectrum of
possible recourses.
So as to better motivate this framework, let us briefly discuss some applica-

tions.

2.1 Archiving and Time Stamping

An important service in a distributed collaborative environment is that of archiv-
ing and time stamping. Such a service stores documents and other data ordered
by creation time, and allows users to retrieve these documents and verify their
creation times. In our framework, the document and data creators are the au-
thors, the publication repository is the archive, the responders provide answers
to queries, and the users request documents and their time stamp verification.
For efficiency, Alice may wish to sign only a cryptographic digest (hash) of her
documents, and it may actually be this digest that is archived for time stamping
purposes. In addition, note that in this application Alice will never delete any-
thing from the archive, since that would violate the principle of time stamping.
Her updates in this case are limited to insertions.
Charles’s signature is useful for corroborating the date at which Alice makes

her assertion. It proves that Alice had signed the assertion by the date Charles



6 Michael T. Goodrich et al.

signs it. It prevents Alice signing something later than the date shown, or any-
one else claiming that she did so. Note that this is not inherently related to
Charles’s function as a distribution channel in any way more fundamental than
convenience.

2.2 Certificate Validity Status

Digital certificates are a central part of any public-key infrastructure (PKI),
in that they bind identification information to a public key. Such mappings
could be for individuals, groups, or even roles and permissions within a dynamic
coalition. But certificates may need to be revoked before they expire, due to
changes in roles, system compromises, or lost private keys. Once a certificate
is revoked, it is no longer valid. Thus, an important, but often neglected, step
in any protocol involving digital certificates is the verification of the revocation
status of a digital certificate. Putting this application into our framework, we see
that the authors are the certification authorities (CA’s) that issue and revoke
certificates. Likewise, the publication repository and its responders provide a
certificate status querying service, with verifiable responses to queries. The client
users in this case are any entities that wish to verify the status of a given digital
certificate. Clients may also need to be able to prove that status to others.
Validity status data can be represented as a collection of certificates valid at

a certain time, or as a similarly dated collection of certificate revocations, each
giving, say, the serial number of the certificate. Clearly in either case, the repre-
sentation must support insertion. In the former case, the (verified) presence of
the certificate in the collection establishes its validity as of the associated time.
Authors must be able to delete a credential to revoke it, thus rendering it in-
valid after the next time quantum. The acceptor of a credential determines how
recently validity must be proven and therefore what amount of latency (intro-
duced by publication or by caching of validity proofs) is acceptable. Verification
of negative query responses may be needed in some applications, for instance,
to justify (to a third party) denial of access.
When status data is represented by a collection of revocations, the (veri-

fied) absence of an unexpired credential’s serial number in the collection estab-
lishes the credential’s validity as of the associated time. Thus, it is essential that
the representation of this collection support verifiable negative answers to user
queries. Verifiable positive answers may also be necessary in some applications
to enable acceptors to justify credential rejection.
The essential functionality of either representation is to enable the acceptor

to verify that the issuer has revalidated a certificate at some point in the recent
past. Normal operation need not allow authors to “unrevoke” or reinstate a
revoked credential; if required, a new certificate carrying the same assertion can
be issued instead. However, to maintain efficiency it may be important to be able
remove revocations from the data structure, for instance, after the corresponding
credentials have expired. After that time, the revocation is no longer needed
to invalidate the credential. Yet removal of revocations must be undertaken
cautiously, particularly as the revocation time approaches the expiration time.



Authenticated Dictionaries for Fresh Attribute Credentials 7

In many applications it is important to ensure that revocations are not removed
before they have been published, as doing so could defeat auditing and the
detection of fraudulent transactions [14].
For a certificate to be accepted by Bob, he must have adequate proof of its

validity as an assertion made by Alice as of a given time. It may contribute to
this proof if the publisher, Charles, signs the association of credential validity
status and the publication time. (This reduces the need for Bob to trust Alice
not to replace her credential validity status data at a later time while lying
about the time of the changed assertion. Again, this might be significant if Bob
must justify to third parties decisions he takes based on certificates.) Depending
on Bob’s purposes, he may require that validity status information be signed by
Alice herself rather than accepting it solely on Charles’s authority. At minimum,
to accept any revocation information on Charles’s authority, we would expect
Bob to require that Alice identify Charles as her publisher. This could effectively
be done, for instance, if Alice maintains a minimal online presence, as suggested
above. This would enable Alice to publish a single credential, signed by herself,
positively identifying Charles (by his public key) as Alice’s current publisher. If
Alice should have to replace Charles, the credential would be replaced by one
issued to Alice’s new publisher and the revocation of the credential previously
issued to Charles would be published by Alice’s new publisher.

