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Abstract. In this work, we look at authenticated encryption schemes from a new perspective. As opposed to focusing

solely on the “security” implications of the different methods for constructing authenticated encryption schemes, we

investigate the effect of the method used to construct an authenticated encryption scheme on the “performance” of

the construction. We show that, as opposed to the current NIST standard, by performing the authentication operation

before the encryption operation, the computational efficiency of the construction can be increased, without affecting

the security of the overall construction. In fact, we show that the proposed construction is even more secure than

standard authentication based on universal hashing in the sense that the hashing key is resilient to key recovery

attacks.

1 Introduction

There are three different methods to generically compose an authenticated encryption scheme by combining

an encryption algorithm with a message authentication code (MAC) algorithm: Encrypt-and-MAC (E&M ),

Encrypt-then-MAC (EtM ), or MAC-then-Encrypt (MtE). Although significant efforts have been devoted to

analyzing the security implications of different generic compositions (see, e.g., [11, 12, 22, 27, 49, 52]), little

effort has been devoted to the study of the performance implications of different generic compositions [7].

Of particular interest to this work is the performance aspect of generic compositions when the encryption

algorithm is blockcipher based and the MAC algorithm is universal hash-function family based. (We focus

on such constructions since blockciphers are the building blocks of choice for constructing secure encryption

algorithms [44] and since universal hash families based MACs are the fastest method for message authentica-

tion [66]).

In a typical EtM composition, the plaintext is broken into blocks. Each block is processed with a blockci-

pher, resulting in a ciphertext block. The resulting ciphertext blocks are then authenticated using a MAC based

on a universal hash-function family (in the Carter-Wegman style [23, 24]). One of the most recent authenti-

cated encryption schemes is the current National Institute of Standards and Technology (NIST) standardized

Galois/Counter Mode (GCM) of authenticated encryption [30]. The GCM standard is based on the Carter-

Wegman Counter (CWC) blockcipher mode of authenticated encryption proposed by Kohno et al. in [46].

The GCM and CWC modes of operations give high-performance authenticated encryption by combining the

counter mode of encryption with a universal hash-function family for authentication.

Recently, there has been increasing attention in the design of secure and efficient authenticated encryption

algorithms. Following a long tradition of focused competitions in symmetric cryptography,1 a new NIST-

funded competition, CAESAR, is now calling for standardized authenticated ciphers. The AES competition

is generally viewed as having provided a tremendous boost to the cryptographic research community’s un-

derstanding of blockciphers, and a tremendous increase in confidence in the security of some blockciphers.

Similar comments apply to eSTREAM and to the SHA-3 competition, and are also expected to apply to CAE-

SAR [16].

The OKH solution. In this work, we investigate the performance implications of the order in which the two

1 The 1997 NIST’s open competition for a new Advanced Encryption Standard (AES), the 2004 ECRYPT’s open competition for

Stream Ciphers (eSTREAM), and the 2007 NIST’s open competition for a new Hash Standard (SHA-3).
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operations, encryption and authentication, are performed. We describe the Odd Key Hashing (OKH) mode

of authenticated encryption. The OKH mode is motivated by the current NIST standard (the Galois/Counter

Mode (GCM) of authenticated encryption [30]) and the CWC mode of authenticated encryption proposed by

Kohno et al. [46]. However, unlike the GCM and the CWC schemes, the order of encrypt-then-authenticate

is reversed in the OKH mode. That is, as opposed to applying the hashing operation on the ciphertext, it is

applied on the plaintext, before blockcipher encryption.

Earlier results in the security of authenticated encryption systems show that, when combining a secure

encryption algorithm2 and a secure MAC algorithm3, only the EtM composition guarantees the construction

of a secure authenticated encryption system [12, 22, 49]. Such early results are perhaps the main reason for

adopting the EtM composition as a standard. However, more recent results show that the MtE and the

E&M can indeed construct secure authenticated encryption systems [7, 52]. The main objective of this work

is to highlight the possible performance advantages of the MtE and the E&M compositions, hoping to pave

the road for more efficient standards (especially with the ongoing NIST-funded competition to standardize

authenticated encryption algorithms [16]).

The main result of this study is to show that, while the hash family used to construct a MAC in the EtM
composition must be universal, this need not be the case in the MtE composition.4 The performance impli-

cation of this result is that, since the hash family need not be universal, it can be computed faster than the

fastest universal hash family in the cryptographic literature. The theoretical significance of this result is that

relaxing the security requirements on the MAC algorithm does not affect the provable security of the overall

authenticated encryption composition. In fact, we show that MtE compositions are even more secure than

their EtM counterparts in the sense that they are secure against the key-recovery attacks discovered in [39].

We emphasize that the main purpose of this work is not the design of most efficient authenticated encryption

algorithm. Rather, laying down the theoretical basis for the design of more efficient authenticated encryption

algorithms is the main purpose of this work.5

Versions. An extended abstract of this paper appeared in the 10th International Conference on Applied Cryp-

tography and Network Security–ACNS’12 [2]; this is the full version. We note here that the preliminary

version of OKH appeared in [2] has a vulnerability when the integer representation of the last blocks in

the forgery attempt are equal to 2n−1. This vulnerability has appeared in [67] and it has been fixed in this

manuscript.

Organization. In Section 2, we give a brief background and discuss related work. In Section 3, we give

some preliminaries. In Section 4, we describe the OK hash family. In Section 5, we describe the construction

of the proposed OKH authenticated encryption scheme. In Section 6, we state and prove the authenticity and

privacy theorems of the proposed scheme. In Section 7, we summarize the basic ideas behind the proposed

mode of operation and provide performance discussions. In Section 8, we conclude the paper.

2 Background and related work

There are two main approaches to design an authenticated encryption system: a generic approach and a ded-

icated approach. In the generic approach, an encryption primitive for data privacy is combined with a MAC

primitive for data integrity to construct an authenticated encryption system. Examples of the generic con-

structions include, but are not limited to, SSH [72], IPsec [28], SSL [33], CWC [46], and GCM [30]. In the

2 Secure in the sense that it provides indistinguishability under chosen plaintext attacks
3 Secure in the sense that it provides unforgeability under chosen message attacks
4 Although the same result can be shown for the E&M composition, we restrict our discussion to the MtE composition for brevity.
5 It might be worth mentioning here that the ideas presented in this work are the basis for the design of AVALANCHE [3], one of

the candidates for the CAESAR competition.
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dedicated approach, an authenticated encryption primitive is designed as a standalone system. The first dedi-

cated scheme is the PCBC of Gligor and Donescu [34]. The formal notion of authenticated encryption systems

was introduced independently by Katz and Yung in [45], and by Bellare and Rogaway in [13]. Since then,

many dedicated authenticated encryption schemes have been proposed, such as, RPC of Katz and Yung [45],

XECB of Gligor and Donescu [35], IAPM of Jutla [43], OCB of Rogaway et al. [60], and EAX of Bellare et

al. [14]. A noteworthy point is that all secure dedicated authenticated encryption primitives are blockcipher

based. That is, although stream cipher based authenticated encryption primitives have been proposed, e.g.,

in [32,69], such stream cipher based proposals have been analyzed and shown to be vulnerable to differential

cryptanalysis [54, 56, 57, 70].

