
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Authenticated Encryption in Practice: Generalized Composition Methods and the

Secure Shell, CWC, and WinZip Schemes

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Tadayoshi Kohno

Committee in charge:

Professor Mihir Bellare, Chair
Professor Rene Cruz
Professor Bill Lin
Professor Daniele Micciancio
Professor Stefan Savage

2006

Copyright

Tadayoshi Kohno, 2006

All rights reserved.

The dissertation of Tadayoshi Kohno is approved, and it is

acceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2006

iii

To Taryn and Seth Kohno.

iv

TABLE OF CONTENTS

Signature Page .iii

Dedication . iv

Table of Contents . v

List of Figures .viii

List of Tables .viii

Acknowledgments .ix

Vita and Publications .xiii

Abstract .xvi

1 Introduction . 1
1.1 Authenticated Encryption .1
1.2 Provable Security .3
1.3 The Secure Shell Protocol and Composition-Based Authenticated En-

cryption Schemes .4
1.4 The CWC Authenticated Encryption Scheme5
1.5 The WinZip Authenticated Encryption Scheme6

2 Background . 8
2.1 Notation . 8
2.2 Pseudorandom Functions .9
2.3 Pseudorandom Permutations (Block Ciphers)9
2.4 Symmetric Encryption .11
2.5 Message Authentication .14
2.6 Authenticated Encryption .16

2.6.1 Relations Between Notions18
2.6.2 Definitional Variations .19
2.6.3 Generic Composition .19
2.6.4 Encryption with Redundancy22
2.6.5 Encode-then-Encipher .24
2.6.6 Block Cipher-Based Constructions27

3 The Secure Shell Authenticated Encryption Scheme29
3.1 Overview .30
3.2 The SSH Binary Packet Protocol (SSH BPP)33
3.3 Attacking the Standard Implementation of SSH35

v

3.4 Attacking a Natural “Fix” .36
3.5 Secure Fixes to SSH .41
3.6 Definitions and the Encode-then-E&M Paradigm43
3.7 General Security Results for the Encode-then-E&M Paradigm52

3.7.1 Chosen-Plaintext Privacy .53
3.7.2 Integrity of Plaintexts .53
3.7.3 Proof of Theorem 3.7.1 .55

3.8 SSH Security Results .61
3.8.1 Collision-Resistance of the SSH Encoding Scheme62
3.8.2 Integrity and Privacy of Our Recommendations64

3.9 Discussion and Recommendations68

4 Generalized Composition Methods for Authenticated Encryption74
4.1 Authenticated Encryption with Associated Data77

4.1.1 Syntax .78
4.1.2 Consistency and Security .78

4.2 Building Blocks .88
4.2.1 Encryption Schemes .88
4.2.2 Message Authentication Schemes89

4.3 Encoding Schemes .92
4.3.1 Overview .92
4.3.2 Syntax, Consistency, and Security94

4.4 Composition Methods .105
4.5 Generalized Encode-then-E&M Security108

4.5.1 Privacy .108
4.5.2 Integrity .109

4.6 Generalized Encode-then-MtE Security115
4.6.1 Privacy .115
4.6.2 Integrity .116

4.7 Generalized Encode-then-EtM Security118
4.7.1 Privacy .118
4.7.2 Integrity .119

5 The CWC Authenticated Encryption Scheme122
5.1 Overview .123
5.2 Preliminaries .127
5.3 Specification .129
5.4 Theorem Statements .131

5.4.1 Privacy .131
5.4.2 Integrity .133

5.5 Design Decisions .134
5.6 Performance .142
5.7 Security Proofs .147

5.7.1 More Definitions .147

vi

5.7.2 The General CWC Construction149
5.7.3 Security of the General CWC Construction151
5.7.4 Proofs of Theorem 5.4.1 and Theorem 5.4.2152
5.7.5 Proof of Lemma 5.7.2 .154
5.7.6 Proof of Lemma 5.7.3 .162

6 The WinZip Authenticated Encryption Scheme164
6.1 Overview .165
6.2 The WinZip Compression and Encryption Method175
6.3 Information Leakage .178
6.4 Exploiting the Interaction Between Compression and Encryption . . .179
6.5 Exploiting the Association of Applications to Filenames181
6.6 Exploiting the Interaction Between AE-1 and AE-2181
6.7 Attacking Zip Encryption at the File Level183
6.8 Keystream Reuse .185
6.9 Dictionary Attacks .185
6.10 Fixes .186

Bibliography .194

vii

LIST OF FIGURES

3.1 The SSH authenticated encryption scheme.34
3.2 The SSH encoding schemeEC = (Encode, Decode) for l-bit blocks,

wherel ≡ 0 (mod 8) and64 ≤ l ≤ 252 · 8. 62

4.1 The generalized Encode-then-E&M paradigm.75
4.2 The generalized Encode-then-MtE paradigm.75
4.3 The generalized Encode-then-EtM paradigm.76

LIST OF TABLES

5.1 Software performance in clocks per byte forCWC-AES, CCM-AES,
and EAX-AES on a Pentium III. Values are averaged over 50 000 sam-
ples. .125

viii

ACKNOWLEDGMENTS

ACADEMIC COLLABORATORS AND FRIENDS. I thank my fantastic advisor, Mihir Bel-

lare, for all the wonderful advice and guidance that he has given me over the years. I

truly believe that I would not be who I am now if it were not for him.

I am indebted to Stefan Savage for all of his generosity and guidance and for

helping me find my “dream job.” I thank Avi Rubin for his continual mentoring and

constant generosity both professionally and socially. I thank Sid Karin and Dan Wallach

for all their help and advice and for watching over my graduate career.

I thank my summer mentors and past supervisors, kc claffy, David Conrad, Mark

McGovern, Gary McGraw, Fabian Monrose, Bruce Schneier, David Wagner, Tammy

Welcome, and Phil Winterbottom. I thank Rene Cruz, Bill Lin, and Daniele Micciancio

for overseeing this dissertation. I thank Hal Gabow and Evi Nemeth for overseeing my

undergraduate career.

In addition to Mihir Bellare, I thank John Black, Chanathip Namprempre, Adriana

Palacio, John Viega, and Doug Whiting for co-authoring with me some of the material

that appears in this dissertation. I also thank all my other co-authors and collaborators,

Michel Abdalla, J. T. Bloch, Andre Broido, Dario Catalano, Niels Ferguson, Kevin Fu,

Chris Hall, Tetsu Iwata, Seny Kamara, John Kelsey, Eike Kiltz, Lars Knudsen, Tanja

Lange, Stefan Lucks, John Malone-Lee, David Molnar, Gregory Neven, Pascal Paillier,

Bruce Potter, Naveen Sastry, Haixia Shi, Mike Stay, and Adam Stubblefield.

I thank Emile Aben, Dan Andersen, Matt Bishop, Alexandra Boldyreva, Dan

Brown, Cindy Cohn, Don Coppersmith, Frank Dabek, David Dill, Morris Dworkin, Hal

Finney, Michael Freedman, Beth Friedman, Patricia Gabow, Brian Gladman, Philippe

Golle, Bill Griswold, Peter Gutmann, Stuart Haber, Susan Hohenberger, Tim Hollebeek,

Young Hyun, Russell Impagliazzo, David Jefferson, Rob Johnson, Frans Kaashoek,

Chris Karlof, Ulrich Kuehn, Mahesh Kallahalla, David Mazières, David McGrew, David

Moore, Badri Natarajan, Bart Preneel, Christian Rechberger, Mike Reiter, Ron Rivest,

Phil Rogaway, Felix Schleer, Rich Schroeppel, Jason Schultz, Umesh Shankar, Colleen

Shannon, abhi shelat, Tsutomu Shimomura, Emil Sit, Nigel Smart, Bill Sommerfeld,

ix

Alex Snoeren, Jeremy Stribling, Ram Swaminathan, Win Treese, Darryl Veitch, Tracy

Volz, Brendan White, Richard Wiebe, Michael Wiener, Pat Wilson, Matt Zimmerman,

and Robert Zuccherato for commenting on my papers and contributing to my research. I

thank Phil Zimmermann for introducing me to modern applied cryptography. I addition-

ally thank Josh Benaloh, Brad Calder, Trent Jaeger, Patrick McDaniel, Dave Schroeder,

Dan Simon, Hiroyuki Tanabe, Geoff Voelker, and Bennet Yee for all their contributions

to my career. I thank all the other members of the UCSD cryptography and security

group, including Jee Hea An, Marc Fischlin, Alejandro Hevia, Matt Hohlfeld, Anton

Mityagin, Saurabh Panjwani, Barath Raghavan, Tom Ristenpart, Sarah Shoup, Bogdan

Warinschi, and Scott Yilek. I am grateful for all the help from Julie Conner and Kathy

Reed and rest of the UCSD CSE staff, and Steve Hopper and the rest CSEHelp. I thank

everyone else that I have had contact with academically and socially.

FAMILY . I am deeply grateful for all that my wife Taryn and son Seth have contributed

to all aspects of my life. I could mention a few things, like Taryn always putting my

education and career before herself, but I honestly do not believe that any summary of

their contributions will do them justice. Indeed, in any short summary I would be forced

to exclude many of their critical contributions and sacrifices.

I have always had an interest in the maths and sciences, and for that I thank my

family, and in particular my parents, Tadahiko and Beth. I thank my parents for also end-

lessly investing in my education, including the many computers and electronic equip-

ment that they purchased for me as a child and the many hours that they spent shuttling

me back and forth between Fairview and CU.

FUNDING AND SUPPORT. My graduate research was supported in part by a National

Defense Science and Engineering Graduate Fellowship, an IBM Ph.D. Fellowship, the

SciDAC program of the US Department of Energy (award DE-FC02-01ER25466), and

NSF grants ANR-0129617, CCR-0093337, and CCR-0208842. I thank the Usenix As-

sociation for a Student Grant supporting my work on SSH. I thank The Johns Hopkins

University Information Security Institute (Avi Rubin and Fabian Monrose) for hosting

me the summer of 2003, the Cooperative Association for Internet Data Analysis (kc

x

claffy) for hosting me the summer of 2004, and the University of California at Berkeley

(David Wagner) for hosting me the summer of 2005.

PAPERS INCLUDED IN THIS DISSERTATION. An earlier version of the material in Chap-

ter 3 appears in the ACM Transactions on Information and System Security [8], copy-

right the ACM. I was a primary researcher for this work. The full citation for this

work is:

Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking

and provably repairing the SSH authenticated encryption scheme: A case

study of the Encode-then-Encrypt-and-MAC paradigm.ACM Transactions

on Information and System Security, 7(2):206–241, May 2004.

The material in Chapter 4 comes from in-progress work. I was a primary researcher for

this work, the full citation of which is currently:

Tadayoshi Kohno, Adriana Palacio, and John Black. Authenticated-encryption:

New notions and constructions. Manuscript, 2006.

An earlier version of the material in Chapter 5 appears in Fast Software Encryption,

volume 3017 of Lecture Notes in Computer Science [50], copyright the IACR. I was

a primary researcher for the theoretical results in this paper. The full citation for this

work is:

Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance

conventional authenticated encryption mode. In Bimal Roy and Willi Meier,

editors,Fast Software Encryption, volume 3017 ofLecture Notes in Com-

puter Science, pages 408–426. Springer-Verlag, February 2004.

An earlier version of the material in Chapter 6 appears in the Proceedings of the 11th

ACM Conference on Computer and Communications Security [49], copyright the ACM.

I was a primary researcher and single-author on this paper. The full citation for this

work is:

xi

Tadayoshi Kohno. Attacking and repairing the WinZip encryption scheme.

In Birgit Pfitzmann, editor,Proceedings of the 11th ACM Conference on

Computer and Communications Security, pages 72–81. ACM Press, Octo-

ber 2004.

xii

VITA

1999 B.S. University of Colorado, Boulder

2004 M.S. University of California, San Diego

2006 Ph.D. University of California, San Diego

PUBLICATIONS

Harold N. Gabow and Tadayoshi Kohno. A network-flow-based scheduler: Design,
performance history, and experimental analysis. InSecond Workshop on Algorithm
Engineering and Experiment, pages 1–14, January 2000.

John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks
against reduced-round MARS and Serpent. In Bruce Schneier, editor,Fast Software
Encryption, volume 1978 ofLecture Notes in Computer Science, pages 75–93. Spring-
er-Verlag, April 2000.

Tadayoshi Kohno, John Kelsey, and Bruce Schneier. Preliminary cryptanalysis of
reduced-round Serpent. InThird AES Candidate Conference, pages 195–211, April
2000.

John Viega, J. T. Bloch, Yoshi Kohno, and Gary McGraw. ITS4: A static vulnerability
scanner for C and C++ code. InSixteenth Annual Computer Security Applications
Conference, pages 257–267, December 2000.

Harold N. Gabow and Tadayoshi Kohno. A network-flow-based scheduler: Design,
performance history, and experimental analysis.ACM Journal of Experimental Algo-
rithmics, 6, 2001.

Tadayoshi Kohno and Mark McGovern. On the global content PMI: Improved copy-
protected Internet content distribution. In Paul F. Syverson, editor,Financial Cryptogra-
phy, volume 2339 ofLecture Notes in Computer Science, pages 79–90. Springer-Verlag,
February 2001.

John Viega, Tadayoshi Kohno, and Bruce Potter. Trust (and mistrust) in secure applica-
tions. Communications of the ACM, 44(2):31–36, February 2001.

John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. Token-based scanning
for source code security problems.ACM Transactions on Information and System Se-
curity, 5(3):238–261, August 2002.

Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated encryp-
tion in SSH: Provably fixing the SSH binary packet protocol. In Vijay Atluri, editor,
Proceedings of the 9th ACM Conference on Computer and Communications Security,
pages 1–11. ACM Press, November 2002.

xiii

Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, and Ta-
dayoshi Kohno. Helix: Fast encryption and authentication in a single cryptographic
primitive. In Thomas Johansson, editor,Fast Software Encryption, volume 2887 of
Lecture Notes in Computer Science, pages 330–346. Springer-Verlag, February 2003.

Lars R. Knudsen and Tadayoshi Kohno. Analysis of RMAC. In Thomas Johansson,
editor,Fast Software Encryption, volume 2887 ofLecture Notes in Computer Science,
pages 182–191. Springer-Verlag, February 2003.

Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor,Advances in Cryptology
– EUROCRYPT 2003, volume 2656 ofLecture Notes in Computer Science, pages 491–
506. Springer-Verlag, May 2003.

Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance con-
ventional authenticated encryption mode. In Bimal Roy and Willi Meier, editors,Fast
Software Encryption, volume 3017 ofLecture Notes in Computer Science, pages 408–
426. Springer-Verlag, February 2004.

Tetsu Iwata and Tadayoshi Kohno. New security proofs for the 3GPP confidentiality and
integrity algorithms. In Bimal Roy and Willi Meier, editors,Fast Software Encryption,
volume 3017 ofLecture Notes in Computer Science, pages 427–445. Springer-Verlag,
February 2004.

Mihir Bellare and Tadayoshi Kohno. Hash function balance and its impact on birthday
attacks. In Christian Cachin and Jan Camenisch, editors,Advances in Cryptology –
EUROCRYPT 2004, volume 3027 ofLecture Notes in Computer Science, pages 401–
418. Springer-Verlag, May 2004.

Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. Analysis of
an electronic voting system. InIEEE Symposium on Security and Privacy, pages 27–40.
IEEE Computer Society, May 2004.

Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably
repairing the SSH authenticated encryption scheme: A case study of the Encode-then-
Encrypt-and-MAC paradigm.ACM Transactions on Information and System Security,
7(2):206–241, May 2004.

Tadayoshi Kohno. Attacking and repairing the WinZip encryption scheme. In Birgit
Pfitzmann, editor,Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security, pages 72–81. ACM Press, October 2004.

Tadayoshi Kohno, Andre Broido, and kc claffy. Remote physical device fingerprinting.
In IEEE Symposium on Security and Privacy, pages 211–225. IEEE Computer Society,
May 2005.

xiv

Tadayoshi Kohno, Andre Broido, and K.C. Claffy. Remote physical device fingerprint-
ing. IEEE Transactions on Dependable and Secure Computing, 2(2):93–108, April–
June 2005.

Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja
Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable
encryption revisited: Consistency properties, relation to anonymous IBE, and exten-
sions. In Victor Shoup, editor,Advances in Cryptology – CRYPTO 2005, volume 3621
of Lecture Notes in Computer Science, pages 205–222. Springer-Verlag, August 2005.

Kevin Fu, Seny Kamara, and Tadayoshi Kohno. Key regression: Enabling efficient key
distribution for secure distributed storage. InISOC Network and Distributed System
Security Symposium, February 2006.

David Molnar, Tadayoshi Kohno, Naveen Sastry, and David Wagner. Tamper-evident,
history-independent, subliminal-free data structures on PROM storage -or- how to store
ballots on a voting machine (extended abstract). InIEEE Symposium on Security and
Privacy. IEEE Computer Society, May 2006.

John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus attack.
In Serge Vaudenay, editor,Advances in Cryptology – EUROCRYPT 2006, Lecture Notes
in Computer Science. Springer-Verlag, May 2006.

Naveen Sastry, Tadayoshi Kohno, and David Wagner. Designing voting machines for
verification. In15th Usenix Security Symposium. Usenix, August 2006.

xv

ABSTRACT OF THE DISSERTATION

Authenticated Encryption in Practice: Generalized Composition Methods and the

Secure Shell, CWC, and WinZip Schemes

by

Tadayoshi Kohno

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Mihir Bellare, Chair

We study authenticated encryption (AE) schemes, or symmetric cryptographic

protocols designed to protect both the privacy and the integrity of digital communi-

cations. When the AE schemes that we propose or study are secure, we prove so using

the modern cryptography approach of practice-oriented provable security; this approach

involves formally defining what it means for an AE scheme to be secure, and then deriv-

ing proofs of security via reductions from the security of the construction’s underlying

components. When we find that an AE scheme is insecure, we support our discoveries

with example attacks and then propose security improvements.

We first study the AE portion of the Secure Shell (SSH) protocol. The SSH AE

scheme is based on the Encrypt-and-MAC paradigm. Despite previous negative results

on the Encrypt-and-MAC paradigm, we prove that the overall design of the SSH AE

scheme is secure under reasonable assumptions. Our proofs for SSH contribute to the

field of cryptography in several ways. First, we extend previous formal definitions of

security for AE schemes to capture additional security goals, namely resistance to replay

and re-ordering attacks. We also formalize a new AE paradigm, Encode-then-E&M, that

captures the differences between the real SSH AE scheme and the previous Encrypt-

and-MAC model. We state provable security results about both the Encode-then-E&M

paradigm and the SSH AE scheme.

xvi

Motivated by the differences between previous models and real AE schemes, we

then consider and prove security results about generalizations of two other natural AE

paradigms, MAC-then-Encrypt and Encrypt-then-MAC, as well as further generaliza-

tions of the Encode-then-E&M paradigm. Motivated by practical requirements and the

IPsec community, we propose CWC — the first block cipher-based AE scheme that is

simultaneously provably secure, fully parallelizable, and free from intellectual property

claims. Finally, we discover and propose fixes to security defects with the WinZip AE-2

AE scheme. Our attacks exploit interactions between AE-2’s provably secure Encrypt-

then-MAC core and the rest of the system. Since WinZip could have avoided certain

attacks by applying the provable security approach to the whole AE-2 scheme, our re-

sults suggest the importance of pushing the provable security approach further into real

systems.

xvii

1 Introduction

In this dissertation we consider two of the most fundamental goals in cryptogra-

phy: the protection of theprivacyof digital communication and the protection of thein-

tegrityof digital communication. We consider these goals in thesymmetricorshared-key

setting, which means that we are interested in studying privacy- and integrity-preserving

mechanisms when two communicating parties already share some secret information,

called a cryptographickey.

1.1 Authenticated Encryption

While cryptographers have long realized the importance of theprivacy and in-

tegrity goals, the traditional approach in cryptography research has been to consider

these two goals in isolation. In this vein, cryptographers designedencryption schemes

[4, 30] to protect the privacy of digital communication and they designedmessage au-

thentication schemes(a.k.a.MACs) [6, 30] to protect the integrity of digital communi-

cation. It was not until recently that cryptographers began to formally studyauthenti-

cated encryption schemes, or mechanisms for achieving both of these goalssimultane-

ously[10, 11, 47, 52].

Some of the initial results on authenticated encryption might appear counter-

intuitive. For example, Bellare and Namprempre [10] and Krawczyk [52] both proved

that one natural method for combining a secure, traditional, privacy-only encryption

1

2

scheme with a secure, traditional, integrity-only MAC willalwaysfail to provide pri-

vacy when the MAC is stateless and deterministic, as many popular MACs are. As a

concrete example, using this approach to combine the popular AES-CTR encryption

scheme with the popular HMAC-SHA1 message authentication scheme will result in

an insecure(not privacy-preserving) authenticated encryption scheme. The authors dub

this natural but insecure method for combining an encryption scheme with a MAC the

“Encrypt-and-MAC” paradigm.

Results like those of Bellare-Namprempre and Krawczyk suggest a need for fur-

ther investigation into the theory of how to create authenticated encryption schemes with

strong theoretical support, i.e., how to create authenticated encryption schemes that

areprovably secure[6, 37] under reasonable assumptions. Toward this end, Bellare-

Namprempre and Krawczyk also show that another natural method of combining an

encryption scheme and a MAC does yield a composite authenticated encryption scheme

that provably provides both strong privacy and integrity properties at the same time.

These authors dub the provably secure composition method the “Encrypt-then-MAC”

paradigm. (Bellare-Namprempre and Krawczyk additionally consider a third composi-

tion method, MAC-then-Encrypt, that informally provides a level of security somewhere

between that of the Encrypt-and-MAC paradigm and the Encrypt-then-MAC paradigm.)

Since many popular encryption schemes and MACs are themselves built from one

of cryptography’s most basic components, theblock cipher, cryptographers also began

to consider how to design authenticated encryption schemes directly from block ciphers.

Efficiency was one of the principle motivations for this line of research, and early ex-

amples of this research direction include the works of Katz and Yung [47], Jutla [44],

Gligor and Donescu [35], and Rogaway, Bellare, and Black [72].

While these early works make great strides in the formal study of authenticated

encryption, there remain gaps between the theoretical results on authenticated encryp-

tion and the needs of practitioners. For example, the previous theoretical analyses of

composition-based authenticated encryption schemes do not fully model many real con-

structions, like the construction used in the popular Secure Shell (SSH) protocol. Ad-

3

ditionally, no pre-existing block cipher-based authenticated encryption scheme has all

three of the following properties: provable security, full data parallelizability, and free-

dom from intellectual property claims. Consequently, none of the pre-existing block

cipher-based authenticated encryption schemes are suitable for some real deployment

scenarios, like high-speed IPsec routers that must handle data at 10 Gbps. (To better

understand this latter conclusion, we note that the IETF standardization body dislikes

patented constructions, which eliminates the use of parallelizable but patented con-

structions. On the other hand, unpatented and non-parallelizable constructions cannot

achieve 10 Gbps using conventional ASIC technology.) The purpose of this disserta-

tion is to help address these gaps. We summarize our contributions below, after first

elaborating on what we mean byprovable security.

1.2 Provable Security

Goldwasser and Micali [37] introduced the notion ofprovable security, which is

based on the science of complexity theory. In the Goldwasser-Micali approach, individ-

uals design a cryptographic scheme based on some believed-to-be computationally hard

problems, which they treat asbasic building blocksor primitives. The designers also

determine what it means for the scheme to be “secure” by establishing precisesecurity

definitionsthat capture the designers’ security goals. After determining the appropriate

security definitions, the designers (attempt to) prove the security of their construction

via a reductionfrom the hardness of the underlying building blocks, similar to the way

one reduces SAT to a problem to prove that the problem is NP-hard. The use of reduc-

tions allows the designers to prove thatanyefficient attack against the security of their

scheme would directly correspond to an efficient solution to the problem posed by one

of the underlying building blocks, and as long as the building blocks are truly hard, we

know that the designers’ scheme is secure under the chosen security definitions.

Bellare, Kilian, and Rogaway [6] built on the line of work that Goldwasser and Mi-

cali started and, in doing so, created the field ofpractice-oriented provable security. The

4

fundamental difference between BKR’s approach and Goldwasser-Micali’s approach is

that BKR were interested in the design and analysis of practical, implemented protocols

and performed their analyses using concrete reductions from finite objects, whereas

Goldwasser-Micali were largely interested in complexity theoretic questions concern-

ing the asymptotic relationships between different security goals. Since its conception,

many researchers have extensively applied the practice-oriented provable security ap-

proach in the design and analysis of practical cryptosystems. In the case of symmetric

schemes, the underlying basic building blocks are generally engineered objects, such as

theblock cipherAES [28].

1.3 The Secure Shell Protocol and Composition-Based

Authenticated Encryption Schemes

In this dissertation we revisit the composition methods that Bellare and Namprem-

pre [10] and Krawczyk [52] analyzed in their early papers on authenticated encryption.

Specifically, we begin by looking at the authenticated encryption portion of the popular

Secure Shell (SSH) protocol. Of particular interest here is that the SSH authenticated

encryption scheme is based on the insecure Encrypt-and-MAC paradigm, yet we are

able to show that the SSH approach for combining an encryption scheme and a MAC is

in fact secure under reasonable assumptions.

Our provable security results do not contradict the results of Bellare-Namprempre

and Krawczyk. Rather, the critical property that we exploit in our proofs of security is

that, while the SSH protocol is based on the insecure Encrypt-and-MAC paradigm, it

has a few slight differences. Namely, the SSH protocol preprocesses user data (the data

that we are concerned about from a privacy and integrity perspective) before invoking

the underlying encryption scheme and MAC, thereby taking the SSH construction out-

side of the generic Encrypt-and-MAC model and making Bellare-Namprempre’s and

Krawczyk’s results inapplicable. We generalize our analysis by modeling the prepro-

cessing step as anencoding scheme, and then prove general results for a new paradigm

5

that we callEncode-then-Encrypt-and-MAC(Encode-then-E&M). Our results on the

SSH protocol are in Chapter 3.

Motivated by our SSH results, and by the fact that real protocols seldom em-

ploy any of the basic Encrypt-and-MAC, Encrypt-then-MAC, and MAC-then-Encrypt

paradigms without alteration, we then formally study new abstractions that we call the

generalized Encode-then-E&M, thegeneralized Encode-then-EtM, and thegeneralized

Encode-then-MtEparadigms. We present these results in Chapter 4. The generalized

Encode-then-E&M paradigm that we consider in Chapter 4 is a more flexible version of

the Encode-then-E&M paradigm that we consider in Chapter 3.

For our provable security results in Chapters 3 and 4, we also introduce new,

strong, formal definitions of privacy and integrity for authenticated encryption schemes.

Our definitions extend the standard definitions of privacy and integrity [4, 10, 11, 47],

but also capture additional security goals that developers often desire. For example, if

a construction is provably secure under one of our new definitions of security, then that

construction will provably resistreplayandout-of-order deliveryattacks.

As an aside, our analysis of the SSH authenticated encryption scheme did uncover

a privacy vulnerability, but this vulnerability is not endemic of the high level SSH con-

struction. Rather, the problem that we identify stems from a poor choice for SSH’s

underlying encryption scheme. Details in Chapter 3.

1.4 The CWC Authenticated Encryption Scheme

In addition to studying composition-based authenticated encryption schemes, we

also propose a new block cipher-based authenticated encryption scheme, which we call

CWC. CWC is the first block cipher-based authenticated encryption scheme that is si-

multaneously provably secure, fully parallelizable, and unencumbered by intellectual

property issues. One of our pragmatic goals was to provide the first provable secure

authenticated encryption scheme for high-speed 10 Gbps IPsec routers.

The heart of the CWC design is to combine a Carter-Wegman-style polynomial

6

universal hash function-based message authentication scheme [81] with a counter (CTR)

mode encryption scheme, but to do so in an invasive, non-generic way. For example,

while it is generally a poor security design decision to use the same cryptographic key

in an encryption scheme and a MAC, we design CWC in such a way that one can use

the same block cipher key in both CWC’s underlying encryption component and CWC’s

underlying message authentication component. Sharing a key in this manner is advan-

tageous since it minimizes expensive memory accesses in high-speed hardware. Details

in Chapter 5.

1.5 The WinZip Authenticated Encryption Scheme

In Chapter 6 we cryptanalyze WinZip Computing, Inc.’s new AE-2 authenticated

encryption scheme. (WinZip Computing, Inc. is the creator of the popular WinZip file

utility program for Windows machines, as well as an Outlook email plugin.) Unlike pre-

vious chapters, Chapter 6 does not contain provable security results, but rather serves to

help underscore the importance of extending provable security further into real systems

by highlighting examples of security issues that can arise when a construction is not

provably secure, or when a larger system uses a provably secure sub-component with-

out fully addressing the security of the connection between that sub-component and the

larger system.

In more detail, the core of the WinZip AE-2 authenticated encryption scheme is a

provably secure Encrypt-then-MAC construction, where the underlying encryption com-

ponent is the popular AES-CTR mode encryption scheme and the underlying authenti-

cation component is the popular HMAC-SHA1 message authentication scheme. Our

attacks do not invalidate the security of the AE-2 Encrypt-then-MAC core, but rather

exploit problems with the interface between the Encrypt-then-MAC core and the rest

of the WinZip system. For example, one of our attacks exploits the way that WinZip

preprocesses and compresses user data before processing that data with the Encrypt-

then-MAC core. We also uncover a chosen-ciphertext attack that exploits Windows’

7

association of applications (e.g., Microsoft Word) to filename extensions (e.g.,.doc)

and the fact that WinZip does not cryptographically protect the integrity of an encapsu-

lated file’s filename. We further uncover security issues that arise because of the fact that

when a WinZip archive contains multiple files, each file is compressed and encrypted

independently. Details of these and other results, as well as our recommended fixes, are

in Chapter 6.

2 Background

2.1 Notation

If x andy are strings, then|x| denotes the length ofx in bits andx‖y denotes their

concatenation. Ifi is a non-negative integer andl is a positive integer,0 ≤ i < 2l,

then 〈i〉l denotes the unsignedl-bit binary representation ofi in big-endian format.

If x is a string, thentoint(x) denotes the integer corresponding to stringx in big-

endian format (the most significant bit isnot interpreted as a sign bit). For example,

toint(10000010) = 27 + 2 = 130. If b is a bit andn a non-negative integer, thenbn

denoteb concatenated with itselfn times; e.g.,107 is the string10000000. If a1, . . . , am

are strings, then〈a1, . . . , am〉 denotes an injective encoding from the set of all possible

values fora1, . . . , am, which will be clear from context, to a set of strings such that

a1, . . . , am are recoverable. We denote the empty string byε. When we say an algo-

rithm is stateful, we mean that it uses and updates its state and that the entity executing

it maintains the state between invocations. Letε denote the initial state of any (state-

ful or stateless) algorithm. Letx ← y denote the assignment ofy to x. If X is a set,

thenx
$← X denotes the process of selecting an element uniformly at random fromX

and assigning the result tox. If f is a randomized (resp., deterministic) algorithm, then

x
$← f(y) (resp.,x ← f(y)) denotes the process of runningf on inputy and assigning

the result tox. If A is a program,A ⇐ x means “return the valuex to A.” When we

refer to the time of an algorithm or experiment, we include the size of the code in some

fixed encoding. There is also an implicit big-O surrounding all such time references.

8

9

2.2 Pseudorandom Functions

We formalize the notion of pseudorandom functions following the papers [6, 36].

Let F : K ×M → R be a family of functions fromM toR indexed by keysK. We

useFK(M) as shorthand forF(K, M). Let Rand[M,R] denote the set of all functions

from M to R. If l and L are positive integers, we use Rand[l, L] as shorthand for

Rand[{0, 1}l, {0, 1}L]. Informally,F is asecure pseudorandom function(PRF) if it is

hard for all distinguishers (adversaries)Dprf using reasonable resources to distinguish

FK(·), with a randomly selected keyK ∈ K, from a randomly selected functionf from

Rand[M,R]. We make this more formal below.

Definition 2.2.1 (Pseudorandom functions [6, 36].) Let F : K × M → R be a

family of functions fromM toR indexed by keysK. Let Dprf be a distinguisher forF .

Consider the following experiments, whereb ∈ {0, 1} is a bit:

ExperimentExpprf-b
F (Dprf)

If b = 1 thenK
$← K ; g ← FK elseg

$← Rand[M,R]

RunD
g(·)
prf

Reply tog(M) queries as follows:Dprf ⇐ g(M)

Until Dprf returns a bitd

Returnd

We define thePRF-advantage of the adversaryDprf as

Advprf
F (Dprf) = Pr

[
Expprf-1

F (Dprf) = 1
]
− Pr

[
Expprf-0

F (Dprf) = 1
]

.

In the concrete setting [6], we say thatF is a secure pseudorandom function(PRF-

secure) ifAdvprf
F (Dprf) is small for all distinguishersDprf using reasonable resources.

2.3 Pseudorandom Permutations (Block Ciphers)

We formalize the notion of pseudorandom permutations (block ciphers) follow-

ing [6, 56, 63]. LetF : K ×M → R be a family of functions fromM toR indexed

10

by keysK. F is a family of permutations (i.e., ablock cipher) if M = R andFK(·) is

a permutation onM for eachK ∈ K. If F is a family of permutations, we useF−1
K (·)

to denote the inverse ofFK(·) and we useF−1(·, ·) to denote the function that takes

(K, M) as input and computesF−1
K (M). Let Perm[M] denote the set of all permuta-

tions onM. If L is a positive integer, we use Perm[L] as shorthand for Perm[{0, 1}L].

Informally,F is asecure pseudorandom permutation(PRP) underchosen-plaintext at-

tacks if it is hard for all distinguishers (adversaries)Dprp using reasonable resources

to distinguishFK(·), with a randomly selected keyK ∈ K, from a randomly selected

permutationf from Perm[M]. Additionally, F is a secure pseudorandom permuta-

tion underchosen-ciphertext attacks(a.k.a.super-pseudorandom permutation[56] or

strong-PRP[63]) if it is hard for all distinguishers (adversaries)Dsprp using reasonable

resources to distinguishFK(·),F−1
K (·), with a randomly selected keyK ∈ K, from a

randomly selected permutationf from Perm[M] andf ’s inverse. We make this more

formal below.