2.3 Data Integrity Verification

Whenever coalition data is hosted in untrusted locations, there is a possibil-
ity that it may be tampered with. Thus, in these contexts, there is a need for
documents, web sites, and other content to be validated. But if this validation
has a large overhead, there will be a temptation to circumvent the validation
step. Therefore, we feel that data integrity verification is an ideal application
for a distributed multi-author authenticated dictionary. In this case, the authors
are the document or web site producers, who, in addition to distributing their
content to various sites also publish digital digests of their content to the au-
thentication system run by the publication repository. Whenever a client, Bob,
accesses a document of web site, an authorization agent for Bob quickly verifies
that the content of that document or web site has not been modified by any-
one other than the author. The authorization agent for Bob makes a judgment
about how fresh verification data must be to sufficiently limit the risk associated
with relying on the credential. For example, the author of the status data, may
provide a suggested “shelf life” for updates, which Bob may take into account in
his determination. This expiration time data would be contained in the signed
basis returned with the query response from a responder for Charles.

2.4 Credential Discovery in Permission Systems

In another application related to distributed authorization, the data structures
discussed here can be used to support the discovery of credentials issued by a



8 Michael T. Goodrich et al.

given author [16]. In this case, the credentials themselves are stored in the multi-
author authenticated dictionary, and their (verified) presence is a testimony to
their validity. Should Alice require that a credential be revoked, she can remove it
from the authenticated dictionary, thereby preventing its validity being verified
after that time. Thus, status updates and discovery can be supported through
the same structure.
The authorizer makes the final determination as to how recently valid a cre-

dential must be for its purposes. However, Alice may also provide a recommended
“shelf life” for credentials she issues. When credential shelf life is sufficiently long
in relation to the rate at which credentials are issued and expire, it may reduce
Alice’s cost to publish credentials for the purpose of supporting discovery in the
archival structure discussed in Section 4.2 and to publish revocations separately
in one of the structures that support validation of negative answers. In this case,
after using the first structure to discover a credential, Bob would check the re-
vocation structure to verify the credential’s validity, as discussed in Section 2.2
above.

3 Some Simple-Minded Schemes

We begin our algorithmic discussion by pointing out two simple schemes, which
provide two opposite ends of a spectrum of how much trust the authors place in
the publication repository. Throughout our discussion of these simple schemes, as
well as our improved schemes, we will refer to a typical data author as “Alice,” we
will refer to a typical client user as “Bob,” and we will refer to the publication
repository as “Charles.” The first such solution we review is one in which a
typical author, Alice, places little trust in the publication repository, Charles.

3.1 Independent Authentication

One possible solution for the many-author authenticated dictionary problem is
for each author, Alice, to implement her own authenticated dictionary, e.g., using
the scheme of Goodrich, Tamassia, and Schwerin [11]. In this case, Alice would
maintain a hashed data structure, such as a tree or skip list, would make the
updates in this data structure, and would sign and time-stamp a new “root” for
this structure at every time quantum; this set of information is called the basis.
But rather than distributing the updates and newly-signed basis to her own
collection of responders, Alice would in this case simply forward the updates
and basis to the repository, Charles. Charles would then maintain the same
data structure as Alice, and would distribute the updates and new basis to the
responders. In other words, Charles is in this case little more than a distribution
channel to the responders. He does not sign anything—instead, he just passes the
authors’ signatures on. Authors, such as Alice, must maintain their own copies
of the data structures they publish. On the positive side, this solution supports
each user, Bob, to be able to verify the validity status, as of a given update date,
of each credential issued by the author.



Authenticated Dictionaries for Fresh Attribute Credentials 9

An author, Alice, signs the root hash of her data structure, together with the
date, forming a sub-basis. The date and root hash of Alice’s data structure are
provided in the clear to the query issuer, Bob (the update consumer), together
with the sub-basis and the rest of the authenticated dictionary proof. Bob checks
that the signed root hash of the data structure is indeed the computed digest of
the hash chain. Finally, Bob can decide whether the date is fresh enough for his
purposes. Note that Bob does not have to trust the publisher, Charles, nor the
responder, in this case.
The fact that Alice’s data structure is incorporated into Charles’s larger

repository enables the author to verify through an efficient query to an untrusted
responder whether all application data (such as credential status information) as
of a given update time is being published, and when. For this the author, Alice,
poses one query to a responder and compares the hash value at the root in the
response to her own root hash. As soon as she finds a responder that answers
queries using this root hash as the basis, Alice can verify that her entire update
has been published.
There are unfortunately several disadvantages to this simple scheme:

– Each data author, Alice, must be sophisticated enough to implement a com-
plete authenticated dictionary.