The use of universal hash-function families to construct MAC algorithms is due to Carter and Wegman

[23, 24]. Compared to blockcipher based MACs, such as [9, 18, 29, 41], and cryptographic hash function

based MACs, such as [8, 21, 58, 65], universal hashing based MACs lead to faster message authentication

[17, 38, 47, 59]. The security of MACs based on universal hashing has been extensively studied (see, e.g.,

[4, 5, 39]

The speed of a universal hash family based MAC relies mainly on the speed of the used universal hash

family. Consequently, significant efforts have been devoted to the design of fast universal hash families. In

[47], Krawczyk introduced the cryptographic CRC which hashes in about 6 cycles/byte, as shown by Shoup

in [62]. In [59], Rogaway proposed the bucket hashing which was the first hash family explicitly targeted for

fast software implementation; it runs in about 1.5− 2.5 cycles/byte [17]. In [42], Johansson described bucket

hashing with smaller key size. In [38], Halevi and Krawczyk proposed the MMH family, which hashes at about

1.2− 3 cycles/byte. In [31], Etzel et al. proposed the square hash, an MMH-variant that can be more efficient

than MMH in certain settings [17]. In [15], Bernstein proposed floating-point arithmetic based hash function

that achieves a peak speed of 2.4 cycles/byte. In [1], Afanassiev et al. described an application of hashing

based on polynomial evaluation over finite fields. In [55], Nevelsteen and Preneel study the performance of

several universal hash functions proposed for MACs. The speed champion of universal hash functions directed

for software implementation is the NH family of Black et al. proposed in [17]. The NH family is an extension

to the MMH family of [38]. The speed improvement comes from eliminating the non-trivial modular reduction

required by the MMH family. The novelty of NH family is that it uses arithmetic modulo powers of two or,

as the authors call it, “computations that computers like to do [17].” The NH family hashes at about 0.34
cycles/byte for 2−32 probability of message collision.

Recently, Alomair and Poovendran showed that, in contrast to the EtM composition, one can utilize the

E&M and MtE compositions to increase the efficiency of the system by eliminating the last blockcipher

call [6, 7]. In this work, we take the idea of utilizing the E&M and MtE compositions one step further.

That is, while the use of universal hash functions was necessary for the security of the schemes in [6, 7], the

scheme proposed here need not use universal hash functions, thus increasing the speed of the system, while

maintaining the required provable security.

3 Notations and Preliminaries

In this section we state our assumptions and describe the notations and definitions that will be used for the

rest of the paper.

3.1 Notations

The following notations will be used throughout the rest of the paper.

- If s is a binary string, |s| denotes the length of s in bits.

- For a positive integer β, {0, 1}β denotes a binary string of length β-bits, and {0, 1}∗ denotes a binary

string of arbitrary length.
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- If b is a bit and β is a positive integer, we denote by bβ the concatenation of b with itself β times.

- For a non-empty set H, we denote by h
$
← H the selection of a member of H uniformly at random and

assigning it to h.

- If x and n are positive integers so that 0 ≤ x < 2n, we denote by tostr(x, n) the binary representation of

x as an n-bit string (in a big-endian format).

- If s is a binary string, we denote by toint(s) the unsigned integer representation of s (in a big-endian

format).

- If s is a binary string and ℓ is a positive integer, we denote by setlen(s, ℓ) the truncation of s into its ℓ
most significant bits. If |s| < ℓ, then setlen(s, ℓ) denotes the ℓ-bit long string s||0ℓ−|s|.

3.2 Universal Hash-Function Families

A family of hash functions H is specified by a finite set of keys K. Each key k ∈ K defines a member of the

family Hk ∈ H. As opposed to thinking of H as a set of functions from D to R, it can be viewed as a single

function H : K ×D → R, whose first argument is usually written as a subscript. A random element h
$
← H

is determined by selecting a k
$
← K uniformly at random and setting h ← Hk. There are many classes of

universal hash families, depending on their probability of message collision (see, e.g., [23,38,47,48,63,68]).

We give below a formal definition of one class of universal hash families called ǫ-almost universal.

Definition 1. Let H = {h : D → R} be a family of hash functions and let ǫ ≥ 0 be a real number. H is

said to be ǫ-almost universal, denoted ǫ-AU, if for all distinct M,M ′ ∈ D, we have that Prh←H

[

h(M) =

h(M ′)
]

≤ ǫ.H is said to be ǫ-almost universal on equal-length strings if for all distinct, equal-length strings

M,M ′ ∈ D, we have that Prh←H

[

h(M) = h(M ′)
]

≤ ǫ.

3.3 Blockciphers

Let F : K × D → R be a family of functions from D to R indexed by keys K. We use FK(D) as shorthand

for F (K,D). F is a family of permutations (i.e. a blockcipher), if D = R and FK(·) is a permutation on D
for each K ∈ K. If F is a family of permutations, we use F−1K (·) to denote the inverse of FK(·) and we use

F−1(·, ·) to denote the function that takes as input (K,D) and computes F−1K (D).

We adopt the notion of security for blockciphers formalized in [10]. Let Perm(K,D) denote the set of all

possible blockciphers (permutations) with key space K and domain D. Then, the notation π
$
← Perm(K,D)

corresponds to selecting a random block-cipher. Given a family of functions E : K × D → D and a key

K ∈ K, define the related-key oracle ERK(·,K)(·) as an oracle that takes two arguments, a function φ : K → K
and an element M ∈ D, and that returns Eφ(K)(M).

The function φ is the related-key-deriving (RKD) function or the key transformation function. Let Φ be

a set of functions mapping K to K. Then Φ is called the set of allowed RKD functions, or allowed key-

transformations.

Let E : K × D → D be a family of functions and let Φ be a set of RKD functions over K. Let A be an

adversary with access to a related-key oracle, and restricted to queries of the form (φ,m) in which φ ∈ Φ and

m ∈ D. Then,

Adv
prp-rka
Φ,E (A) = Pr

[

K
$
← K : AERK(·,K)(·) = 1

]

− Pr
[

K
$
← K;π

$
← Perm(K,D) : A

π
RK(·,K)

(·)
= 1

]

(1)
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denotes the prp-rka-advantage of A in distinguishing a random instance of E from a random permutation

using Φ-restricted related keys. We say that E is a secure pseudorandom permutation (prp) against related-

key-attacks (rka) if the prp-rka-advantages of all adversaries using reasonable resources is small.

A blockcipher is said to be strong pseudorandom permutation (sprp) if it is indistinguishable from a

random permutation even if the adversary is given an oracle access to the inverse function. Then,

Adv
sprp-rka
Φ,E (A) = Pr

[

K
$
← K : A

ERK(·,K)(·),E
−1
RK(·,K)

(·)
= 1

]

− Pr
[

K
$
← K;π

$
← Perm(K,D) : A

π
RK(·,K)

,π−1
RK(·,K) = 1

]

(2)

denotes the sprp-rka-advantage of A in distinguishing a random instance of E from a random permutation

using Φ-restricted related keys.