Definition 2.3.1 (Pseudorandom permutations [6, 56, 63].)LetF : K ×M →M

be a family of permutations onM indexed byK. Let Dprp andDsprp be distinguishers

for F . Consider the following experiments, whereb ∈ {0, 1} is a bit:

ExperimentExpprp-b
F (Dprp)

If b = 1 thenK
$← {0, 1}k ; g ← FK elseg

$← Perm[M]

RunD
g(·)
prp

Reply tog(M) queries as follows:Dprp ⇐ g(M)

Until Dprp returns a bitd

Returnd

ExperimentExpprp-cca-b
F (Dsprp)

If b = 1 thenK
$← {0, 1}k ; g ← FK elseg

$← Perm[M]

RunD
g(·),g−1(·)
sprp

Reply tog(M) queries as follows:Dsprp ⇐ g(M)

Reply tog−1(C) queries as follows:Dsprp ⇐ g−1(C)

11

Until Dsprp returns a bitd

Returnd

We respectively define thePRP- andSPRP-advantages of the adversariesDprp andDsprp

as

Advprp
F (Dprp) = Pr

[
Expprp-1

F (Dprp) = 1
]
− Pr

[
Expprp-0

F (Dprp) = 1
]

Advprp-cca
F (Dsprp) = Pr

[
Expprp-cca-1

F (Dsprp) = 1
]

−Pr
[
Expprp-cca-0

F (Dsprp) = 1
]

.

In the concrete setting [6], we say thatF is asecure pseudorandom permutationunder

chosen-plaintext attacks(PRP-secure) ifAdvprp
F (Dprp) is small for all distinguishers

Dprp using reasonable resources. Similarly, we say thatF is a secure pseudorandom

permutationunderchosen-ciphertext attacks(SPRP-secure) ifAdvprp-cca
F (Dsprp) is small

for all distinguishersDsprp using reasonable resources.

Most cryptographers believe AES [28] to be an example of aPRP- andSPRP-secure

block cipher.

2.4 Symmetric Encryption

We formalize the notion of a symmetric encryption scheme following [4]. A sym-

metric encryption schemeSE = (K, E ,D) consists of three algorithms,K, E , andD.

The randomized key generation algorithmK returns a keyK from the setKeySpSE ; we

write this asK
$← K. The encryption algorithm, which could be both randomized or

stateful, takes a keyK ∈ KeySpSE and a plaintextM ∈ {0, 1}∗ as input and returns a

ciphertextC ∈ {0, 1}∗ or the error code⊥; we write this asC
$← EK(M). The decryp-

tion algorithm, which is stateless and deterministic, takes the keyK ∈ KeySpSE and a

stringC ∈ {0, 1}∗ as input and returns either the corresponding plaintextM or the error

code⊥; we write this asx ← DK(C). The consistency requirement is that, regardless

12

of the state of the encryptor, for all keysK ∈ KeySpSE and messagesM ∈ {0, 1}∗, if

EK(M) returnsC, then eitherC = ⊥ orDK(C) = M .

The formal notions ofprivacy underchosen-plaintextandchosen-ciphertext at-

tacksfor symmetric encryption schemes come from [4]. Intuitively, the notions of pri-

vacy measure the ability of an adversary to distinguish between the encryption of two

sequences of messages. For the chosen-ciphertext privacy notion, we also give the ad-

versary the ability to decrypt any string of its choice, assuming that the string does not

correspond to a ciphertext generated by the encryptor (since otherwise the adversary

could trivially learn which sequence of messages was encrypted). The idea is that if

an adversary cannot effectively distinguish between the encryption of two different se-

quences of messages, then it certainly cannot accomplish greater tasks, like decrypting

arbitrary ciphertexts or figuring out the encryption key. Toward making this defini-

tion more formal, letSE = (K, E ,D) again denote a symmetric encryption scheme.

For a keyK ∈ KeySpSE and bitb ∈ {0, 1}, let EK(LR(·, ·, b)) denote aleft-or-right

encryption oracle(LR encryption oracle) that takes inputM0, M1 ∈ {0, 1}∗, where

|M0| = |M1|, and returnsEK(Mb), the encryption ofMb. In pseudocode, we define

EK(LR(·, ·, b)) as follow:

OracleEK(LR(M0, M1, b)) // |M0| = |M1|

C
$← EK(Mb)

ReturnC

The definitions of privacy follow.

Definition 2.4.1 (Privacy for symmetric encryption schemes [4].)Let SE = (K, E ,

D) be a symmetric encryption scheme. LetAcpa be an adversary that has access to a left-

or-right encryption oracleEK(LR(·, ·, b)); let Acca be an adversary that has access to a

left-or-right encryption oracle and a decryption oracleDK(·). Each adversary returns a

bit. Consider the experiments below, whereb ∈ {0, 1} is a bit:

ExperimentExppriv-cpa-b
SE (Acpa)

K
$← K

13

RunA
EK(LR(·,·,b))
cpa

Reply toEK(LR(M0, M1, b)) queries as follows:

C
$← EK(Mb) ; Acpa ⇐ C

Until Acpa returns a bitd

Returnd

ExperimentExppriv-cca-b
SE (Acca)

K
$← K

RunA
EK(LR(·,·,b)),DK(·)
cca

Reply toEK(LR(M0, M1, b)) queries as follows:

C
$← EK(Mb) ; Acca ⇐ C

Reply toDK(C) queries as follows:M ← DK(C) ; Acca ⇐M

Until Acca returns a bitd

Returnd

We require that, for all queries(M0, M1) to EK(LR(·, ·, b)), |M0| = |M1|. For the

PRIV-CCA experiment,Exppriv-cca-b
SE (Acca), we require thatAcca not queryDK(·) on a

ciphertext previously returned byEK(LR(·, ·, b)). We respectively define thePRIV-CPA-

andPRIV-CCA-advantages of the adversaries as

Advpriv-cpa
SE (Acpa) = Pr

[
Exppriv-cpa-1

SE (Acpa) = 1
]
− Pr

[
Exppriv-cpa-0

SE (Acpa) = 1
]

Advpriv-cca
SE (Acca) = Pr

[
Exppriv-cca-1

SE (Acca) = 1
]
− Pr

[
Exppriv-cca-0

SE (Acca) = 1
]

.

In the concrete setting [6], we say thatSE is privacy-preserving(indistinguishable)

underchosen-plaintext attacks(PRIV-CPA-secure) ifAdvpriv-cpa
SE (Acpa) is small for all

adversariesAcpa using reasonable resources. Similarly, we say thatSE is privacy-

preservingunderchosen-ciphertext attacks(PRIV-CCA-secure) ifAdvpriv-cca
SE (Acca) is

small for all adversariesAcca using reasonable resources.

To provide more intuition behind these definitions, consider the case of indistin-

guishability under chosen-plaintext attacks. In words, we define the chosen-plaintext

14

privacy advantage of the adversaryAcpa with access toEK(LR(·, ·, b)), whereK is se-

lected at random, as the probability thatAcpa guesses thatb is 1 whenb is actually1

minus the probability thatAcpa guesses thatb is 1 when b is actually0. Intuitively,

Advpriv-cpa
SE (Acpa) andAdvpriv-cca

SE (Acca) are small (close to 0) if an adversary has a hard

time in guessing the bitb, but Advpriv-cpa
SE (Acpa) andAdvpriv-cca

SE (Acca) are large (close

to 1) if an adversary has an easy time in guessing the bitb.

CTR mode and CBC mode [4, 30] are examples of two popular block cipher-

based symmetric encryption schemes that are provablyPRIV-CPA-secure assuming that

the underlying block cipher isPRP-secure.

2.5 Message Authentication

We formalize the notion of a message authentication scheme following [6, 10]. A

message authentication scheme(MAC) MA = (K, T ,V) consists of three algorithms.

The randomized key generation algorithm returns a keyK from the setKeySpMA; we

write this asK
$← K. The tagging algorithm, which may be both randomized and

stateful, takes a keyK ∈ KeySpMA and a messageM ∈ {0, 1}∗ and returns a tag

τ ∈ {0, 1}∗; we write this asτ
$← TK(M). The deterministic and stateless verifi-

cation algorithm takes a keyK ∈ KeySpMA, a messageM ∈ {0, 1}∗, and a can-

didate tagτ ∈ {0, 1}∗ and returns a bitb; we write b ← VK(M, τ). For any key

K ∈ KeySpMA and messageM ∈ {0, 1}∗, and for any internal state ofTK , we require

thatVK(M, TK(M)) = 1.

We consider a secure MACMA = (K, T ,V) to be one that isstrongly unforge-

able under chosen-message attacks[10]. We consider a game in which a forgerF is

given access to a tagging oracleTK(·) and a verification oracleVK(·). The forger is

allowed arbitrary queries to the oracles and wins if it can find a pair(M, τ) such that

VK(M, τ) = 1 but τ was never returned byTK(·) as a tag forM . We denote the ad-

vantage of this forger asAdvuf
MA(F). Although this notion is in general stronger than

the standard notion of unforgeability [6], we note that any pseudorandom function is a

15

strongly unforgeable MAC, and most practical MACs seem to be strongly unforgeable.

A more formal presentation of the definition follows.

Definition 2.5.1 (Strong unforgeability of message authentication schemes [10].)

LetMA = (K, T ,V) be a message authentication scheme. LetF be a forger with

access to a tagging oracleTK(·) and a verification oracleVK(·, ·). Consider the follow-

ing experiment:

ExperimentExpuf
MA(F)

K
$← K ; S ← ∅

RunF TK(·),VK(·,·)

Reply toTK(M) queries as follows:

τ
$← TK(M) ; S ← S ∪ {(M, τ)} ; F ⇐ τ

Reply toVK(M, τ) queries as follows:

v ← VK(M, τ)

If v = 1 and(M, τ) 6∈ S then return1

F ⇐ v

Until F halts

Return0

We define theUF-advantage ofF in forginga message-tag pair as

Advuf
MA(F) = Pr

[
Expuf

MA(F) = 1
]

.

In the concrete setting [6], we say thatMA is a strongly unforgeable(UF-secure) if

Advuf
MA(F) is small for all forgersF using reasonable resources.

If the message authentication schemeMA = (K, T ,V) has a stateless and de-

terministic tagging functionT : KeySpMA × {0, 1}∗ → R for some rangeR, then

we can apply the definition of a pseudorandom function from Section 2.2 toMA; for

Expprf-1
MA(Dprf) we selectK via K. Moreover, if a MAC isPRF-secure, then it is also

UF-secure [6]. Popular provably pseudorandom (and therefore strongly unforgeable)

16

message authentication schemes include OMAC [41] and HMAC [3, 53, 2], the former

secure assuming that the underlying block cipher isPRP-secure [41] and the latter secure

assuming that the underlying compression is a secure pseudorandom function under a

small class of related-key attacks [2, 7, 19].

2.6 Authenticated Encryption

The notion of a symmetricauthenticated encryptionscheme was first formally

introduced by Katz and Yung [47], Bellare and Rogaway [11], and Bellare and Nam-

prempre [10]. An authenticated encryption schemeAE = (K, E ,D) is like a traditional

symmetric encryption scheme (Section 2.4), with the same syntax and consistency re-

quirement, but with the goal of providingbothauthenticity (integrity) and privacy. The

definitions of privacy for authenticated encryption schemes are also the same as the

definitions of privacy for symmetric encryption schemes from Section 2.4. The formal

notions of integrity for authenticated encryption schemes in [10, 11, 47] are based on

the notion of unforgeability for message authentication schemes from [6]. Intuitively,

one notion of integrity,AUTHC, measures an adversary’s inability to trick the decryp-

tion algorithm into accepting a ciphertext that the encryption algorithm did not generate.

TheAUTHC notion is also calledintegrity of ciphertexts. A weaker notion,AUTHP or in-

tegrity of plaintexts, measures an adversary’s inability to trick the decryption algorithm

into accepting a ciphertext that decrypts to a message that the encryptor did not encrypt.

These integrity definitions are described more formally below.

Definition 2.6.1 (Integrity for authenticated encryption schemes [10, 11, 47].)Let

AE = (K, E ,D) be an AE scheme. LetFp, Fc be forgers with access to an encryption

oracleEK(·) and a decryption-verification oracleD∗
K(·); the latter, on inputC, invokes

DK(C) and returns 1 (i.e., accepts) ifDK(C) 6= ⊥ and 0 (i.e., rejects) otherwise. Con-

sider the experiments:

ExperimentExpauthp
AE (Fp)

17

K
$← K ; S ← ∅

RunF
EK(·),D∗

K(·)
p

Reply toEK(M) queries as follows:

C
$← EK(M) ; S ← S ∪ {M} ; Fp ⇐ C

Reply toD∗
K(C) queries as follows:

M ← DK(C)

If M 6= ⊥ andM 6∈ S then return1

If M 6= ⊥ thenFp ⇐ 1 elseFp ⇐ 0

Until Fp halts

Return0

ExperimentExpauthc
AE (Fc)

K
$← K ; S ← ∅

RunF
EK(·),D∗

K(·)
c

Reply toEK(M) queries as follows:

C
$← EK(M) ; S ← S ∪ {C} ; Fc ⇐ C

Reply toD∗
K(C) queries as follows:

M ← DK(C)

If M 6= ⊥ andC 6∈ S then return1

If M 6= ⊥ thenFc ⇐ 1 elseFc ⇐ 0

Until Fc halts

Return0

We respectively define theAUTHP- andAUTHC-advantages ofFp andFc as

Advauthp
AE (Fp) = Pr

[
Expauthp

AE (Fp) = 1
]

Advauthc
AE (Fc) = Pr

[
Expauthc

AE (Fc) = 1
]

.

In the concrete setting [6], we say thatAE preserves integrity of plaintexts(AUTHP-

secure) ifAdvauthp
AE (Fp) is small for all forgersFp using reasonable resources. Similarly,

we say thatAE preserves integrity of ciphertexts(AUTHC-secure) ifAdvauthc
AE (Fc) is

small for all forgersFc using reasonable resources.

18

2.6.1 Relations Between Notions

Katz and Yung [47] and Bellare and Namprempre [10] prove that if an authenti-

cated encryption scheme preserves privacy under chosen-plaintext attacks (PRIV-CPA-

secure) and also preserves integrity of ciphertexts (AUTHC-secure), then it also pre-

serves privacy under chosen-ciphertext attacks (PRIV-CCA-secure). This important re-

sult means that it is sufficient for designers of authenticated encryption schemes to focus

solely on thePRIV-CPA and AUTHC security properties, even thoughPRIV-CCA is the

principle privacy goal.

The formal statement of this result is below. To briefly interpret the following

theorem, the theorem shows that the advantage of an adversary attacking the chosen-

ciphertext privacy ofAE is upper-bounded by the advantages of adversariesB andI,

using similar resources, in respectively breaking the chosen-plaintext privacy or break-

ing the authenticity ofAE . If we assume thatAE preserves privacy under chosen plain-

text attack, thenAdvpriv-cpa
AE (B) must necessarily be small (by definition). Similarly, if

we assume thatAE preserves integrity of ciphertexts, thenAdvauthc
AE (I) must also be

small. Consequently, if we assume thatAE preserves privacy under chosen-plaintext

attacks and also preserves integrity of ciphertexts, then it must preserve privacy under

chosen-ciphertext attacks.

Theorem 2.6.2 (If an AE scheme isPRIV-CPA-secure andAUTHC -secure, then it is

also PRIV-CCA-secure [10, 47].)LetAE = (K, E ,D) be an authenticated encryption

scheme. Given anyPRIV-CCA adversaryA, we can construct anAUTHC adversaryI and

a PRIV-CPA adversaryB, both of which runA as a subroutine, such that

Advpriv-cca
AE (A)≤Advpriv-cpa

AE (B) + 2 ·Advauthc
AE (I)

andI andB use the same resources asA.

Bellare and Namprempre [10] prove other relations, e.g., that an AE scheme that

preserves privacy under chosen-ciphertext attacks (PRIV-CCA-secure) may not provide

19

integrity of ciphertexts (notAUTHC-secure). While this particular relationship is impor-

tant from a foundational perspective, it is less useful when trying to prove the security

of an authenticated encryption scheme. Bellare and Namprempre [10] also show that

AUTHP in combination withPRIV-CPA, does not implyPRIV-CCA. BecauseAUTHP and

PRIV-CPA do not implyPRIV-CCA, theAUTHP notion appears less frequently in the lit-

erature than theAUTHC notion.

2.6.2 Definitional Variations

There are a number of variations to the definitions presented above. Rogaway,

Bellare, and Black [72] define a notion of chosen-plaintext privacy that is stronger than

the PRIV-CPA notion above, though we stress that the community still believes that the

standardPRIV-CPA notion captures an appropriate level of security; the notion in the

RBB paper [72] measures an adversary’s ability to distinguish between the encryption

of real messages from random strings of the same lengths as the real ciphertexts. Rog-

away [69] also introduces the notion of anauthenticated encryption with associated data

(AEAD) scheme, which extends the definition of an authenticated encryption scheme to

allow for the scheme to authenticate more data than it encrypts; AEAD schemes are de-

sirable when processing network packets with headers that need to be authenticated but

not encrypted. Canetti and Krawczyk [25, 26, 52] also model privacy- and authenticity-

providing symmetric protocols as part of their universal composability secure channels

work. We introduce additional definitions later in this dissertation.

2.6.3 Generic Composition

Although the formal definitions of an authenticated encryption scheme only re-

cently appeared in the cryptographic literature [10, 11, 47], applied cryptographers have

been trying to create authenticated encryption schemes for years, and one of the most

popular design strategies has been to combine standard chosen-plaintext privacy-only

(PRIV-CPA-only) encryption schemes with standard authenticity-only (UF-only) mes-

20

sage authentication schemes. For example, IPsec, SSL/TLS, and SSH all use this basic

approach. Bellare and Namprempre [10] and Krawczyk [52] were the first to formally

consider the natural approaches for creating authenticated encryption schemes from

standard encryption schemes and standard message authentication schemes as black

boxes. We summarize their results here, emphasizing the fact that although one can

construct a secure authenticated encryption scheme from a secure encryption scheme

and a secure MAC, simply combining a secure encryption scheme and a secure MAC is

not guaranteed to yield a secure authenticated encryption scheme.

Bellare and Namprempre [10] and Krawczyk [52] identified three paradigms for

constructing composition-based authenticated encryption schemes: Encrypt-and-MAC,

MAC-then-Encrypt, and Encrypt-then-MAC. These constructions are so-named because

of the order in which they run the underlying encryption and message authentication

algorithms. These types of constructions are called “generic composition” constructions

since they treat the underlying components generically, i.e., as black boxes.

For all of the following, letSE = (Ke, E ,D) be an encryption scheme and let

MA = (Km, T ,V) be a message authentication scheme. For simplicity, assume thatE

never outputs the error code⊥ and that all the tags output byT are the same length, i.e.,

t-bit strings for some constantt.

Encrypt-and-MAC. GivenSE andMA, the composite Encrypt-and-MAC construc-

tionAE = (K, E ,D) is defined as follows:

AlgorithmK

Ke
$← Ke

Km
$← Km

Return〈Ke, Km〉

Algorithm E 〈Ke,Km〉(M)

C ′ $← EKe(M)

τ
$← TKm(M)

C ← C ′‖τ

ReturnC

AlgorithmD〈Ke,Km〉(C)

ParseC asC ′‖τ

M ← DKe(C
′)

v ← VKm(M, τ)

If v = 1 returnM

Else return⊥

MAC-then-Encrypt. Given SE andMA, the composite MAC-then-Encrypt con-

structionAE = (K, E ,D) is defined as follows:

21

AlgorithmK

Ke
$← Ke

Km
$← Km

Return〈Ke, Km〉

Algorithm E 〈Ke,Km〉(M)

τ
$← TKm(M)

C
$← EKe(M‖τ)

ReturnC

AlgorithmD〈Ke,Km〉(C)

M ′ ← DKe(C)

ParseM ′ asM‖τ

v ← VKm(M, τ)

If v = 1 returnM

Else return⊥

Encrypt-then-MAC. Given SE andMA, the composite Encrypt-then-MAC con-

structionAE = (K, E ,D) is defined as follows:

AlgorithmK

Ke
$← Ke

Km
$← Km

Return〈Ke, Km〉

Algorithm E 〈Ke,Km〉(M)

C ′ $← EKe(M)

τ ′
$← TKm(C ′)

C ← C ′‖τ ′

ReturnC

AlgorithmD〈Ke,Km〉(C)

ParseC asC ′‖τ ′

M ← DKe(C
′)

v ← VKm(C ′, τ ′)

If v = 1 returnM

Else return⊥

The security of the generic composition constructions. Bellare and Namprempre

[10] presented the following important results about the above composition paradigms.

Krawczyk [52] presented similar results, but under slightly different notions of security.

We omit formal theorem statements since they are not necessary for understanding the

results.

Encrypt-and-MAC: Even if the underlying encryption and message authentication

components are respectivelyPRIV-CPA- and UF-secure, the composite Encrypt-

and-MAC construction may fail to preserve privacy under chosen-plaintext attacks

and may fail to provide authenticity. That is, an Encrypt-and-MAC construction

built from secure components may fail to bePRIV-CPA- andAUTHC-secure.

Even worse, for most popular MACs, and in particular for any secure stateless

and deterministic MAC like CBC-MAC or HMAC, the Encrypt-and-MAC con-

struction composed from that MAC can never bePRIV-CPA-secure, regardless of

22

the choice of the underlying encryption scheme. The critical problem is that the

MAC may not be privacy-preserving and, therefore, the tagτ may leak informa-

tion about the original messageM .

MAC-then-Encrypt: If the underlying encryption scheme isPRIV-CPA-secure, then

the resulting MAC-then-Encrypt construction will also bePRIV-CPA-secure. On

the other hand, even if the underlying encryption and message authentication com-

ponents are respectivelyPRIV-CPA-secure andUF-secure, the composite MAC-

then-Encrypt construction may fail to bePRIV-CCA- andAUTHC-secure.

Encrypt-then-MAC: If the underlying encryption scheme isPRIV-CPA-secure and if

the underlying message authentication scheme isUF-secure, then the resulting

Encrypt-then-MAC construction will bePRIV-CPA-secure andAUTHC-secure, and

thus alsoPRIV-CCA-secure by the relation discussed in Section 2.6.1.

Because of these results, Bellare and Namprempre and Krawczyk advise that future

composition-based authenticated encryption schemes should use the Encrypt-then-MAC

method instead of the Encrypt-and-MAC and MAC-then-Encrypt methods. In Chap-

ter 3, however, we show that it is possible to build a secure authenticated encryption

scheme based on the Encrypt-and-MAC paradigm; the trick is to deviate slightly from

the exact Encrypt-and-MAC construction shown above.

2.6.4 Encryption with Redundancy

In addition to the generic composition approach for creating authenticated encryp-

tion schemes, another popular approach in practice is to combine a standard privacy-only

encryption scheme with an unkeyed redundancy function. An example unkeyed redun-

dancy functions might be a 32-bit CRC or a cryptographic hash function like SHA-1,

and example protocols built according to this approach are the IEEE 802.11 WEP pro-

tocol and version 1.5 of the SSH protocol.

The encryption with unkeyed redundancy approach works as follows. LetSE =

(Ke, E ,D) be an encryption scheme and letH : {0, 1}∗ → {0, 1}t be an unkeyed

23

redundancy function. Then the resulting encryption with redundancy schemeAE =

(K, E ,D) composed fromH andSE is defined as:

AlgorithmK

K
$← Ke

ReturnK

Algorithm EK(M)

h← H(M)

C
$← EK(M‖h)

ReturnC

AlgorithmDK(C)

M ′ ← DK(C)

ParseM ′ asM‖h

If H(M) = h returnM

Else return⊥

Unfortunately, the attacks in Bellovin [14] against CBC encryption with redundancy and

the attacks in Borisov, Goldberg, and Wagner [24] against WEP show that even ifSE is

provablyPRIV-CPA-secure, the resulting encryption with redundancy construction may

fail to protect the authenticity of encapsulated messages, i.e.,AE may fail to beAUTHC-

secure. This means that, in practice, the encryption with redundancy approach should

be avoided, at least if the redundancy function is unkeyed and if we are only assuming

the standardPRIV-CPA property onSE .

An and Bellare [1] ask whether the security of the encryption with redundancy

approach changes if we assume different properties of the underlying encryption scheme

or the hash function. For example, what if we assume thatSE is not onlyPRIV-CPA-

secure, but alsoPRIV-CCA-secure? Or what if the redundancy function is keyed? For the

latter, we might also consider what happens if the redundancy function’s key is given to

the adversary. For the former, recall that aPRIV-CCA-secure encryption scheme may not

beAUTHC-secure, which makes the question of whether an encryption with redundancy

scheme based on aPRIV-CCA-secure encryption scheme isAUTHC-secure interesting.

If the redundancy function is keyed but the adversary gets access to the redundancy

function’s key, or if the redundancy function is unkeyed, then An and Bellare prove that

even assumingPRIV-CCA-security of the underlying encryption scheme is insufficient

to guaranteeAUTHC-security of the resulting construction. If the redundancy function

is keyed and the key is kept secret, then the construction is similar to the MAC-then-

Encrypt construction in Section 2.6.3 and, for the same reasons, even ifSE is PRIV-

CPA-secure, the resulting construction may fail to beAUTHC-secure.

24

On the positive side, ifSE is PRIV-CCA-secure, and if the keyed function satisfies

a weak notion of unforgeability, then the resulting construction will be bothAUTHC- and

PRIV-CPA-secure, and therefore a secure authenticated encryption scheme. This positive

result, however, is mostly of foundational interest since, in practice, most basic encryp-

tion schemes from which we might consider creating authenticated encryption schemes

are notPRIV-CCA-secure, but onlyPRIV-CPA-secure. As another positive result, An

and Bellare [1] introduce a specificPRIV-CPA-secure encryption scheme, based on CBC

mode encryption, that in combination with certain types of keyed redundancy functions

yields a secure authenticated encryption scheme.

2.6.5 Encode-then-Encipher

All of the provably-secure authenticated encryption mechanisms described thus

far have encryption algorithms that, on input a messageM , return a ciphertextC where

the length ofC is strictly larger than the length ofM . Unfortunately, when we wish to

add authenticated encryption to a legacy application, we may not be able to afford the

luxury of changing the packet format and increasing its length. Thus rises the question

of whether it is possible to achieve authenticated encryption while keeping the lengths

of the ciphertexts equal to the lengths of the plaintexts. In general the answer to this

question is no since any length-preserving invertible transformation with a stateless in-

verter must be a permutation, and therefore not privacy-preserving (encrypting the same

message twice will always produce the same output).

Bellare and Rogaway [11] step back and look at this problem from a different

perspective. Specifically, they ask what happens if the data is already “highly struc-

tured,” e.g., perhaps the portion of the legacy protocol that we wish to encrypt contains

a sequence number, a length field, application data, and a CRC of the preceding three

fields. Bellare and Rogaway show that in some cases itis possible to achieve authenti-

cated encryption of application data by applying a keyed length-preserving operation (a

cipher) to the structured strings containing application data. Bellare and Rogaway call

their approach to authenticated encryption the Encode-then-Encipher paradigm.

25

The Encode-then-Encipher building blocks. Bellare and Rogaway model the struc-

tured portion of a legacy protocol as anencodingof the higher-level application data.

Specifically, anencoding schemeEC = (Encode, Decode) is a pair ofunkeyedalgo-

rithms. The encoding algorithmEncode, which may be stateful or randomized, on

input a messageM ∈ {0, 1}∗, returns a stringM ′ ∈ {0, 1}∗, and we write this as

M ′ $← Encode(M). We require that for allM1, M2 ∈ {0, 1}∗, if |M1| = |M2|, then

|Encode(M1)| = |Encode(M2)|. The encoding algorithm models the process of taking

application data and loading it into a structured packet like the one mentioned above.

The decoding algorithmDecode, which is stateless and deterministic, takes as input a

stringM ′ ∈ {0, 1}∗ and returns either a stringM ∈ {0, 1}∗ or the distinguished symbol

⊥, and we write this asM ← Decode(M ′). We require that for allM ∈ {0, 1}∗ and for

all states of and random tapes forEncode, Decode(Encode(M)) = M . The decoding

algorithm models the process of extracting application data from a structured packet.

We discuss the security goals for encoding schemes later.

The other component of an Encode-then-Encipher construction is a cipher, which

shares similar properties with block ciphers. LetF : KeySpF × {0, 1}∗ → {0, 1}∗

be a function. The functionF is a cipher if for all K ∈ KeySpF , FK is a length-

preserving permutation on{0, 1}∗, and in this caseF−1
K denotes the inverse ofFK .

Let LPerm[M] denote the set of all length-preserving permutations on the setM ⊆

{0, 1}∗. A cipherF is pseudorandom under chosen-ciphertext attacks if all adversaries

using reasonable resources have a hard time distinguishing between oracle access to

FK andF−1
K , whereK is a randomly selected key, and oracle access to a randomly

selected element of LPerm[{0, 1}∗] and its inverse. More formally, ifA is an adversary

with access to two oracles and that returns a bit, we define theSPRP-advantage ofA in

breaking the pseudorandomness under chosen-ciphertext attacks ofF as

Advsprp
F (A) = Pr

[
K

$← KeySpF : AFK(·),F−1
K (·) = 1

]
−Pr

[
π

$← LPerm[{0, 1}∗] : Aπ(·),π−1(·) = 1
]

.

In the concrete setting [6], we say thatF is pseudorandom under chosen-ciphertext

26

attacksor isSPRP-secure if the magnitude of theSPRP-advantage of all adversaries using

reasonable resources is small. Note that ablock cipherlike AES [28] is a special case

of a cipher in the sense that, for each key, the latter takes variable-length messages as

input, whereas the former only takes inputs of some fixed length, such as 128-bit strings.

Moreover, provablySPRP-secure (variable length) ciphers like EME∗ [38] are built from

block ciphers.

The Encode-then-Encipher paradigm. Having defined what encoding schemes and

ciphers are, it now becomes possible to describe Bellare and Rogaway’s Encode-then-

Encipher paradigm. LetF : KeySpF × {0, 1}∗ → {0, 1}∗ be a cipher. LetEC =

(Encode, Decode) be an encoding scheme. Then the composite authenticated encryption

schemeAE = (K, E ,D) composed fromEC andF is defined as:

AlgorithmK

K
$← KeySpF

ReturnK

Algorithm EK(M)

M ′ $← Encode(M)

C
$← FK(M ′)

ReturnC

AlgorithmDK(C)

M ′ ← F−1
K (C)

M ← Decode(M ′)

ReturnM

AlthoughD never explicitly returns⊥ in the above construction, recall thatDecode(M ′)

may return⊥.

Security of the Encode-then-Encipher paradigm. Bellare and Rogaway prove that

if F is SPRP-secure and ifEC hascollision-resistanceand low density, which we de-

scribe below, then the composite construction built fromF andEC is a secure authenti-

cated encryption scheme. Since there exist provablySPRP-secure ciphersF , like the re-

cent EME∗ [38], and since natural protocol constructions have structured encodings with

collision-resistance and low density, Bellare and Rogaway’s results provide a means to

provably add authenticated encryption to legacy protocols that cannot tolerate any addi-

tional packet expansion.

It remains to define whatlow densityandcollision-resistancemean. LetEC =

(Encode, Decode) be an encoding scheme. The schemeEC is ε-colliding if for any

27

numberq and any (even computationally unbounded) adversaryA who asksq queries

to anEncode oracle, the probability that two of these queries produce the same valid

response is at mostε(q). In the concrete setting, we say thatEC is collision-resistant

if ε(q) is small for all reasonable values ofq. Collision-resistance is easily achieved if

the encoding algorithm includes a sequence number or large random string in its output.

The schemeEC is δ-dense if for all positive integersn, the probability over a randomly

selected stringM ′ ∈ {0, 1}n thatDecode(M ′) 6= ⊥ is less thanδ (note that hereδ is

a constant, but aboveε is a function). In the concrete setting, we say thatEC haslow

densityif δ is small. Low density is easily achieved, for example, by including a CRC or

length field in the encoding output and havingDecode return⊥ if one of these fields is

incorrect (or, if we restrict the inputs ofEncode and the composite construction to only

valid parity-adjusted ASCII strings, havingDecode return⊥ for any string that is not a

valid ASCII sequence).

2.6.6 Block Cipher-Based Constructions

All of the above approaches for constructing provably secure authenticated en-

cryption schemes take provably secure components, like encryption schemes, MACs,

or ciphers, and combine or apply them in a way that yields a provably secure authen-

ticated encryption scheme. In turn, these provably secure components are often built

from one of cryptography’s most basic building blocks, the block cipher. Rather than

build authenticated encryption schemes from objects that use block ciphers, from a per-

formance perspective it would seem better to build provably secure authenticated en-

cryption schemes directly from block ciphers.

There are two types of provably secure block cipher-based authenticated encryp-

tion schemes. The first type of construction makes a single pass through the data, apply-

ing approximately one block cipher operation per block of the plaintext message. The

second type of construction is closer to the generic composition constructions, making

two passes through the data, but making optimizations along the way. From a technical

perspective, the difference between the two types may seem rather artificial since most

28

two-pass constructions can be converted into single-pass constructions through paral-

lelization or interleaving and since, depending on the metric used, the performance of

the second class can rival the performance of single-pass constructions. The difference

between the two classes of constructions is, however, especially critical in one arena,

namely patents. Multiple parties claim patents on the first class of constructions, but no

party claims patents on the second class.

Elements of the first class include RPC and RPC$ [47], IACBC and IAPM [44],

XCBC and XECB [35], OCB [72], and AEM [70]. Elements of the latter class include

CCM [82], EAX [13], CWC [50], and GCM [60]. All of these constructions are secure

assuming that the underlying block cipher is a secure pseudorandom permutation under

chosen-ciphertext attacks. IAPM, XECB, OCB, AEM, CWC, and GCM are also all data

parallelizable, which makes them attractive in high speed hardware where performance

is critical. We discuss the design of CWC in Section 5.

3 The Secure Shell Authenticated

Encryption Scheme

Bellare and Namprempre [10] and Krawczyk [52] proved that the Encrypt-and-

MAC approach for combining a secure, traditional privacy-only (PRIV-CPA-only) en-

cryption scheme with a secure, stateless and deterministic integrity-only (UF-only) mes-

sage authentication scheme willneveryield a secure authenticated encryption scheme;

recall also Section 2.6.3. Turning to modern cryptographic protocols, we find that the au-

thenticated encryption core of the Secure Shell (SSH) protocol is, however, based on this

insecure Encrypt-and-MAC paradigm. Despite Bellare-Namprempre’s and Krawczyk’s

negative result, we are nevertheless able toprove that the overall design of the SSH

authenticated encryption scheme issecureunder reasonable assumptions.