– There is a high likelihood that the publication repository, Charles, and his re-
sponders, will have to maintain many different kinds and versions of authen-
ticated dictionaries, which makes for a cumbersome software maintenance
plan.

– The time quanta for the different authenticated dictionaries are likely to be
out of phase, which complicates the authentication guarantees provided by
the system when many data authors are involved.

Let us therefore consider the other extreme.

3.2 Fully-Trusted Central Repository

At the other end of the trust spectrum is a scheme in which Alice and Bob fully
trust the publication repository, Charles, to publish Alice’s update accurately
and promptly. In this case, it is sufficient for Charles to implement a single
authenticated dictionary for all authors, which he then distributes out to the
responders. Alice forwards updates to Charles and fully trusts him to perform
those updates (be they insertions or deletions) on the published database. Data
and trust is therefore aggregated at the publication repository, Charles. He im-
plements a single authenticated dictionary for all the authors, and his responders
answer queries using a proof basis that is signed only by him. The advantage
of this scheme is that it has a simple software maintenance plan of keeping ev-
erything at the publication repository. This approach has several disadvantages,
however, including the following:

– Having authors fully trust the publication repository may be unrealistic. In
many applications, authors will at minimum require support for auditing



10 Michael T. Goodrich et al.

to detect incorrect omissions or additions to the repository that Charles
maintains on Alice’s behalf.

– Each user, Bob, must also fully trust Charles, since Charles’s basis is the
only cryptographic verification for a query’s accuracy.

– The publication repository, Charles, becomes a single point of failure of trust,
for compromising him compromises the security of the entire system.

Thus, there are significant drawbacks at both extremes of the spectrum of trust
regarding the publication repository, Charles. Let us, therefore, consider some
novel approaches that place only moderate trust in him.

4 A Multiply-Authored Authenticated Dictionary

In this section, we consider an intermediate solution, which maintains efficiency
while requiring only moderate trust in the publication repository, Charles. We
offer three versions of this intermediate solution, depending on the needs and
abilities of Alice’s repository.
In each solution, Charles stores a separate authenticated dictionary for each

author, Alice, using a hierarchical hashing scheme (tree-based or skip-list-based)
or an accumulator scheme. In each case a response is returned together with
a validity basis that is signed by Alice and Charles. This basis contains the
root hash value together with a time stamp indicating the most recent time
quantum(s) in which this hash was considered by Alice and Charles (either
together or separately) as the digest for all of Alice’s data.

4.1 Minimally Compliant Authors

The first version we consider is the case of an author, Alice, who is minimally
compliant with our approach. That is, Alice has minimal additional resources
that she wishes to deploy for repository archiving. She may wish, for example,
to maintain very little state. Indeed, Alice may not directly participate in the
protocol at all, but instead indirectly participate by having a third-party agent
pull her updates and transfer them to the publication repository.
In this case, the only state Alice needs to maintain is the current “root” hash

of the authenticated dictionary for her data. Let U = {u1, u2 . . . , uk} be a set
of updates, that is, insertions and deletions, for Alice’s data. The publication
repository, Charles, upon receiving this sequence of updates, processes them in
order one at a time. Each update, ui, involves Charles searching a path in the
authenticated data structure for Alice, updating that path to do the insertion or
deletion, and updating the hash values along the path from the updated element
to the “root” (possibly with local structural changes to maintain balance in the
structure). Let Pi denote the search path prior to the update and let P ′

i denote
the search path after, including the hash values of nodes immediately adjacent to
these paths. Then, as a receipt of this transaction, Charles returns to Alice the
sequence P = {P1, P

′
1, P2, P

′
2, . . . , Pk, P ′

k}. Alice (or her agent) can then verify



Authenticated Dictionaries for Fresh Attribute Credentials 11

inductively that all the updates were performed correctly by starting with her
cached hash value for the root (which should correspond to the root hash of
P1), and iteratively checking the computed hash value of P ′

1, P2, P ′
2, and so on.