3.4 Authenticated Encryption Schemes

The authenticated encryption model that we use is similar to the one in [46, 60]. A nonce-using, symmetric

authenticated encryption scheme AE = (K,SE ,VD) consists of three algorithms: the key generation algo-

rithm (K), the signed encryption algorithm (SE), and the verified decryption algorithm (VD). AE is defined

over some key space KeySp, some nonce space NonceSp = {0, 1}nl, for a positive integer nl, and some

message space MsgSp = {0, 1}∗. We require that membership in MsgSp can be efficiently tested and that if

M,M ′ are two strings such that M ∈ MsgSp and |M | = |M ′|, then M ′ ∈ MsgSp.

The randomized key generation algorithm K returns a key K ∈ KeySp. The deterministic signed en-

cryption algorithm SE takes as input a key K ∈ KeySp, a nonce N ∈ NonceSp, and a payload message

M ∈ MsgSp, and returns a ciphertext σ ∈ {0, 1}∗. The deterministic verified decryption algorithm VD
takes as input a key K ∈ KeySp, a nonce N ∈ NonceSp, a string σ ∈ {0, 1}∗, and outputs a message

M ∈ MsgSp or the special symbol INVALID on error. We ask for the basic validity requirement that if

σ = SEK(N,M) then it must be the case that VDK(N, σ) = M .

3.5 Adversarial Model

We adopt the standard adversarial model used in authenticated encryption schemes. The adversary is given

oracle access to the signed encryption algorithm SEK(N,M). The adversary can call the SE oracle on nonce-

message pairs (N,M) of her choice and observing the outputs. After calling the SE oracle for q times, the

adversary attempts a forgery by calling the verified decryption algorithm VDK(N, σ) for an (N, σ) pair of

her choice. Note that the adversary does not see the secret key K. If the verified decryption oracle returns

the INVALID symbol, the adversary is considered unsuccessful; otherwise, the forgery attempt is said to be

successful.

A standard assumption in authenticated encryption schemes is that the adversary is nonce-respecting.

An adversary is said to be nonce-respecting if she never repeats a nonce. That is, after calling the signed

encryption oracle on (N,M), the adversary never asks its oracle a query (N,M ′), regardless of the oracle

responses. We emphasize, however, that the nonce used in the forgery attempt may coincide with a nonce used

in one of the adversary’s queries.

To model the privacy of the authenticated encryption scheme, consider an adversaryAwho has one of two

types of oracles: a real encryption oracle and a fake encryption oracle. The real encryption oracle EK(·, ·) takes

as input a pair (N,M) and returns a ciphertext C ← EK(N,M). Assume that the length of the ciphertext

depends only on the length of the plaintext, that is, |C| = l(|M |). The fake encryption oracle, $(·, ·), takes

as input a pair (N,M) and returns a random string C
$
← {0, 1}l(|M |). Given adversary A and authenticated
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encryption scheme OKH = (K,SE ,VD), define

Adv
priv

OKH[BC,OK](A) = Pr
[

K
$
← K :ASEK(·,·) = 1

]

− Pr
[

A$(·,·) = 1
]

(3)

to beA’s advantage of breaking the privacy of the authenticated encryption scheme using BC as a blockcipher

and OK for hashing.

To analyze the integrity of the proposed system, fix an authenticated encryption scheme OKH = (K,SE ,VD)
and run an adversary A with an oracle SEK(·, ·) for some key K. We adopt the standard definition of exis-

tential unforgeability under chosen message attack, modeled by the following game

Game 1 (EU-CMA game)

1. A random string, K, is selected as the shared secret.

2. SupposeA makes a signed encryption query on a nonce-message pair (N,M). Then the oracle computes

the integrity aware ciphertext σ = SEK(N,M) and returns it to A.

3. After calling the signed encryption oracle a polynomial number of times, A makes a verified decryption

query (N, σ). The oracle computes the decision d = VDK(N, σ) and returns it to A.

The adversary,A, successfully forges ifA is nonce-respecting,A outputs a pair (N, σ) where VDK(N, σ) 6=
INVALID, and A made no earlier query (N,M) which resulted in the response σ. Let

Advauth
OKH[BC,OK](A) = Pr

[

K
$
← K : ASEK(·,·) forges

]

(4)

beA’s advantage of successful forgery against the scheme OKH that uses BC as a blockcipher for encryption

and the OK family for hashing when given oracle access to the SEK(·, ·) algorithm.

3.6 Properties of Odd Integers

We state here two lemmas about odd integers in the finite integer ring Z2n that will be used for the remainder

of the paper.

Lemma 1. For any nonzero integers α and β in Z2n , 2n divides αβ only if both α and β are even integers.

Formally, the following one-way implication must hold:

αβ ≡ 0 ⇒ α ≡ β ≡ 0 mod 2. (5)

Proof. Observe that for any odd integer d, gcd(d, 2n) = 1; and for any integer d such that gcd(d, 2n) = 1, d
must be odd. Therefore, for any integer d ∈ Z2n , d ∈ Z

∗

2n if and only if d is odd. Now, let α and β be nonzero

elements and let

αβ ≡ 0 (6)

but assume, without loss of generality, that α is an odd integer. Then, the multiplicative inverse of α in the

ring Z2n does exist. Multiplying both sides of equation (6) by α−1 implies that β is the zero element in Z2n ,

and the lemma follows by contradiction.

Lemma 2. Let X be the random variable representing the experiment of drawing a number x from the set of

integers
{

0, 1, 2, · · · , 2n − 1
}

uniformly at random. Then, for any odd integer k ∈ Z2n , the random variable

Y = k ·X mod 2n is uniformly distributed over the set
{

0, 1, 2, · · · , 2n − 1
}

.
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Fig. 1. A block diagram depicting the proposed OKH authenticated encryption. Plaintext blocks are multiplied by the keys of the OK

hash family, the ki’s; the resulting products are summed modulo 2
n; and the result is processed with the block cipher to produce the

tag. Note that the nonce-counter concatenation is XORed with the key, not the plaintext block. Therefore, given a nonce-respecting

adversary, the encryption key of each block is different than all other blocks of the same message and different than all other blocks of

different messages due to the use of nonce-counter concatenation. This observation is critical for the security of the proposed scheme.

Proof. This is a direct consequence of the fact that every odd integer is invertible in Z2n . To formally prove the

lemma, it suffices to show that for every y ∈
{

0, 1, 2, · · · , 2n − 1
}

, there exists an x ∈
{

0, 1, 2, · · · , 2n − 1
}

that satisfies the equation

y = k · x mod 2n, (7)

and that this x is unique.