This apparent contradiction arises not from any problem with the theoretical re-

sults in the Bellare-Namprempre and Krawczyk works, but from the fact that when real

protocols like SSH do notexactly matchthe idealized models on which they are based,

the theoretical results about these idealized models are no longer applicable. This situa-

tion calls for a broader theory for the construction of authenticated encryption schemes

from traditional encryption schemes and MACs — a theory that can capture the com-

plexities of real-world authenticated encryption schemes, like the SSH authenticated

encryption core. We initiate such a theory in this chapter through our introduction and

An earlier version of the material in this chapter appears in the ACM Transactions on Information
and System Security [8], copyright the ACM.

29

30

analysis of theEncode-then-Encrypt-and-MACparadigm, and push these generaliza-

tions further in Chapter 4.

As an aside, our analysis of the SSH authenticated encryption scheme did uncover

one privacy defect. We stress that this defect is not endemic of the overall design of the

SSH authenticated encryption scheme, but is instead due to a poor design choice on the

part of the protocol designers: the original specification of the SSH protocol [87] em-

ploys aninsecureunderlying encryption scheme. We propose fixes to the SSH protocol

that work within the constraints of our provable security results and in particular that do

not require changing SSH’s overall Encrypt-and-MAC-based approach. Our preferred

fixes are now defined as an RFC [9] (standard track document) and are implemented in

the OpensSSH application.

3.1 Overview

Conceived as a secure alternative to traditional Unix tools likersh andrcp , the

IETF standardization body’sSecure Shell(SSH) protocol (version 2.0) has become one

of the most popular and widely used cryptographic protocols on the Internet. Because of

its popularity and because of the insecurity of programs likersh , rcp , andtelnet ,

a number of institutions now only allow users to remotely access their facilities us-

ing SSH. The cryptographic heart of the SSH protocol is itsBinary Packet Protocol

(BPP) [87] — the BPP is responsible for the underlying authenticated encryption of all

messages sent between two parties involved in an SSH connection.

Although others have discussed specific properties of the SSH BPP, e.g., problems

with not using a MAC [79] or problems with SSH’s variant of CBC mode [29], to

the best of our knowledge no one has performed a rigorous, provable security-based

analysis of the entire SSH BPP authenticated encryption mechanism. Our goal was thus

to thoroughly analyze the SSH BPP authenticated encryption scheme and, in the event

that we found any problems, to present provably-secure fixes to the protocol. Further

motivating our analysis is the fact that the SSH BPP is based on the insecure Encrypt-

31

and-MAC paradigm.

In order for our fixes to be as useful as possible to the Internet community, when

developing our fixes we considered both (1) provable security and (2) efficiency. Addi-

tionally, since retroactively modifying existing implementations is often very expensive,

we required that our suggested modifications (3) not significantly alter the current SSH

specification. For the last point, we note that the creators of SSH had the foresight to

design the SSH BPP in a modular way: in particular, it is relatively “easy” to change the

SSH BPP’s underlying encryption and message authentication modules.

Analysis and provably secure recommendations. The SSH BPP specification states

that SSH implementations should use CBC mode encryption [30] with chained initial-

ization vectors (IVs); i.e., the IV used when encrypting a message should be the last

block of the previous ciphertext. Unfortunately, CBC mode encryption with chained

IVs is notPRIV-CPA-secure [67], and this insecurity extends to SSH; this extension was

also reported by Dai [29].

Since CBC mode encryption with chained IVs is notPRIV-CPA-secure, but CBC

mode with random IVs isPRIV-CPA-secure [4], a natural fix to the SSH protocol might

be to replace the use of chained-IV CBC mode with randomized CBC mode. Unfortu-

nately, we show that doing so is not sufficient. In particular, since the SSH specification

does not require the padding to be random, the resulting SSH implementation may be

vulnerable to a rather serious reaction-attack, i.e., a privacy attack that works by modi-

fying a sender’s ciphertexts and observing the receiver’s response.

We next give several secure fixes to the SSH authenticated encryption mechanism.

For example, we suggest using randomized CBC mode encryption; the difference be-

tween this suggestion and the suggestion in the above paragraph is that we require at

least one full block of random padding (this could, however, result in having to enci-

pher more blocks than the previous SSH alternative). We also suggest another CBC

variant that does not require additional random padding: CBC mode where the IV is

generated by enciphering a counter with a different key. As an additional alternative,

32

we suggest replacing the underlying encryption scheme with a variant of counter (CTR)

mode [32, 55] in which both the sender and receiver maintain a copy of the counter. We

also present a framework within which to analyze other possible replacements.

One important advantage of these fixes over the current SSH specification is prov-

able security. Making reasonable assumptions, e.g., that SSH’s underlying block ci-

pher isPRP-secure, we show that our alternatives will preserve privacy against adaptive

chosen-plaintext and adaptive chosen-ciphertext attacks. We also show that our alterna-

tives will resist forgery, replay, and out-of-order delivery attacks. Finally, we argue that

our alternatives, and especially the latter two, also satisfy the other two requirements

listed above, namely efficiency and ease of modification.

Theoretical contributions. The previous notions of privacy (PRIV-CPA and PRIV-

CCA; Section 2.4 and [4]) and integrity (AUTHP andAUTHC; Section 2.6 and [10, 11,

47]) for authenticated encryption only address encryption schemes with stateless de-

cryption algorithms. The SSH BPP decryption algorithm is, however, stateful. Moti-

vated by a desire to analyze the SSH BPP authenticated encryption scheme, and by the

desire to capture the potential “power” of stateful decryption algorithms, we extend the

previous notions of privacy and integrity to encryption schemes with stateful decryption

algorithms. The aforementioned “power” refers to the fact that if a scheme meets our

new notions of security, then, in addition to satisfying the existing notions of privacy

and integrity, the scheme will be secure against replay attacks and out-of-order delivery

attacks — attacks not captured under the previous models.

One alternative approach to our analysis would have been to model the SSH BPP

as a “secure channel,” as defined in [25] and characterized in [62], since the notion of se-

cure channels can be applied to encryption schemes with stateful decryption algorithms.

We point out that the combination of our notions is stronger than the notion of secure

channels: combining a secure key agreement protocol with an authenticated encryption

scheme that meets both of our notions will yield a secure channel. Consequently, since

our fixes to the SSH BPP provably meet our strong notions, the resulting SSH BPP is

33

also a secure channel.

We acknowledge that one potential disadvantage of our new notions of security is

that they may be “too strong” and that some applications may not require the strength

associated with our notions; see [25, 52] for reasons. For those applications, the notion

of a secure channel might be more appropriate, as might one of the other notions that

we introduce in Chapter 4. Our notions are, however, more appropriate for applications

like SSH that do require a higher level of protection such as protection against out-of-

order delivery attacks. Finally, we note that side-channel attacks such as those exploiting

information leaked through the length of packets or the interval of time between packets

(e.g., [27, 76]) are not captured by our security models nor any other provable security

models that we are aware of.

Outline. After describing the SSH Binary Packet Protocol in Section 3.2, we present

a simple attack against the current SSH specification in Section 3.3. In Section 3.4,

we show that “fixing” the SSH BPP in the natural way may result in an insecure pro-

tocol. Motivated by the lessons we learned from Sections 3.3 and 3.4, we then present

provably-secure fixes to the SSH Binary Packet Protocol in Section 3.5. In Sections 3.6–

3.8 we present our provable security results. Finally, in Section 3.9, we discuss our re-

sults and make recommendations to the SSH and applied cryptographic communities.

We discuss the significance of our earlier attacks and the advantages and disadvantages

of switching to our proposed modifications. We also discuss the possibility of changing

the SSH BPP from an Encrypt-and-MAC-based construction to an Encrypt-then-MAC-

based construction and the possibility of modifying SSH to use a dedicated authenticated

encryption scheme such as XCBC [35] or OCB [72].

3.2 The SSH Binary Packet Protocol (SSH BPP)

The SSH Binary Packet Protocol [87] is responsible for encrypting and authenti-

cating all messages between two parties involved in an SSH session. Before beginning

34

payloadpayload len pdl paddingctr

payload

ENCODE

intermediate ciphertext MAC tag

ENCRYPT MAC

ENCODE

ENCRYPT MAC

ciphertext packet

Figure 3.1 The SSH authenticated encryption scheme.

the authenticated encryption portion of an SSH session, a client and a server first agree

upon a set of shared symmetric keys (a different set for each direction of a connection).

The client and the server also agree upon which encryption and message authentication

schemes they wish to use. All of the encryption schemes recommended by the SSH

specification [87] are based on CBC mode encryption [30], and all of the recommended

message authentication schemes are based on HMAC [53].

Figure 3.1 shows how the SSH authenticated encryption scheme works at a high

level. Given apayloadmessage (in octets), the SSH BPP encodes that message into

an encoded packet consisting of the following fields: a four-octet packet length field

containing the length of the remaining encoded packet (in octets), a one-octet padding

length field, the payload message, and (possibly random) padding. The length of the

total packet must be a multiple of the underlying block cipher’s block length, and the

padding must be at least four octets long. Although the SSH specification allows up

to 255 octets of padding per encoded packet, both implementations that we evalu-

35

ated,openssh-2.9p2 and SSH Communications’ssh-3.0.1 , use the minimum

padding necessary. The resulting ciphertext is the concatenation of the encryption of

the above encoded packet and the MAC of the above encoded packet prepended with a

32-bit counter. In the following discussions, we try to make clear whether we are refer-

ring to theintermediate ciphertextoutput by the underlying encryption scheme or the

ciphertext packet(the concatenation of the intermediate ciphertext and the MAC tag)

output by the SSH BPP.

Decryption is defined in a natural way: the receiver first decrypts the intermediate

ciphertext portion of a ciphertext to get an encoded packet. The receiver then prepends

a 32-bit counter, which it also maintains, to the encoded packet and determines whether

the received MAC tag is valid. If so, the decryptor removes the payload from the en-

coded packet and delivers the payload to the user (or a higher-level protocol). If the

MAC verification fails, the connection is terminated.

The SSH specification recommends the use of CBC mode with inter-packet chain-

ing. This means that, when encrypting an encoded payload, the sender uses as the ini-

tialization vector (IV) either the last block of the immediately preceding ciphertext or,

when encrypting the first message, an IV computed during the SSH key agreement pro-

tocol. We refer to the current instantiation of the SSH protocol asSSH-IPC, or SSH

with inter-packet chaining.

3.3 Attacking the Standard Implementation of SSH

There is a simple chosen-plaintext privacy attack againstSSH-IPC; this attack

was also reported by Dai [29]. The problem withSSH-IPC is that an attacker will

know the IV for the next message to be encrypted before the next message is actually

encrypted. This means that if an attacker can control the entire first block of the input

into SSH-IPC’s underlying CBC encryption scheme, it will be able to control the corre-

sponding input to the underlying block cipher. Since a block cipher is deterministic, an

attacker could use this to glean information about a previously encrypted message (by

36

looking to see if some value was ever the input to a previous block cipher invocation).

We describe the attack in slightly more detail. We assume for now that an adver-

sary can control the entire first block of an encoded packet. Suppose that an adversary

has a guessG of the first encoded block of theith packet, and letC1 be the last CBC

block of thei − 1st intermediate ciphertext. Since we are consideringSSH-IPC, the

block C1 was used as the IV when encrypting theith packet. LetC2 be the first block

of theith ciphertext. And letC3 be the last CBC block of the underlying ciphertext the

user just output (i.e., the user will useC3 as its next IV). If the adversary is able to force

the user to encrypt the blockC1 ⊕ C3 ⊕ G, where⊕ is theXOR operation, and if the

resulting block isC2, the adversary knows its guess of forG was correct; otherwise the

adversary knows its guess was incorrect.

A small complication arises when mounting this attack againstSSH-IPC because

the attacker cannot control the entire first block of an encoded message (because the

first 40 bits of an encoded packet contain metadata). This means that an attacker may

not be able to force a user’s underlying CBC scheme to encrypt the blockC1 ⊕ C3 ⊕

G. An attacker will, however, be able to mount this attack ifC1 andC3 are identical

in the bits that the attacker cannot control. Letl be the block length (in bits) of the

underlying block cipher. Since an attacker can control approximatelylg(l/8) bits of the

padding length field and approximately15 − lg(l/8) bits of the packet length field of

an encoded message (SSH implementations are only required to support packets with

payloads containing less than215 octets and all packets must be padded to a multiple of

the block length), an attacker could mount a variant of the above attack by waiting for

a collision on approximately25 bits (but the adversary’s last encryption request may be

up to215 octets long).

3.4 Attacking a Natural “Fix”

The problem withSSH-IPC in Section 3.3 stems from the fact that its underlying

encryption scheme is itself vulnerable to chosen-plaintext attacks, i.e., is notPRIV-CPA-

37

secure. A logical attempt to fix the protocol might therefore be to replace the underlying

encryption scheme with randomized CBC mode, i.e., CBC mode in which a new random

IV is chosen for each message; this new IV must also be sent with the ciphertext. Ran-

domized CBC mode is provablyPRIV-CPA-secure assuming reasonable properties of the

underlying block cipher [4]. We refer to an SSH implementation that uses randomized

CBC mode asSSH-NPC, or SSH with no packet chaining.

One can prove thatSSH-NPC preserves privacy against chosen-plaintext attacks

and integrity of plaintexts assuming that a user does not useSSH-NPC to encrypt more

than232 messages with any given key. This proof holds even if the paddings used in

encoded packets are not random, a situation allowed by the SSH specification. As the

following attack shows, however, even thoughSSH-NPC with non-random padding

preserves privacy against chosen-plaintexts attacks, it does not preserve privacy against

chosen-ciphertext attacks.

Reaction attack againstSSH-NPC. The SSH specification encourages, although

does not require, implementations to use random padding. Unfortunately, when the

padding value is fixed, e.g., all zeros,SSH-NPC is susceptible to an easily-mountable

reaction attack. Furthermore, one can extend this attack to the case where the padding

values are not fixed but short and not hard to predict: an attacker can simply wait until

the predicted padding values collide and then use the predicted value to successfully

mount an attack. The attack we describe here is similar in spirit to Wagner’s attack

in [14] and to the attacks in [52, 79]. The term “reaction attack” comes from [39].

The attack proceeds roughly as follows: an attacker intercepts and prevents the

delivery of two ciphertexts sent by one party involved in an SSH connection. The adver-

sary then makes a guess about the relationship between the two plaintexts corresponding

to the two intercepted ciphertexts. The adversary then uses that guess and those two ci-

phertexts to create a new “ciphertext,” which the adversary then sends to the other party

involved in the SSH session. Recall that if the second party does not accept the doctored

ciphertext, the connection will be terminated. Thus, by observing the second party’s

38

reaction, an adversary will learn whether its guess was correct. Intuitively, this attack

succeeds because an attacker can modify the ciphertext in such a way that if its guess

was correct, the ciphertext that the second party receives will verify. If its guess was

incorrect, with high probability the ciphertext will not verify.

We now describe the attack in more detail. As before, let⊕ denote theXOR

operation, let‖ denote the concatenation of two strings, and letl denote the block length

(in bits) of the block cipher thatSSH-NPC uses in CBC mode. Suppose a user uses

SSH-NPC to encrypt two equal-length messagesM1 andM2 with lengths at mostl−40

(or messages that are identical after theirl − 40-th bit). For simplicity of exposition,

let us assume that the two messages are exactlyl − 40 bits long. LetP11 andP12 be

the first and the second block of the encoded packet corresponding to the payloadM1,

respectively. Similarly, letP21 andP22 be the first and the second block of the encoded

packets corresponding toM2, respectively. The blocksP11 andP21 correspond to the

packet length, the padding length, and the payload fields of the two encoded packets,

and the blocksP12 andP22 correspond to the padding fields. Since we are assuming

fixed padding (such as padding with all zeros), the padding blocksP12 andP22 will be

equal.

WhenSSH-NPC’s underlying CBC mode encryption scheme encrypts the first

encoded packetP11‖P12, it will generate a ciphertextσ1 = C10‖C11‖C12. Additionally,

SSH-NPC’s underlying MAC will generate a tagτ1 (the MAC being computed over

the concatenation of a counter andP11‖P12). Similarly, SSH-NPC will generate the

CBC ciphertextC20‖C21‖C22 and the MAC tagτ2 for the encoded packetP21‖P22. The

two blocksC10 andC20 correspond to the underlying CBC mode’s random initialization

vectors.

Now assume that the receiver has not yet received the two ciphertexts correspond-

ing to M1 andM2. In particular, this means that the recipient’s counter is identical to

the counter that the sender used when she encrypted the first message. Suppose that

the attacker knows eitherM1 or M2 and wants to verify a guess of the other or that

the attacker wants to verify a guess of the relationship betweenM1 andM2. Let X be

39

the valueP11 ⊕ P21 ⊕ C20. The attacker then asks the receiver to decrypt the message

X‖C21‖C22‖τ1. Now recall that the blocksP11 andP21 both begin with the same40

bits of header information and that they respectively end inM1 andM2. Thus, if the

attacker’s guess is correct, thenX‖C21‖C22 will decrypt, viaSSH-NPC’s underlying

CBC scheme, toP11‖P12, the MAC tagτ1 will verify, and the decryptor will accept the

message. However, if the attacker’s guess is incorrect,X‖C21‖C22 will not decrypt to

P11‖P12, the tagτ1 will not verify (unless the attacker also succeeds in breaking the se-

curity of the underlying MAC scheme), and theSSH-NPC connection will terminate.

The adversary, by watching the recipients reaction, therefore learns information about

the plaintexts the sender is encrypting.

There are two aspects of this attack that make it easy to mount. First, this attack

only requires modifying encrypted packets; no chosen-plaintexts are required. Second,

an attacker can learn whether its guess is correct simply by watching the recipient’s re-

sponse. These observations mean that all an attacker needs to perform this attack is the

ability to monitor, prevent the delivery of, and inject messages in the encrypted com-

munications between two parties. Similar to Wagner’s attack in [14], an adversary can

use this attack to, for example, infer the characters that a user types over an interactive

SSH-NPC session. Of course, once the attacker makes an incorrect guess,SSH-NPC

terminates the connection. Nonetheless, an attacker might still be able to repeat its attack

after the user begins a new session.

Information leakage, replay, and out-of-order delivery attacks. Although the SSH

draft suggests that an SSH session rekey after every gigabyte of transmitted data, doing

so is not required. We caution that if anSSH-NPC (or SSH-IPC) session is not rekeyed

frequently enough, then the session will be vulnerable to a number of other attacks.

Recall that the SSH binary packet protocol includes a32-bit counter in each message to

be MACed. These attacks make use of the fact that if the SSH connection is not rekeyed

frequently enough, then the counter will begin to repeat.

The simple observation exploited by the information leakage attack is the follow-

40

ing. Recall that SSH generates each MAC using the encoded payload prepended with

a counter as an input and then appends the MAC to the intermediate ciphertext to gen-

erate a ciphertext packet. As a result, if the underlying MAC algorithm is stateless and

deterministic (which many MACs are), then allowing the counter to repeat will leak in-

formation about a user’s plaintexts (through the MAC). We present the attacks in more

details for completeness. Suppose that the underlying message authentication scheme

is stateless and deterministic and that the padding is some fixed value. Suppose that an

attackerA sees a ciphertext with a MAC tagτ and suspects that the underlying payload

is M . To verify its guess,A waits for the sender to encrypt232 − 1 more packets and

then requests the sender to encrypt the payloadM . Letτ ′ be the MAC tag returned in re-

sponse to the request. IfA’s guess is correct, thenτ ′ will equalτ . Otherwiseτ ′ 6= τ with

very high probability. The attack can also be used to break the privacy ofSSH-NPC

whenSSH-NPC uses random padding. In particular, if the first232 messages that a user

tags result in encoded packets that use the minimum4 octets of random padding, then

an attacker capable of forcing a user to tag an additional232 chosen-plaintexts will be

able to learn information about the user’s initial232 messages. The property used in this

attack, namely that tagging with a deterministic MAC leaks information about plain-

texts, was also exploited by Bellare and Namprempre [10] and Krawczyk [52] when

showing the generic insecurity of all Encrypt-and-MAC constructions using stateless

and deterministic MACs; recall also Section 2.6.3.

If the counter is allowed to repeat,SSH-NPC also becomes vulnerable to replay

attacks and out-of-order delivery attacks. For replay attacks, once the receiver has de-

crypted232 messages, an attacker will be able to convince the receiver to re-accept a

previously received message. For out-of-order delivery attacks, after the sender has en-

crypted more that232 messages, an attacker will be able to modify the order in which

the messages are decrypted.

41

3.5 Secure Fixes to SSH

We now briefly describe our new SSH instantiations. We show in Section 3.8 that

these new alternatives provably meet our strongest notions of security. That is, assum-

ing that these fixes are not used to encrypt more than232 packets between rekeying,

these new constructions will resist chosen-plaintext and chosen-ciphertext privacy at-

tacks as well as forgery, replay, and out-of-order delivery attacks. Security above232

is not guaranteed because, after232 packets are encrypted, the SSH BPP’s 32-bit inter-

nal counter will begin to wrap. We will compare these instantiations of SSH to others

and discuss additional possible modifications, including extending the length of SSH’s

internal counter, in Section 3.9.

SSH via randomized CBC mode with random padding:SSH-$NPC. Recall that

the attack againstSSH-NPC involves creating a new intermediate ciphertext that would

decrypt to an encoded packet that the user previously encrypted (assuming the attacker’s

guess was correct). With this in mind, we propose a provably secure SSH instantiation

(SSH-$NPC) that uses randomized CBC mode for the underlying encryption scheme

and that requires that encoded packets use random padding. We require that the random

padding be chosen anew for each encryption and that the random padding occupy at least

one full block of the encoded packet. This conforms to the current SSH specification

since the latter allows padding up to 255 octets.

The intuition behind the security of this alternative and the reason that this alter-

native resists the attack in Section 3.4 is the following. Since the random padding is not

sent in the clear, an attacker will not know what the random padding is and will not be

able to forge a ciphertext that will decrypt to that previously encoded message (with the

same random padding). Furthermore, any other attack againstSSH-$NPC would trans-

late into an attack against the underlying CBC mode encryption scheme, the underlying

MAC, the encoding scheme, or the underlying block cipher.

42

SSH via CBC mode with CTR generated IVs:SSH-CTRIV-CBC. Instead of using

CBC mode with a random IV, it is also possible to generate a “random-looking” IV by

encrypting a counter with a different key; we call this alternativeSSH-CTRIV-CBC.

Unlike SSH-$NPC, for SSH-CTRIV-CBC we donot require a full block of padding

and we do not require the padding to be random. The reason we do not require random

padding for this alternative is because the decryptor is stateful and that any modification

to an underlying CBC ciphertext will, with probability1, change the encoded packet.

This alternative is more attractive thanSSH-$NPC because it does not increase the size

of ciphertexts compared toSSH-IPC, but it does require one additional block cipher

application compared toSSH-IPC.

SSH via CTR mode with stateful decryption:SSH-CTR. SSH-CTR uses standard

CTR mode as the underlying encryption scheme with one modification: both the sender

and the receiver maintain the counters themselves, rather than transmitting them as part

of the ciphertexts. We refer to this variant of CTR mode asCTR mode with stateful

decryption. We point out that this CTR mode variant offers the same level of chosen-

plaintext privacy as standard CTR mode, the security of which was shown in [4]. As with

SSH-CTRIV-CBC, SSH-CTR does not require additional padding and does not require

the padding to be random. Furthermore, unlikeSSH-$NPC andSSH-CTRIV-CBC,

SSH-CTR requires the same number of block cipher invocations asSSH-IPC.

Other possibilities. There are numerous other possible fixes to the SSH BPP. Rather

than enumerate all possible fixes to the SSH BPP, in Sections 3.6–3.8 we discuss how

one can use our general proof techniques to prove the security of other fixes (assuming,

of course, that the other fixes are indeed secure). For example, another fix of interest

might beSSH-EIV-CBC, or SSH where the underlying encryption scheme is replaced

by a CBC variant in which the IV is theenciphermentof the last block of the previous

ciphertext.

43

3.6 Definitions and the Encode-then-E&M Paradigm

Analyzing SSH via a new paradigm. An SSH ciphertext is the concatenation of the

encryption and the MAC of (some encodings of) an underlying payload message. At first

glance this seems to fall into the Encrypt-and-MAC method of composing an encryption

scheme with a MAC. As pointed out in [10, 52] and summarized in Section 2.6.3, this

particular composition method isnotgenerically secure: security under standard notions

of the encryption and MAC schemes used as building blocks under this composition

method is not enough to guarantee the privacy of the payload. Naturally, this raises a

question regarding the security of the general SSH construction.

We show here that, with an appropriate encoding method, such as the method

used in SSH, an Encrypt-and-MAC-based scheme can actually be secure. In fact, our

analysis models SSH more generally as an authenticated encryption scheme constructed

via a paradigm we callEncode-then-E&M: to encrypt a message, first encode it (as SSH

does), then encrypt and MAC the encoded packets. Our analysis is done in a general way

in order to better ensure that the definitions and techniques we develop will be useful to

the evaluators of other SSH-like schemes.

As described in Section 3.2, an SSH BPP encoded message (for encryption) con-

sists of a packet length field, a padding length field, payload data, and padding. An

encoded message (for MACing) is identical to an encoded message for encryption ex-

cept that it is prepended with a 32-bit counter.

Encoding schemes. We model our use of encodings after [11] as summarized in Sec-

tion 2.6.5. When we refer to encoding schemes in this chapter, we mean the type of

encoding schemes that we are about to define, which share similar properties with but

are different than the encodings schemes defined in Section 2.6.5.

An “encoding” scheme is anunkeyedtransformation. We use encodings to capture

the process of loading a payload message into a packet for encryption and a packet for

message authentication (recall that the encoded packet that the SSH BPP encrypts is

slightly different than the encoded packet that the SSH BPP MACs). Syntactically,

44

anencoding schemeEC = (Encode, Decode) consists of an encoding algorithm and a

decoding algorithm. The encoding algorithmEncode, which may be both randomized

and stateful, takes as input a messageM and returns a pair of messages(Me, Mt). The

decoding algorithmDecode, which may also be stateful but not randomized, takes as

input a messageMe and returns a pair of messages(M, Mt), or (⊥,⊥) on error. The

following consistency requirement must be met. Consider any two messagesM, M ′

where|M | = |M ′|. Let (Me, Mt)
$← Encode(M) for Encode in some state, and let

(M ′
e, M

′
t)

$← Encode(M ′) for Encode is in some (possibly different) state. We require

that|Me| = |M ′
e| and|Mt| = |M ′

t|. Furthermore, suppose that bothEncode andDecode

are in their initial states. For any sequence of messagesM1, M2, . . . and fori = 1, 2, . . .,

let (M i
e, M

i
t) = Encode(M i), and then let(mi, mi

t) = Decode(M i
e). We require that

M i = mi and thatM i
t = mi

t for all i.

Encryption schemes with stateful decryption. As in Chapter 2, asymmetric encryp-

tion schemeor authenticated encryption schemeSE = (K, E ,D) consists of three al-

gorithms. The randomized key generation algorithm returns a keyK. The encryption

algorithm, which may be both randomized and stateful, takes keyK and a plaintext and

returns a ciphertext. Motivated by SSH, we redefine the notion of an encryption scheme

to allow the decryption algorithm to be stateful, but not randomized; the decryption al-

gorithm takes keyK and a ciphertext and returns either a plaintext or a special symbol

⊥ indicating failure. In this chapter the encryption algorithmE never returns⊥.

Consider the interaction between an encryptor and a decryptor. If at any point in

time the sequence of inputs to the decryptor is not a prefix of the sequence of outputs

of the encryptor, then we say that the encryption and decryption processes have become

out-of-syncand refer to the decryption input at that point in time as the firstout-of-sync

input. The usual correctness condition, which said that ifC is produced by encrypting

M underK then decryptingC underK yields M , is replaced with a less stringent

condition requiring only that decryption succeed when the encryption and decryption

processes are in-sync. More precisely, the following must be true for any keyK and

45

plaintextsM1, M2, Suppose that bothEK andDK are in their initial states. For

i = 1, 2, . . ., let Ci = EK(Mi) and letM ′
i = DK(Ci). It must be thatMi = M ′

i for all i.

Message authentication schemes.In this chapter, we use the same definition of a

message authentication scheme as in Section 2.5, but require that the tags output by the

tagging algorithm all have the same length in bits.

Encode-then-E&M paradigm. Now consider an encoding scheme, and let(Me, Mt)

be the encoding of some messageM . To generate a ciphertext forM using the Encode-

then-E&M construction, the messageMe is encrypted with an underlying encryption

scheme, the messageMt is MACed with an underlying MAC algorithm, and the re-

sulting two values (intermediate ciphertext and MAC) are concatenated to produce the

final ciphertext. The composite decryption procedure is similar except the way errors

(e.g., decoding problems or tag verification failures) are handled. We take the approach

used in SSH whereby, if a decryption fails, the composite decryption algorithm enters

a “halting state.” This approach is perhaps the most intuitive since, upon detecting a

chosen-ciphertext attack, the decryption algorithm prevents all subsequent ciphertexts

from being decrypted. We note, however, that this also makes the decryptor vulnera-

ble to a denial-of-service-type attack. Construction 3.6.1 shows the Encode-then-E&M

composition method in details.

Construction 3.6.1 (Encode-then-E&M.) Let EC = (Encode, Decode), SE = (Ke, E ,

D), andMA = (Kt, T ,V) respectively be encoding, encryption, and message authen-

tication schemes with compatible message spaces (the outputs fromEncode are suitable

inputs toE andT). Let all states initially beε. We associate to these schemes a com-

positeEncode-then-E&M schemeSE = (K, E ,D) as follows:

46

AlgorithmK

Ke
$← Ke ; Kt

$← Kt

Return〈Ke, Kt〉

Algorithm E 〈Ke,Kt〉(M)

(Me, Mt)
$← Encode(M)

σ
$← EKe(Me) ; τ

$← TKt(Mt)

C ← σ‖τ

ReturnC

AlgorithmD〈Ke,Kt〉(C)

If st =⊥ then return⊥

If cannot parseC thenst←⊥ ; return⊥

ParseC asσ‖τ ; Me ← DKe(σ)

If Me =⊥ thenst←⊥ ; return⊥

(M, Mt)← Decode(Me)

If M =⊥ thenst←⊥ ; return⊥

v ← VKt(Mt, τ)

If v = 0 thenst←⊥ ; return⊥

ReturnM

Although onlyD explicitly maintains state in the above pseudocode, the underlying

encoding, encryption, and MAC schemes may also maintain state.

Security notions for encryption schemes with stateful decryption. A secure au-

thenticated encryption schemeSE = (K, E ,D) is one that preserves both privacy and

integrity. The standard notion of indistinguishability (privacy) under chosen-plaintext

attacks (PRIV-CPA) is as defined in Section 2.4, i.e., is unmodified even though we

changed the definition of an encryption scheme to allow for a stateful decryption al-

gorithm.

For our new notion of chosen-ciphertext privacy for stateful decryption (PRIV-

SFCCA), we consider a game in which an adversaryB is given access to an LR encryp-

tion oracleEK(LR(·, ·, b)) and a decryption oracleDK(·). As long asB’s queries to

DK(·) are in-sync with the responses fromEK(LR(·, ·, b)), the decryption oracle per-

forms the decryption (and updates its internal state) but does not return a response toB.

OnceB makes an out-of-sync query toDK(·), the decryption oracle returns the output

of the decryption. We defineAdvpriv-sfcca
SE (B) as the probability thatB returns1 when

b = 1 minus the probability thatB returns1 whenb = 0. The newPRIV-SFCCA no-

tion implies the previous notion of indistinguishability under chosen-ciphertext attacks,

PRIV-CCA. Note that, without allowing an adversary to query the decryption oracle with

47

in-sync ciphertexts (e.g., in the standardPRIV-CCA setting), we would not be able to

model attacks in which the adversary attacks a stateful decryptor after the latter had

decrypted a number of legitimate ciphertexts (perhaps because of some weakness re-

lated to the state of the decryptor at that time). A more formal presentation of this new

definition follows.

Definition 3.6.2 (Privacy for symmetric encryption schemes with stateful decryp-

tion.) Let SE = (K, E ,D) be a symmetric encryption scheme. LetAsfcca be an adver-

sary that has access to a left-or-right encryption oracleEK(LR(·, ·, b)) and a decryption

oracleDK(·). The adversary returns a bit. Consider the experiments below, where

b ∈ {0, 1} is a bit.

ExperimentExppriv-sfcca-b
SE (Asfcca)

K
$← K ; i← 0 ; j ← 0 ; phase← 0

RunA
EK(LR(·,·,b)),DK(·)
sfcca

Reply toEK(LR(M0, M1, b)) queries as follows:

i← i + 1 ; Ci
$← EK(Mb) ; Asfcca ⇐ Ci

Reply toDK(C) queries as follows:

j ← j + 1 ; M ← DK(C)

If j > i or C 6= Cj thenphase← 1

If phase = 1 thenAsfcca ⇐M

Until Asfcca returns a bitd

Returnd

We require that, for all queries(M0, M1) to EK(LR(·, ·, b)), |M0| = |M1|. We define

thePRIV-SFCCA-advantage, of the adversary as

Advpriv-sfcca
SE (Asfcca) = Pr

[
Exppriv-sfcca-1

SE (Asfcca) = 1
]

− Pr
[
Exppriv-sfcca-0

SE (Asfcca) = 1
]

.

In the concrete setting [6], we say thatSE is PRIV-SFCCA-secure ifAdvpriv-sfcca
SE (Asfcca)

is small for all adversariesAsfcca using reasonable resources.

48

Section 2.6 gives the standard notion for integrity of plaintexts (AUTHP) and in-

tegrity of ciphertexts (AUTHC) from [10], both of which still apply to symmetric en-

cryption schemes with stateful decryption algorithms. For our new notion of integrity of

ciphertexts for stateful decryption (AUTHSF), we again consider a game in which an ad-

versaryFsf is given access to the two oraclesEK(·) andD∗
K(·). We defineAdvauthsf

SE (Fsf)

as the probability thatFsf can generate a ciphertextC such thatD∗
K(C) = 1 andC is an

out-of-sync query. The new notion ofAUTHSF implies the previous notion of integrity of

ciphertexts,AUTHC, as well as security against replay and out-of-order delivery attacks.