Moreover, we require that path siblings be identical in Pi and P ′
i , and that path

roots be identical in P ′
i and Pi+1. If all the hashes check out as being computed

correctly, then Alice accepts that the updates have occurred, and she caches the
root hash of P ′

k as the new root hash. Note, in addition, that she can query a
responder at any time to verify that this is also the root hash that is being used
as the basis to her database for authenticated queries.
Charles and Alice will then mutually sign the new root hash, together with

the current date, and this mutually-signed value will serve as the basis. Ad-
ditionally, Charles can re-sign this root hash with each time quantum if there
are no updates during that quantum, provided Alice has the ability to contact
other authors in the case of her discovering that an update has been ignored by
Charles. Otherwise, Alice will have to re-sign the root hash, along with Charles,
in each time quantum.
In terms of the analysis of this scheme, there is a natural trade-off between

the state that Alice is willing to maintain and the efficiency of the repository’s
receipt. For, in this minimal scheme, Alice need only maintain a cache of O(1)
size: namely, the root hash value. But, in order to validate a batch of k updates
in this scheme, Charles needs to send Alice a receipt of size O(k log n), where n
is the total size of Alice’s database. We can design a scheme that is more efficient
than this, however, if Alice’s updates are all of a certain form.

4.2 Authors with Archive Data

A simplifying case of the multi-authored authenticated dictionary is when all
updates involve only insertions and only positive answers to queries (i.e., the
query element is present in the dictionary) need to be authenticated. Such a
situation could arise, for example, in applications where authors wish to archive
the digests of their documents, say, for time-stamping purposes. In the creden-
tialing context, this case arises when credentials are valid for a fixed period and
cannot be revoked.
In this case, Charles can store Alice’s data in an authenticated tree or skip-list

structure ordered by insertion time. Since such a tree is inefficient for searching,
he should require that each responder maintain an alternative search structure,
ordered by item keys, that maps an item in the key-ordered dictionary to its ver-
sion in the authenticated data structure. This is needed because the hash values
that produce the root digest signed by Charles and Alice are in the authenticated
data structure ordered by insertion time.
Moreover, if Charles is operating a general time-stamping service for a whole

collection of authors, he can store in a separate “super” data structure the
sequence of all historical values of authors’ authenticated data structures.
Let U = {u1, u2 . . . , uk} be a set of updates, that is, a sequence of k insertions

for Alice’s data. Given such a sequence, the publication repository, Charles, adds
the elements from this set of updates in the given order to the authenticated



12 Michael T. Goodrich et al.

data structure he is maintaining for Alice. Since this data structure is ordered
by insertion time, these elements comprise a contiguous sequence of elements at
the “end” of the data structure. Thus, the union of all that paths from these
elements to the root consists of at most O(k + log n) nodes. Therefore, Charles
can present to Alice a receipt that consists of the union of these paths, together
with the hash values of adjacent nodes. This receipt can be checked as in the
scheme described in the previous subsection, but it is much smaller in size.
In particular, the insertion by Alice of k items requires a receipt of size only
O(k+log n), rather than O(k log n), where n is the total size of Alice’s database.
If Charles is additionally maintaining a global archive of updates for m different
authors, then there would be an additional portion of size O(logm) that would
be added to the receipt Charles gives to Alice to verify that he has added her
changes to the global archive.
Therefore, we are able to achieve an efficient receipt size for the case when all

of Alice’s updates are insertions, while keeping the state Alice must maintain to
be constant. If Alice is willing to maintain state equal to the size of her database,
however, we can achieve an efficient receipt size even in the case where updates
consist of insertions and deletions.

4.3 Maintaining Limited State at an Author

Suppose that Alice is willing to maintain state equal to the size of her database.
In this case, Charles can maintain Alice’s authenticated dictionary as a hashed
red-black tree (e.g., see [9]). The reason we choose a red-black tree, in this case,
is that it has the property that updates and searches can be done in O(log n)
time, but any update, be it an insertion or deletion, requires only O(1) structural
changes to the underlying binary search tree.
Let U = {u1, u2 . . . , uk} be a set of updates, that is, a sequence of k insertions

and deletions for Alice’s data. In this case, Charles performs all of the updates in
U on the authenticated red-black tree he is maintaining for Alice. He then sends
back to her a receipt R that consists of all the structural changes he made to
this tree, that is, the sequence of node insertions, removals, and tree rotations.
They then both sign the final hash value of the root as the new basis. The total
size of the receipt is O(k). The reason this is sufficient is that, given the node
changes dictated by Charles, Alice can recompute the hash value at the root of
the tree in O(k+log n) time. Moreover, Alice doesn’t even need to know that the
binary tree is the underlying structure for a red-black tree. To her, it is simply
a binary search tree with hash values stored at the internal nodes, much like a
classic Merkle hash tree [17].