Fix any y ∈
{

0, 1, 2, · · · , 2n − 1
}

and any k ∈ Z
∗

2n . Since k ∈ Z
∗

2n , by Bézout’s lemma [64], there exists

k−1 ∈ Z
∗

2n so that k−1k ≡ 1 mod 2n, and multiplying both sides by y gives (yk−1)k ≡ y mod 2n. Hence,

x = yk−1 mod 2n satisfies equation (7). Therefore, there exists an x ∈
{

0, 1, 2, · · · , 2n − 1
}

that satisfies

equation (7).

To show that this x is unique, let x′ 6= x also satisfies equation (7). Then,

x′k ≡ y mod 2n. (8)

Multiplying both equations (7) and (8) by k−1 gives x ≡ yk−1 mod 2n, and x′ ≡ yk−1 mod 2n. Therefore,

x ≡ x′ mod 2n and, hence, the x in
{

0, 1, 2, · · · , 2n − 1
}

that satisfies equation (7) for any fixed y ∈
{

0, 1, 2, · · · , 2n − 1
}

is unique, and the lemma follows.

Lemmas 1 and 2, along with the fact that there is a one-to-one correspondence between n-bit strings and

the integer ring Z2n , will be used to establish the results of this paper.

4 The Odd Key Hash Family

In this section, we give a description of the OK hash family that will be used in the construction of our OKH

authenticated encryption. Fix an integer n ≥ 1 (the “block size”) and an integer b ≥ 1 (the “number of

blocks”). We define the family of functions OK[n, b] as follows. The domain isD = {0, 1}n∪{0, 1}2n∪· · ·∪
{0, 1}bn and the range isR = {0, 1}n. Each function in OK[n, b] is defined by the b-tuple K = (k1, · · · , kb),
where ki ∈ Z

∗

2n for i = 1, · · · , b. A random function in OK[n, b] is given by drawing the ki’s at random from

the multiplicative group Z
∗

2n . The function determined by K is written as OKK(·).
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Fig. 2. Pseudocodes of the key generation (K), signed encryption (SE), and verified decryption (VD) algorithms.

For an input message M ∈ D, view M as a sequence of n-bit blocks, i.e., M = m1 · · ·mℓ, where

ℓ ≤ b, and write each block in its unsigned integer representation in Z2n (in a big-endian format). Then, the

compressed image of M is given by

OKK(M) =

ℓ
∑

i=1

kimi mod 2n. (9)

When the values of n and b are known, we will write OK instead of OK[n, b] to simplify the notations.

5 Description of the OKH Authenticated Encryption

As mentioned earlier, the key idea allowing for more efficient authentication over the GCM and CWC modes

of operation is advancing the hashing phase to be applied on the plaintext instead of the ciphertext. The

mode of operation used for encryption is similar to the counter mode (CTR) but with the the requirement

that the plaintext is to be processed by the blockcipher. A block diagram depicting the proposed OKH mode

of authenticated encryption is shown in Figure 1. Plaintext blocks are multiplied by the keys of the OK hash

family, the ki’s; the resulting products are summed modulo 2n; and the result is processed with the blockcipher

to produce the tag. Note that the nonce-counter concatenation is XORed with the key, not the plaintext block.

Therefore, given a nonce-respecting adversary, the encryption key of each block is different than all other

blocks of the same message and different than all other blocks of different messages due to the use of nonce-

counter concatenation.6 This observation is critical for the security of the proposed scheme.

As in previous authenticated encryption schemes, such as IAPM [43] and OCB [60], we require the block-

cipher BC to be a strong pseudorandom permutation (many blockciphers, such as AES [25], are believed to

be strong pseudorandom permutations [44]). Let BC: {0, 1}kl×{0, 1}bs → {0, 1}bs be the used blockcipher,

where kl and bs are the key length and block size of the blockcipher, respectively. The authenticated encryp-

tion using BC for encryption and the OK family for hashing, OKH = (K,SE ,VD), is defined as follows. The

message spaces are

MsgSp =
{

M ∈ {0, 1}∗ : |M | ≤ MaxLen
}

, (10)

KeySp =
{

(Ke,Kh) ∈ {0, 1}
kl × {0, 1}MaxLen

}

, (11)

NonceSp =
{

N ∈ {0, 1}∗ : |N | ≤ kl− log2 MaxLen
}

, (12)

where MaxLen is the message maximum length. The size of the counter, CtrLen, in the mode of operation of

Figure 1 is at least log2 MaxLen. The concatenation of the nonce and the counter is of length kl-bits.

6 A well-known fact is that rekeying can hurt the performance of AES-like blockciphers. Another alternative is to replace rekeying

with a tweakable blockcipher [51]. Since the construction of particular authenticated encryption algorithm is not the main focus

of this work, however, we focus only on one of the two alternatives and emphasize that they both provide the required security.
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Fig. 3. Pseudocodes of the KeyGenOK, E , D, MAC, and OK-HASH algorithms.

First, the plaintext message is appended with 1||0∗||1 as its least significant bits. As can be seen in Algo-

rithm SEK(·, ·) in Figure 2, the number of zeros will depend on the length of the message and is chosen so

that the message length is divisible by n and the least significant bit of the last message block is ‘1’. Informally

speaking, the authentication tag is computed by dividing the plaintext message into blocks of n-bit long, hash

it according to equation (9) using a member of the OK family, and encrypt the resulting n-bit hashed image

(as shown in the MAC algorithm of Figure 3). The size of the hashing images, n, is less than or equal to the

blockcipher size, bs. The encryption part is done the natural way (as shown in Figure 3).

Remark 1. There are two important points to note about the OK family. First, the OK family is defined over

the domain D only. This issue, however, can be easily solved with an appropriate padding. Second, and

more important, as in universal hash families, the OK family as described in Section 4 can only be used to

authenticate equal-length messages. For example, a message block consisting of all zeros will not contribute

to the value of the hashed image. Hence, it is easy to come up with two distinct messages that collide and,

eventually, achieve a successful forgery. However, there are known techniques to make the hash function

applicable to arbitrary-length messages. For instance, in [17] the authors proposed appending the length of

the message at the end. In our case, it suffices to append the sequence ‘1||0∗||1’ as an end-of-message (EOM)

sequence (both the most significant ‘1’ and the least significant ‘1’ of EOM will play pivotal roles in the

security of the algorithm, as will be detailed in the proof of Theorem 2).

Another important remark is related to the message length. For a message that is longer than MaxLen,

it is treated as multiple chunks of length MaxLen or less and the corresponding tags are concatenated. That

is, arbitrary long messages can be authenticated using the same fixed-length hashing key (this is actually the

case for any universal hashing based MAC, not just the proposed one [17]). Typically, MaxLen is set to some

proper value that is not too short for maximum message length and not too long for the key to be infeasible.

Note, however, that this is not a major design challenge as one is often dealing with reasonably short messages.

For instance, about one-third of the messages on the backbone of the Internet are only 43 bytes [60]. For the

rest of the paper, we will assume messages of length MaxLen or less for simplicity.

Formally, The OKH’s key generation (K), signed encryption (SE), and verified decryption (VD) algo-

rithms are as defined in Figure 2.