A more formal presentation of the definitions follows.

Definition 3.6.3 (Stateful ciphertext integrity.) Let SE = (K, E ,D) be a symmetric

encryption scheme. LetFsf be an adversary with access to an encryption oracleEK(·)

and a decryption-verification oracleD∗
K(·). The decryption-verification oracle invokes

DK(C) and returns 1 ifDK(·) 6= ⊥ and 0 otherwise. Consider the experiment below.

ExperimentExpauthsf
SE (Fsf)

K
$← K ; i← 0 ; j ← 0 ; phase← 0

RunA
EK(·),D∗

K(·)
ctxt

Reply toEK(M) queries as follows:i← i + 1 ; Ci
$← EK(M) ; Fsf ⇐ Ci

Reply toD∗
K(C) queries as follows:

j ← j + 1 ; M ← DK(C)

If j > i or C 6= Cj thenphase← 1

If M 6=⊥ andphase = 1 then return1

If M 6=⊥ thenFsf ⇐ 1 elseFsf ⇐ 0

Until Fsf halts

Return0

We define theAUTHSF-advantage of the adversaryFsf in attacking thestateful ciphertext

integrityof the scheme as

Advauthsf
SE (Fsf) = Pr

[
Expauthsf

SE (Fsf) = 1
]

.

49

In the concrete setting [6], we say thatSE preserves integrity of stateful ciphertexts

(AUTHSF-secure) if the advantageAdvauthsf
SE (Fsf) is small for all forgersFsf using rea-

sonable resources.

The following proposition states that, if an authenticated encryption scheme is

indistinguishable under chosen-plaintexts attacks and if the scheme meets our strong

definition of integrity of ciphertexts, then the scheme will meet our strong definition of

indistinguishability under chosen-ciphertext attacks. It is similar to the results in [10]

and [47], restated in Section 2.6.1, which show that the standardPRIV-CPA and the

standardAUTHC notions imply the standardPRIV-CCA notion.

Proposition 3.6.4 Let SE = (K, E ,D) be an authenticated encryption scheme. Given

any PRIV-SFCCA adversaryA, we can construct anAUTHSF adversaryI and anPRIV-

CPA adversaryB such that

Advpriv-sfcca
SE (A)≤ 2 ·Advauthsf

SE (I) + Advpriv-cpa
SE (B)

andI andB use the same resources asA.

Proof of of Proposition 3.6.4: Our proof is modeled after the proof of a similar prop-

erty in [10]. LetSE = (K, E ,D) be a symmetric encryption scheme, and letA be any

PRIV-SFCCAadversary againstSE . We associate toA a PRIV-CPA adversaryB and an

AUTHSF adversaryI. The adversaryB runsA almost exactly as inExppriv-sfcca-b
SE (A)

whereb is B’s LR encryption oracle bit. The only exception is thatB return⊥ to A

if A submits an out-of-sync decryption query. Then,B outputs whatA outputs. Sim-

ilarly, I runsA almost exactly as inExppriv-sfcca-A
SE (b) whereb is a bit thatI chooses

at random. The only exception is that, whenA successfully submits an out-of-sync

decryption query, the adversaryI terminates.

Let Pr1 [·] denote the probability overExppriv-sfcca-b
SE (A) and a random choice for

b ∈ {0, 1}, and letb′ denote the output ofA in these experiments. LetPr2 [·] denote

the probability inExpauthsf
SE (I). Let Pr3 [·] denote the probability overExppriv-cpa-c

SE (B)

wherec is randomly selected from{0, 1} and letc′ be the bitB returns. LetE denote

50

the event thatA makes at least one query to aphase 1 decryption oracle that would

successfully decrypt. Note that

Pr1 [b′ = b ∧ E] ≤ Pr1 [E] ≤ Advauthsf
SE (I)

since, prior toE occurring,Expauthsf
SE (I) runsA exactly as inExppriv-sfcca-b

SE (A) for a

randomb and, onceE occurs,I succeeds in forging a ciphertext. Also,

Pr1

[
b′ = b ∧ E

]
≤ Pr3 [c′ = c]

=
1

2
· Pr

[
Exppriv-cpa-1

SE (B) = 1
]

+
1

2
·
(
1− Pr

[
Exppriv-cpa-0

SE (B) = 1
])

=
1

2
Advpriv-cpa

SE (B) +
1

2

since wheneverA does not cause eventE to occur,A’s view when run byB is equivalent

to its view when run inExppriv-sfcca-b
SE (A). Consequently,

1

2
Advpriv-sfcca

SE (A) +
1

2
= Pr1 [b′ = b]

= Pr1 [b′ = b ∧ E] + Pr1

[
b′ = b ∧ E

]
≤ Advauthsf

SE (I) +
1

2
Advpriv-cpa

SE (B) +
1

2
.

The adversariesB andI use the same resources asA except thatB does not perform

any chosen-ciphertext queries to a decryption oracle.

Collision resistance of encoding schemes.The security of a composite Encode-then-

E&M construction depends on properties of the underlying encoding, encryption, and

MAC schemes. In addition to the standard assumptions of indistinguishability under

chosen-plaintext attacks of the encryption scheme and unforgeability and pseudoran-

domness of the MAC scheme, we requirecollision resistanceof the encoding scheme.

We motivate this notion as follows. Consider an integrity adversary against a composite

Encode-then-E&M scheme. If the adversary can find two different messages that en-

code (or decode) to the same input for the underlying MAC, then the adversary may be

able to compromise the integrity of the composite scheme. Consider now an indistin-

guishability adversary against the composite scheme. As long as the adversary does not

51

generate two inputs for the underlying MAC that collide, the underlying MAC should

not leak information about the plaintext. The following describes the notions of collision

resistance for encoding schemes.

An adversaryA who is mounting a chosen-plaintext attack against an encoding

schemeEC = (Encode, Decode) is given access to an encoding oracleEncode(·). If A

can make the encoding oracle output two pairs that collide on their second components

(i.e., theMt’s), thenA wins. We allowA to repeatedly query the encoding oracle with

the same input. Similarly, an adversaryB mounting a chosen-ciphertext attack against

EC is given access to both an encoding oracle and a decoding oracleDecode(·). If B can

cause a collision in the second components of the outputs ofEncode(·), Decode(·), or

both, then it wins. We exclude the cases whereB uses the two oracles in a trivial way to

obtain collisions (e.g., submitting a query toEncode(·) and then immediately submitting

the first component of the result, namelyMe, to Decode(·)). We refer to the advantages

of the adversaries in these two settings asAdvcoll-cpa
EC (A) andAdvcoll-cca

EC (B), respec-

tively. All encoding schemes with deterministic and stateless encoding algorithms are

insecure under chosen-plaintext collision attacks. Furthermore, all encoding schemes

with stateless decoding algorithms are insecure under chosen-ciphertext collision at-

tacks. A more formal presentation of the definitions follows.

Definition 3.6.5 (Collision resistance.) Let EC = (Encode, Decode) be a encoding

scheme. LetAcpa be an adversary with access to an encoding oracle and letAcca be an

adversary with access to an encoding oracleEncode(·) and a decoding oracleDecode(·).

Let M i denote an adversary’si-th encoding query and let(M i
e, M

i
t) denote the response

for that query. Letmi
e denoteAcca’s i-th decoding query and let(mi, mi

t) denote the

response for that query. Consider the following experiments:

ExperimentExpcoll-cpa
EC (Acpa)

RunA
Encode(·)
cpa

If A
Encode(·)
cpa makes two queriesM i, M j to Encode(·)

such thati 6= j andM i
t = M j

t then return 1 else return 0

52

ExperimentExpcoll-cca
EC (Acca)

RunA
Encode(·),Decode(·)
cca

If one of the following occurs:

— Acca makes two queriesM i, M j to Encode(·)

such thati 6= j andM i
t = M j

t

— Acca makes two queriesmi
e, m

j
e to Decode(·)

such thati 6= j, mi
t 6=⊥, andmi

t = mj
t

— Acca makes a queryM i to Encode(·) and a querymj
e to Decode(·)

such that (i 6= j or M i 6= mj or M i
e 6= mj

e) andM i
t = mj

t

then return 1 else return 0

We respectively define theCOLL-CPA- and COLL-CCA-advantages of the adversaries

Acpa andAcca in finding a collision as

Advcoll-cpa
EC (Acpa) = Pr

[
Expcoll-cpa

EC (Acpa) = 1
]

Advcoll-cca
EC (Acca) = Pr

[
Expcoll-cca

EC (Acca) = 1
]

.

In the concrete setting [6], we say thatEC meets the respective definition ofcollision re-

sistance, i.e., areCOLL-CPA- andCOLL-CCA-secure, if the advantagesAdvcoll-cpa
EC (Acpa)

andAdvcoll-cca
EC (Acca) are small for all adversariesAcpa andAcca using reasonable re-

sources.

3.7 General Security Results for the Encode-then-E&M

Paradigm

Since our analysis models SSH more generally as an authenticated encryption

scheme constructed via the Encode-then-E&M paradigm, we first present here general

results for the Encode-then-E&M composition method. In Section 3.8 we build upon

these results and prove additional properties about our proposed fixes to SSH. The re-

sults in this section will also be useful to the evaluators of other Encode-then-E&M

constructions.

53

3.7.1 Chosen-Plaintext Privacy

To build an authenticated encryption scheme that provides chosen-plaintext pri-

vacy via the Encode-the-E&M paradigm, it is enough to use aPRIV-CPA-secure en-

cryption scheme, a pseudorandom MAC, and aCOLL-CPA-secure encoding scheme as

building blocks. The following theorem states this result more formally. We defer the

proof of Theorem 3.7.1 to Section 3.7.3. Recall again that the basic Encrypt-and-MAC

paradigm does not provide privacy under chosen-plaintext attacks when the underlying

MAC is stateless and deterministic.

Theorem 3.7.1 (Privacy for Encode-then-E&M with respect to chosen-plaintext at-

tacks.) Let SE ,MA, andEC respectively be an encryption, a message authentication,

and an encoding scheme. LetSE be the encryption scheme associated to them as per

Construction 3.6.1. Then, given anyPRIV-CPA adversaryS againstSE , we can construct

adversariesA, D, andC such that

Advpriv-cpa
SE (S) ≤ Advpriv-cpa

SE (A) + 2 ·Advprf
MA(D) + 2 ·Advcoll-cpa

EC (C) .

Furthermore,A, D, andC use the same resources asS except thatA’s andD’s inputs

to their respective oracles may be of different lengths than those ofS (due to the encod-

ing).

3.7.2 Integrity of Plaintexts

The following theorem states that the composed scheme provides plaintext in-

tegrity if the underlying MAC is unforgeable1 and if the underlying encoding scheme

is collision-resistant against chosen-ciphertext attacks. We need more than chosen-

plaintext collision resistance of the underlying encoding scheme here because an ad-

versary is allowed to submit ciphertext queries when mounting an integrity attack. We

1Although the theorem statement refers to strong unforgeability [10], weak unforgeability [6] of the
underlying MAC scheme is actually sufficient here since theCOLL-CCA property of the underlying en-
coding scheme ensures that inputs to the MAC algorithm will not collide.

54

remark that the combination ofPRIV-CPA andAUTHP does not, however, imply our no-

tion of privacy under chosen-ciphertext attacks, as exemplified by the reaction attack in

Section 3.4 and the fact that the construction in Section 3.4 is bothPRIV-CPA- andAU-

THP-secure; we consider how to achieve our chosen-ciphertext privacy notion, via our

integrity of ciphertexts notion, in Section 3.8.

Theorem 3.7.2 (Integrity of plaintexts for Encode-then-E&M.) Let SE be a sym-

metric encryption scheme, letMA be a message authentication scheme, and letEC

be an encoding scheme. LetSE be the encryption scheme associated to them as per

Construction 3.6.1. Then, given anyAUTHP adversaryA againstSE , we can construct

adversariesF andC such that

Advauthp
SE (A) ≤ Advuf

MA(F) + Advcoll-cca
EC (C) .

Furthermore,F and C use the same resources asA except thatF ’s messages to its

tagging and tag verification oracles may be slightly larger thanA’s encryption queries

(due to the encoding) and thatC ’s messages to its decoding oracle may have different

lengths thanA’s decryption queries.

Proof of of Theorem 3.7.2: Let SE = (K, E ,D) be the composite encryption scheme

constructed via Construction 3.6.1 from the encryption schemeSE = (Ke, E ,D), the

MAC schemeMA = (Kt, T ,V), and the encoding schemeEC = (Encode, Decode).

Assume we have an adversaryA attacking the integrity of plaintexts ofSE . We associate

to A two adversaries: a forgerF breaking the unforgeability ofMA and a collision

finderC breaking the collision resistance ofEC such that

Advauthp
SE (A) ≤ Advuf

MA(F) + Advcoll-cca
EC (C) . (3.1)

The forgerF and the collision finderC are simple. The forgerF usesKe to generate an

encryption key and uses the encryption key and its tagging oracle to answerA’s queries

in a straight-forward manner. In particular, it follows Construction 3.6.1. Similarly, the

collision finderC uses the same approach. This ensures thatA is executed in the same

environment as that inExpauthp
SE (A).

55

Let Pr1 [·], Pr2 [·], andPr3 [·] respectively denote the probabilities associated

with the experimentsExpauthp
SE (A), Expuf

MA(F), andExpcoll-cca
EC (C). Let E denote the

event thatA makes a query that would causeC to succeed in finding a collision. Then,

by the definition ofE,

Pr1 [E] = Pr3

[
Expcoll-cca

EC (C) = 1
]

.

Furthermore,

Pr1

[
Expauthp

SE (A) = 1 ∧ E
]
≤ Pr2

[
Expuf

MA(F) = 1
]

sinceE implies that the verification request that causedA to succeed must have pro-

duced (through the decoding) a previously unseen tagging messageMt (thereby allow-

ing F to succeed). Consequently,

Pr1

[
Expauthp

SE (A) = 1
]

= Pr1

[
Expauthp

SE (A) = 1 ∧ E
]

+ Pr1

[
Expauthp

SE (A) = 1 ∧ E
]

≤ Pr2

[
Expuf

MA(F) = 1
]
+Pr3

[
Expcoll-cca

EC (C) = 1
]

and Equation 3.1 follows. AdversariesF andA use equivalent resources except that

F ’s messages to its oracles may be slightly larger due to the encoding. Adversaries

C andA also use equivalent resources except thatC ’s message to its oracle may not

be the exactly the same size asA’s decryption-verification queries, although they are

polynomially related.

3.7.3 Proof of Theorem 3.7.1

We now prove Theorem 3.7.1. One notable feature of the proof is that it actu-

ally uses a weaker property than pseudorandomness for the underlying MAC. The said

property is the following.

Distinct plaintext privacy of message authentication schemes.LetMA = (K, T ,

V) be a message authentication scheme. The notion ofPRIV-DCPA for MA is based

56

on thePRIV-CPA notion for encryption. For a bitb and a keyK, let TK(LR(·, ·, b))

denote theLR tag oraclewhich, given equal-length plaintextsM0, M1, returnsTK(Mb).

We stress that the LR tag oracle returns only the tag andnot the message-tag pair

Mb‖TK(Mb). ThePRIV-DCPA notion is defined as follows.

Definition 3.7.3 (Privacy against distinct chosen-plaintext attacks.) Let MA =

(K, T ,V) be a message authentication scheme. Letb ∈ {0, 1}. Let A be an adver-

sary that has access to an oracleTK(LR(·, ·, b)). Consider the following experiment:

ExperimentExppriv-dcpa-b
MA (Acpa)

K
$← K

RunA
TK(LR(·,·,b))
cpa

Reply toTK(LR(M0, M1, b)) queries as follows:

C
$← TK(Mb) ; Acpa ⇐ C

Until Acpa returns a bitd

Returnd

Above it is mandated that all left messages ofA’s queries be unique and that all right

messages ofA’s queries be unique. We define thePRIV-DCPA-advantage ofA via

Advpriv-dcpa
MA (A) = Pr

[
Exppriv-dcpa-1

MA (A) = 1
]
− Pr

[
Exppriv-dcpa-0

MA (A) = 1
]

.

In the concrete setting [6], we say thatMA is privacy-preservingunderdistinct chosen

plaintext attacks(PRIV-DCPA-secure) ifAdvpriv-dcpa
MA (A) is small for all adversariesA

using reasonable resources.

The following theorem relates the distinct plaintext privacy and pseudorandomness no-

tions.

Theorem 3.7.4 (Relation between IND-DCPA and PRF.)LetMA be a message au-

thentication scheme. Then, given anyPRIV-DCPA adversaryA againstMA, we can

construct a distinguisherD againstMA such that

Advpriv-dcpa
MA (A) ≤ 2 ·Advprf

MA(D)

Furthermore,D uses the same resources ofA.

57

This theorem implies that ifMA is secure as a PRF, as is expected of many MACs [6],

then it will also bePRIV-DCPA-secure. The theorem is easy to verify; we omit the proof.

Theorem 3.7.1 follows directly from Theorem 3.7.4 above and Lemma 3.7.5 pre-

sented below. We therefore turn our attention to Lemma 3.7.5 below. Throughout, we let

Encode∗(·, ·) andDecode∗(·, ·) denote the encoding algorithmsEncode(·) andDecode(·)

except that they explicitly take a state as part of the input and return a new state as part

of the output.

Lemma 3.7.5 Let SE = (Ke, E ,D) be an encryption scheme, letMA = (Kt, T ,V)

be a message authentication scheme, and letEC = (Encode, Decode) be an encoding

scheme. LetSE be the encryption scheme associated to them as per Construction 3.6.1.

Then, given anyPRIV-CPA adversaryS againstSE , we can construct aPRIV-CPA ad-

versaryA againstSE , a PRIV-DCPA adversaryB againstMA, and a collision finderC

such that

Advpriv-cpa
SE (S) ≤ Advpriv-cpa

SE (A) + Advpriv-dcpa
MA (B) + 2 ·Advcoll-cpa

EC (C) .

Furthermore,A, B, andC use the same resources asS except thatA’s andB’s inputs to

their respective oracles may be slightly larger than those ofS (due to the encoding).

Proof of of Lemma 3.7.5: Let S denote aPRIV-CPA adversary that has access to an

EK(LR(·, ·, b)) oracle,b ∈ {0, 1}. Let x ∈ {1, 2, 3}. We define three experiments

associated withS as follows.

ExperimentExpHx

Ke
$← Ke ; Kt

$← Kt ; st0 ← ε ; st1 ← ε

RunS replying to its oracle query(M0, M1) as follows:

(Me,0, Mt,0, st0)
$← Encode∗(M0, st0)

(Me,1, Mt,1, st1)
$← Encode∗(M1, st1)

Switch (x):

Casex = 1: σ
$← EKe(Me,1) ; τ

$← TKt(Mt,1)

Casex = 2: σ
$← EKe(Me,0) ; τ

$← TKt(Mt,1)

58

Casex = 3: σ
$← EKe(Me,0) ; τ

$← TKt(Mt,0)

S ⇐ σ‖τ

Until S halts and returns a bitb

Returnb.

Let Px
def
= Pr [ExpHx = 1] denote the probability that experimentExpHx returns 1,

for x ∈ {1, 2, 3}. By the definition ofAdvpriv-cpa
SE (S), we have

Advpriv-cpa
SE (S) = P1 − P3 = (P1 − P2) + (P2 − P3) . (3.2)

GivenS, we can construct three new adversariesA, B, andC such that the following

lemmas hold and the new adversaries use the resources specified in the statement of

Lemma 3.7.5.

Lemma 3.7.6 P1 − P2 ≤Advpriv-cpa
SE (A).

Lemma 3.7.7 P2 − P3 ≤Advpriv-dcpa
MA (B) + 2 ·Advcoll-cpa

EC (C).

Equation 3.2 and the above lemmas imply Lemma 3.7.5.

Proof of of Lemma 3.7.6:We construct an adversaryA breaking privacy of the under-

lying encryption schemeSE = (Ke, E ,D) using the adversaryS below.

AdversaryAEK(LR(·,·,b))

Kt
$← Kt ; st0 ← ε ; st1 ← ε

RunS replying to its oracle query(M0, M1) as follows:

(Me,0, Mt,0, st0)
$← Encode∗(M0, st0)

(Me,1, Mt,1, st1)
$← Encode∗(M1, st1)

σ
$← EK(LR(Me,0, Me,1, b)) ; τ

$← TKt(Mt,1)

S ⇐ σ‖τ

Until S halts and returns a bitb′

Returnb′.

59

If b = 1, the adversaryA simulatesS in the exact same environment as that ofExpH1.

Similarly, if b = 0, the adversaryA simulatesS in the exact same environment as that

of ExpH2. Thus,

P1 − P2 = Pr
[
Exppriv-cpa-1

SE (A) = 1
]
− Pr

[
Exppriv-cpa-0

SE (A) = 1
]

= Advpriv-cpa
SE (A) .

The adversaryA uses the same resources asS except that, due to the encoding, the

queries thatA makes to its oracle may be slightly larger than the queries thatS makes

to its oracle. Also,A performs two encodings for each query thatS makes and, thus, its

running time is polynomially larger than that ofS. Recall the standard convention that

running time of an adversary is measured with respect to the entire experiment in which

it runs. Hence, Lemma 3.7.6 follows.

Proof of of Lemma 3.7.7:GivenS, we can construct an adversaryB that can break the

distinct chosen-plaintexts privacy of the underlying MAC schemeMA = (Kt, T ,V)

and an adversaryC that can break the collision resistance of the underlying encoding

schemeEC = (Encode, Decode). These adversaries are defined in below.

AdversaryBTK(LR(·,·,b))

Ke
$← Ke ; st0 ← ε ; st1 ← ε

RunS replying to itsith oracle query(M i
0, M

i
1) as follows:

(M i
e,0, M

i
t,0, st0)

$← Encode∗(M i
0, st0)

(M i
e,1, M

i
t,1, st1)

$← Encode∗(M i
1, st1)

If M i
t,0 ∈ {M1

t,0, . . . ,M
i−1
t,0 } or M i

t,1 ∈ {M1
t,1, . . . ,M

i−1
t,1 } then return0

σ
$← EKe(M

i
e,0)

τ
$← TK(LR(M i

t,0, M
i
t,1, b))

S ⇐ σ‖τ

Until S halts and returns a bitb

Returnb

AdversaryCEncode(·)

60

Ke
$← Ke ; Kt

$← Kt ; stn ← ε

d
$← {0, 1} ; c← d

RunS replying to its oracle query(M0, M1) as follows:

(Me,d, Mt,d)
$← Encode(Md)

(Me,c, Mt,c, stn)
$←Encode∗(Mc,stn)

σ
$← EKe(Me,0)

τ
$← TKt(Mt,1)

S ⇐ σ‖τ

Until S halts and returns a bitb

Let Pr2 [·] andPr3 [·] denote the probabilities associated with the experimentsExpH2

andExpH3, respectively. LetE2 denote an event that there exists at least one collision

among theMt,0’s or among theMt,1’s in ExpH2. Let E3 denote an event that there

exists at least one collision among theMt,0’s or among theMt,1’s in ExpH3. We make

the following claims.

Claim 3.7.8 Pr2 [E2] ≤ 2 ·Advcoll-cpa
EC (C).

Claim 3.7.9 Pr2

[
ExpH2 = 1 ∧ E2

]
− Pr3

[
ExpH3 = 1 ∧ E3

]
= Advpriv-dcpa

SE (B).

We can now bound the differenceP2 − P3 as follows:

P2 − P3 = Pr2 [ExpH2 = 1]− Pr3 [ExpH3 = 1]

= Pr2

[
ExpH2 = 1 ∧ E2

]
+ Pr2 [ExpH2 = 1 ∧ E2]

− Pr3

[
ExpH3 = 1 ∧ E3

]
− Pr3 [ExpH3 = 1 ∧ E3]

≤ Advpriv-dcpa
SE (B) + 2 ·Advcoll-cpa

EC (C) .

To justify Claim 3.7.8, letE0 be the event that there exists at least one collision among

theMt,0’s in ExpH2 and letE1 be the event that there exists at least one collision among

theMt,1’s in ExpH2. Let Pr [·] be overExpcoll-cpa
EC (C). Then,

Pr
[
Expcoll-cpa

EC (C) = 1
]

= Pr [E0 ∧ d = 0] + Pr [E1 ∧ d = 1]

=
1

2
·
(
Pr2 [E0] + Pr2 [E1]

)
≥ 1

2
· Pr2 [E2]

61

where the second equality comes from the fact that the messagesC returns toA are

independent of the bitd. To justify Claim 3.7.9, we note thatB returns1 only if all the

Mt,0’s andMt,1’s are unique (i.e., eventsE2 or E3 did not occur).

The adversariesB andC use the same resources asS except that the queries that

B makes to its oracle may be slightly larger than those ofS due to the encoding. Also,

B and C each perform two encodings for each query thatS makes and, thus, their

running times are (polynomially) larger than that ofS. Recall the standard convention

that running time of an adversary is measured with respect to the entire experiment in

which it runs. Hence, Lemma 3.7.7 follows.

3.8 SSH Security Results

Figure 3.2 shows the SSH encoding scheme when used with anl-bit block ci-

pher; see also Section 3.2. Recall that|x| denotes the length of stringx in bits, not

octets, and that〈x〉k denotes the representation ofx as ak-bit unsigned integer. The

statesstn andstu are maintained across invocations. As mentioned, although Figure 3.2

shows the paddingp as a random string (the second boxed equation), the SSH specifi-

cation does not require thatp be random. Additionally, although the SSH specification

allows up to255 octets of padding, the two major implementations of the SSH pro-

tocol that we evaluated,openssh-2.9p2 and SSH Communications’ssh-3.0.1 ,

use the minimum-recommended padding length shown in Figure 3.2. The proposed

SSH-$NPC instantiation of SSH replaces the first boxed statement withbpl← bpl + l

if bpl < l andalwaysuses random padding as shown in the second boxed statement.

The instantiationsSSH-CTRIV-CBC, SSH-EIV-CBC, andSSH-CTR, on the other

hand, uses the first boxed statement with no modification and allows paddingp to be

non-random.

62

Algorithm Encode(M) // |M | ≡ 0 (mod 8)
If stn = ε thenstn ← 0
bpl← l −

(
(|M |+ 40) (mod l)

)
If bpl < 32 thenbpl← bpl + l

p
$← {0, 1}bpl

tl← (8 + |M |+ bpl)/8 ; pl← bpl/8
Me ← 〈tl〉32‖〈pl〉8‖M‖p
Mt ← 〈stn〉32‖Me

stn ← stn + 1 mod 232

Return(Me, Mt)

Algorithm Decode(Me)
If stu = ε thenstu ← 0
Mt ← 〈stu〉32‖Me

stu ← stu + 1 mod 232

If cannot parseMe

then return(⊥,⊥)
ParseMe as〈tl〉32‖〈pl〉8‖M‖p
Return(M, Mt)

Figure 3.2 The SSH encoding schemeEC = (Encode, Decode) for l-bit blocks, where

l ≡ 0 (mod 8) and64 ≤ l ≤ 252 · 8.

3.8.1 Collision-Resistance of the SSH Encoding Scheme

The following lemma gives the collision bounds for the SSH encoding as shown

in Figure 3.2. Notice that ifqe ≤ 232, thendqe · 2−32e − 1 ≤ 0 andAdvcoll-cpa
EC (A) = 0

for any adversaryA. Also, if a COLL-CCA adversaryC submits more than232 en-

coding queries or232 decoding queries, then it can completely break the scheme, i.e.

Advcoll-cca
EC (C) = 1. For COLL-CCA security of up to232 decoding queries it is critical

that the decoding algorithm increment its counter on every invocation, even for mes-

sages that do not correctly decode.

Lemma 3.8.1 (Collision resistance of the SSH encoding.)Let EC be the encoding

scheme shown in Figure 3.2 and letmbpl be the minimum padding length (32 bits in

Figure 3.2; the 32 in the equations below corresponds to the length of the encoding

scheme’s internal counter, not the minimum padding length). For anyCOLL-CPA adver-

saryA and anyCOLL-CCA adversaryB, each makingqe encoding queries and, in the

case ofB, makingqd decoding queries, we have that

Advcoll-cpa
EC (A) ≤

⌈
qe · 2−32

⌉
·
(⌈

qe · 2−32
⌉
− 1

)
· 231−mbpl

Advcoll-cca
EC (B) = 0 if qe, qd ≤ 232

and thatCOLL-CCA collision resistance is not provided ifqe or qd > 232.

63

Proof of of Lemma 3.8.1: First, we prove the inequality in the theorem. Recall that the

padding is chosen independently at random from{0, 1}mbpl wherembpl is the minimum

padding length. For aCOLL-CPA adversaryA to win, it must make at least two encoding

queriesM i, M j such thati 6= j andM i
t = M j

t . From the construction, this means that

the values of the counters and the paddings must collide (i.e.stin = stjn andpi = pj).

For each counter value, the probability that the paddings collide is2−mbpl. There are

232 possible values for the counter, and each value occurs at mostdqe/2
32e times over

the course of the experiment. Therefore, the probability that any coll-cpa adversaryA

making at mostqe encoding queries can win is at most(
dqe · 2−32e

2

)
· 232 · 2−mbpl

After some simplification, the first inequality in the theorem follows.

Now, we prove the equality in the theorem. Recall that the construction in Figure

3.2 specifies thatMt ← 〈stn〉32‖Me for the encoding and thatMt ← 〈stu〉32‖Me for

the decoding. Since the statesstn, stu are counters that are maintained internally by

the oracles, no adversaryB can have control over them. Since both states start at 0,

if B is limited to fewer than232 encoding queries and232 decoding queries, then it

is easy to see thatB cannot possibly make two queries satisfying either of the first

two conditions in the experimentExpcoll-cca
EC (B). We now turn our attention to the last

condition in the experiment and argue thatB cannot possibly satisfy it either. Suppose

toward a contradiction thatB can somehow make a queryM i to Encode(·) and a query

mj
e to Decode(·) such that(i 6= j or M i 6= mj or M i

e 6= mj
e) andM i

t = mj
t where

i, j ≤ 232. From Figure 3.2,M i
t = mj

t implies thatM i
e = mj

e and consequently that

M i = mj. Therefore, for this condition to be satisfiedi must be different fromj.

However,i, j ≤ 232. Therefore,i 6= j implies thatstin 6= stju. Therefore,M i
t 6= mj

t , and

we have a contradiction. Thus,Advcoll-cca
EC (B) = 0.

64

3.8.2 Integrity and Privacy of Our Recommendations

We have already provided enough information (Theorems 3.7.1 and 3.7.2 and

Lemma 3.8.1) to show that our fixes from Section 3.5 are secure under the notions

of chosen-plaintext indistinguishability (PRIV-CPA) and integrity of plaintexts (AUTHP).

But we can prove a much stronger result, namely, that our proposed fixes are secure

under our strong notions of chosen-ciphertext indistinguishability (PRIV-SFCCA) and

integrity of ciphertexts (AUTHSF). We present our proof of security forSSH-CTR. The

proof technique extends naturally to other possible fixes to the SSH BPP.

Theorem 3.8.2 (Security of SSH-CTR.) Let SE be a CTR-mode encryption scheme

with stateful decryption, letMA be a message authentication scheme, and letEC be

the encoding scheme described above. LetSSH-CTR be the encryption scheme asso-

ciated to them as per Construction 3.6.1. Then, given anyAUTHSF adversaryI against

SSH-CTR, we can construct adversariesF andC such that Equation 3.3 holds. Sim-

ilarly, given anyPRIV-SFCCAadversaryA againstSSH-CTR, we can construct adver-

sariesS, B, E, andG such that Equation 3.4 holds.

Advauthsf
SSH-CTR(I) ≤ Advuf

MA(F) + Advcoll-cca
EC (C) (3.3)

Advpriv-sfcca
SSH-CTR(A) ≤ 2 ·Advauthsf

SSH-CTR(S) + Advpriv-cpa
SE (B)

+2 ·Advprf
MA(E) + 2 ·Advcoll-cpa

EC (G) (3.4)

Furthermore,F and C use the same resources asI except thatF ’s messages to its

oracles may be of different lengths thanI ’s queries to its oracles (due to encoding)

andC ’s messages to its decoding oracle may have slightly different lengths thanI ’s

decryption queries. Also,S, B, E, andG use the same resources asA except thatB’s

andE’s inputs to their respective oracles may be of different lengths than those ofA

(due to the encoding).

We interpret Theorem 3.8.2 as follows. Equation 3.3 states thatSSH-CTR pro-

vides stateful chosen-ciphertext integrity,AUTHSF-security, if the MAC is strongly un-

forgeable and if the encoding isCOLL-CCA collision resistant. Equation 3.4 states that

65

SSH-CTR provides stateful chosen-ciphertext privacy,PRIV-SFCCA-security, if it pro-

videsAUTHSF stateful chosen-ciphertext integrity, if the underlying encryption scheme

is PRIV-CPA-secure, if the MAC is a secure pseudorandom function, and if the encoding

is COLL-CPA-secure. As an example, making reasonable assumptions about the security

of the HMAC scheme, an implementation ofSSH-CTR that uses HMAC and AES in

stateful-decryption CTR mode will be secure under both of the strong notions provided

that at most232 messages are encrypted between rekeying. Notice here that we use dif-

ferent security properties of the MAC to obtain different security aspects ofSSH-CTR,

namely strong unforgeability for integrity and pseudorandomness for privacy. This dis-

tills the property of the MAC that leads to each aspect of security. Now we present the

proof of Theorem 3.8.2.