4.4 Common Themes

Thus, we have described three variations on an intermediate solution, where the
publication repository, Charles, performs some computations on behalf of each
data author, Alice, but does not fall in either extreme of taking complete control
from Alice nor simply acting as a mere publication channel for Alice. Each of



Authenticated Dictionaries for Fresh Attribute Credentials 13

our schemes have the basis derived from something signed by both Alice and
Charles. Moreover, Alice’s need only place minimal trust in Charles, for she can
always pose as a user, Bob, and request an authenticated query from one of
Charles’s responders. If that response does not use the correct, up-to-date basis,
Alice is free to reveal this breach of trust to the other users. Moreover, she can
prove that Charles in error if he does not use the basis derived from her most
recent updates, for she will have a signed receipt from Bob that can be used to
show what the basis should be. Indeed, if Alice combines all the receipts she has
received from Charles, she can prove the entire contents of what her database
contains.
The three scenarios presented in this section are summarized in Table 1.

Table 1. Comparison of three scenarios for multi-authored authenticated dictionaries.
All bounds are asymptotic, with the “big-Oh” omitted to simplify the notation

Scenario Operations State Receipt Size Verification Time

Min. Compliant Authors ins. and del. 1 k logn k logn
Authors w/ Archive Data ins. 1 k + log n k + log n
Authors w/ Limited State ins. and del. n k k logn

5 Discussion, Conclusions, and Additional Issues

There are several additional issues that surround the publishing of authenticated
data by many authors. We investigate several of these issues in this section.

5.1 Push versus Pull for Author Updates

When many authors have the ability to push updates to a publication repository,
Charles, this site becomes potentially vulnerable to denial-of-service attacks.
This danger is avoided in single-author version of an authenticated data structure
by taking off-line the generation of the structure.
In the multiple-author context, we can reduce the risk of denial-of-service

attacks against Charles by adding a subscription requirement to the model.
That is, the authors who wish to publish information to Charles’s repository
must subscribe to the service, for which Charles could, for example, charge a
fee based on usage. This economic model could reduce overwhelming numbers
of updates sent to Charles in an attempt to deny other authors their right to
publish.
Because we assume that the time quantum is defined by the publisher, we can

strengthen the model further by switching author updates from a push approach
to a pull approach. That is, each subscribed author, Alice, could be polled by



14 Michael T. Goodrich et al.

Charles (or an agent for Charles) in each time quantum for her updates. The net
effect of using a pull approach would be that the freshness of a batch of updates
per time quantum would be maintained, but now it would be impossible to
flood Charles with a simultaneous stream of updates from many authors. Even
a clearly frivolous sequence of updates from a subscribed author could be cutoff
mid-stream by Charles in this pull setting.

5.2 User Subscription

In the system we have described, users pull validity proofs from responders. An
alternative approach is to enable users to subscribe to updates on specific queries,
which would be pushed out to them as they are published. In open systems,
the field of potential users is so vast that pushing validity proofs is feasible
only based on subscription. While a subscription may permit the consumer to
avoid initiating a per-use check for freshness, it requires the user to trust the
publisher to provide timely updates on changes in revocation status. This trust
can be limited by requiring the publisher to provide a “heartbeat” (see [8])
at regular intervals to indicate that the subscribed-to credential remains valid.
In our setting, where the user’s trust in the publisher must be minimal, the
heartbeat’s content could be the validity proof itself. The heartbeat approach
is optimized for prolonged user-resource interactions such as login sessions or
continuous data feeds. However, the heartbeat approach builds in the limitation
on freshness given by the heartbeat period, so the period must be relatively
short. As such, it is not well suited to applications where authorization decisions
are more sporadic. Moreover, the use of heartbeats begs the question, What
does the user do when a fresh validity proof does not arrive or the proof received
is not fresh enough to meet the user’s needs? In these cases users should have
the option of contacting different responders to obtain adequately fresh validity
proofs.