The rest of the algorithms (KeyGenOK, E , D, MAC, OK-HASH) are defined in Figure 3. Algorithm

KeyGenOK handles the generation of the key that defines the used member of the OK hashing family. Algo-

rithms E and D handle the encryption and decryption operations. Algorithm MAC handles the generation of

authentication tags, which calls algorithm OK-HASH to compress the message.
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6 Theorem Statements and Proofs

6.1 Security of Encryption

In this section, we show that the privacy of the proposed scheme is provably secure assuming the used block-

cipher is a pseudorandom permutation secure against related-key attacks.

Theorem 1. Let OKH[BC;OK] be the authenticated encryption scheme described in Section 5 using the OK

hash family for compression and the blockcipher BC for encryption. Then given a nonce-respecting adversary,

A, against OKH[BC;OK], one can construct an adversary B against BC such that

Adv
priv

OKH[BC;OK]
(A) ≤ Adv

prp-rka

⊕,BC
(B), (13)

where Adv
priv

OKH[BC;OK]
(A) is as defined in equation (3) and Adv

prp-rka

⊕,BC
(B) denotes the adversary’s advantage

of breaking the prp-rka-security of the blockcipher when given access to oracle with keys related by the xor

operation. Furthermore, the experiment for B takes the same time as the experiment for A and, if A makes at

most q oracle queries totaling at most µ bits of payload data, then B makes at most µ/ℓ+ q oracle queries.

Theorem 1 states that, if BC is a pseudorandom permutation secure against related-key attacks, then the

proposed authenticated encryption scheme provides data privacy.

Proof (of Theorem 1). Let B be an adversary against BC that uses adversary A and that has oracle access

to the blockcipher. Adversary B runs A and replies to A’s encryption oracle queries using its own oracle

BCRK(·,K)(·) for the blockcipher used in the construction of the authenticated encryption scheme describe in

Section 5. Adversary B returns the same bit that A returns. Then,

Pr
[

K
$
← K : ASEK(·,·) = 1

]

= Pr
[

K
$
← K : BBCRK(·,K)(·) = 1

]

, (14)

since each block in the mode of operation of Figure 1 is encrypted with a different key. Furthermore,

Pr
[

A$(·,·) = 1
]

= Pr
[

K
$
← K;π

$
← Perm(K,D) : B

π
RK(·,K)

(·)
= 1

]

(15)

since B replies to all of A’s oracle queries with independently selected random strings. Consequently,

Adv
priv

OKH[BC;OK](A) = Pr
[

K
$
← K : ASEK(·,·) = 1

]

− Pr
[

A$(·,·) = 1
]

= Pr
[

K
$
← K : BBCRK(·,K)(·) = 1

]

− Pr
[

K
$
← K;π

$
← Perm(K,D) : B

π
RK(·,K)

(·)
= 1

]

= Adv
prp-rka

⊕,BC
(B),

and the theorem follows.

Remark 2. One may prefer the privacy notion of indistinguishability under chosen plaintext attacks (IND-

CPA) [36], which captures the adversary’s inability to distinguish ciphertexts for a pair of adversary-selected

plaintexts of equal length. However, the used privacy definition, which captures the adversary’s inability to

distinguish equal length ciphertexts from random strings, implies the notion of IND-CPA, but the converse is

not true [60]. For the proposed OKH and a nonce-respecting adversary, the proof of IND-CPA follows directly

from the fact that the blockcipher is a prp-rka-secure and that, for different nonces, each block is encrypted

with a different key.
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6.2 Security of Authentication

We give here information-theoretic bounds on the authenticity of the scheme of Section 5 assuming the use

of a true random permutation, Perm(ℓ), for encryption.

Theorem 2. Fix an OK[n, b] hash family and let Perm(ℓ) : {0, 1}ℓ → {0, 1}ℓ be a true random permutation

and let tl be the desired tag length. LetA be a nonce-respecting adversary that asks q queries and then makes

its forgery attempt against the OKH of Section 5. Then, A’s advantage of successful forgery is bounded by

Advauth
OKH[Perm(ℓ),OK[n,b]]

(A) ≤ 2−n + 2−tl,

where Advauth
OKH[Perm(ℓ),OK[n,b]]

(A) is as defined in equation (4).

It is standard to pass a complexity-theoretic analog of Theorem 2, but in doing this one will need access

to a BC−1 oracle in order to verify a forgery attempt, which translates into needing the strong pseudorandom

permutation assumption. One gets the following. Fix an OK[n, b] hash family and a blockcipher BC : K ×
{0, 1}ℓ → {0, 1}ℓ. LetA be a nonce-respecting adversary that asks q queries totaling at most λ bits of payload

and then makes its forgery attempt. Then, there is an adversary B attacking the blockcipher in which

Advauth
OKH[BC,OK](A) ≤ Adv

sprp-rka

⊕,BC
(B) + 2−n + 2−tl.

Furthermore, adversary B takes the same time adversary A takes and makes at most λ/ℓ+ q oracle queries.

Before we proceed with the security analysis, we give the intuition behind the choices of the OK hash

family and the mode of encryption in Figure 1. First, observe that the OK family is not a universal hash

family. To see this, let the OK family be defined over the ring Z2n . Let M = m1||m2 be a message of two

n-bit blocks (for the rest of the paper, we overload mi to denote both the n-bit binary string of the ith message

block and its integer representation as an element of Z2n in a big-endian format; the distinction between

the two representations will be omitted as long as it is clear from the context). Consider now the message

M ′ = m′1||m
′
2 = m1 + 2n−1||m2 + 2n−1 6= M . Then,

k1m
′
1 + k2m

′
2 = k1

(

m1 + 2n−1
)

+ k2
(

m2 + 2n−1
)

(16)

≡ k1m1 + k2m2 mod 2n, (17)

where equation (17) holds since both k1 and k2 are odd integers by design.

Remark 3. Equation (17) implies that the OK family, unlike universal hash families, cannot be used to con-

struct standard MACs since forgers can easily find two colliding messages. However, one key idea of the

proposed OKH is that finding two messages that collide does not translate into a successful forgery (since

the adversary must also predict the correct ciphertext corresponding to the colliding messages). The other

key idea behind the design of OKH is that the effect of modifying an observed ciphertext block will result in

modifying its corresponding plaintext block randomly (assuming the blockcipher is a strong pseudorandom

permutation).7 For that, the following lemma addresses the adversary’s chances of causing a collision in the

hashing phase by modifying the ciphertext.

Lemma 3. Fix an OK[n, b] hash family and let Perm(ℓ) : {0, 1}ℓ → {0, 1}ℓ be a true random permutation.

Let C 6= C ′ be any two distinct ciphertexts and let M 6= M ′ be the plaintext messages corresponding to C and

C ′, respectively. Then, assuming the use of Perm(ℓ) for block encryption, Pr
h

$
←OK[n,b]

[

h(M) = h(M ′)
]

≤

2−n.