Proof of of Theorem 3.8.2: First we provide a proof sketch. To prove Theorem 3.8.2,

we first use Lemma 3.8.1, Theorem 3.7.1, thePRIV-CPA proof of security for CTR

mode [4], and the assumed pseudorandomness of the underlying MAC to show that

SSH-CTR is PRIV-CPA-secure. We then prove Equation 3.3. Applying Proposition

3.6.4 and ourPRIV-CPA andAUTHSF results forSSH-CTR leads to Equation 3.4. We

briefly discuss our proof of Equation 3.3. LetI be anAUTHSF adversary and letM i

beI ’s i-th chosen-plaintext query to its encoding oracle, letM i
e, M

i
t be the encoding of

M i, and letσi‖τi be the returned ciphertext. Letσ′j‖τ ′j beI ’s j-th decryption-verification

oracle query, letmj
e be the decryption ofσ′j by the underlying decryption algorithm. To

prove Equation 3.3, we show that given anAUTHSF adversary attackingSSH-CTR,

that adversary can also be used to attack the unforgeability of the underlying MAC, to

attack theCOLL-CCA collision resistance of the underlying encoding scheme, or that

the first out-of-order ciphertext submitted by the adversary,σ′j‖τ ′j, is such thatσj 6= σ′j

but M j
e = mj

e. By properties of CTR mode with stateful decryption, the latter event

cannot occur. The same property holds forSSH-CTRIV-CBC andSSH-EIV-CBC. For

SSH-$NPC the latter event can occur, but the probability the latter event occurs is small

because the last (random) block of the encoded packet is not given to the adversary. The

strategy we outlined in this paragraph can be used to prove the security of other fixes to

66

the SSH BPP that work by replacing the underlying encryption scheme; namely, prove

that the underlying encryption scheme isPRIV-CPA-secure and that the probability of the

event we described is small. (We only consider the first out-of-order ciphertext query an

adversary makes because if the first out-of-order ciphertext query does not decrypt, the

decryptor enters a halting state.)

Now we present the proof in more detail. First, we note that Equation 3.4 follows

directly from Proposition 3.6.4 and Theorem 3.7.1. Now, we prove Equation 3.3. Let

SE = (K, E ,D) be the composite encryption scheme (SSH-CTR in this case) con-

structed via Construction 3.6.1 from the encryption schemeSE = (Ke, E ,D), the MAC

schemeMA = (Kt, T ,V), and the encoding schemeEC = (Encode, Decode). Con-

sider anyAUTHSF adversaryI againstSE . We associate toI a UF forgerF againstMA

and aCOLL-CCA collision finderC againstEC as follows. The forgerF usesKe to gen-

erate an encryption key and uses the encryption key and its tagging oracle to answerI ’s

queries in a straight-forward manner. In particular, it follows Construction 3.6.1. Sim-

ilarly, the collision finderC uses the same approach. This ensures thatI is executed in

the same environment as that inExpauthsf
SE (I) until I succeeds in making an out-of-sync

query.

Recall that theAUTHSF adversaryI can make two types of queries: encryption

queries toEK and decryption-verification queries toD∗
K . SupposeI makesqe encryption

queries andqd decryption-verification queries. We denoteI ’s i-th query toEK asM i,

the encoding ofM i asM i
e, M

i
t , and the returned ciphertext asσi‖τi. We denoteI ’s i-th

query toD∗
K asσ′i‖τ ′i (assuming thatI ’s i-th query is parsable since otherwiseD∗

K would

enter a halting state). We denote the decryption (viaD) of σ′i asmi
e and the decoding

of mi
e as(mi, mi

t). By convention, ifD∗
k’s internal state is⊥, thenmi

e =⊥. Also, if

mi
e =⊥, then(mi, mi

t) = (⊥,⊥).

Now, let j be the index ofI ’s first out-of-sync decryption query, and letk be the

number of encryption queries prior toI ’s j-th decryption query. LetBad be an event in

which all of the following conditions hold:I ’s j-th decryption query correctly verifies,

mj
t ∈ {M1

t , . . . ,Mk
t }, k ≥ j, τ ′j = τj, andmj

e = M j
e . (Recall that if the first out-

67

of-sync decryption query fails to verify, the decryption algorithm will return⊥ for all

subsequent decryption queries.) We state the following lemmas.

Lemma 3.8.3 Advauthsf
SE (I) ≤ Advuf

MA(F) + Advcoll-cca
EC (C) + Pr [Bad]

Lemma 3.8.4 Pr [Bad] = 0

Then, Equation 3.3 in Theorem 3.8.2 follows.

Proof of of Lemma 3.8.3: Let Pr [·] denote the probability function underlying the

experimentExpauthsf
SE (I). Let σ′j‖τ ′j beI ’s first out-of-sync query toD∗

K(·). Recall that,

prior toI ’s j-th decryption-verification query,I madek queries toEK(·). We define the

following events.

EventE : I ’s first out-of-sync query to oracleD∗
K(·) correctly verifies

EventE1 : E occurs andmj
t 6∈ {M1

t , . . . ,Mk
t }

EventE2 : E occurs andmj
t ∈ {M1

t , . . . ,Mk
t }

EventE2,1 : E2 occurs and eitherk < j or mj
e 6= M j

e

EventE2,2 : E2 occurs andk ≥ j andmj
e = M j

e

EventE2,2,1 : E2,2 occurs andτ ′j 6= τj and

mj
t 6∈ {M1

t , . . . ,M j−1
t , M j+1

t , . . . ,Mk
t }

EventE2,2,2 : E2,2 occurs andτ ′j 6= τj and

mj
t ∈ {M1

t , . . . ,M j−1
t , M j+1

t , . . . ,Mk
t }

EventE2,2,3 : E2,2 occurs andτ ′j = τj.

If I ’s first out-of-sync query toD∗
K(·) does not correctly verify, then the decryption

oracle enters its halting state, and thus, no further decryption queries will correctly verify

andExpauthsf
SE (I) cannot return1. Therefore,Advauthsf

SE (I) = Pr [E]. Also, notice that

Pr [E] = Pr [E1 ∨ E2,2,1] + Pr [E2,1 ∨ E2,2,2] + Pr [E2,2,3].

As previously pointed out, the adversariesF andC runI exactly as in experiment

Expauthsf
SE (I) until I succeeds in making an out-of-sync decryption-verification query.

Therefore, if eventsE1 or E2,2,1 occur, thenF succeeds in finding aUF forgery against

68

MA. Similarly, if eventsE2,1 or E2,2,2 occur,C succeeds in finding a collision against

EC. Consequently,

Advauthsf
SE (I) = Pr [E1 ∨ E2,2,1] + Pr [E2,1 ∨ E2,2,2] + Pr [E2,2,3]

≤ Advuf
MA(F) + Advcoll-cca

EC (C) + Pr [Bad]

as desired.

Proof of of Lemma 3.8.4: We are interested in the event thatσ′j 6= σj but mj
e = M j

e

(wherej is the index of the first out-of-order decryption query and the adversary has

already queried the encryption oracle at leastj times). SinceSSH-CTR uses CTR

mode with stateful decryption, since the encryption and decryption states are in-sync

prior to thej-th decryption query, and since, for each CTR mode state, there is a bijec-

tion between plaintexts and ciphertexts, ifσ′j 6= σj, thenmj
e 6= M j

e . This means that

Pr[Bad] = 0.

3.9 Discussion and Recommendations

Having presented our main results, we are now in a position to make specific rec-

ommendations to the SSH community. We begin by noting that one problem with the

current SSH specification is that the counter that is prepended to the encoded payload

before MACing is only32 bits long. As shown in Section 3.4, once the32 bit counter

repeats, an SSH session’s MAC tags may begin to leak information about a user’s plain-

texts. Our provable security results reflect this constraint: strong security is maintained

only if the parties rekey at least once every232 packets. Two natural solutions to this

problem are to either make the counter longer or to require an SSH session to rekey at

least once every232 messages. We recommend the second option because it does not

affect the packet format and thus will likely require minimal changes to existing SSH

implementations. As a slight variant of the first option, we do note that it would be pos-

sible to define new message authentication modules for SSH that maintain and update

their own, longer counters; this approach would also not affect the packet format.

69

With respect to the underlying encryption mode, we now compare the current in-

stantiation of the SSH BPP transport protocol,SSH-IPC, to our specific recommenda-

tions. We also consider two other possible alternatives, namely switching to an Encrypt-

then-MAC-based construction or to a dedicated authenticated encryption construction.

The former involves re-engineering the SSH BPP so that it first encrypts a message

with some underlying encryption scheme and then MACs the resulting ciphertext. The

latter involves modifying SSH to use a dedicated authenticated encryption scheme like

XCBC [35] or OCB [72].

Continue to useSSH-IPC? As mentioned,SSH-IPC is susceptible to an adaptive

chosen-plaintext attack requiring an SSH user to encrypt on the order of213 packets.

However, the attack may not be considered practical since it requires the attacker to,

after seeing a ciphertext collision, control thenextmessage that a user encrypts. If the

session is encrypting a lot of data very quickly (e.g., while transferring a file), then

an attacker may not have time to both recognize that a collision has occurred and to

force the user to encrypt a specially-doctored message, though an adversary might try to

slow down the entire connection in anticipation of mounting a chosen-plaintext attack.

Additionally, if we consider how the SSH transport protocol is used within SSH (and

not as an entity by itself), then the attack is complicated by the fact that an application

may compress and further encode user data before passing the resulting compressed

payload to theSSH-IPC protocol. Nonetheless, we suggest that the use ofSSH-IPC

be deprecated. One simple reason is that, even if these attacks may be difficult to mount

in practice, in the modern era of strong cryptography it would seem counterintuitive to

voluntarily use a protocol with low security when it is possible to fix the security of SSH

at low cost.

Switch to SSH-NPC? SinceSSH-NPC requires similar changes to the specification

and implementations asSSH-$NPC while achieving less security than our other fixes,

there does not appear to be any substantial reasons to switch toSSH-NPC. Therefore,

we do not consider it further.

70

Switch to SSH-$NPC? The advantages offered bySSH-$NPC are clear: it is prov-

ably secure and requires relatively minor and mostly localized changes to the SSH speci-

fication and to implementations. The added security, however, comes with the additional

cost of up to two extra blocks per packet. In interactive sessions where an individual

packet may only contain a few octets of user data, the additional cost associated with

those extra blocks may be significant (in terms of bandwidth consumption, the time nec-

essary to encrypt and MAC those two extra blocks, and the time required to generate

the extra block of randomness). Another potential problem withSSH-$NPC is that

it is prone to accidental implementation mistakes. Recall that if the padding used with

SSH-$NPC is not randomized, then the same reaction attack againstSSH-NPC will be

effective here. Since two SSH implementations will inter-operate regardless of whether

their padding is random or fixed, an SSH developer might accidentally use non-random

or predictable padding. Such an accidental implementation mistake could have serious

security consequences.

Switch to SSH-CTR? SSH-CTRIV-CBC? or SSH-EIV-CBC? TheSSH-CTR in-

stantiation is attractive since it is provably secure, does not incur packet expansion, and

does not require the padding to be random. Furthermore, there are several performance

advantages with using CTR mode instead of CBC mode; for example, a software CTR

mode implementation can be up to four times faster than a well-optimized CBC imple-

mentation [55]. Although perhaps not as attractive asSSH-CTR, SSH-CTRIV-CBC

andSSH-EIV-CBC are also promising candidates because they also require no addi-

tional padding and because they only use one more block cipher invocation per packet

thanSSH-IPC.

The underlying encryption schemes for theSSH-CTR, SSH-CTRIV-CBC, and

SSH-EIV-CBC recommendations all require both the sender and the receiver to main-

tain state. Prior to this work, most provable security analyses focused on encryption

schemes with stateless decryption algorithms (hence our need to define security notions

for encryption schemes with stateful decryption algorithms). Consequently, one initial

71

objection to these three constructions might be that they require the underlying decryp-

tion algorithms to maintain state. However, since the composite SSH BPP decryption

algorithm is already stateful (because the decoding algorithm is stateful), the fact that

these three fixes use underlying encryption schemes with stateful decryption algorithms

should be of little concern. Another potential disadvantage with CTR mode is that it

is often perceived as being too “risky” [55]. As [55] points out, however, when used

correctly and with proofs of security, CTR mode has many advantages over other en-

cryption modes. Furthermore, as Bellovin and Blaze point out in [15], one can minimize

the risk incurred with using CTR mode (including the risk of being forced to use repeat-

ing counters) if key management is done dynamically and properly, if it is not used with

multiple senders who share keys, and if it is used in conjunction with strong integrity

checks. All of these conditions hold in the case ofSSH-CTR.

Switch to Encrypt-then-MAC? Instead of insisting on continuing to use the cur-

rent SSH Encode-then-E&M construction, it would also be possible to switch to an-

other paradigm such as Encrypt-then-MAC. This alternative is attractive because, as

we recalled in Section 2.6, an Encrypt-then-MAC construction is provably secure as-

suming that its underlying encryption and message authentication schemes are also se-

cure [10, 52]. We note, however, that since our recommended fixes provably meet our

strongest notions of security, there may be little motivation to switch to an Encrypt-

then-MAC-based construction. Additionally, switching to an Encrypt-then-MAC con-

struction will likely require more intrusive modifications to the current SSH specifica-

tion and to SSH implementations. Furthermore, unless care is taken, implementations

of the modified SSH specification may not be compatible with implementations of the

current SSH specification. Conceptually speaking, the changes incurred bySSH-CTR,

SSH-$NPC, SSH-CTRIV-CBC, andSSH-EIV-CBC involve only changing the un-

derlying encryption module and, in the case ofSSH-$NPC, adding more random num-

ber generation for the padding. In contrast, the changes incurred by switching to the

Encrypt-then-MAC construction involve changing the whole construction. (We ac-

72

knowledge that the difference in the actual efforts that developers need to exert to im-

plement these changes will be highly implementation dependent.)

Switch to dedicated authenticated encryption schemes?As noted in Section 2.6.6,

there are symmetric key-based authenticated encryption schemes that are designed from

scratch and, thus, are potentially more efficient than schemes based on a black-box

composition of off-the-shelf encryption and MAC components. Recall that currently

the input to the SSH BPP’s underlying encryption scheme is different from the input to

the underlying MAC. There are two possible ways to incorporate a dedicated authen-

ticated encryption scheme into SSH: (1) specifically re-design the SSH specification

around a single authenticated encryption component or (2) somehow plug a dedicated

authenticated encryption scheme into the current SSH design.

For option (1), as we mentioned when we considered the Encrypt-then-MAC

paradigm, re-designing the SSH specification is probably not an attractive option. For

option (2), the most logical way to incorporate a dedicated scheme into SSH would be

to replace the current encryption scheme (CBC mode with chained IVs) with something

like XCBC or OCB and to use the “none” message authentication scheme. As we ar-

gued forSSH-CTR, SSH-$NPC, SSH-CTRIV-CBC, andSSH-EIV-CBC, this modi-

fication should be fairly easy to do, and, given the efficiency of dedicated authenticated

encryption schemes, could result in significant performance gains. The present draw-

back with this approach is that the current SSH specification does not include the 32-bit

counter in the input to the underlying encryption scheme. Since, under this construc-

tion, the counter will not be bound to the input to the dedicated authenticated encryption

scheme, this construction cannot protect against replay and out-of-order delivery at-

tacks (while our proposed recommendations can). To rectify this situation, one would

still have to modify more than just the “black-box” encryption component of the SSH

BPP, perhaps by using an authenticated encryption with associated data scheme [69],

which has the same drawbacks as possibility (1) above, or use as the underlying encryp-

tion scheme an authenticated encryption scheme with its own internal counter, which

73

we view as an inelegant, though still viable, solution.

Closing remarks. We acknowledge that there are many possible ways to fix the cur-

rent problems with the SSH protocol. We are biased toward our recommended fixes,

and in particularSSH-CTR, because they are “less intrusive” than the other possible

modifications but are still efficient and secure.

Following the initial publication of our research results, we submitted an Internet-

Draft to the IETF Secure Shell working group specifying ourSSH-CTR recommenda-

tion. The working group and the IESG has since approved our specification as an RFC

(standards-track document) [9] and ourSSH-CTR recommendation is implemented in

the latest version of the OpenSSH application.

Additional Information

An earlier version of the material in this chapter appears in the ACM Transactions

on Information and System Security [8], copyright the ACM. I was a primary researcher

for this work. The full citation for this work is:

Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking

and provably repairing the SSH authenticated encryption scheme: A case

study of the Encode-then-Encrypt-and-MAC paradigm.ACM Transactions

on Information and System Security, 7(2):206–241, May 2004.

4 Generalized Composition Methods

for Authenticated Encryption

In this chapter we further extend our generalization of the generic Encrypt-and-

MAC paradigm from Chapter 3, and we also formally study generalizations of the

generic MAC-then-Encrypt and Encrypt-then-MAC paradigms. To differentiate the

composition methods that we consider in this chapter from the earlier composition

paradigms, we refer to the paradigms in this chapter as thegeneralized Encode-then-

E&M, Encode-then-MtE, andEncode-then-EtMparadigms. See Figures 4.1–4.3.

We generalize our analysis in several ways. First, motivated by Rogaway [69] and

properties of real protocols, we consider authenticated encryption schemes that can au-

thenticate more data than they encrypt; note the two inputs to the encoding algorithms

in Figures 4.1–4.3. Using Rogaway’s terminology, we refer to such authenticated en-

cryption schemes asauthenticated encryption with associated data(AEAD) schemes.

We further broaden our study by considering five classes of AEAD schemes, all

sharing the same syntax but having different consistency requirements and security

goals. We refer to these five classes as Type 1 through Type 5 AEAD schemes. Intu-

itively, Type 1 AEAD schemes should accept any ciphertext, in any order, and possibly

multiple times, as long as the ciphertext was generated by the encryptor. Type 1 AEAD

schemes are equivalent to the AEAD schemes that Rogaway considers except that our

Type 1 AEAD schemes do not take a nonce as input, we allow the encryption algorithms

to be randomized and stateful, we allow the decryption algorithms to be stateful, and we

74

75

payload Mspayload Msassociated data Ma

ENCODE

ENCRYPT MAC

σ τ

Mo Me Mn MtMp

COMBINE

ciphertext C

Figure 4.1 The generalized Encode-then-E&M paradigm.

payload Mspayload Msassociated data Ma

ENCODEENCODE

COMBINE

ENCRYPT MAC
τ

Mo Me Mn MtMp

σ

COMBINE

ciphertext C

Figure 4.2 The generalized Encode-then-MtE paradigm.

76

payload Mspayload Msassociated data Ma

ENCODE

ENCRYPT MAC

COMBINE

σ

σ
Mo Me Mn MtMp

τ

COMBINE

ciphertext C

Figure 4.3 The generalized Encode-then-EtM paradigm.

base our definition of chosen-plaintext privacy on left-or-right indistinguishability; we

do not expose a nonce to the caller because our goal is to model higher-level authen-

ticated encryption schemes, and we believe that users of such authenticated encryption

schemes should not be required to manipulate nonces. Type 2 AEAD schemes are like

Type 1 AEAD schemes except that they should also protect against replay attacks. Type

3 AEAD schemes should only accept ciphertexts in monotonically increasing order of

creation. Type 4 and Type 5 AEAD schemes are like Type 3 AEAD schemes except

that they should only accept ciphertexts in exactly the order in which they were created.

The latter two types differ in that a Type 4 AEAD scheme should halt after detecting a

forgery attempt, and a Type 5 AEAD scheme should not. A Type 4 AEAD scheme is

equivalent to the type of authenticated encryption schemes that we consider in Chap-

ter 3, except that in Chapter 3 we do not handle associated data. As in Chapter 3, but

unlike [10, 11, 47, 69], we allow the decryption algorithms for all five types of AEAD

schemes to be stateful.

We also consider generalizations of the underlying encryption and message au-

thentication components, and in particular we allow the encoding scheme to control

the underlying encryption scheme’s and MAC’s initialization vectors (theMo andMn

77

variables in Figures 4.1–4.3). To contrast this approach with previous approaches, re-

call that it is traditional to assume that an underlying encryption scheme and MAC will

internally handle the selection of any initialization vectors. Exposing the initialization

vectors to the encoding schemes allow us to, for example, share initialization vectors

between the encryption scheme and the MAC and to reuse the initialization vectors for

other purposes, like protecting against replay attacks. When studying the privacy of

the generalized Encode-then-E&M construction, we also consider the possibility of em-

ploying a privacy-preserving (PRIV-CPA-secure) MAC, such as UMAC [22]; recall that

in Chapter 3 we focused our results on MACs that arePRF- or PRIV-DCPA-secure, not

PRIV-CPA-secure. ConsideringPRIV-CPA-secure MACs allows us to prove thePRIV-

CPA-security of a generalized Encode-then-E&M construction without placing require-

ments on the underlying encoding scheme, which we were not able to do in Chapter 3.

In Chapter 3 we provedPRIV-CPA and AUTHP results for the (non-generalized)

Encode-then-E&M paradigm (Section 3.7), but restricted our chosen-ciphertext privacy

(PRIV-CCA) and integrity of ciphertext (AUTHSF) results toSSH-CTR (Section 3.8).

We address this deficiency here by presenting strong integrity of ciphertexts results for

all three generalized composition paradigms and all five classes of AEAD schemes.

Toward giving these results, we first introduce new properties for generalized Encode-

then-E&M and generalized Encode-then-MtE constructions. Informally, the purpose of

these properties are to capture the probability of events likeBad in the proof of security

for SSH-CTR (recall Lemmas 3.8.3 and 3.8.4). We call these new propertiesE& M-SP

andMTE-SPand note that there are common scenarios for which it is easy to determine if

a generalized Encode-then-E&M or generalized Encode-then-MtE construction satisfies

the respective property (Propositions 4.5.3 and 4.6.3).

4.1 Authenticated Encryption with Associated Data

We begin by formally defining what we mean by an AEAD scheme. Recall that

our definition of a Type 1 AEAD scheme is identical to Rogaway’s definition of an

78

AEAD scheme [69] except that we do not expose a nonce to the caller, we allow the

encryption algorithm to be randomized and stateful, we allow the decryption algorithm

to be stateful, and we use a notion of chosen-plaintext privacy based on left-or-right

indistinguishability. Further recall that a Type 5 AEAD scheme is identical to the type

of authenticated encryption scheme that we considered in Chapter 3 except that here we

allow the encryption algorithm to accept associated data as input.

4.1.1 Syntax

A Typen, n ∈ {1, . . . , 5}, authenticated encryption with associated data (AEAD)

schemeAE = (K, E ,D) consists of three algorithms and is defined for some key space

KeySpAE , associated-data spaceAdSpAE , and message spaceMsgSpAE . The randomized

key-generation algorithmK returns a keyK ∈ KeySpAE ; we write K
$← K. The

possibly randomized and possibly stateful encryption algorithmE takes a keyK ∈

KeySpAE , associated dataMa ∈ AdSpAE , and a messageMs ∈ MsgSpAE , and outputs

a ciphertextC ∈ {0, 1}∗; we writeC
$← EK(Ma, Ms). The deterministic and possibly

stateful decryption algorithmD takes a keyK ∈ KeySpAE and a messageC ∈ {0, 1}∗,

and outputs a pair of messages(Ma, Ms) ∈ AdSpAE ×MsgSpAE or the pair(⊥,⊥); we

write (Ma, Ms) ← DK(C). We say thatDK acceptsC if DK(C) 6= (⊥,⊥); otherwise

DK rejectsC.

4.1.2 Consistency and Security

As is tradition and as we do elsewhere in this dissertation, we distinguish between

the consistency requirements for AEAD schemes and their security goals. We first state

a chosen-plaintext privacy goal, which is identical for the five types of AEAD schemes.

We then consider each AEAD type individually, presenting first its integrity goal and

then its consistency requirements. We state the security goals first since, in some cases,

the consistency requirements need only be met if an adversary has not already succeeded

in breaching the security of the scheme; for example, if an adversary forges a message,

79

it may place the decryptor in a state that it cannot recover from. We then restate the

security properties in pseudocode for clarity.

Chosen-plaintext privacy. Our notion of privacy for AEAD schemes is similar to

Rogaway’s notion [69], which we will later use in Section 5, but here we use a formal-

ization based on left-or-right-indistinguishability [4] and we do not expose a nonce to

the adversary. LetAE = (K, E ,D) be an AEAD scheme. ForK ∈ KeySpAE andb ∈

{0, 1}, letEK(·,LR(·, ·, b)) denote aleft-or-right (LR) encryption oraclethat takes input

Ma ∈ AdSpAE andM0, M1 ∈ MsgSpAE , and returnsEK(Ma, Mb). Let A be an adver-

sary that returns a bit and has access to an LR encryption oracle. We require that for each

queryMa, M0, M1 thatA makes,|M0| = |M1|. We define thePRIV-CPA-advantageof

PRIV-CPA-adversaryA as

Advpriv-cpa
AE (A) = Pr

[
K

$← K : AEK(·,LR(·,·,1)) = 1
]

−Pr
[

K
$← K : AEK(·,LR(·,·,0)) = 1

]
.

In the concrete setting [6], we say thatAE preserves privacy under chosen-plaintext

attacks (or isPRIV-CPA secure) if the PRIV-CPA-advantage of allPRIV-CPA-adversaries

using reasonable resources is small.

Integrity and chosen-ciphertext privacy. Forn ∈ {1, . . . , 5}, the integrity notion for

a Typen AEAD scheme,AUTHn, addresses the authenticity of theciphertextsgenerated

by the encryption algorithm. As with classic authenticated encryption schemes (recall

Section 2.6 and [10]), this is different from protecting the integrity of the original inputs

to the encryption method. Indeed, the latter, in combination with thePRIV-CPA notion,

is insufficient to guarantee privacy under chosen-ciphertext attacks, whereasAUTHn

security together withPRIV-CPA security imply a strong notion of privacy under chosen-

ciphertext attacks that we callPRIV-CCAn security. SincePRIV-CPA andAUTHn imply

PRIV-CCAn, we focus all our discussions on the former two notions, but present the

PRIV-CCAn notions later for completeness.

80

Throughout the following discussions, letAE = (K, E ,D) be a Typen, n ∈

{1, . . . , 5}, AEAD scheme, the exact type will be clear from context. For each authen-

ticity notion, we consider an adversaryA with access to an encryption oracleEK(·, ·)

and a decryption-verification oracleD∗
K(·); the latter, on inputC, invokesDK(C) and

returns 1 (i.e., accepts) ifDK(C) 6= (⊥,⊥) and 0 (i.e., rejects) otherwise. We de-

fine theAUTHn-advantageof AUTHn-adversaryA, Advauthn
AE (A), as the probability that

A “forges” when given access toEK(·, ·) andD∗
K(·) for a randomly selectedK. We

describe what “forges” means below. In the concrete setting [6], we say that a Typen

AEAD scheme preserves authenticity if theAUTHn-advantage of allAUTHn-adversaries

using reasonable resources is small.

Type 1. We say that anAUTH1-adversary “forges” if it makes theD∗
K(·) oracle ac-

cept a ciphertext not previously returned byEK(·, ·). This security definition is similar

to the AUTHC [10, 11, 47] definition recalled in Section 2.6 and Rogaway’s integrity

definition [69] except that here we consider AEAD schemes, not basic authenticated en-

cryption schemes, and our AEAD schemes do not take nonces as input. The consistency

requirement for Type 1 AEAD schemes is thatDK(EK(Ma, Ms)) = (Ma, Ms) for all

Ma ∈ AdSpAE , Ms ∈ MsgSpAE , K ∈ KeySpAE , and all internal states and random tapes

of the encryptor and decryptor.

Type 2. We say that anAUTH2-adversary “forges” if it makes theD∗
K(·) oracle accept

a ciphertext not previously returned byEK(·, ·), or makes it accept the same ciphertext

twice. For consistency, we require that for allMa ∈ AdSpAE , Ms ∈ MsgSpAE andK ∈

KeySpAE , if C = EK(Ma, Ms) for any internal state and random tape of the encryp-

tor, C has not been submitted toDK , and an adversary has not succeeded in forging,

thenDK(C) = (Ma, Ms). We also require that for any two message pairs(M1
a , M1

s),

(M2
a , M2

s), if the encryptor computesC1
$← EK(M1

a , M1
s) at some point in time and

C2
$← EK(M2

a , M2
s) at some other time, it is the case thatC1 6= C2 (even if(M1

a , M1
s) =

(M2
a , M2

s)). Otherwise, a legitimately encrypted message might incorrectly be rejected

by the receiver.

81

Type 3. For Type 3 AEAD schemes, we say that anAUTH3-adversary “forges” if it

can make theD∗
K(·) oracle accept a ciphertext not previously returned byEK(·, ·), accept

the same ciphertext twice, or accept a ciphertext that was returned byEK(·, ·) before the

last accepted ciphertext. For consistency, we require that for allMa ∈ AdSpAE , Ms ∈

MsgSpAE andK ∈ KeySpAE , if C = EK(Ma, Ms) for any internal state and random

tape of the encryptor,C or a ciphertext generated afterC has not been submitted to

DK , and an adversary has not succeeded in forging, thenDK(C) = (Ma, Ms). We also

require that for any two message pairs(M1
a , M1

s), (M2
a , M2

s), if the encryptor computes

C1
$← EK(M1

a , M1
s) at some point in time andC2

$← EK(M2
a , M2

s) at some other point

in time, it is the case thatC1 6= C2 (even if(M1
a , M1

s) = (M2
a , M2

s)).

Type 4. The authenticity game for Type 4 AEAD scheme begins with a flagphase

set to0. If at any point the sequence of queries to theD∗
K(·) oracle fails to be a pre-

fix of the responses fromEK(·, ·), phase is set to1. The AUTH4-adversary “forges” if

it can force theD∗
K(·) oracle to accept a message afterphase becomes1. This secu-

rity definition is similar to the notion of integrity that we introduced in Chapter 3 for

SSH except that here we are considering AEAD schemes. Consider some sequence of

message pairs(M1
a , M1

s), (M2
a , M2

s), . . . and, fori = 1, 2, . . ., let Ci = EK(M i
a, M

i
s),

starting withEK in its initial state. Then, for consistency purposes, ifDK is run on the

sequenceC1, C2, . . . in order and without the injection of additional packets, we require

thatDK(Ci) = (M i
a, M

i
s).

Type 5. Let Ci denote thei-th ciphertext produced byEK(·, ·). An AUTH5-adversary

“forges” if the first message theD∗
K(·) oracle accepts is notC1. Inductively, if the

last ciphertext accepted byD∗
K(·) wasCj, then anAUTH5-adversary “forges” if it can

make the oracle accept anyC 6= Cj+1 before being invoked withCj+1. Let (M1
a , M1

s),

(M2
a , M2

s), . . . denote a sequence of message pairs andC1, C2, . . . denote their encryp-

tion underE and any keyK. For consistency, we require that ifDK has not yet ac-

cepted any message (i.e.,DK is in its initial state or has always returned(⊥,⊥)), then

DK(C1) = (M1
a , M1

s). Fori ≥ 1, if the only packets accepted byDK areC1, C2, . . . , Ci,

82

in that order but with possibly some rejected packets in the sequence of messages given

toDK , thenDK(Ci+1) = (M i+1
a , M i+1

s).

Pseudocode for security definitions. For clarity, we now present in pseudocode our

PRIV-CPA and AUTHn notions of security for AEAD schemes. For completeness, we

also present outPRIV-CCAn chosen-ciphertext privacy notions. We also give Theo-

rem 4.1.3, which shows that if a Typen AEAD schemes is bothPRIV-CPA-secure

and AUTHn-secure, then it is alsoPRIV-CCAn-secure. Like the traditionalPRIV-CCA

chosen-ciphertext privacy notion for encryption schemes recalled in Section 2.4 [4],

our PRIV-CCAn notions give an adversary as much power as possible without allow-

ing the adversary to trivially win the associated game. For example, in the experiment

Exppriv-cca1-b
AE (A1), the adversaryA1 againstAE , when querying its oracleDK with input

C, will only be returned(Ma, Ms) if C 6∈ S (we present this definition in a slightly

different way than we presented thePRIV-CCA definition in Section 2.4 since here we

do not disallow the adversary from making decryption queries forC ∈ S, but rather

have the experiment handle such a situation as a special case).

Definition 4.1.1 (Privacy.) Let AE = (K, E ,D) be an AEAD scheme and letb ∈

{0, 1} be a bit. LetAcpa be an adversary with access to an LR encryption oracle

EK(·,LR(·, ·, b)) and letA1, A2, A3, A5, andA4 be adversaries with access to an LR

encryption oracle and a decryption oracleDK(·). The behaviors ofEK(·,LR(·, ·, b))

andDK(·) are specified in the following experiments. Assume each adversary returns a

bit. Consider the following experiments.

ExperimentExppriv-cpa-b
AE (Acpa)

K
$← K

RunA
EK(·,LR(·,·,b))
cpa

Reply toEK(Ma,LR(M0, M1, b)) queries as follows:

C
$← EK(Ma, Mb) ; Acpa ⇐ C

Until Acpa returns a bitd

Returnd

83

ExperimentExppriv-cca1-b
AE (A1)

K
$← K ; S ← ∅

RunA
EK(·,LR(·,·,b)),DK(·)
1

Reply toEK(Ma,LR(M0, M1, b)) queries as follows:

C
$← EK(Ma, Mb) ; S ← S ∪ {C} ; A1⇐ C

Reply toDK(C) queries as follows:

(Ma, Ms)← DK(C)

If C 6∈ S thenA1⇐ (Ma, Ms)

Until A1 returns a bitd

Returnd

ExperimentExppriv-cca2-b
AE (A2)

K
$← K ; S ← ∅ ; S ′ ← ∅

RunA
EK(·,LR(·,·,b)),DK(·)
2

Reply toEK(Ma,LR(M0, M1, b)) queries as follows:

C
$← EK(Ma, Mb) ; S ← S ∪ {C} ; A2⇐ C

Reply toDK(C) queries as follows:

(Ma, Ms)← DK(C)

If C /∈ S or C ∈ S ′ thenA2⇐ (Ma, Ms)

If (Ma, Ms) 6= (⊥,⊥) thenS ′ ← S ′ ∪ {C}

Until A2 returns a bitd

Returnd

ExperimentExppriv-cca3-b
AE (A3)

K
$← K ; i← 0 ; j ← 0

RunA
EK(·,LR(·,·,b)),DK(·)
3

Reply toEK(Ma,LR(M0, M1, b)) queries as follows:

i← i + 1 ; Ci
$← EK(Ma, Mb) ; A3⇐ Ci

Reply toDK(C) queries as follows:

(Ma, Ms)← DK(C)

84

If C /∈ {Cj+1, . . . , Ci} thenA3⇐ (Ma, Ms)

Elsej ← index ofC in {Cj+1, . . . , Ci}

Until A3 returns a bitd

Returnd

ExperimentExppriv-cca4-b
AE (A4)

K
$← K ; i← 0 ; j ← 0 ; phase← 0

RunA
EK(·,LR(·,·,b)),DK(·)
4

Reply toEK(Ma,LR(M0, M1, b)) queries as follows:

i← i + 1 ; Ci
$← EK(Ma, Mb) ; A4⇐ Ci

Reply toDK(C) queries as follows:

j ← j + 1 ; (Ma, Ms)← DK(C)

If j > i or C 6= Cj thenphase← 1

If phase = 1 thenA4⇐ (Ma, Ms)

Until A4 returns a bitd

Returnd

ExperimentExppriv-cca5-b
AE (A5)

K
$← K ; i← 0 ; j ← 0

RunA
EK(·,LR(·,·,b)),DK(·)
5

Reply toEK(Ma,LR(M0, M1, b)) queries as follows:

i← i + 1 ; Ci
$← EK(Ma, Mb) ; A5⇐ Ci

Reply toDK(C) queries as follows:

(Ma, Ms)← DK(C)

If j + 1 > i or C 6= Cj+1 thenA5⇐ (Ma, Ms)

If (Ma, Ms) 6= (⊥,⊥) thenj ← j + 1

Until A5 returns a bitd

Returnd

We require that for all queriesMa, M0, M1 to EK(·,LR(·, ·, b)), |M0| = |M1|. We

define thePRIV-CPA-advantageof PRIV-CPA-adversaryAcpa, and forn = 1, . . . , 5, the

85

PRIV-CCAn-advantageof adversaryAn as

Advpriv-cpa
AE (Acpa) = Pr

[
Exppriv-cpa-1

AE (Acpa) = 1
]
− Pr

[
Exppriv-cpa-0

AE (Acpa) = 1
]

Advpriv-ccan
AE (An) = Pr

[
Exppriv-ccan-1

AE (An) = 1
]

−Pr
[
Exppriv-ccan-0

AE (An) = 1
]
.