5.3 Off-line Versus On-line

The authenticatable data structures we have presented are constructed off-line at
periodic intervals defined by the publisher and then pushed out to untrusted re-
sponders. While the modest delay this introduces may slightly increase the user’s
vulnerability to an attack employing recently revoked credentials, it promises
defenses against denial of service attacks that are far simpler than are avail-
able for on-line issuance and revocation services, where Byzantine failure and
secure group communication must be addressed (see for instance [19]). As we
have discussed, the time-quantum assumption allows the user protocol to employ
untrusted, highly available responders and allows author updates to be pulled
rather than pushed.

5.4 Credential Sensitivity

Credentials may be sensitive and therefore protected. In this case, authors should
not have to entrust protection to publishers. Instead, the update should not con-



Authenticated Dictionaries for Fresh Attribute Credentials 15

tain potentially sensitive credential content, but rather should contain only cre-
dential identifiers, such as a serial number. Thus, given a credential, the publica-
tion can be consulted to determine its validity status, while information content
of the credential cannot be obtained from the publication.

5.5 Locating Responders

There are two parts to the issue of locating an appropriate responder: locating
the publisher of the validity status of a given credential, and locating a responder
for that publisher. In addition, a user would naturally desire a responder that is
close in the network and lightly loaded with query requests being processed.

5.6 Conclusion

In this paper, we have studied the problem of disseminating an authenticated
dictionary through an untrusted or partially trusted publisher. We have consid-
ered several architectural issues involved with such publication, including the
necessity of receipts, the efficiency of receipts, and methods for pushing updates.
In this context, we have presented efficient algorithmic solutions for a variety
of levels of trust in the publisher. We have additionally provided an extremely
efficient solution for the case when data removal need not be supported.

References

1. A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent authenticated
dictionaries and their applications. In Proc. Information Security Conference (ISC
2001), volume 2200 of LNCS, pages 379–393. Springer-Verlag, 2001.

2. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote trust-
management system, version 2. IETF RFC 2704, Sept. 1999.

3. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Pro-
ceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173.
IEEE Computer Society Press, May 1996.

4. A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management using
undeniable attestations. In ACM Conference on Computer and Communications
Security, pages 9–18. ACM Press, 2000.

5. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. Stubblebine. Flex-
ible authentication of XML documents. In Proc. ACM Conference on Computer
and Communications Security, 2001.

6. P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party data
publication. In Fourteenth IFIP 11.3 Conference on Database Security, 2000.

7. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory. IETF RFC 2693, Sept. 1999.

8. E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. dRBAC: Dis-
tributed role-based access control for dynamic coalition environments. In Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS’02). IEEE Computer Society, July 2002.



16 Michael T. Goodrich et al.

9. M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis and
Internet Examples. John Wiley & Sons, New York, NY, 2002.

10. M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed
cryptographic accumulator. In Proc. Int. Security Conference (ISC 2002), volume
2433 of LNCS, pages 372–388. Springer-Verlag, 2002.

11. M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenti-
cated dictionary with skip lists and commutative hashing. In Proc. 2001 DARPA
Information Survivability Conference and Exposition, volume 2, pages 68–82, 2001.

12. M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated
data structures for graph and geometric searching. In Proc. RSA Conference,
Cryptographers Track (RSA-CT), volume 2612 of LNCS, pages 295–313. Springer-
Verlag, 2003.

13. P. Kocher. A quick introduction to certificate revocation trees (CRTs), 1998.
http://www.valicert.com/resources/whitepaper/bodyIntroRevocation.html.

14. N. Li and J. Feigenbaum. Nonmonotonicity, user interfaces, and risk assessment
in certificate revocation. In Proceedings of the 5th Internation Conference on Fi-
nancial Cryptography (FC’01), volume 2339 of Lecture Notes in Computer Science,
pages 166–177. Springer-Verlag, 2001.

15. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust man-
agement framework. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2002.

16. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discov-
ery in trust management. Journal of Computer Security, 11(1):35–86, Feb. 2003.

17. R. C. Merkle. A certified digital signature. In G. Brassard, editor, Proc. CRYPTO
’89, volume 435 of LNCS, pages 218–238. Springer-Verlag, 1990.

18. M. Naor and K. Nissim. Certificate revocation and certificate update. In Proc. 7th
USENIX Security Symposium, pages 217–228, Berkeley, 1998.

19. L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed on-
line certification authority. ACM Transactions on Computer Systems (TOCS),
20(4):329–368, Nov. 2002.