7 These two key ideas are the main ingredients of the formal security proof of Theorem 2.
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Proof. Let ci and c′i denote the ith blocks of C and C ′, respectively. Similarly, let mi and m′i denote the ith

blocks of M and M ′, respectively. Since M 6= M ′, they must be different in at least one block. Assume M
and M ′ differ in a single block only. Without loss of generality, let m′1 = m1 + ǫ 6= m1 and the rest of the

blocks are the same. Then, since k1 is an odd integer, by Lemma 1, k1 · ǫ 6≡ 0 mod 2n and the probability

Pr
h

$
←OK[n,b]

[

h(M) = h(M ′)
]

= 0.

Assume now that M and M ′ differ by more than one block. Write m′i = mi + ǫi 6= mi for each block i
in which the two messages differ. Since Perm(ℓ) is used for encryption, even if c′i differs with ci by a known

constant, ǫi will be a random element of Z2n . Therefore, by Lemma 2, Pr
h

$
←OK[n,b]

[

h(M) = h(M ′)
]

= 2−n,

and the lemma follows.

Remark 4. Lemma 3 illustrates the significance of restricting the hashing keys to the set of odd integers. To

see this, let the keys be drawn from Z2n as opposed to Z
∗
2n . Assume that ki, for some i, happened to be equal

to 2n−1. Then, using the fact that the used blockcipher can be modeled as a strong pseudorandom permutation,

any modification of the ith ciphertext block will go undetected with a probability 1/2. This is because ǫ · 2n−1

is congruent to zero modulo 2n for any even ǫ. Similarly, if ki, for some i, happened to be equal to 2n−2 then

any modification of the ith ciphertext block will go undetected with a probability 1/4. This is because ǫ · 2n−2

is congruent to zero modulo 2n for any ǫ that is divisible by 4. In general, if ki is equal to 2n−ℓ, for any positive

integer ℓ < n, then any modification of the ith ciphertext block will go undetected with a probability 1/2ℓ.

With Remark 3 and Lemma 3 in hand, we proceed with the formal proof of Theorem 2. But before we do

so, we define the two possible adversarial strategies for successful forgery.

• ForgeM: Given a plaintext message M , an adversary may attempt to produce a valid
(

f(M), τ
)

pair,

where f is a function of the adversary’s choice and τ is the authentication tag.

• ForgeC: An adversary may attempt to forge a valid (C, τ) pair, where C is a ciphertext of the adversary’s

choice and τ is the authentication tag, regardless of the plaintext corresponding to C.

ForgeM implies that the adversary is attempting to produce a valid authentication tag for a specific plain-

text message that is meaningful to the adversary. ForgeC implies that the adversary is attempting to produce a

valid authentication tag for some ciphertext regardless of its corresponding plaintext, even if the plaintext turns

out to be gibberish. Note that an adversary may either attempt to forge messages of her choice (i.e., ForgeM),

or some random messages (i.e., ForgeC). Hence, these two strategies span the entire attack vector.8

Proof (of Theorem 2). Assume A has made q queries
{

(

N1,M1

)

, · · · ,
(

Nq,Mq

)

}

, where Ni 6= Nj for any

i 6= j, and recorded the sequence

S =
{

(

N1,M1, C1, τ1
)

, · · · ,
(

Nq,Mq, Cq, τq
)

}

. (18)

A then calls the verify oracle with
(

N,C, τ
)

, where
(

N,C, τ
)

6=
(

Ni, Ci, τi
)

for any i = 1, · · · , q since oth-

erwise A does not win by definition (note, however, that by the definition of the nonce-respecting adversary,

N can be equal to one of the recorded Ni’s). We aim here to bound the probability that
(

N,C, τ
)

will be

accepted as valid.

Let M be the plaintext message corresponding to the decryption of C, i.e., the decryption of the ciphertext

in the attempted forgery. We aim to bound the probabilities of the two possible strategies for forgery: 1. the

adversary attempts to forge a valid nonce-ciphertext-tag tuple for a plaintext of her choice (ForgeM); or 2.

the adversary attempts to authenticate a nonce-ciphertext-tag tuple regardless of their corresponding plaintext

(ForgeC).

8 In the context of Remark 3, ForgeM means the adversary is attempting to authenticate a message M that collides with one one

the Mi’s, while ForgeC means that the adversary is attempting to authenticate a modified version of the observed Ci’s.
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BOUNDING THE PROBABILITY OF ForgeM. AssumeA attempts to falsely authenticate a message of her

choice. There are two possibilities:

1. N 6= Ni: let N 6= Ni for any i = 1, · · · , q and recall that the authentication tag is computed as τ =

F
(

N, counter, h(M)
)

. Therefore, since F is a random permutation, if N 6= Ni for any i, the probability

of predicting a valid tag is bounded by 2−tl.

2. N = Ni: let N = Ni for some i ∈ {1, · · · , q}. If M = Mi then only (N,C, τ) = (Ni, Ci, τi) will be

validated and the adversary does not win by definition. Now, let M 6= Mi and consider the two following

scenarios: |M | = |Mi| and |M | 6= |Mi|. Assume that |M | = |Mi| and let md be a block in which M
differs than Mi (there must be at least one such block since M 6= Mi). Let cd be the ciphertext block

corresponding to md. Then, for successful forgery, the forger must predict the correct value of cd. Recall,

however, that by the nonce-respecting property, the adversary could not have called the oracle with the

same nonce and md to record cd. Therefore, the probability of forgery is bounded by 2−ℓ, the probability

of predicting a random ciphertext block.

Now, assume that |M | 6= |Mi| and consider the two following scenarios: M and Mi have the same number

of blocks, or M and Mi have different number of blocks. Let M and Mi have the same number of blocks

and recall that the message is appended with the ‘1||0∗||1’ as an EOM sequence. In such scenario, the

position of the most significant bit of the EOM sequence in M must be different than its position in Mi.

Let cd be the ciphertext block corresponding to the plaintext block of M in which the most significant

‘1’ of the EOM resides. Then, similar to the previous scenario, the probability of successful forgery is

bounded by 2−ℓ, the probability of predicting the correct cd.

Finally, assume that M and Mi have different number of blocks. Let Mi has α number of blocks while

the plaintext in the attempted forgery, M , has β number of blocks. Then, τi is encrypted with the key

Ke ⊕
(

N ||tostr(α + 1,CtrLen)
)

while for τ to be validated it should be the encryption of the key Ke ⊕
(

N ||tostr(β+1,CtrLen)
)

. Since α 6= β, the two keys are different and, since τi = F
(

Ni, α, h(Mi)
)

and

τ = F
(

N, β, h(M)
)

, where F is a random permutation, τ cannot be correlated to τi. Furthermore, recall

that, by design, the least significant bit of the EOM must be the least significant bit of the last message

block. Therefore, τ must be a function of kβ , which is unknown to the forger. Hence, τ cannot be correlated

to any of the ci’s, the ciphertext blocks of the observed Ci. Therefore, the adversary’s probability of

successful forgery is bounded by 2−tl.