Definition 4.1.2 (Integrity.) Let AE = (K, E ,D) be an AEAD scheme. LetA1, A2,

A3, A4, andA5 be adversaries each with access to an encryption oracleEK(·, ·) and a

decryption-verification oracleD∗
K(·). The decryption-verification oracle, on inputC,

invokesDK(C) and returns 1 ifDK(C) 6= (⊥,⊥) and 0 otherwise. Consider the ex-

periments defined below. Each experiment returns 1 if the adversary “forges” and 0

otherwise.

ExperimentExpauth1
AE (A1)

K
$← K ; S ← ∅

RunA
EK(·,·),D∗

K(·)
1

Reply toEK(Ma, Ms) queries as follows:

C
$← EK(Ma, Ms) ; S ← S ∪ {C} ; A1⇐ C

Reply toD∗
K(C) queries as follows:

(Ma, Ms)← DK(C)

If (Ma, Ms) 6= (⊥,⊥) andC 6∈ S then return1

If (Ma, Ms) 6= (⊥,⊥) thenA1⇐ 1

ElseA1⇐ 0

Until A1 halts

Return0

ExperimentExpauth2
AE (A2)

K
$← K ; S ← ∅ ; S ′ ← ∅

RunA
EK(·,·),D∗

K(·)
2

Reply toEK(Ma, Ms) queries as follows:

C
$← EK(Ma, Ms) ; S ← S ∪ {C} ; A2⇐ C

86

Reply toD∗
K(C) queries as follows:

(Ma, Ms)← DK(C)

If (Ma, Ms) 6= (⊥,⊥) and (C /∈ S or C ∈ S ′) then return1

If (Ma, Ms) 6= (⊥,⊥) thenS ′ ← S ′ ∪ {C} ; A2⇐ 1

ElseA2⇐ 0

Until A2 halts

Return0

ExperimentExpauth3
AE (A3)

K
$← K ; i← 0 ; j ← 0

RunA
EK(·,·),D∗

K(·)
3

Reply toEK(Ma, Ms) queries as follows:

i← i + 1 ; Ci
$← EK(Ma, Ms) ; A3⇐ Ci

Reply toD∗
K(C) queries as follows:

(Ma, Ms)← DK(C)

If (Ma, Ms) 6= (⊥,⊥) andC /∈ {Cj+1, . . . , Ci} then return1

If (Ma, Ms) 6= (⊥,⊥) then

j ← index ofC in {Cj+1, . . . , Ci} ; A3⇐ 1

ElseA3⇐ 0

Until A3 halts

Return0

ExperimentExpauth4
AE (A4)

K
$← K ; i← 0 ; j ← 0 ; phase← 0

RunA
EK(·,·),D∗

K(·)
4

Reply toEK(Ma, Ms) queries as follows:

i← i + 1 ; Ci
$← EK(Ma, Ms) ; A4⇐ Ci

Reply toD∗
K(C) queries as follows:

j ← j + 1 ; (Ma, Ms)← DK(C)

If j > i or C 6= Cj thenphase← 1

87

If (Ma, Ms) 6= (⊥,⊥) andphase = 1 then return1

If (Ma, Ms) 6= (⊥,⊥) thenA4⇐ 1

ElseA4⇐ 0

Until A4 halts

Return0

ExperimentExpauth5
AE (A5)

K
$← K ; i← 0 ; j ← 0

RunA
EK(·,·),D∗

K(·)
5

Reply toEK(Ma, Ms) queries as follows:

i← i + 1 ; Ci
$← EK(Ma, Ms) ; A5⇐ Ci

Reply toD∗
K(C) queries as follows:

(Ma, Ms)← DK(C)

If (Ma, Ms) 6= (⊥,⊥) and(j + 1 > i or C 6= Cj+1) then return1

If (Ma, Ms) 6= (⊥,⊥) thenj ← j + 1 ; A5⇐ 1

ElseA5⇐ 0

Until A5 halts

Return0

Forn = 1, . . . , 5, we define theAUTHn-advantageof AUTHn-adversaryAn as

Advauthn
AE (An) = Pr

[
Expauthn

AE (An) = 1
]
.

Relations between notions. The following theorem shows that if a Typen AEAD

scheme is bothPRIV-CPA-secure andAUTHn-secure, then it is alsoPRIV-CCAn-secure.

The proof of this theorem follows closely the structure of the proof of similar properties

in [10, 47] and the proof of Proposition 3.6.4; we omit details.

Theorem 4.1.3 LetAE = (K, E ,D) be a Typen AEAD scheme. For anyPRIV-CCAn

adversaryA, there exist aAUTHn adversaryI and aPRIV-CPA adversaryB such that

Advpriv-ccan
AE (A) ≤ 2 ·Advauthn

AE (I) + Advpriv-cpa
AE (B)

andI andB use the same resources asA.

88

4.2 Building Blocks

4.2.1 Encryption Schemes

Syntax and consistency. We modify the definition of a symmetric encryption scheme

from Section 2.4 to explicitly expose the IV to the caller, and possibly to the adver-

sary. Our approach for exposing the IV to the caller is a generalization of exposing a

nonce for encryption schemes [69, 71, 72]. Specifically, in this chapter asymmetric

encryption schemeSE = (K, E ,D) consists of three algorithms and is defined for some

key spaceKeySpSE , IV spaceIVSpSE , and message spaceMsgSpSE . The randomized

key-generation algorithmK returns a keyK ∈ KeySpSE ; we writeK
$← K. The pos-

sibly randomized and stateful encryption algorithmE takes a keyK ∈ KeySpSE , an IV

I ∈ IVSpSE , and a messageM ∈ MsgSpSE , and returns a ciphertextC ∈ {0, 1}∗; we

write C
$← EI

K(M). Example values forIVSpSE are{ε} (whenSE takes no IV) and

{0, 1}i for some positive integeri. The stateless and deterministic decryption algorithm

D takes a keyK ∈ KeySpSE , an IV I ∈ IVSpSE , and a ciphertextC ∈ {0, 1}∗, and

returns a messageM ∈ {0, 1}∗; we write M ← DI
K(C). The following consistency

requirement must be met:DI
K(EI

K(M)) = M for all M ∈ MsgSpSE , I ∈ IVSpSE , K ∈

KeySpSE , and any internal state and random tape ofE . Deviating from tradition, we con-

sider three types of encryption schemes, which differ in their IV requirements:nonced,

length-based IV, andrandom IVedencryption schemes, the details of which are below.

Privacy. Our notion of privacy for symmetric encryption schemes is based on the

notion of left-or-right-indistinguishability under chosen-plaintext attacks [4] which we

recall in Section 2.4. LetSE = (K, E ,D) be a symmetric encryption scheme. LetA be

an adversary that returns a bit and has access to aleft-or-right (LR) encryption oracle

EK(·,LR(·, ·, b)), for K ∈ KeySpSE andb ∈ {0, 1}, which takes inputI ∈ IVSpSE and

M0, M1 ∈ MsgSpSE , and returnsEI
K(Mb). We require that for each queryI, M0, M1

thatA makes,|M0| = |M1|. If SE is a nonced encryption scheme, we further require

that all the IV’s chosen by the adversary are unique. IfSE is arandom IVed encryption

89

schemewe require that the adversary always chooses the IV uniformly at random from

IVSpSE , and that the choice of IV is madeafter the plaintext pairM0, M1 to encrypt

is determined. IfSE is a length-based IVencryption scheme, we require that the first

IV is randomly selected fromIVSpSE as per the requirements for random IV encryption

schemes, and that each subsequent IV is a deterministic function of the initial IV and the

lengths of the previous plaintexts; we call this deterministic function thelength-based

IV-deriving functionfor the encryption scheme. (IfIVSpSE = {ε}, then the random IV

is alwaysε, and this is how we model standard encryption schemes, which do not take

IVs as input.) We define thePRIV-CPA-advantageof adversaryA as

Advpriv-cpa
SE (A) = Pr

[
K

$← K : AEK(·,LR(·,·,1)) = 1
]

−Pr
[

K
$← K : AEK(·,LR(·,·,0)) = 1

]
.

In the concrete setting [6], we say thatSE preserves privacy against adversaries that re-

spect the IV properties of the scheme (or isPRIV-CPA secure) if the PRIV-CPA-advantage

of all such adversaries using reasonable resources is small.

We note that in our constructions we can enforce the IV requirements through

our use ofencodings. Specifically, when attacking a generalized Encode-then-E&M,

Encode-then-MtE, or Encode-then-EtM construction, an adversary will not have direct

control over the inputs to the underlying encryption algorithm, and in particular may

not be able to choose arbitrary IVs. Rather, the adversary against the composite AEAD

scheme may only access the underlying encryption algorithm via the encoding algo-

rithm.

4.2.2 Message Authentication Schemes

Syntax and consistency. As with symmetric encryption, in this chapter we consider

message authentication schemes that expose an IV to the caller. Specifically, in this

chapter amessage authentication schemeMA = (K, T ,V) consists of three algo-

rithms and is defined for some key spaceKeySpMA, IV spaceIVSpMA, message space

MsgSpMA, and tag spaceTagSpMA. The randomized key-generation algorithm re-

90

turns a keyK ∈ KeySpMA; we write K
$← K. The possibly randomized and state-

ful tagging algorithm takes a keyK ∈ KeySpMA, an IV I ∈ IVSpMA, and a mes-

sageM ∈ MsgSpMA, and returns a tagτ ∈ TagSpMA; we write τ
$← T I

K(M).

The deterministic and stateless verification algorithm takes a keyK ∈ KeySpMA, an

IV I ∈ IVSpMA, a messageM ∈ MsgSpMA, and a tagτ ∈ {0, 1}∗, and returns a

bit; we write b ← VI
K(M, τ). The following consistency requirement must be met:

VI
K(M, T I

K(M)) = 1 for all M ∈ MsgSpMA, I ∈ IVSpMA, K ∈ KeySpMA, and any in-

ternal state and random tape ofT . We consider two types of MACs:noncedMACs and

conventional MACs withIVSpMA = {ε}; the latter are MACs that do not take nonces

as input.

Unforgeability. The principle notion of security for MACs that we consider is based

on strong unforgeability under chosen-message attacks [10]; recall Section 2.5. Let

MA = (K, T ,V) be a MAC. LetF be an adversary with access to a tagging oracle

T (·)
K (·) and a verification oracleV(·)

K (·, ·), for K ∈ KeySpMA. If MA is anonced MAC,

we require that all the IV’s chosen by the adversary when invoking theT (·)
K (·) oracle

are unique. We say thatF “forges” if it makes a verification queryI, M, τ such that

VI
K(M, τ) = 1 and τ was never returned byT (·)

K (·) in response to queryI, M . We

define theUF-advantageof forger F as

Advuf
MA(F) = Pr

[
K

$← K : F T (·)
K (·),V(·)

K (·,·) forges
]

.

In the concrete setting [6], we say thatMA is strongly unforgeable under chosen-

message attacks (orUF secure) if the UF-advantage of all forgers using reasonable re-

sources and respecting the IV properties of the MAC is small.

Pseudorandomness. LetMA = (K, T ,V) be a MAC. For the definition of a MAC

used in this chapter, we can still apply the notion of pseudorandomness [6, 36] from

Section 2.2 ifIVSpMA = {ε} and if the tagging algorithm is stateless and deterministic.

Specifically, letD be an adversary with access to an oracle, and letFMA denote the

91

set of all functions fromMsgSpMA to TagSpMA. We define thePRF-advantageof PRF-

adversaryD as

Advprf
MA(D) = Pr

[
K

$← K : DT ε
K(·) = 1

]
− Pr

[
g

$← FMA : Dg(·) = 1
]

.

In the concrete setting [6], we say thatMA is asecure pseudorandom function(PRF) if

thePRF-advantage of allPRF-adversaries using reasonable resources is small. If a MAC

is PRF-secure, then it is alsoUF-secure [6].

Privacy. One can apply thePRIV-CPA notion of privacy for symmetric encryption

schemes to MACs. Carter-Wegman MACs [81] and UMAC [22] are examples of MACs

that preserve privacy.

We can extend thePRIV-DCPA definition of privacy underdistinctchosen-plaintext

attacks from Chapter 3 to MACs that expose their IVs to the caller. Specifically, let

MA = (K, T ,V) be a message authentication scheme as defined in this chapter. Let

b ∈ {0, 1} be a bit. LetA be an adversary with access to a left-or-right tagging

oracleTK(·,LR(·, ·, b)) that, on inputI ∈ IVSpMA, M0, M1 ∈ MsgSpMA, returns

T I
K(Mb). We require that for all queriesI, M0, M1 to the tagging oracle,|M0| = |M1|. If

I i, M i
0, M

i
1 is thei-th oracle query, we require that for all indicesj, k, j 6= k, (Ij, M j

0) 6=

(Ik, Mk
0) and(Ij, M j

1) 6= (Ik, Mk
1); i.e., all left queries are distinct and all right queries

are distinct. We call the adversaryA nonce-respectingif it never queries its oracle with

the same nonce twice. We define thedistinct-chosen-plaintext(PRIV-DCPA) advantage

of PRIV-DCPA-adversaryA as

Advpriv-dcpa
MA (A) = Pr

[
K

$← K : ATK(·,LR(·,·,1)) = 1
]

−Pr
[

K
$← K : ATK(·,LR(·,·,0)) = 1

]
.

We can also restate Theorem 3.7.4 from Chapter 3 for the type of (IV-exposing) message

authentication schemes that we consider in this chapter. This theorem states that if a

MACMA hasIVSpMA = {ε} is a secure PRF, then it is alsoPRIV-DCPA-secure.

92

Theorem 4.2.1 Let MA be a message authentication scheme withIVSpMA = {ε}

and with a stateless and deterministic tagging algorithm. Then, given anyPRIV-DCPA

adversaryA againstMA, we can construct a distinguisherD againstMA such that

Advpriv-dcpa
MA (A) ≤ 2 ·Advprf

MA(D)

Furthermore,D uses the same resources ofA.

As in Chapter 3, even though many popular MACs arePRF-secure and thePRF notion

implies thePRIV-DCPA notion, we consider thePRIV-DCPA notion because we wish to

minimize the properties necessary in order to achieve our security goals.

4.3 Encoding Schemes

4.3.1 Overview

Our definition of encodings generalizes the encoding schemes in Chapter 3. An

encoding schemeEC is anun-keyedpublic transformation that consists of four algo-

rithms: Encode, DecodeA, DecodeB, andDecodeC. All algorithms may be stateful

andEncode may be randomized. The decoding algorithmsDecodeA, DecodeB, and

DecodeC may share state. The specific properties of the algorithms, including their

syntax, depend on the paradigm and the type of AEAD scheme in question. We first

discuss some commonalities between the encoding schemes for the three composition

paradigms and five AEAD types. Determining the appropriate consistency and security

requirements for encoding schemes is one of the main aspects of this research; we dis-

cuss these in detail in Section 4.3.2. We take care to ensure that if an encoding scheme

satisfies its consistency requirements, then a composite scheme built from this encod-

ing scheme, an encryption scheme, and a MAC is an AEAD scheme that satisfies its

corresponding consistency requirements.

Encoding for encryption. Algorithm Encode pre-processes the input messagesMa,

Ms of an AEAD scheme’s encryption algorithm. Specifically, on inputMa, Ms, Encode

93

outputs a 5-tuple(Mp, Mo, Mn, Me, Mt). Intuitively, Mp is cleartext data communi-

cated with the ciphertext,Mo is the IV/nonce for use with the underlying encryption

scheme,Me is the input for the encryption scheme,Mn is the IV/nonce for use with

the underlying MAC, andMt is the input for the MAC. The different paradigms then

use these five strings in slightly different ways and slightly different orders, as shown in

Figures 4.1–4.3 and described in detail in Section 4.4.

Decoding and decrypting. The algorithmsDecodeA, DecodeB, and DecodeC are

used in an AEAD scheme’s decryption process, which typically involves first invok-

ing DecodeA onMp to get back (at least)Mo. After the underlying encryption scheme’s

decryption algorithm usesMo to recover the messageMe, the AEAD scheme invokes

DecodeB(Mp, Me) to recover (at least)Ma and Ms. If no errors occurred, then the

AEAD scheme’s decryption algorithm returns(Ma, Ms).

Errors may occur during the decryption process, however. For example, the algo-

rithmsDecodeA or DecodeB may return⊥, indicating that there was a decoding failure,

perhaps upon detecting a replayed message. WhenDecodeA or DecodeB return⊥,

the decryption algorithm does not accept the ciphertext. It may also be the case that

DecodeA andDecodeB do not return⊥, but the MAC verification fails. When this oc-

curs, the decryption algorithm invokesDecodeC(⊥). If the tag verification succeeds,

the decryption algorithm invokesDecodeC(>). By calling DecodeC in this way, the

decryption algorithm tells the decoding algorithms whether the packet was accepted.

These can then update their state, perhaps by incrementing a counter.

Respecting the IV properties ofSE andMA. The encryption schemeSE and the

MAC MA that theEncode algorithm is combined with in a generalized Encode-then-

{E&M,MtE,EtM} construction may have certain IV requirements in order for them to

be secure. Let(M1
a , M1

s), (M2
a , M2

s), . . . be a sequence of messages, letEncode begin in

its initial state, and fori = 1, 2, . . . let (M i
p, M

i
o, M

i
n, M

i
e, M

i
t) = Encode(M i

a, M
i
s). We

call an encoding schemenonce-respecting for encryptionif M i
o 6= M j

o for all distinct

i, j. We call an encoding schemenonce-respecting for MACingif M i
n 6= M j

n for all dis-

94

tinct i, j. An encoding scheme for use with generalized Encode-then-{E&M,EtM} con-

structions (resp., generalized Encode-then-MtE constructions) israndom-IV-respecting

for encryptionif the encoding algorithm always picks the valueMo uniformly at ran-

dom from IVSpSE , and only does so after determiningMe (resp.,Me, Mn, andMt).

An encoding scheme islength-based IV-respecting for encryptionwith respect to some

length-based IV-deriving functionf if the firstMo value the encoding scheme generates

is chosen according to the rules described above for random-IV-respecting encoding

schemes, and all subsequentMo values are generated according tof , the initial Mo

value, and the lengths of the previousMe values.

If the IV spaces are finite, then it is impossible to run a nonce-respecting encoding

scheme on an infinite number of inputs. Therefore, we associate to any encoding scheme

EC a parameterMaxNumEC, and we assume that the encoding scheme is not invoked

more thanMaxNumEC times. In the above discussion and in the following sections,

whenever we write “fori = 1, 2, . . ., run Encode,” we assume that the iterations stop

beforei gets larger thanMaxNumEC. We use the same convention when discussing

AEAD schemes built fromEC.

4.3.2 Syntax, Consistency, and Security

In this section we describe the properties of Type 1–5 E&M, MtE and EtM encod-

ing schemes. A consequence of the generality of our analyses is that the definitions of

the consistency and security have a number of detailed sub-cases. Nevertheless, one can

create natural encoding schemes that have these target consistency and security proper-

ties.

E&M encoding scheme syntax and consistency.Let ECE&M = (Encode, DecodeA,

DecodeB, DecodeC) be an E&M encoding scheme. The syntax ofEncode is as described

in Section 4.3.1.DecodeA, on input a stringMp, outputs a stringMo or ⊥. DecodeB,

on input two messagesMp, Me, returns a 4-tuple of messages(Ma, Ms, Mn, Mt) or (⊥,

⊥,⊥,⊥). DecodeC takes as input the symbol> or the symbol⊥ and returns nothing.

95

Consider any two pairs of messages(Ma, Ms), (Ma, M
′
s) with |Ms| = |M ′

s|. Let

(Mp, Mo, Mn, Me, Mt)
$← Encode(Ma, Ms) for Encode in some state, and(M ′

p, M
′
o,

M ′
n, M

′
e, M

′
t)

$← Encode(Ma, M
′
s) for Encode in some (possibly different) state. We

require that|Me| = |M ′
e| and |Mt| = |M ′

t|. If this were not the case, the composite

generalized Encode-then-E&M construction might not preserve privacy.

Consider also any two sequences of message pairs(M1
a , M1

s), (M2
a , M2

s), . . . and

(N1
a , N1

s), (N2
a , N2

s), LetEncode begin in its initial state and fori = 1, 2, . . . let (M i
p,

M i
o, M

i
n, M

i
e, M

i
t) = Encode(M i

a, M
i
s). Similarly, letEncode begin in its initial state and

for i = 1, 2, . . . let (N i
p, N

i
o, N

i
n, N

i
e, N

i
t) = Encode(N i

a, N
i
s). If Encode is randomized,

assume that both sequences are generated using the same random tape. Further assume

that the randomness used in each invocation is recoverable from the output and that the

amount of randomness used per invocation is a deterministic function of the lengths of

the inputs. Consider any indexi. If |M j
s | = |N j

s | andM j
a = N j

a for all j ≤ i, then we

require thatM i
p = N i

p, M i
o = N i

o, andM i
n = N i

n.

Let (M1
a , M1

s), (M2
a , M2

s), . . . be a sequence of message pairs, and beginning with

the encoderEncode in its initial state, let(M i
p, M

i
o, M

i
n, M

i
e, M

i
t) = Encode(M i

a, M
i
s)

for i = 1, 2, We make the following additional consistency requirements onECE&M ,

depending on the type of AEAD scheme in question. We use the notationDecode[ABC]

to denote any one of the decoding algorithms.

Type 1 For anyi and for any state of the decoder, we require thatDecodeA(M i
p) = M i

o

andDecodeB(M i
p, M

i
e) = (M i

a, M
i
s, M

i
n, M

i
t).

Type 2 For any distinct indicesi, j, we require that(M i
p, M

i
e) 6= (M j

p , M
j
e). For anyi,

we require that for any state of the decoder,DecodeA(M i
p) = M i

o. Furthermore,

if DecodeB has not been invoked with(M i
p, M

i
e) or if DecodeB has been invoked

with (M i
p, M

i
e) but for each such invocation the next call toDecode[ABC] was

DecodeC(⊥), then it must be the case thatDecodeB(M i
p, M

i
e) = (M i

a, M
i
s, M

i
n,

M i
t).

Type 3 For any distinct indicesi, j, we require that(M i
p, M

i
e) 6= (M j

p , M
j
e). For anyi,

96

we require that for any state of the decoder,DecodeA(M i
p) = M i

o. Furthermore,

if DecodeB has not been invoked with(M j
p , M

j
e) for anyj ≥ i, or if DecodeB has

been invoked with(M j
p , M

j
e), for somej ≥ i, but for each such invocation the

next call toDecode[ABC] wasDecodeC(⊥), thenDecodeB(M i
p, M

i
e) = (M i

a, M
i
s,

M i
n, M

i
t).

Type 4 For i = 1, 2, . . . and with the decoder beginning in its initial state, letmi
o =

DecodeA(M i
p) and(mi

a, m
i
s, m

i
n, m

i
t) = DecodeB(M i

p, M
i
e). We require thatM i

a

= mi
a, M i

s = mi
s, M i

o = mi
o, M i

n = mi
n, andM i

t = mi
t for all i.

Type 5 We use the term E&Mcalling sequenceto denote some sequence of calls to

Decode[ABC] as they might appear in a generalized Encode-then-E&M construc-

tion. Namely, an E&M calling sequence consists of a callDecodeA(Mp) for some

Mp and, if the response is not⊥, a callDecodeB(Mp, Me) for someMe, and, if

the response is not(⊥,⊥,⊥,⊥), a call toDecodeC. We say that(Mp, Me) is suc-

cessfully decodedif, in an E&M calling sequence, the responses of the first two

decoding algorithms are not⊥ or (⊥,⊥,⊥,⊥), respectively, andDecodeC(>) is

called.

Assume that the decoding algorithms are always called as per the E&M call-

ing sequence (e.g., aDecodeB call is always followed by aDecodeC call un-

lessDecodeB returns(⊥,⊥,⊥,⊥)). Fix i ≥ 0 and assume that the messages

that have been successfully decoded are(M1
p , M1

e), . . . , (M i
p, M

i
e), and that they

were decoded in order. We require that after invokingDecodeA(M i+1
p) followed

by DecodeB(M i+1
p , M i+1

e) and thenDecodeC(>), the response to the first call is

M i+1
o and the response to the second one is(M i+1

a , M i+1
s , M i+1

n , M i+1
t).

MtE encoding syntax and consistency. Let ECMtE = (Encode, DecodeA, DecodeB,

DecodeC) be an MtE encoding scheme. The algorithms that constitute an MtE encoding

scheme have the same syntax as those in an E&M encoding scheme.

Consider any two pairs of messages(Ma, Ms), (Ma, M
′
s), where|Ms| = |M ′

s|.

97

Let (Mp, Mo, Mn, Me, Mt)
$← Encode(Ma, Ms) for Encode in some state, and(M ′

p, M
′
o,

M ′
n, M

′
e, M

′
t)

$← Encode(Ma, M
′
s) for Encode is in some (possibly different) state. We

require that|Me| = |M ′
e|. Consider also any two sequences of message pairs(M1

a , M1
s),

(M2
a , M2

s), . . . and(N1
a , N1

s), (N2
a , N2

s), Let Encode begin in its initial state and for

i = 1, 2, . . . let (M i
p, M

i
o, M

i
n, M

i
e, M

i
t) = Encode(M i

a, M
i
s). Similarly, letEncode begin

in its initial state and fori = 1, 2, . . . let (N i
p, N

i
o, N

i
n, N

i
e, N

i
t) = Encode(N i

a, N
i
s). If

Encode is randomized, assume that both sequences are generated using the same random

tape. Unlike with E&M encoding schemes, we do not require that the randomness used

in each invocation be recoverable from the output. Consider any indexi. If |M j
s | = |N j

s |

andM j
a = N j

a for all j ≤ i, then we require thatM i
p = N i

p andM i
o = N i

o.

The remainder of the consistency requirements for Type 1–Type 4 MtE encoding

schemes are the same as those for the corresponding E&M encoding schemes. We make

the following consistency requirement on encoding schemes for Type 5 CTs. We use

the term MtEcalling sequenceto refer to some sequence of calls toDecode[ABC] as

they might appear in a generalized Encode-then-MtE construction. Namely, an MtE

calling sequence consists of a callDecodeA(Mp) and, if the response is not⊥, either a

call DecodeC(⊥) finalizing the calling sequence, or a callDecodeB(Mp, Me) for some

Me and, if the response is not(⊥,⊥,⊥,⊥), a call toDecodeC. We say that(Mp, Me)

is successfully decodedif, in an MtE calling sequence, the responses of decoding algo-

rithmsDecodeA andDecodeB are not⊥ or (⊥,⊥,⊥,⊥), respectively, andDecodeC(⊥)

is never called.

Assume that the decoding algorithms are always called in successive MtE calling

sequences. Fixi ≥ 0 and assume that the messages that have been successfully decoded

are(M1
p , M1

e), . . . , (M i
p, M

i
e), and that they were decoded in order. We require that after

invoking DecodeA(M i+1
p) followed by DecodeB(M i+1

p , M i+1
e) and thenDecodeC(>),

the response to the first call isM i+1
o and the response to the second one is(M i+1

a , M i+1
s ,

M i+1
n , M i+1

t).

98

EtM encoding syntax and consistency. Let ECEtM = (Encode, DecodeA, DecodeB,

DecodeC) be an EtM encoding scheme. The syntax ofEncode is as described in Sec-

tion 4.3.1. DecodeA, on input a stringMp, outputs a 3-tuple of messages(Mo, Mn,

Mt) or (⊥,⊥,⊥). DecodeB, on input two messagesMp, Me, returns a pair of messages

(Ma, Ms) or (⊥,⊥). DecodeC takes as input the symbol> or the symbol⊥ and returns

nothing.

Consider any two pairs of messages(Ma, Ms), (Ma, M
′
s) with |Ms| = |M ′

s|. Let

(Mp, Mo, Mn, Me, Mt)
$← Encode(Ma, Ms) for Encode in some state, and(M ′

p, M
′
o,

M ′
n, M

′
e, M

′
t)

$← Encode(Ma, M
′
s) for Encode in some (possibly different) state. We

require that|Me| = |M ′
e|. Consider also any two sequences of message pairs(M1

a , M1
s),

(M2
a , M2

s), . . . and (N1
a , N1

s), (N2
a , N2

s), For i = 1, 2, . . . let (M i
p, M

i
o, M

i
n, M

i
e,

M i
t) = Encode(M i

a, M
i
s) and (N i

p, N
i
o, N

i
n, N

i
e, N

i
t) = Encode(N i

a, N
i
s). Assume that

each sequence is generated withEncode starting in its initial state. IfEncode is random-

ized, assume that both sequences are generated using the same random tape. Consider

any indexi. If |M j
s | = |N j

s | andM j
a = N j

a for all j ≤ i, then we require thatM i
p = N i

p,

M i
o = N i

o, M i
n = N i

n, andM i
t = N i

t .

We make the following additional consistency requirements onECEtM, depending

on the type of AEAD scheme in question. Let(M1
a , M1

s), (M2
a , M2

s), . . . be a sequence

of messages and, beginning withEncode in its initial state, let(M i
p, M

i
o, M

i
n, M

i
e, M

i
t) =

Encode(M i
a, M

i
s) for i = 1, 2, We use the notationDecode[ABC] to denote any one

of the decoding algorithms.

Type 1 For anyi and for any state of the decoder, we require thatDecodeA(M i
p) =

(M i
o, M

i
n, M

i
t) andDecodeB(M i

p, M
i
e) = (M i

a, M
i
s).

Type 2 For any distinct indicesi, j, we require that(M i
p, M

i
e) 6= (M j

p , M
j
e). For any

i, we require that for any state of the decoder,DecodeA(M i
p) = (M i

o, M
i
n, M

i
t).

If DecodeB has not been invoked with(M i
p, M

i
e) or if DecodeB has been invoked

with (M i
p, M

i
e) but for each such invocation the next call toDecode[ABC] was

DecodeC(⊥), thenDecodeB(M i
p, M

i
e) = (M i

a, M
i
s).

99

Type 3 For any distinct indicesi, j, we require that(M i
p, M

i
e) 6= (M j

p , M
j
e). For any

i, we require that for any state of the decoder,DecodeA(M i
p) = (M i

o, M
i
n, M

i
t).

Furthermore, ifDecodeB has not been invoked with(M j
p , M

j
e) for anyj ≥ i, or if

DecodeB has been invoked with(M j
p , M

j
e), for somej ≥ i, but for each such invo-

cation the next call toDecode[ABC] wasDecodeC(⊥), thenDecodeB(M i
p, M

i
e) =

(M i
a, M

i
s).

Type 4 Fori = 1, 2, . . . and the decoder beginning in its initial state, let(mi
o, m

i
n, m

i
t) =

DecodeA(M i
p) and(mi

a, m
i
s) = DecodeB(M i

p, M
i
e). We require thatM i

a = mi
a,

M i
s = mi

s, M i
o = mi

o, M i
n = mi

n, andM i
t = mi

t for all i.

Type 5 We use the term EtMcalling sequenceto refer to some sequence of calls to

Decode[ABC] as they might appear in a generalized Encode-then-EtM construc-

tion. Note that they have the same form as MtE calling sequences. We say that

(Mp, Me) is successfully decodedif, in an EtM calling sequence, the responses of

decoding algorithmsDecodeA andDecodeB are not(⊥,⊥,⊥) or (⊥,⊥), respec-

tively, andDecodeC(⊥) is never called.

Assume that the decoding algorithms are always called in successive EtM calling

sequences. Fixi ≥ 0 and assume that the messages that have been successfully

decoded are(M1
p , M1

e), . . . , (M i
p, M

i
e), and that they were decoded in order. We

require that after invokingDecodeA(M i+1
p) followed by DecodeB(M i+1

p , M i+1
e)

and thenDecodeC(>), the response to the first call is(M i+1
o , M i+1

n , M i+1
t) and

the response to the second one is(M i+1
a , M i+1

s).

Security definitions. We now state our security definitions for E&M, MtE and EtM

encoding schemes. We state the E&M and MtE definitions together because, for a given

n ∈ {1, . . . , 5}, the chosen-ciphertext security definition for a Typen E&M encod-

ing scheme,E& M-SECn, is equivalent to the chosen-ciphertext security definition for

a Typen MtE encoding scheme. TheE& M-SEC4 definition is based to theCOLL-CCA

definition from Chapter 3. For E&M encoding schemes, we also state a chosen-plaintext

100

collision resistance definition,E& M-COLL, which is based on the definitionCOLL-CPA

from Chapter 3.