Therefore, from the above two cases, the probability of ForgeM is bounded by

max
{

2−tl, 2−ℓ
}

= 2−tl,

since tl is, by assumption, smaller than ℓ.
BOUNDING THE PROBABILITY OF ForgeC. Let M and Mi be the plaintext messages corresponding to C

and Ci, respectively. Denote by Coll the event that h(M) = h(Mi) for some i ∈ {1, · · · , q}; i.e., M collides

with one of the recorded Mi’s. Also, let Coll denotes the complement of Coll.

Obviously, there are two possible scenarios here: either M will collide with one of the Mi’s or it will not.

If M collides with Mi for an i ∈ {1, · · · , q}, then
(

C, τi
)

6=
(

Ci, τi
)

will pass the integrity check. However,

by Lemma 3, the probability that a collision will occur by modifying the ciphertext is:

Pr
[

Coll
]

= Pr
[

h(M) = h(Mi)
]

≤ 2−n. (19)

Assume now that M does not collide with any of the Mi’s. If no collision has occurred, then the ad-

versary’s probability of successful forgery is bounded by the probability of predicting the plaintext message

corresponding to c, or the probability of guessing the valid authentication tag corresponding to c. That is,

Pr
[

ForgeC|Coll
]

≤ max
{

2−ℓ, 2−tl
}

= 2−tl. (20)
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By equations (19) and (20), it follows that the probability of ForgeC can be written as

Pr
[

ForgeC
]

= Pr
[

ForgeC|Coll
]

· Pr
[

Coll
]

+ Pr
[

ForgeC|Coll
]

· Pr
[

Coll
]

(21)

≤ Pr
[

Coll
]

+ Pr
[

ForgeC|Coll
]

(22)

≤ 2−n + 2−tl. (23)

Hence, A’s probability of successful forgery for the verify query is at most

max
{

Pr[ForgeM],Pr[ForgeC]
}

= max
{

2−tl, 2−n + 2−tl
}

= 2−n + 2−tl, (24)

and the theorem follows.

6.3 Security Against Key-Recovery Attack (KRA)

Recently, Handschuh and Preneel [39] showed that, compared to block cipher based, MACs based on universal

hash functions have a key-recovery vulnerability. In principle, a small probability of successful forgery on

authentication codes is always possible. However, the work in [39] demonstrates that, for universal hash

functions based MACs, once a successful forgery is achieved, subsequent forgeries can succeed with high

probabilities. The main idea in their attack is to look for a collision in the message compression phase. Once

two colliding messages are known, they can be used to extract partial information about the hashing keys.

Using this key information an attacker can forge valid tags for fake messages.

For example, although the OK family cannot be used to construct secure MACs in the standard setup,

assume it has been used for the sake of illustrating the attack. Let an adversary call the signing oracle on

(N,M = m1||m2) to obtain its authentication tag τ . The adversary now can call the verification oracle with

(N,M1 = m2||m1) and the same tag τ . Obviously, the verification will pass if k1 ≡ k2 mod 2n (in which

case k1m1 + k2m2 ≡ k2m1 + k1m2 mod 2n).
Although the verification will pass with a small probability, the adversary can continuously call the

verification oracle with (N,Mi = m2||αim1), for different αi’s until the message is authenticated. Let

(N,M ′ = m2||αm1) be the message that passes the verification test, for some α ∈ Z2n . Then, the rela-

tion k1 ≡ βk2 mod 2n, where β = (αm1−m2)(m1−m2)
−1 is exposed. With this knowledge, a man in the

middle can always replace the first two blocks, m1||m2, of any future message M with β−1m2||βm1 without

violating its tag. This is because k1(β
−1m2)+ k2(βm1) = k2m2+ k1m1 regardless of values of m1 and m2.

Handschuh and Preneel [39] defined three classes of weak keys in universal hash functions. Each class

can be exploited in a way similar to the one discussed in the above example to substantially increase the

probability of successful forgery after a single collision. This attack is shared by all universal hash based

MACs [39]. As per [39], the recommended mitigation to this attack is to use the less efficient block cipher

based MACs, or not to reuse the same hashing key for multiple authentication.

However, MACs in MtE compositions inherit a security against key-recovery attacks (KRA) from the

encryption algorithm. Let

Advkra
OKH[BC,OK](A) = Pr

[

K
$
← K : ASEK(·,·) recovers

]

beA’s advantage of successfully recovering the hashing keys of OK family when BC is the block cipher used

to construct OKH, one gets the following.

Theorem 3. Fix an OK hash family. Let BC be an sprp-rka-secure block cipher used with OK to construct

the OKH of Section 5. Let A be an adversary launching key-recovery attacks against the OKH. Then, there is

an adversary B attacking the block cipher in which

Advkra
OKH[BC,OK](A) ≤ Adv

sprp-rka

⊕,BC
(B).
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Table 1. Performance comparison of the MMH hash family of Halevi and Krawczyk [38], the polynomial-evaluation (POLY) hash

family of Bernstein [15], the NH hash family of Black et al. [17], and the proposed OK family.

MMH family POLY family NH family OK family

Collision probability 2
−30

2
−96

2
−64

2
−64

Hashed image (bits) 32 128 128 64

Speed (cycles/byte) 1.2 2.4 0.87 0.27

Proof. Recall that, while the tag is a function of the plaintext, the verify oracle takes a ciphertext-tag pair as

an input, as opposed to message-tag pair in standard MACs. Let (N,C, τ) be a valid nonce-ciphertext-tag

tuple and assume the adversary calls the verify oracle with (N,Ci, τ), for different Ci’s, until the verifica-

tion is granted. By the sprp-rka-security of the underlying block cipher, the ciphertext cannot be correlated

to the plaintext by computationally bounded adversaries. Therefore, even though the plaintexts M and Mi

corresponding to C and Ci, respectively, caused a collision, no information about Mi is revealed to the com-

putationally bounded adversary. Therefore, unless the adversary can break the sprp-rka-security of the used

block cipher to infer information about Mi, no information about the OK hashing key can be inferred, and the

theorem follows.

7 Design and Performance Discussions

In this section, we discuss the main design ideas behind the proposed OKH scheme and compare its perfor-

mance to other authentication codes in the cryptographic literature. The comparison is not meant to show that

the proposed OKH is the fastest in the literature; its main purpose is to show that the ideas presented here can

be a promising direction for potential designs. In fact, as mentioned earlier, the basic ideas presented here are

the basis for the design of AVALANCHE [3], one of the candidates still standing in the onging competition

for authenticated ciphers.

7.1 Design Rationale

First, note that there is a one-to-one correspondence between the set of n-bit sequences and the integer ring

Z2n . Hence, the integer ring Z2n is the natural choice when performing arithmetic on binary sequences. From

a computational-efficiency point of view, the integer ring Z2n has an advantage over other finite integer rings

in that modular reduction can simply be realized by truncating what is beyond the nth bit (no nontrivial

modular reduction is required). From a mathematical point of view, the integer ring Z2n possesses the unique

property that an element a ∈ Z2n is invertible if and only if it is an odd integer. That is, the multiplicative

group Z
∗
2n consists of all odd integers less than 2n, and nothing else. Consequently, for a random number

ǫ drawn uniformly from Z2n and an odd key k, the value of ǫ · k mod 2n is uniformly distributed over

Z2n (by Lemma 2). This fact, along with the fact that blockciphers can be realized as strong pseudorandom

permutations, are the main principles behind the design of the OKH authenticated encryption composition.

That is, by advancing the hashing phase to be applied to the plaintext, before blockcipher encryption, and

restricting the hashing keys to the set of odd integers, one can show that a successful forgery by causing a

collision in the hashing phase can only occur with a negligible probability (by Theorem 2).

In the literature, without advancing the hashing phase to be performed before blockcipher encryption, the

objective of guaranteeing that a forgery attempt by causing a collision in the hashing phase can succeed with a

negligible probability has been achieved by restricting the hash function to be universal. Intuitively, removing

such a restriction on the hash function should only increase its speed. In Table 1, we compare the speed of the

proposed OK family with the speeds of prominent universal hash families.
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7.2 Comparison with Universal Hash Functions

We give here a detailed performance comparison between the OK family and the NH family of Black et

al. [17], the fastest universal hash family in the literature directed for software implementations. Comparison

with other known hash families is summarized in Table 1. As before, let M be a message to be authenticated

and write M as a sequence of n-bit strings; i.e., M = m1|| · · · ||mℓ, where |mi| = n. Similarly, let the key

K = k1|| · · · ||kℓ be the hashing key. Let NHK be a random member of the NH family determined by the key

K. Then, the compressed image of M is computed as

NHK(M) =

ℓ/2
∑

i=1

(

(k2i−1 +m2i−1 mod 2n) · (k2i +m2i mod 2n)
)

mod 22n. (25)

On the other hand, the hash image of M as computed by the OK family is

OKK(M) =
ℓ

∑

i=1

ki ·mi mod 2n. (26)

That is, when the block size is n, the OK computations are performed over Z2n while the NH computations

are performed over the larger integer ring Z22n .

To give a numerical example, let n = 64 bits. Then, the OK family requires 64-bit computations while the

NH family requires 128-bit computations. When using a 64-bit machine, this implies that NH computations

must be split over two registers, while OK computations are performed using a single register. Splitting op-

erations over two registers can slow down the speed by about 63%. More importantly, in standard compilers,

there is no integer data type of size 128-bit. Therefore, to multiply two 64-bit integers, one needs to split

each integer into two 32-bit parts and multiply with appropriate shifts. Using a 64-bit machine with 3.00GHz

Intel(R) Xeon(TM) CPU running on UNIX operating system, the NH family runs at 0.87 cycles/byte while

the OK family runs at 0.27 cycles/byte.9

7.3 Comparison with Current NIST Standard

In this section, we briefly compare the proposed OKH with the Carter-Wegman Counter (CWC) of Kohno

et al. [46] and its standardized version the Galois/Counter Mode (GCM) of authenticated encryption [30]. In

the comparison, we will focus on the authentication part since all the schemes require similar blockcipher

encryption.

As mentioned earlier, both the GCM and the CWC modes first encrypt the plaintext and then authenticate

the ciphertext using a universal hash family. The main difference between GCM/CWC and the proposed

OKH is in the hashing phase. In both GCM and CWC, the used hash family is based on the POLY family of

Bernstein [15]. As can be seen in Table 1, the OK hash family, being non-universal, is faster than the fastest

universal hash family in the literature, including the POLY family used in the authentication part of the GCM

and the CWC.

7.4 Comparison with Dedicated Authenticated Encryption Schemes

In this section, we compare the proposed OKH with two of the prominent dedicated authenticated encryption

schemes, the IAPM of Jutla [43] and the OCB of Rogaway et al. [60]. First, we note that, as stated in [46],

the speed of the CWC is comparable to IAPM and OCB in which the CWC can outperform them in some set-

tings and they outperform the CWC in different settings. The main reason for that is because both the IAPM

9 All codes are written in C.
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and OCB require pre-processing (whitening) plaintext blocks before blockcipher encryption. This whiten-

ing process is actually a universal hash function. In particular, IAPM requires the generation of pair-wise

differentially-uniform sequences named si. Each si is generated by performing modular multiplication over

the finite field Zp (similar to the multiplication of the MMH family in Table 1 but with larger primes).10 In the

OCB mode of operation, each message block, M [i], is whitened using a string the authors denoted as Z[i].
The computation of each Z[i] requires the generation of a Gray code γi (in which each γi and γi+1 have a

Hamming distance of one), multiply two polynomials over the field GF(2n), and then take the reminder after

dividing the multiplication result by a fixed irreducible polynomial. These polynomial operations are similar

to the POLY family of Bernstein listed in Table 1.

Another advantage of the proposed OKH is that all blockcipher calls can be performed in parallel, as

can be seen in Figure 1. On the other hand, IAPM and OCB, although parallelizable, require at least three

sequential blockcipher calls. This is because the second through second-to-last blockcipher calls depend on

the output of the the first blockcipher call; and the last blockcipher call depends on the outputs of all previous

blockcipher calls.

7.5 Key Scheduling Effect

It is worth mentioning here that unlike the aforementioned schemes, the proposed OKH requires that the key of

each blockcipher is different. Depending on the used blockcipher, due to different key scheduling mechanisms,

changing the key can affect the performance of the entire operation. However, key scheduling differs heavily

from one blockcipher to another. Even within the AES family itself the key scheduling of AES-128 is different

than AES-192 which is, in turn, different than AES-256, let alone other AES candidates. Furthermore, with

the fast spreading deployment of mobile and pervasive devices, there is an increasing effort to design new

blockciphers suitable for computationally constrained devices (see, e.g., [19, 20, 26, 37, 40, 50, 53, 61, 71])

and, in some of them, light key scheduling is a major design goal. For instance, in the Light Encryption

Device (LED) blockcipher there is no key scheduling [37]. Therefore, one will need to provide performance

comparisons with multiple blockciphers to see the exact effect of key scheduling. Furthermore, as mentioned

earlier, if key rescheduling is an expensive operation, one might resort to tweakable blockciphers instead.

However, the main goal of this manuscript is to provide the theoretical basis of the possible advantages

of MAC-then-Encrypt compared to the standardized Encrypt-then-MAC constructions. That is, the work is

meant to be as independent as possible of the used blockcipher. Therefore, we omit detailed comparison of

the effect of key scheduling.

8 Conclusion

In this paper, we proposed the OKH authenticated encryption scheme. By advancing the hashing phase before

block cipher encryption, we showed how a hashing function that is not universal can be used without affecting

security of authentication. Since the hash function does not have to be universal, it can be computed faster

than universal hash function in the literature of cryptography. It was also shown that hashing the plaintext

instead of the ciphertext can secure the hashing keys against key recovery attacks.
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