Definition 4.3.1 (Security of E&M and MtE encoding schemes.)Let EC = (Encode,

DecodeA, DecodeB, DecodeC) be an E&M or an MtE encoding scheme. LetAcpa be

an adversary with access to an encoding oracleEncode(·, ·) and forn = 1, . . . , 5, let

An be an adversary with access to an encoding oracle and decoding oraclesDecodeA(·),

DecodeB(·, ·), DecodeC(·). Let(M i
a, M

i
s) denote an adversary’si-th encoding query and

let (M i
p, M

i
o, M

i
n, M

i
e, M

i
t) denote the response for that query. Let(mi

p, m
i
e) denoteAn’s

i-th DecodeB(·, ·) query and let(mi
a, m

i
s, m

i
n, m

i
t) denote the response for that query.

Consider the following experiments.

ExperimentExpe&m-coll
EC (Acpa)

RunA
Encode(·,·)
cpa and if it makes two queries(M i

a, M
i
s) and(M j

a , M
j
s) to

Encode(·, ·) such thati 6= j and(M i
n, M

i
t) = (M j

n, M
j
t)

then return 1 else return 0

ExperimentExpe&m-sec1
EC (A1)

RunA1
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if the following occurs:

— A1 makes a query(M i
a, M

i
s) to Encode(·, ·) and a query(mj

p, m
j
e) to

DecodeB(·, ·) such that(M i
p, M

i
e) 6= (mj

p, m
j
e) and(M i

n, M
i
t) = (mj

n, m
j
t)

then return 1 else return 0

ExperimentExpe&m-sec2
EC (A2)

RunA2
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following

occurs:

— A2 makes a query(M i
a, M

i
s) to Encode(·, ·) and a query(mj

p, m
j
e) to

DecodeB(·, ·) such that(M i
p, M

i
e) 6= (mj

p, m
j
e) and(M i

n, M
i
t) = (mj

n, m
j
t)

— A2 makes queries(mj
p, m

j
e) and(mk

p, m
k
e), where(mj

p, m
j
e) = (mk

p, m
k
e) and

j 6= k, to DecodeB(·, ·) such that the nextDecode[ABC] query following

the first of these queries is a callDecodeC(>), and the response for the

second of these queries is not(⊥,⊥,⊥,⊥)

101

then return 1 else return 0

ExperimentExpe&m-sec3
EC (A3)

RunA3
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following

occurs:

— A3 makes a query(M i
a, M

i
s) to Encode(·, ·) and a query(mj

p, m
j
e) to

DecodeB(·, ·) such that(M i
p, M

i
e) 6= (mj

p, m
j
e) and(M i

n, M
i
t) = (mj

n, m
j
t)

— A3 makes queries(mj
p, m

j
e) and(mj+l

p , mj+l
e), wherel ≥ 1, to DecodeB(·, ·)

such that the nextDecode[ABC] query following the first of these queries

is a callDecodeC(>), the response for the second of these queries is not

(⊥,⊥,⊥,⊥), and for somei, k with k ≤ i, (mj
p, m

j
e) = (M i

p, M
i
e) and

(mj+l
p , mj+l

e) = (Mk
p , Mk

e)

then return 1 else return 0

ExperimentExpe&m-sec4
EC (A4)

RunA4
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following

occurs:

— A4 makes a query(M i
a, M

i
s) to Encode(·, ·) and a query(mj

p, m
j
e) to

DecodeB(·, ·) such thati 6= j and(M i
n, M

i
t) = (mj

n, m
j
t)

— A4 makes a query(M j
a , M

j
s) to Encode(·, ·) and a query(mj

p, m
j
e) to

DecodeB(·, ·) such that(M j
p , M

j
e) 6= (mj

p, m
j
e) and(M j

n, M
j
t) = (mj

n, m
j
t)

then return 1 else return 0

ExperimentExpe&m-sec5
EC (A5)

RunA5
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following

occurs:

— A5 makes a query(M i
a, M

i
s) to Encode(·, ·) and a query(mj

p, m
j
e) to

DecodeB(·, ·) such that(M i
n, M

i
t) = (mj

n, m
j
t) and, prior to thej-th

DecodeB(·, ·) query,A5 did not make exactlyi− 1 DecodeB(·, ·) queries

that returned messages (i.e., not⊥) and that were followed byDecodeC(>)

calls

102

— A5 makes a query(M i
a, M

i
s) to Encode(·, ·) and a query(mj

p, m
j
e) to

DecodeB(·, ·) such that(M i
p, M

i
e) 6= (mj

p, m
j
e) and

(M i
n, M

i
t) = (mj

n, m
j
t), and, prior to thej-th DecodeB(·, ·) query,A5

madeexactlyi− 1 DecodeB(·, ·) queries that returned messages

(i.e., not⊥) and that were followed byDecodeC(>) calls

then return 1 else return 0

The experimentsExpmte-secn
EC (An) for MtE are identical to theExpe&m-secn

EC (An) experi-

ments for E&M.

We define theE& M-COLL-advantage of adversaryAcpa, and, forn = 1, . . . , 5, the

E& M-SECn-advantage and theMTE-SECn-advantage of adversaryAn, respectively, as

follows:

Adve&m-coll
EC (Acpa) = Pr

[
Expe&m-coll

EC (Acpa) = 1
]

Adve&m-secn
EC (An) = Pr

[
Expe&m-secn

EC (An) = 1
]

Advmte-secn
EC (An) = Pr

[
Expmte-secn

EC (An) = 1
]
.

In the concrete setting [6], we say that an E&M encoding schemeEC is E& M-COLL-

secure ifAdve&m-coll
EC (Acpa) is small for all adversariesAcpa using reasonable resources.

For n = 1, . . . , 5, we say that a Typen E&M encoding schemeEC is E& M-SECn-

secure ifAdve&m-secn
EC (An) is small for all adversariesAn using reasonable resources.

For n = 1, . . . , 5, we say that a Typen MtE encoding schemeEC is MTE-SECn-secure

if Advmte-secn
EC (An) is small for all adversariesAn using reasonable resources.

Definition 4.3.2 (Security of EtM encoding schemes.)Consider an EtM encoding

schemeEC = (Encode, DecodeA, DecodeB, DecodeC). For n = 1, . . . , 5, let An

be an adversary with access to an encoding oracleEncode(·, ·) and decoding oracles

DecodeA(·), DecodeB(·, ·), DecodeC(·). Let (M i
a, M

i
s) denote an adversary’si-th en-

coding query and let(M i
p, M

i
o, M

i
n, M

i
e, M

i
t) denote the response for that query. Letmi

p

denoteAn’s i-th DecodeA(·) query and let(mi
o, m

i
n, m

i
t) denote the response for that

query. Consider the following experiments.

103

ExperimentExpetm-sec1
EC (A1)

RunA1
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if the following occurs:

— A1 makes a query(M i
a, M

i
s) to Encode(·, ·) and a querymj

p to DecodeA(·)

such thatM i
p 6= mj

p and(M i
n, M

i
t) = (mj

n, m
j
t)

then return 1 else return 0

ExperimentExpetm-sec2
EC (A2)

RunA2
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following

occurs:

— A2 makes a query(M i
a, M

i
s) to Encode(·, ·) and a querymj

p to DecodeA(·)

such thatM i
p 6= mj

p and(M i
n, M

i
t) = (mj

n, m
j
t)

— A2 makes queries(mj
p, m

j
e) and(mk

p, m
k
e), where(mj

p, m
j
e) = (mk

p, m
k
e) and

j 6= k, to DecodeB(·, ·) such that the nextDecode[ABC] query following

the first of these queries is a callDecodeC(>), and the response for the

second of these queries is not(⊥,⊥)

then return 1 else return 0

ExperimentExpetm-sec3
EC (A3)

RunA3
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following

occurs:

— A3 makes a query(M i
a, M

i
s) to Encode(·, ·) and a querymj

p to DecodeA(·)

such thatM i
p 6= mj

p and(M i
n, M

i
t) = (mj

n, m
j
t)

— A3 makes queries(mj
p, m

j
e) and(mj+l

p , mj+l
e), wherel ≥ 1, to DecodeB(·, ·)

such that the nextDecode[ABC] query following the first of these queries is

a callDecodeC(>), the response for the second of these queries is not

(⊥,⊥), and for somei, k with k ≤ i, (mj
p, m

j
e) = (M i

p, M
i
e) and

(mj+l
p , mj+l

e) = (Mk
p , Mk

e)

then return 1 else return 0

ExperimentExpetm-sec4
EC (A4)

RunA4
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following

104

occurs:

— A4 makes a query(M i
a, M

i
s) to Encode(·, ·) and a querymj

p to DecodeA(·)

such thati 6= j and(M i
n, M

i
t) = (mj

n, m
j
t)

— A4 makes a query(M j
a , M

j
s) to Encode(·, ·) and a querymj

p to DecodeA(·)

such thatM j
p 6= mj

p and(M j
n, M

j
t) = (mj

n, m
j
t)

then return 1 else return 0

ExperimentExpetm-sec5
EC (A5)

RunA5
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, ifA5 only invokes

Decode[ABC] in legitimate EtM calling sequences, and one of the following

occurs:

— A5 makes a query(M i
a, M

i
s) to Encode(·, ·) and a querymj

p to DecodeA(·)

such that(M i
n, M

i
t) = (mj

n, m
j
t) and, prior to thej-th DecodeA(·) query,

A5 did not make exactlyi− 1 Decode[ABC] calling sequences that ended

in the callDecodeC(>)

— A5 makes a query(M i
a, M

i
s) to Encode(·, ·) and a querymj

p to DecodeA(·)

such thatM i
p 6= mj

p and(M i
n, M

i
t) = (mj

n, m
j
t), and, prior to thej-th

DecodeA(·) query,A5 madeexactlyi− 1 Decode[ABC] calling sequences

that ended in the callDecodeC(>)

then return 1 else return 0

Forn = 1, . . . , 5, we define theETM-SECn-advantage of adversaryAn as

Advetm-secn
EC (An) = Pr

[
Expetm-secn

EC (An) = 1
]

.

In the concrete setting [6], forn = 1, . . . , 5, we say that a Typen EtM encoding scheme

EC is ETM-SECn-secure ifAdvetm-secn
EC (An) is small for all adversariesAn using reason-

able resources.

105

4.4 Composition Methods

Having defined the syntax we use in this chapter for encryption and message au-

thentication schemes and having presented our new definitions of encoding schemes, we

are now in a position to formally state our generalized composition paradigms. Recall

also Figures 4.1–4.3.

Construction 4.4.1 (Generalized Encode-then-E&M.) Let ECE&M = (Encode,

DecodeA, DecodeB, DecodeC), SE = (Ke, E ,D), andMA = (Kt, T ,V) be E&M en-

coding, encryption, and message authentication schemes, respectively, with compatible

message spaces (e.g., the outputs fromEncode are suitable inputs toE andT). Let all

states initially beε. We associate to these schemes ageneralized Encode-then-E&M

AEAD schemeAEE&M = (K, E ,D) defined as follows:

AlgorithmK

Ke
$← Ke ; Kt

$← Kt

Return〈Ke, Kt〉

Algorithm E 〈Ke,Kt〉(Ma, Ms)

(Mp, Mo, Mn, Me, Mt)
$← Encode(Ma, Ms)

σ
$← EMo

Ke
(Me) ; τ

$← T Mn
Kt

(Mt)

Return〈Mp, σ, τ〉

AlgorithmD〈Ke,Kt〉(C)

If st = ⊥ then return(⊥,⊥)

If there does not existMp, σ, τ s.t.C = 〈Mp, σ, τ〉 then

st← ⊥ ; return(⊥,⊥)

ParseC as〈Mp, σ, τ〉 ; Mo ← DecodeA(Mp)

If Mo = ⊥ then st← ⊥ ; return(⊥,⊥)

Me ← DMo
Ke

(σ)

(Ma, Ms, Mn, Mt)← DecodeB(Mp, Me)

If Ms = ⊥ then st← ⊥ ; return(⊥,⊥)

106

v ← VMn
Kt

(Mt, τ)

If v = 0 then st← ⊥ ; DecodeC(⊥) ; return(⊥,⊥)

DecodeC(>)

Return(Ma, Ms)

Type 4 AEAD schemes include the boxed portions of the above pseudocode and

the other types do not. Recall that〈a1, . . . , am〉 denotes an encoding of the strings

a1, . . . , am such thata1, . . . , am are recoverable. For the call toDecodeB(Mp, Me),

recall that if any one ofMa, Ms, Mn, Mt is⊥, then they are all⊥. Although onlyD ex-

plicitly maintains state in the above pseudocode, the underlying encoding, encryption,

and MAC schemes may also maintain state.

Construction 4.4.2 (Generalized Encode-then-MtE.) Let ECMtE = (Encode,

DecodeA, DecodeB, DecodeC), SE = (Ke, E ,D), andMA = (Kt, T ,V), respectively,

be MtE encoding, encryption, and message authentication schemes with compatible

message spaces. Assume thatT always produces tags of the same length. Let all states

initially be ε. We associate to these schemes ageneralized Encode-then-MtE AEAD

schemeAEMtE = (K, E ,D) defined as follows:

AlgorithmK

Ke
$← Ke ; Kt

$← Kt

Return〈Ke, Kt〉

Algorithm E 〈Ke,Kt〉(Ma, Ms)

(Mp, Mo, Mn, Me, Mt)
$← Encode(Ma, Ms)

τ
$← T Mn

Kt
(Mt) ; σ

$← EMo
Ke

(〈Me, τ〉)

Return〈Mp, σ〉

AlgorithmD〈Ke,Kt〉(C)

If st = ⊥ then return(⊥,⊥)

If there does not existMp, σ s.t.C = 〈Mp, σ〉 then st← ⊥ ; return(⊥,⊥)

ParseC as〈Mp, σ〉 ; Mo ← DecodeA(Mp)

107

If Mo = ⊥ then st← ⊥ ; return(⊥,⊥)

M ← DMo
Ke

(σ)

If there does not existMe, τ s.t.M = 〈Me, τ〉 then

st← ⊥ ; DecodeC(⊥) ; return(⊥,⊥)

ParseM as〈Me, τ〉

(Ma, Ms, Mn, Mt)← DecodeB(Mp, Me)

If Ms = ⊥ then st← ⊥ ; return(⊥,⊥)

v ← VMn
Kt

(Mt, τ)

If v = 0 then st← ⊥ ; DecodeC(⊥) ; return(⊥,⊥)

DecodeC(>)

Return(Ma, Ms)

Type 4 AEAD schemes include the boxed portions of the above pseudocode and the

other types do not. We require that the length of the string〈Me, τ〉 depend only on the

lengths ofMe andτ .

Construction 4.4.3 (Generalized Encode-then-EtM.) Let ECEtM = (Encode,

DecodeA, DecodeB, DecodeC), SE = (Ke, E ,D), andMA = (Kt, T ,V), respectively,

be EtM encoding, encryption, and message authentication schemes with compatible

message spaces. Let all states initially beε. We associate to these schemes ageneral-

ized Encode-then-EtM AEAD schemeAEEtM = (K, E ,D) defined as follows:

AlgorithmK

Ke
$← Ke ; Kt

$← Kt

Return〈Ke, Kt〉

Algorithm E 〈Ke,Kt〉(Ma, Ms)

(Mp, Mo, Mn, Me, Mt)
$← Encode(Ma, Ms)

σ
$← EMo

Ke
(Me) ; τ

$← T Mn
Kt

(〈Mt, σ〉)

C ← 〈Mp, σ, τ〉

ReturnC

108

AlgorithmD〈Ke,Kt〉(C)

If st = ⊥ then return(⊥,⊥)

If there does not existMp, σ, τ s.t.C = 〈Mp, σ, τ〉 then

st← ⊥ ; return(⊥,⊥)

ParseC as〈Mp, σ, τ〉 ; (Mo, Mn, Mt)← DecodeA(Mp)

If Mo = ⊥ then st← ⊥ ; return(⊥,⊥)

v ← VMn
Kt

(〈Mt, σ〉, τ)

If v = 0 then st← ⊥ ; DecodeC(⊥) ; return(⊥,⊥)

Me ← DMo
Ke

(σ)

(Ma, Ms)← DecodeB(Mp, Me)

If Ms = ⊥ then st← ⊥ ; return(⊥,⊥)

DecodeC(>)

Return(Ma, Ms)

Type 4 AEAD schemes include the boxed portions of the above pseudocode and the

other types do not.

4.5 Generalized Encode-then-E&M Security

4.5.1 Privacy

Theorem 4.5.1 below captures our chosen-plaintext privacy result for generalized

Encode-then-E&M AEAD constructions. Informally, this theorem states that if a Type

n, n ∈ {1, . . . , 5}, generalized Encode-then-E&M constructionAE is built from an

encryption schemeSE , a MACMA, and a Typen E&M encoding schemeEC, and if

the latter respects the nonce requirements ofSE andMA, thenAE will be PRIV-CPA-

secure if (1)SE is PRIV-CPA-secure,MA is PRIV-DCPA-secure, andEC is E& M-COLL-

secure or (2)SE is PRIV-CPA-secure andMA is PRIV-CPA-secure. We remark that

if the underlying MAC requires a nonce, thenEC is automaticallyE& M-COLL-secure

(Adve&m-coll
EC (C) = 0). We also recall that some MACs, e.g., Carter-Wegman MACs [81]

109

like UMAC [22] arePRIV-CPA-secure, and thatPRF-secure MACs like OMAC [41] are

alsoPRIV-DCPA-secure via Theorem 4.2.1.

Theorem 4.5.1 (Privacy of Generalized Encode-then-E&M Schemes.) Let SE ,

MA, and EC be an encryption, a message authentication, and an E&M encoding

scheme, respectively. LetAE be the AEAD scheme associated to them as per Con-

struction 4.4.1. Then, given any adversaryS againstAE , there exist adversariesA, B,

D, andC such that

Advpriv-cpa
AE (S) ≤ Advpriv-cpa

SE (A) + Advpriv-dcpa
MA (D) + 2 ·Adve&m-coll

EC (C) and

Advpriv-cpa
AE (S) ≤ Advpriv-cpa

SE (A) + Advpriv-cpa
MA (B) .

Furthermore,A, B, D, andC use the same resources asS except thatA’s, B’s, and

D’s inputs to their respective oracles may be of different lengths than those ofS

(due to the encoding). IfEC is nonce-respecting-for-encryption (resp., length-based

IV-respecting-for-encryption or random-IV-respecting-for-encryption), thenA will be

nonce-respecting (resp., length-based IV-respecting or random-IV-respecting). Simi-

larly, if EC is nonce-respecting-for-MACing, thenB andD will be nonce-respecting.

The proof of Theorem 4.5.1 is similar to the proof of Theorem 3.7.5 from Chapter 3; we

omit details. The principle differences between the proof of Theorem 4.5.1 and the proof

of Theorem 3.7.5 are the following: we consider AEAD schemes that take associated

data; we allowSE to take nonces, length-based IVs, or random-IVs as input, andMA

to take nonces as input; in order to use the hybrid argument, we exploit the fact that we

can by definition recover the randomness from the output ofEC’s encoding function;

because the encoding algorithm controls the IVs for the underlying encryption scheme

and MAC, we use the same randomness for both encoding sequences.

4.5.2 Integrity

We begin by formalizing a new property for generalized Encode-then-E&M

AEAD schemes. As with our use of thePRIV-DCPA notion, we use this security no-

tion because we believe it important to accurately describe the specific properties that

110

we require from the AEAD scheme. In most situations, however, one does not actu-

ally need to manipulate this definition but must merely invoke Proposition 4.5.3, which

states that if an AEAD scheme’s underlying encryption algorithm is length-preserving,

then the AEAD scheme automatically has the property that we specify below.

Definition 4.5.2 Fix n ∈ {1, . . . , 5}. LetSE ,MA, andEC, respectively, be an encryp-

tion, a message authentication, and an E&M encoding scheme. LetAE = (K, E ,D)

be a Typen AEAD scheme associated to them as per Construction 4.4.1. LetA be an

adversary with access to an encryption oracleEK(·, ·) and a decryption oracleDK(·).

Let (M i
a, M

i
s) denote the adversary’si-th encryption oracle query,(M i

p, M
i
o, M

i
n, M

i
e,

M i
t) denote the encoding of that query, and〈M i

p, σi, τi〉 denote the returned ciphertext.

Let 〈mi
p, σ

′
i, τ

′
i〉 denote thei-th decryption query (assuming it is parsable), andmi

o, m
i
n,

mi
e, m

i
t, m

i
a, m

i
s denote the internal values in the decryption process (or⊥ if an error

occurs during decryption).A “wins” if it makes a decryption query〈mj
p, σ

′
j, τ

′
j〉 such

that(mj
o, m

j
e) = (M i

o, M
i
e) for somei ∈ {1, . . . , k} butσ′j 6= σi (wherek is the number

of EK(·, ·) oracle queries made byA beforeA’s j-th decryption query). We define the

E& M-SP-advantage ofE& M-SPadversaryA as

Adve&m-sp
AE (A) = Pr

[
K

$← K : A “wins”
]

.

The following proposition shows that if the underlying encryption scheme is length

preserving, then an adversary cannot win the game described in the above definition.

Proposition 4.5.3 Fix n ∈ {1, . . . , 5}. Let SE ,MA, andEC, respectively, be an en-

cryption, a MAC, and a Typen E&M encoding scheme. LetAE = (K, E ,D) be a Type

n AEAD scheme associated to them as per Construction 4.4.1. LetA be anE& M-SP-

adversary. IfSE ’s encryption operation is length-preserving, then

Adve&m-sp
AE (A) = 0 .

Proof: If SE ’s encryption operation is length-preserving, then given any IVI, the en-

cryption operation is bijective. This meansA can never win.

111

We now state our authenticity result for generalized Encode-then-E&M constructions.

Informally, this theorem states that if a Typen, n ∈ {1, . . . , 5}, generalized Encode-

then-E&M constructionAE is built from an encryption schemeSE , a MACMA, and a

Typen E&M encoding schemeEC, and if the latter respects the nonce requirements of

SE andMA, thenAE will be AUTHn-secure ifMA is UF-secure,EC is E& M-SECn-

secure, andAE has theE& M-SPproperty specified above. As Proposition 4.5.3 shows,

it is easy to construct AEAD schemes that have theE& M-SP property. We further re-

mark that while the definitions forE& M-SECn-security may be involved, with multiple

subcases, there exist natural encoding schemes that satisfy theE& M-SECn security def-

initions.

Theorem 4.5.4 (Integrity of Generalized Encode-then-E&M Schemes.) Fix n ∈

{1, . . . , 5}. Let SE ,MA, andEC, respectively, be an encryption, a MAC, and a Type

n E&M encoding scheme. LetAE be a Typen AEAD scheme associated to them as

per Construction 4.4.1. Then, given anyAUTHn-adversaryI againstAE , there exist

adversariesF , C, andS such that

Advauthn
AE (I)≤Advuf

MA(F) + Adve&m-secn
EC (C) + Adve&m-sp

AE (S) .

Furthermore,F , C, andS use the same resources asI except thatF ’s messages to its or-

acles may be of different lengths thanI ’s queries to its oracles (due to encoding) andC ’s

messages to its decoding oracle may have slightly different lengths thanI ’s decryption

queries. IfEC is nonce-respecting-for-MACing, thenF will be nonce-respecting.

The proof of the above theorem is below. The proof for Type 4 AEAD schemes is similar

to the proof of Theorem 3.8.2 in Chapter 3 except that here we consider AEAD schemes

that handle associated data.

Proof of Theorem 4.5.4: Let F , C, andS be adversaries that runI and reply toI ’s

oracle queries using their own oracles. In more detail,F presentsI with encryption

and decryption-verification oracles exactly as in Construction 4.4.1 except thatF uses

its own oracles for handling the tagging and verification portions of Construction 4.4.1.

Similarly, C runsI exactly as in Construction 4.4.1 except that it runs all encoding and

112

decoding operations through its own oracles. In the case ofS, S simply passes all ofI ’s

encryption and decryption queries to its (S’s) own oracles.

Let (M i
a, M

i
s) denoteI ’s i-th oracle query, let(M i

p, M
i
o, M

i
n, M

i
e, M

i
t) denote the

encoding of that query, and let〈M i
p, σi, τi〉 denote the returned ciphertext. Additionally,

let 〈mi
p, σ

′
i, τ

′
i〉 denote thei-th decryption-verification query (assuming it is parsable),

andmi
o, m

i
n, m

i
e, m

i
t, m

i
a, m

i
s denote the internal values in the decryption process (or⊥

if an error occurs during decryption). Letj denote the index ofI ’s (first) winning query

and letk denote the number of encryption oracle queries performed at the timeI wins.

Let E be the event thatI wins. By partitioning eventE, we will see that ifI

succeeds in forging, then one ofF , C, andS also wins their game.

For a Type 1 AEAD scheme, we partition eventE as follows:

E : I wins

E1 : E occurs and(mj
p, m

j
e, τ

′
j) ∈ { (M i

p, M
i
e, τi) : 1 ≤ i ≤ k } // S wins

E2 : E occurs and(mj
p, m

j
e, τ

′
j) 6∈ { (M i

p, M
i
e, τi) : 1 ≤ i ≤ k }

E2,1 : E2 occurs and(mj
n, m

j
t , τ

′
j) 6∈ { (M i

n, M
i
t , τi) : 1 ≤ i ≤ k } // F wins

E2,2 : E2 occurs and(mj
n, m

j
t , τ

′
j) ∈ { (M i

n, M
i
t , τi) : 1 ≤ i ≤ k } // C wins

The above partitioning shows that if eventE occurs, then one ofE1, E2,1, or E2,2 must

occur. Note that ifE1 occurs thenS wins its game. This is becausemj
p = M i

p (and

thereforemj
o = M i

o by consistency requirements on the encoding scheme) andτ ′j =

τi but σ′j 6= σi (otherwise this would not be a winning forgery forI). Consequently

(mj
o, m

j
e) = (M i

o, M
i
e), but σ′j 6= σi. Also, if E2,1 occurs, thenF forges. This follows

from the fact thatF never queried its tagging oracle with(mj
n, m

j
t) or, if it did, the

response was notτ ′j. Lastly, if E2,2 occurs, thenC wins its game. This is because

we know that there is some indexi such that(mj
n, m

j
t) = (M i

n, M
i
t) but (mj

p, m
j
e) 6=

(M i
p, M

i
e) (the latter comes from eventE2). Together, this means that the probability

thatI wins is upper bounded by the sum of the probabilities thatC, F , andS win their

respective games. The theorem follows for Type 1 AEAD schemes.

We now consider the other types of AEAD schemes. For Type 2, we partitionE

as follows:

113

E : I wins

E1 : E occurs and(mj
p, m

j
e, τ

′
j) ∈ { (M i

p, M
i
e, τi) : 1 ≤ i ≤ k }

E1,1 : E1 occurs and there does not existi

such that(mj
p, σ

′
j, τ

′
j) = (M i

p, σi, τi) // S wins

E1,2 : E1 occurs and there existsi

such that(mj
p, σ

′
j, τ

′
j) = (M i

p, σi, τi) // C wins

E2 : E occurs and(mj
p, m

j
e, τ

′
j) 6∈ { (M i

p, M
i
e, τi) : 1 ≤ i ≤ k }

E2,1 : E2 occurs and(mj
n, m

j
t , τ

′
j) 6∈ { (M i

n, M
i
t , τi) : 1 ≤ i ≤ k } // F wins

E2,2 : E2 occurs and(mj
n, m

j
t , τ

′
j) ∈ { (M i

n, M
i
t , τi) : 1 ≤ i ≤ k } // C wins

This partitioning of eventE is the same as with Type 1 except that we further

partition eventE1. If eventE1,1 occurs thenS wins (since(mj
o, m

j
e) = (M i

o, M
i
e) for

some indexi butσ′j 6= σi). In the case ofE1,2, in order forI ’s j-th decryption query to be

considered a forgery, it must be a replayed packet. The first would have been accepted

(by the consistency requirements on AEAD schemes). This means thatDecodeB failed

to return all⊥s in response to its second query withmj
p, m

j
e, allowingC to win.

For Type 3 we partitionE as with Type 2. As with Type 2, whenE1,2 occursC

will win its game (althoughC ’s game with Type 3 encoding schemes is different than

its game with Type 2 encoding schemes).

For Type 4 we partitionE as follows:

E : I wins

E1 : E occurs and(mj
n, m

j
t) 6∈ {(M1

n, M1
t), . . . , (Mk

n , Mk
t)} // F wins

E2 : E occurs and(mj
n, m

j
t) ∈ {(M1

n, M1
t), . . . , (Mk

n , Mk
t)}

E2,1 : E2 occurs and eitherk < j or (mj
p, m

j
e) 6= (M j

p , M
j
e) // C wins

E2,2 : E2 occurs andk ≥ j and(mj
p, m

j
e) = (M j

p , M
j
e)

E2,2,1 : E2,2 occurs andτ ′j 6= τj and(mj
n, m

j
t) 6∈ {(M1

n, M1
t), . . . , (M j−1

n , M j−1
t),

(M j+1
n , M j+1

t), . . . , (Mk
n , Mk

t)} // F wins

E2,2,2 : E2,2 occurs andτ ′j 6= τj and(mj
n, m

j
t) ∈ {(M1

n, M1
t), . . . , (M j−1

n , M j−1
t),

(M j+1
n , M j+1

t), . . . , (Mk
n , Mk

t)} // C wins

114

E2,2,3 : E2,2 occurs andτ ′j = τj // S wins

If eventsE1 or E2,2,1 occur thenF wins its game; if eventsE2,1 or E2,2,2 occur, then

C wins its game; if eventE2,2,3 occurs, thenS wins its game. Note that, forE2,2,3,

we make use of the fact that, as per Construction 4.4.1, once a forgery attempt is de-

tected, the decryption algorithm enters the state⊥. This means that, prior to the first

forgery attempt, all the decryption-verification queries were in order and, sinceI ’s j-th

decryption-verification oracle query is a forgery, it must be the case thatσ′j 6= σj. (Note

that, for Type 4 constructions, if the decryption algorithm didn’t enter a halting state we

could not guarantee thatσ′j 6= σj.) Additionally, by the consistency requirements on the

encoding scheme,mj
o = M j

o .

Let us now consider Type 5. As before, letj denote the index ofI ’s winning

decryption-verification-oracle query. Letl be the number of decryption-verification or-

acle queries (including thej-th query) that succeeded in decrypting (i.e., not returning

(⊥,⊥)). We partitionE as follows:

E : I wins

E1 : E occurs and(mj
n, m

j
t) 6∈ {(M1

n, M1
t), . . . , (Mk

n , Mk
t)} // F wins

E2 : E occurs and(mj
n, m

j
t) ∈ {(M1

n, M1
t), . . . , (Mk

n , Mk
t)}

E2,1 : E2 occurs and eitherk < l or (mj
p, m

j
e) 6= (M l

p, M
l
e) // C wins

E2,2 : E2 occurs andk ≥ l and(mj
p, m

j
e) = (M l

p, M
l
e)

E2,2,1 : E2,2 occurs andτ ′j 6= τl and(mj
n, m

j
t) 6∈ {(M1

n, M1
t), . . . , (M l−1

n , M l−1
t),

(M l+1
n , M l+1

t), . . . , (Mk
n , Mk

t)} // F wins

E2,2,2 : E2,2 occurs andτ ′j 6= τl and(mj
n, m

j
t) ∈ {(M1

n, M1
t), . . . , (M l−1

n , M l−1
t),

(M l+1
n , M l+1

t), . . . , (Mk
n , Mk

t)} // C wins

E2,2,3 : E2,2 occurs andτ ′j = τl // S wins

If eventsE1 or E2,2,1 occur thenF wins its game. Furthermore, if eventsE2,1 or E2,2,2

occur, thenC wins its game. And if eventE2,2,3 occurs, thenS wins its game. To see

thatS wins whenE2,2,3 occurs, we use the consistency requirement on Type 5 encoding

115

schemes which imply thatmj
o = M l

o. Furthermore, it must be the case thatσ′j 6= σl

since otherwise thej-th decryption-verification query would not be a forgery.

4.6 Generalized Encode-then-MtE Security

4.6.1 Privacy

Theorem 4.6.1 below gives our chosen-plaintext privacy result for generalized

Encode-then-MtE constructions. Informally, the theorem states that a Typen, n ∈

{1, . . . , 5}, generalized Encode-then-MtE construction will preserve privacy under

chosen-plaintext attacks (bePRIV-CPA-secure) if the underlying encryption scheme pre-

serves privacy against chosen-plaintext attacks, i.e., if the underlying encryption scheme

is alsoPRIV-CPA-secure.

Theorem 4.6.1 (Privacy of Generalized Encode-then-MtE Schemes.)LetSE ,MA,

andEC, respectively, be an encryption, a message authentication, and an MtE encoding

scheme. LetAE be the AEAD scheme associated to them as per Construction 4.4.2.

Then, given any adversaryS againstAE , there exists an adversaryA such that

Advpriv-cpa
AE (S) ≤ Advpriv-cpa

SE (A) .

Furthermore,A uses the same resources asS except that its input to its oracle may be of

different lengths than those ofS (due to the encoding). IfEC is nonce-respecting-for-

encryption (resp., length-based IV-respecting-for-encryption or random-IV-respecting-

for-encryption), thenA will be nonce-respecting (resp., length-based IV-respecting or

random-IV-respecting).

The proof is similar to that of Theorem 4.5 in [10]; we omit details. We remark that the

proof relies on the fact that if the encoding algorithm is run using the same random tape,

on two pairs of messages(Ma, Ms), (Ma, Ns) such that|Ms| = |Ns|, then the resulting

values forMp andMo will be the same due to the consistency requirements for MtE

encoding schemes in Section 4.3.2.

116

4.6.2 Integrity

We first formalize a new property for generalized Encode-then-MtE AEAD

schemes, analogous to theE& M-SPproperty for generalized Encode-then-E&M AEAD

schemes.

Definition 4.6.2 Fix n ∈ {1, . . . , 5}. Let SE , MA, andEC, respectively, be an en-

cryption, a message authentication, and an MtE encoding scheme. LetAE = (K, E ,D)

be a Typen AEAD scheme associated to them as per Construction 4.4.2. LetA be an

adversary with access to an encryption oracleEK(·, ·) and a decryption oracleDK(·).

Let (M i
a, M

i
s) denote the adversary’si-th encryption oracle query,(M i

p, M
i
o, M

i
n, M

i
e,

M i
t) denote the encoding of that query,τi denote the intermediate tag, and〈M i

p, σi〉 de-

note the returned ciphertext. Let〈mi
p, σ

′
i〉 denote thei-th decryption query (assuming

it is parsable),τ ′i denote the intermediate tag, andmi
o, m

i
n, m

i
e, m

i
t, m

i
a, m

i
s denote the

internal values in the decryption process (or⊥ if an error occurs during decryption).A

“wins” if it makes a decryption query〈mj
p, σ

′
j〉 such that(mj

o, m
j
e, τ

′
j) = (M i

o, M
i
e, τi)

for somei ∈ {1, . . . , k} but σ′j 6= σi (wherek is the number ofEK(·, ·) oracle queries

made byA beforeA’s j-th decryption query). We define theMTE-SP-advantageof

MTE-SP-adversaryA as

Advmte-sp
AE (A) = Pr

[
K

$← K : A “wins”
]

.

As in Section 4.5, we present a proposition showing that if the underlying encryption

scheme is length preserving, then an adversary cannot win the game described above;

we omit the proof.

Proposition 4.6.3 Fix n ∈ {1, . . . , 5}. Let SE ,MA, andEC, respectively, be an en-

cryption, a MAC, and a Typen MtE encoding scheme. LetAE = (K, E ,D) be a Type

n AEAD scheme associated to them as per Construction 4.4.2. LetA be anMTE-SP-

adversary. IfSE ’s encryption operation is length-preserving, then

Advmte-sp
AE (A) = 0 .

117

We now state our integrity result for generalized Encode-then-MtE constructions. In-

formally, this theorem states that if a Typen, n ∈ {1, . . . , 5}, generalized Encode-then-

MtE constructionAE is built from an encryption schemeSE , a MACMA, and a Type

n MtE encoding schemeEC, and if the latter respects the nonce requirements ofSE and

MA, thenAE will be AUTHn-secure ifMA is UF-secure,EC is MTE-SECn-secure, and

AE has theMTE-SPproperty specified above. As Proposition 4.6.3 shows, it is easy to

construct AEAD schemes that have theMTE-SPproperty. As with theE& M-SECn secu-

rity property, there exist natural encoding schemes that satisfy theMTE-SECn security

definitions.

Theorem 4.6.4 (Integrity of Generalized Encode-then-MtE Schemes.) Fix n ∈

{1, . . . , 5}. Let SE , MA, andEC, respectively, be an encryption, a message authen-

tication, and an MtE encoding scheme. LetAE be a Typen AEAD scheme associated

to them as per Construction 4.4.2. Then, given anyAUTHn-adversaryI againstAE ,

there exist adversariesF , C, andS such that

Advauthn
AE (I)≤Advuf

MA(F) + Advmte-secn
EC (C) + Advmte-sp

AE (S) .

Furthermore,F , C, andS use the same resources asI except thatF ’s messages to its or-

acles may be of different lengths thanI ’s queries to its oracles (due to encoding) andC ’s

messages to its decoding oracle may have slightly different lengths thanI ’s decryption

queries. IfEC is nonce-respecting-for-MACing, thenF will be nonce-respecting.

Proof: The proof is based on the proof of Theorem 4.5.4 for generalized Encode-then-

E&M constructions. The partitioning of eventE for Type 2 and Type 3 differs slightly

from the partitioning we used in the proof of Theorem 4.5.4. The difference is because

in the generalized Encode-then-MtE construction, the tag is not sent in the clear. The

revised partitioning is as follows:

E : I wins

E1 : E occurs and(mj
p, m

j
e, τ

′
j) ∈ { (M i

p, M
i
e, τi) : 1 ≤ i ≤ k }

E1,1 : E1 occurs and there does not existi

118

such that(mj
p, σ

′
j) = (M i

p, σi) // S wins

E1,2 : E1 occurs and there existsi such that(mj
p, σ

′
j) = (M i

p, σi) // C wins

E2 : E occurs and(mj
p, m

j
e, τ

′
j) 6∈ { (M i

p, M
i
e, τi) : 1 ≤ i ≤ k }

E2,1 : E2 occurs and(mj
n, m

j
t , τ

′
j) 6∈ { (M i

n, M
i
t , τi) : 1 ≤ i ≤ k } // F wins

E2,2 : E2 occurs and(mj
n, m

j
t , τ

′
j) ∈ { (M i

n, M
i
t , τi) : 1 ≤ i ≤ k } // C wins

The partitioning ofE for Type 1, Type 4, and Type 5 is the same as in the proof of

Theorem 4.5.4.

4.7 Generalized Encode-then-EtM Security

4.7.1 Privacy

Theorem 4.7.1 below gives our chosen-plaintext privacy result for generalized

Encode-then-EtM constructions. Informally, the theorem states that a Typen, n ∈

{1, . . . , 5}, generalized Encode-then-EtM construction will preserve privacy under

chosen-plaintext attacks (bePRIV-CPA-secure) if the underlying encryption scheme is

PRIV-CPA-secure.

Theorem 4.7.1 (Privacy of Generalized Encode-then-EtM Schemes.)LetSE ,MA,

andEC, respectively, be an encryption, a message authentication, and an EtM encoding

scheme. LetAE be the AEAD scheme associated to them as per Construction 4.4.3.

Then, given anyPRIV-CPA adversaryS againstAE , there exists an adversaryA such

that

Advpriv-cpa
AE (S)≤Advpriv-cpa

SE (A) .

Furthermore,A use the same resources asS except that its inputs to its oracle may be of

different lengths than those ofS (due to the encoding). IfEC is nonce-respecting-for-

encryption (resp., length-based IV-respecting-for-encryption or random-IV-respecting-

for-encryption), thenA will be nonce-respecting (resp., length-based IV-respecting or

random-IV-respecting).

119

The proof is similar to that of Theorem 4.7 in [10]. We note that the proof relies on the

fact that if the encoding algorithm is run using the same random tape, on two pairs of

messages(Ma, Ms), (Ma, Ns) such that|Ms| = |Ns|, then the resulting values forMp,

Mo, Mn andMt will be the same per the consistency requirements for EtM encoding

schemes specified in Section 4.3.2.

4.7.2 Integrity

Theorem 4.7.2 below gives our integrity result for generalized Encode-then-EtM

constructions. Informally, this theorem states that if a Typen, n ∈ {1, . . . , 5}, gen-

eralized Encode-then-EtM constructionAE is built from an encryption schemeSE , a

MACMA, and a Typen EtM encoding schemeEC, and if the latter respects the nonce

requirements ofSE andMA, thenAE will be AUTHn-secure ifMA is UF-secure and

EC is ETM-SECn-secure. Note that unlike the integrity results for generalized Encode-

then-E&M and generalized Encode-then-MtE constructions (Theorems 4.5.4 and 4.6.4),

the security ofAE does not depend on an additional property ofAE (like the properties

E& M-SP andMTE-SP). As with theE& M-SECn andMTE-SECn security properties for

E&M and MtE encoding schemes, there exist natural EtM encoding schemes that satisfy

theETM-SECn security definitions.

Theorem 4.7.2 (Integrity of Generalized Encode-then-EtM Schemes.) Fix n ∈
{1, . . . , 5}. Let SE , MA, andEC, respectively, be an encryption, a message authen-

tication, and an EtM encoding scheme. LetAE be a Typen AEAD scheme associated

to them as per Construction 4.4.3. Then, given anyAUTHn adversaryI againstAE ,

there exist adversariesF andC such that

Advauthn
AE (I) ≤ Advuf

MA(F) + Advetm-secn
EC (C).

Furthermore,F andC use the same resources asI except thatF ’s messages to its oracles

may be of different lengths thanI ’s queries to its oracles (due to encoding) andC ’s

messages to its decoding oracle may have slightly different lengths thanI ’s decryption

queries. IfEC is nonce-respecting-for-MACing, thenF will be nonce-respecting.

120

Proof: The proof is similar to that of Theorem 4.5.4 and Theorem 4.6.4. LetF andC

be adversaries that runI and reply toI ’s oracle queries using their own oracles. Let

(M i
a, M

i
s) denoteI ’s i-th encryption query, let(M i

p, M
i
o, M

i
n, M

i
e, M

i
t) denote the en-

coding of that query, and let〈M i
p, σi, τi〉 denote the returned ciphertext. Let〈mi

p, σ
′
i, τ

′
i〉

denote thei-th decryption-verification query (assuming it is parsable), andmi
o, m

i
n, m

i
t,

mi
e, m

i
a, m

i
s denote the internal values in the decryption process (or⊥ if an error occurs

during decryption). Assume thatI wins and letj denote the index of its (first) winning

decryption-verification query andk denote the number of encryption queries performed

at the timeI wins. We will prove that eitherF or C also wins its game.

For the 5 types of AEAD schemes, we consider the following events:

E : I wins

E1 : E occurs and(mj
n, m

j
t , σ

′
j, τ

′
j) 6∈ { (M i

n, M
i
t , σi, τi) : 1 ≤ i ≤ k } // F wins

E2 : E occurs and(mj
n, m

j
t , σ

′
j, τ

′
j) ∈ { (M i

n, M
i
t , σi, τi) : 1 ≤ i ≤ k } // C wins

Note that if eventE occurs then eitherE1 or E2 must occur. EventE1 implies that

the query(mj
n, 〈m

j
t , σ

′
j〉, τ ′j) is accepted by the MAC verification oracle (otherwise

〈mj
p, σ

′
j, τ

′
j〉 would not be a winning query forI) and is such thatτ ′j was never returned

by the tagging oracle as an answer to query(mj
n, 〈m

j
t , σ

′
j〉). Therefore, ifE1 occurs then

F forges.

Assume that eventE2 occurs. Then there exists an indexi ≤ k such that

(mj
n, m

j
t , σ

′
j, τ

′
j) = (M i

n, M
i
t , σi, τi). For Type 1 AEAD schemes, it must be the case

that mj
p 6= M i

p (otherwise〈mj
p, σ

′
j, τ

′
j〉 would not be a winning query forI). Since

M i
p 6= mj

p and(M i
n, M

i
t) = (mj

n, m
j
t), C wins. For Type 2 and Type 3 AEAD schemes,

C also wins ifmj
p 6= M i

p. If mj
p = M i

p then for Type 2 AEAD schemes, it must be the

case that〈mj
p, σ

′
j, τ

′
j〉 is a replayed packet (otherwise this would not be a winning query

for I). Hence(mj
p, m

j
e) was decoded correctly (i.e., without returning(⊥,⊥)) twice.

Therefore,C also wins in this case. For Type 3 AEAD schemes,mj
p = M i

p implies that

〈mj
p, σ

′
j, τ

′
j〉 is a replayed or out-of-order packet (otherwise this would not be a winning

query for I). Again, this implies thatC wins. For Type 4 AEAD schemes, it must

be the case that eitheri 6= j or mj
p 6= M j

p (if i = j andmj
p = M j

p , thenj ≤ k and

121

〈mj
p, σ

′
j, τ

′
j〉 = 〈M j

p , σj, τj〉, which contradicts the assumption that〈mj
p, σ

′
j, τ

′
j〉 is a win-

ning query forI). In both of these casesC wins. Finally, for Type 5 AEAD schemes,

let l be the number of decryption-verification oracle queries prior to thej-th one that

succeeded in decrypting (i.e., did not return(⊥,⊥)). Then it must be the case that either

l 6= i − 1 or mj
p 6= M i

p (if l = i − 1 andmj
p = M i

p, thenl + 1 ≤ k and〈mj
p, σ

′
j, τ

′
j〉 =

〈M l+1
p , σl+1, τl+1〉, contradicting the assumption that〈mj

p, σ
′
j, τ

′
j〉 is a winning query for

I). In both of these casesC wins. Hence for all AEAD-scheme types,E2 implies that

C wins.

Additional Information

The material in this chapter comes from in-progress work. I was a primary re-

searcher for this work, the full citation of which is currently:

Tadayoshi Kohno, Adriana Palacio, and John Black. Authenticated-

encryption: New notions and constructions. Manuscript, 2006.

5 The CWC Authenticated

Encryption Scheme

In addition to creating AEAD schemes from standard encryption and message

authentication schemes, there is a push toward producing block cipher-based AEAD

schemes [13, 35, 44, 47, 69, 72, 82]. Despite this push, among the previous works

there does not exist any block cipher-based AEAD scheme simultaneously having all

five of the following properties: provable security, parallelizability, high performance in

hardware, high performance in software, and freedom from intellectual property claims.

Even though not all applications require all five of the these properties, we believe that

many applications will benefit from at least one of these properties. Moreover, appli-

cations may need to interoperate with other systems that desire a different subset of

properties.

In this chapter we investigate the design of a block cipher-based AEAD scheme

having all five of the above properties. Finding an appropriate balance between all five of

these properties is, however, not straightforward since natural approaches to addressing

some of the properties are actually disadvantageous with respect to other properties. We

believe we have overcome these challenges and, in doing so, introduce a new encryption

scheme that we callCarter-Wegman Counter(CWC) mode.

An earlier version of the material in this chapter appears in Fast Software Encryption, volume 3017
of Lecture Notes in Computer Science [50], copyright the IACR.

122

123

5.1 Overview

Motivation. One principle motivation for the research in this chapter is IPsec. (IPsec

is a suite of cryptographic protocols that the IETF is currently in the process of stan-

dardizing.) From a pragmatic perspective, standardization bodies like the IETF, as well

as some vendors, prefer patent-free modes over patented modes. For example, the el-

egant OCB scheme [72] was apparently rejected from the IEEE 802.11 working group

because of patent concerns. From a hardware performance perspective, because none

of the pre-existing patent-free AEAD schemes are parallelizable, it to impossible to

make pre-existing patent-free AEAD schemes run faster than approximately 2 Gbps us-

ing conventional ASIC technology and a single processing unit. Nevertheless, future

network devices may need to run at 10 Gbps.

CWC. The AEAD scheme that we propose in this chapter has all five of the proper-

ties that we mention in the introduction. First, CWC is provably secure. Moreover, our

provable security-based analyses helped guide our research and helped us reject other

schemes with similar performance properties but with slightly worse provable security

bounds. CWC is also parallelizable, which means that we can make CWC run at 10

Gbps when using conventional ASIC technology and AES as the underlying block ci-

pher. One can also implement CWC efficiently in software. Our implementation of

CWC using AES runs at about the same speed as the other patent-free modes on 32-bit

architectures (Section 5.6); we anticipate significant performance gains on 32-bit CPUs

when using more sophisticated implementation techniques, and we also see significantly

better performance on 64-bit architectures. (Patented schemes like OCB are still capable

of running faster than CWC in software.)

Like the other two pre-existing unpatented block cipher-based AEAD schemes,

CCM [82] and EAX [13], CWC avoids patents by using two inter-related but mostly in-

dependent modules: one module to “encrypt” the data and one module to “authenticate”

the data. Adopting the terminology used in [13], it is because of the two-module struc-

ture that we call CWC aconventionalblock cipher-based AEAD scheme. Although

124

CWC uses two modules, one can implement it efficiently in a single pass. By using

the conventional approach, CCM, EAX, and CWC are very much like composition-

based AEAD schemes built from existing encryption schemes and MACs. Unlike

composition-based AEAD schemes, however, by designing CWC directly from a block

cipher, we eliminate redundant steps and fine-tune CWC for efficiency in both hardware

and software. For example, we use only one block cipher key, which saves expensive

memory access in hardware.

The encryption core of CWC is based on counter (CTR) mode encryption, which

is well-known to be efficient and parallelizable. For authentication, we base our design

on the Carter-Wegman [81] universal hash function approach for message authentica-

tion. Part of the design challenge is to choose an appropriate universal hash function,

with appropriate parameters. Since one can parallelize polynomial evaluation (if the

polynomial is inx, one can split the polynomial intoi interleaved polynomials inxi),

we choose to use a universal hash function consisting of evaluating a polynomial mod-

ulo the prime2127 − 1. Our hash function is similar to Bernstein’s hash127 [17] except

that Bernstein’s hash function is optimized for software performance at the expense of

hardware performance. To address this issue, we use larger coefficients than hash127.

Notation. In our research we first created a general approach for combining CTR

mode encryption with a universal hash function in order to provide authenticated en-

cryption. We refer to this general approach as CWC (no change in font), and we use

CWC-BC to refer to a CWC instantiation with a 128-bit block cipherBC as the underly-

ing block cipher and with the universal hash function summarized above. We useCWC

as shorthand forCWC-BC and useCWC-AES to meanCWC-BC with AES [28] as

the underlying block cipher. There are other possible instantiations of the general CWC

approach, e.g., for legacy64-bit block ciphers. Since we are targeting new applications,

and since a mode using a 128-bit block cipher cannot interoperate with a mode using a

64-bit block cipher, we focus this paper only on our 128-bitCWC instantiation.

125

Table 5.1 Software performance in clocks per byte forCWC-AES, CCM-AES, and

EAX-AES on a Pentium III. Values are averaged over 50 000 samples.

Linux/gcc-3.2.2 Windows 2000/Visual Studio 6.0
Payload message lengths (bytes)Payload message lengths (bytes)

Mode 128 256 512 2048 8192 128 256 512 2048 8192
CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0
CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7
EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1

Performance. Let (A, M) be some input to theCWC encryption algorithm, where

A is the associated data andM is the payload data. TheCWC encryption algorithm

derives a universal hash subkey from the block cipher key. Assuming that the universal

hash subkey is maintained across invocations, encrypting(A, M) takesd|M |/128e + 2

block cipher invocations. The polynomial used inCWC’s universal hashing step will

have degreed = d|A|/96e + d|M |/96e. There are several ways to evaluate this poly-

nomial; details in Section 5.6. As noted above, one can evaluate this polynomial in

parallel. Serially, assuming no precomputation, one can evaluate this polynomial using

d 127x127-bit multiplies. As another example, assumingn precomputed powers of the

hash subkey, which are cheap to maintain in software for reasonablen, we could eval-

uate the polynomial usingd −m 96x127-bit multiplies andm 127x127-bit multiplies,

wherem = d(d + 1)/ne − 1.

In hardware using conventional ASIC technology at 0.13 micron, it takes approx-

imately 300 Kgates to reach 10 Gbps throughput forCWC-AES. This is approximately

twice as much as OCB, but avoids IP negotiation overhead and royalty payments to three

parties. Table 5.1 relates the software performance, on a Pentium III, ofCWC-AES to

the two other pre-existing patent-free AEAD modes CCM and EAX; the patented modes

such as OCB are not included in this table, but are about twice as fast as the times given

for the patent-free modes. The implementations used to compute Table 5.1 were writ-

ten in C by Brian Gladman [34] and all use 128-bit AES keys; the currentCWC-AES

implementation does not use the above-mentioned precomputation approach for eval-

126

uating the polynomial. Table 5.1 shows that the current implementations of the three

modes have comparable performance in software, the relative “best” depending on the

OS/compiler and the length of the message. Using the above-mentioned precomputa-

tion approach and switching to assembly, we anticipate reducing the cost ofCWC’s

universal hashing step to approximately 8 cpb, thereby significantly improving the per-

formance ofCWC-AES in software compared to CCM-AES and EAX-AES (since the

authentication portions of CCM-AES and EAX-AES are limited by the speed of AES

but the authentication portion ofCWC-AES is limited by the speed of the universal

hash function). For comparison, Bernstein’s related hash127, which also evaluates a

polynomial modulo2127−1 but whose specific structure makes it less attractive in hard-

ware, runs approximately 4 cpb on a Pentium III when written in assembly and using

the precomputation approach. On 64-bit G5s, our initial implementation of the hash

function runs at approximately6 cpb, thus suggesting thatCWC-AES is also attractive

on 64-bit architectures (when running the G5 in 32-bit mode, our implementation runs

at approximately 15 cpb).

We do not claim thatCWC-AES is efficient on low-end CPUs such as 8-bit smart-

cards. However, our goal was not to develop an AEAD scheme for such low-end pro-

cessors.

The patent issue. The patent issue is a peculiar one. While it may seem odd to let

patents influence research, we note that doing so is also not uncommon in some sciences.

We view this line of research as discovering the most appropriate solution given real-

world constraints.

Additional related works. CWC is similar to a combination of McGrew’s UST [59]

and TMMH [58], where one of the main advantages ofCWC over UST+TMMH is

CWC’s small key size, which, as the author of UST and TMMH notes, can be a bot-

tleneck for UST+TMMH in hardware at high speeds. The integrity portion ofCWC

builds on top of the Carter-Wegman universal hashing approach to message authentica-

tion [81]. The specific hash functionCWC uses is similar to Bernstein’s hash127 [17],

127

but is better suited for hardware. Shoup [74] and Nevelsteen and Preneel [64] also re-

searched software optimizations for universal hash functions. Following the original

publication of the material in this chapter, Bernstein introduced a new, efficient MAC

that uses polynomial evaluation module2130 − 5 [18]. Rogaway and Wagner released

a critique of CCM [73]. For each issue raised in [73], we find that we have addressed

the issue (e.g., we designedCWC to be on-line) or we disagree with the issue (e.g., we

feel that it is sufficient for new modes of operation to handle arbitrary octet-length, as

opposed to arbitrary bit-length, messages; we stress, however, that, if desired, it is easy

to modifyCWC to handle arbitrary bit-length messages, see Section 5.5).

CWC recently served as the starting point for GCM [60], a new conventional

AEAD scheme also having all five of the target properties that we mentioned at the

beginning of this chapter. Unlike our design, however, GCM offers weaker security than

our construction under some scenarios. In particular, Ferguson [33] describes attacks

against GCM when configured to produce small authentication tags. We designed CWC

specifically to avoid attack scenarios like the one Ferguson exploits (Section 5.5).

5.2 Preliminaries

Authenticated encryption schemes with associated data.In this chapter we use Ro-

gaway’s notion of an AEAD scheme [69]. Recall that we based our definition of a

Type 1 AEAD scheme in Chapter 4 on Rogaway’s notion except that in Chapter 4 we

do not expose a nonce to the caller, we allow the encryption algorithm to be random-

ized and stateful and the decryption algorithm to be stateful, and we use a left-or-right

indistinguishability definition for privacy. As we define it in this chapter, an AEAD

schemeSE = (Ke, E ,D) consists of three algorithms and is defined over some key space

KeySpSE , some nonce spaceNonceSpSE = {0, 1}n, n a positive integer, some associated

data spaceAdSpSE ⊆ {0, 1}∗, and some payload message spaceMsgSpSE ⊆ {0, 1}∗.

We require that membership inMsgSpSE andAdSpSE can be efficiently tested and that if

M, M ′ are two strings such thatM ∈ MsgSpSE and|M ′| = |M |, thenM ′ ∈ MsgSpSE .

128

The randomized key generation algorithmKe returns a keyK ∈ KeySpSE ; we

denote this process asK
$← Ke. The deterministic encryption algorithmE takes as

input a keyK ∈ KeySpSE , a nonceN ∈ NonceSpSE , associated dataA ∈ AdSpSE , and

a payload messageM ∈ MsgSpSE , and returns a ciphertextC ∈ {0, 1}∗; we denote

this process asC ← EN,A
K (M) or C ← EK(N, A,M). The deterministic decryption

algorithmD takes as input a keyK ∈ KeySpSE , a nonceN ∈ NonceSpSE , a header

A ∈ AdSpSE , and a stringC ∈ {0, 1}∗ and outputs a messageM ∈ MsgSpSE or the

special symbol⊥ on error; we denote this process asM ← DN,A
K (C). We require that

DN,A
K (EN,A

K (M)) = M for all K ∈ KeySpSE , N ∈ NonceSpSE , A ∈ AdSpSE , and

M ∈ MsgSpSE . Let l(·) denote thelength functionof SE ; i.e., for all keysK, nonces

N , headersA, and messagesM , |EN,A
K (M)| = l(|M |).

Under the correct usage of an AEAD scheme, after a random key is selected, the

application should never invoke the encryption algorithm twice with the same nonce

value until a new key is randomly selected. In order to ensure that a nonce does not

repeat, implementations typically use nonces that contain counters. We use the notion

of a nonce, rather than simply a counter, because the notion of a nonce is more general

and allows developers the freedom to structure the nonces as they desire.

Block ciphers. We define the notion of a block cipher in Section 2.3. For the purposes

of this chapter, we restrict ourselves to block ciphersE : K × D → D whereK =

{0, 1}k andD = {0, 1}L, for some positive integersk andL, rather than arbitrary sets

K andD. We usef
$← E as short hand forK

$← {0, 1}k ; f ← EK . We callk the key

length ofE and we callL the block length.

We use the same definition of pseudorandomness from [6, 56] summarized

in Section 2.3. As alternative notation for the definition of pseudorandomness, if

E : {0, 1}k × {0, 1}L → {0, 1}L andA is an adversary with access to an oracle and

that returns a bit, then we defineAdvprp
F (A) as

Advprp
E (A) = Pr

[
f

$← E : Af(·) = 1
]
− Pr

[
g

$← Perm[L] : Ag(·) = 1
]

.

As before,Advprp
F (A) denotes thePRP-advantage ofA in distinguishing a random in-

129

stance ofE from a random permutation onL-bit strings.

5.3 Specification

Let BC : {0, 1}kl×{0, 1}128 → {0, 1}128 be a128-bit block cipher. Lettl ≤ 128

is the desired tag length in bits. Then the CWC mode of operation usingBC with

tag lengthtl, CWC-BC-tl = (K, CWC-ENC, CWC-DEC), is defined as follows. The

message spaces are:

MsgSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxMsgLen }

AdSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxAdLen }

KeySpCWC-BC-tl = {0, 1}kl

NonceSpCWC-BC-tl = {0, 1}88

whereMaxMsgLen andMaxAdLen are both128 · (232 − 1). That is, the payload and

associated data spaces forCWC-BC-tl consist of all strings of octets that are at most

232 − 1 blocks long.

The CWC-BC-tl key generation, encryption, and decryption algorithms are de-

fined as follows:

AlgorithmK

K
$← {0, 1}kl

ReturnK

Algorithm CWC-ENCK(N, A,M)

σ ← CWC-CTRK(N, M)

τ ← CWC-MACK(N, A, σ)

Returnσ‖τ

Algorithm CWC-DECK(N, A,C)

If |C| < tl then return⊥

130

ParseC asσ‖τ where|τ | = tl

If A 6∈ AdSpCWC-BC-tl or σ 6∈ MsgSpCWC-BC-tl then return⊥

If τ 6= CWC-MACK(N, A, σ) then return⊥

M ← CWC-CTRK(N, σ)

ReturnM

The algorithmsCWC-CTR, CWC-MAC, CWC-HASH are defined below. The

CWC-CTR algorithm handles generating the encryption and decryption keystreams,

CWC-MAC handles the generation of an authentication tag, and usesCWC-HASH as

the underlying universal hash function.

Algorithm CWC-CTRK(N, M)

α← d|M |/128e

For i = 1 to α dosi ← BCK(107‖N‖〈i〉32)

x← first |M | bits ofs1‖s2‖ · · · ‖sα

σ ← x⊕M

Returnσ

Algorithm CWC-MACK(N, A, σ)

R← BCK(CWC-HASHK(A, σ))

τ ← BCK(107‖N‖032)⊕R

Return firsttl bits of τ

Algorithm CWC-HASHK(A, σ)

Z ← last127 bits ofBCK(110126)

Kh ← toint(Z)

l← min integer such that96 divides|A‖0l|

l′ ← min integer such that96 divides|σ‖0l′|

X ← A‖0l‖σ‖0l′ ; β ← |X|/96

BreakX into chunksX1, X2, . . . , Xβ

For i = 1 to β doYi ← toint(Xi)

131

lσ ← |σ|/8 ; lA ← |A|/8

Yβ+1 ← 264 · lA + lσ

R← Y1K
β
h + · · ·+ YβKh + Yβ+1 mod 2127 − 1

Return〈R〉128

5.4 Theorem Statements

The CWC scheme is a provably secure AEAD scheme assuming that the un-

derlying block cipher, e.g., AES, isPRP-secure. As noted in Section 2.3, this as-

sumption is reasonable since most modern block ciphers, including AES, are believed

to be PRP-secure. Furthermore, all provably-secure block cipher modes of operation

that we are aware of make at least the same assumptions we make, and some modes,

such as OCB [72], require the stronger, albeit still reasonable, assumption of super-

pseudorandomness. The specific results forCWC appear as Theorem 5.4.1 and Theo-

rem 5.4.2 below.

5.4.1 Privacy

We first show that ifBC is a secure block cipher, thenCWC-BC-tl will pre-

serve privacy under chosen-plaintext attacks. In this chapter we use the strong defini-

tion of indistinguishability for AEAD schemes from [69]. This notion of privacy un-

der chosen-plaintexts attacks is stronger than the conventional left-or-right notion. Let

SE = (Ke, E ,D) be an AEAD scheme with length functionl(·). Let $(·, ·, ·) be an

oracle that, on input(N, A, M) ∈ NonceSpSE × AdSpSE ×MsgSpSE , returns a random

string of lengthl(|M |). Let B be an adversary with access to an oracle and that returns

a bit. Then

Advpriv$-cpa
SE (B) = Pr

[
K

$← Ke : BEK(·,·,·) = 1
]
− Pr

[
B$(·,·,·) = 1

]
is thePRIV$-CPA-advantage ofB in breaking the privacy ofSE under chosen-plaintext

attacks; i.e.,Advpriv$-cpa
SE (B) is the advantage ofB in distinguishing between ciphertexts

132

from EK(·, ·, ·) and random strings. An adversaryB is nonce-respectingif it never

queries its oracle with the same nonce twice. In the concrete setting [6], a schemeSE

preserves privacy under chosen plaintext attacks (isPRIV$-CPA-secure) if thePRIV$-

CPA-advantage of all nonce-respecting adversaries using reasonable resources is small.

Theorem 5.4.1 (Privacy of CWC.) Let CWC-BC-tl be as in Section 5.3. Then given a

nonce-respectingPRIV$-CPA adversaryA againstCWC-BC-tl one can construct aPRP

adversaryCA againstBC such that ifA makes at mostq oracle queries totaling at most

µ bits of payload message data, then

Advpriv$-cpa
CWC-BC-tl(A) ≤ Advprp

BC(CA) +
(µ/128 + 3q + 1)2

2129
. (5.1)

Furthermore, the experiment forCA takes the same time as the experiment forA and

CA makes at mostµ/128 + 3q + 1 oracle queries.

We prove Theorem 5.4.1 in Section 5.7. Let us elaborate on why Theorem 5.4.1 implies

that CWC-BC will preserve privacy under chosen-plaintext attacks. AssumeBC is a

secure block cipher. This means thatAdvprp
BC(C) must be small for all adversariesC

using reasonable resources and, in particular, this means that, forCA as described in

the theorem statement,Advprp
BC(CA) must be small assuming thatA uses reasonable

resources. And ifAdvprp
BC(CA) is small andµ, q are small, then, because of the above

equations,Advpriv$-cpa
CWC-BC-tl(A) must also be small as well. I.e., any adversaryA using

reasonable resources will only be able to break the privacy ofCWC-BC-tl with some

small probability.

As a concrete example, let us consider limiting the number of applications of

CWC-BC-tl between rekeyings to some reasonable value such asq = 232, and let us

limit the total number of payload bits between rekeyings toµ = 250. Then Equation 5.1

becomes

Advpriv$-cpa
CWC-BC-tl(A) ≤ Advprp

BC(CA) +
1

242

which means that, assuming that the underlying block cipher is a securePRP, an at-

tacker will not be able to break the privacy ofCWC-BC-tl with advantage much greater

than2−42.

133

5.4.2 Integrity

We now present our results showing that ifBC is a secure block cipher, then

CWC-BC-tl will protect the authenticity of encapsulated data. We use the strong notion

of authenticity for AEAD schemes from [69]. This definition is similar to the definitions

of AUTHC integrity from Section 2.6 andAUTH1 integrity from Section 4.1.2, but stated

for AEAD schemes as defined in this chapter. LetSE = (Ke, E ,D) be an AEAD

scheme. LetF be a forging adversary and consider an experiment in which we first pick

a random keyK
$← Ke and then runF with oracle access toEK(·, ·, ·). We say thatF

forgesif F returns a pair(N, A, C) such thatDN,A
K (C) 6= ⊥ butF did not make a query

(N, A,M) to EK(·, ·, ·) that resulted in a responseC. Then

Advauthc
SE (F) = Pr

[
K

$← Ke : F EK(·,·,·) forges
]

is theAUTHC-advantageof F in breaking the integrity/authenticity ofSE . Intuitively,

the schemeSE preserves integrity/authenticity if theAUTHC-advantage of all nonce-

respecting adversaries using reasonable resources is small.

Theorem 5.4.2 (Integrity/authenticity of CWC.) Let CWC-BC-tl be as specified in

Section 5.3. (Recall thatBC is a 128-bit block cipher and that the tag lengthtl is≤ 128.)

Consider a nonce-respectingAUTHC adversaryA againstCWC-BC-tl. Assume the

execution environment allowsA to query its oracle with associated data that are at most

n ≤ MaxAdLen bits long and with messages that are at mostm ≤ MaxMsgLen bits long.

AssumeA makes at mostq−1 oracle queries and the total length of all the payload data

(both in theseq − 1 oracle queries and the forgery attempt) is at mostµ. Then givenA

we can construct aPRPadversaryCA againstBC such that

Advauthc
CWC-BC-tl(A) ≤ Advprp

BC(CA) +
(µ/128 + 3q + 1)2

2129
+

n + m

2133
+

1

2125
+

1

2tl
. (5.2)

Furthermore, the experiment forCA takes the same time as the experiment forA and

CA makes at mostµ/128 + 3q + 1 oracle queries.

We prove Theorem 5.4.2 in Section 5.7. Let us elaborate on why Theorem 5.4.2 im-

plies thatCWC-BC will preserve authenticity. AssumeBC is a secure block cipher.

134

This means thatAdvprp
BC(C) must be small for all adversariesC using reasonable re-

sources and, in particular, this means that, forCA as described in the theorem state-

ment,Advprp
BC(CA) must be small assuming thatA uses reasonable resources. And if

Advprp
BC(CA) is small andµ, q,m andn are small, then, because of the above equations,

Advauthc
CWC-BC-tl(A) must also be small as well. I.e., any adversaryA using reasonable

resources will only be able to break the authenticity ofCWC-BC-tl with some small

probability.

Let us consider some concrete examples. Letn = MaxAdLen and m =

MaxMsgLen, which is the maximum possible allowed by theCWC-BC construction.

Then Equation 5.2 becomes

Advauthc
CWC-BC-tl(A) ≤ Advprp

BC(CA) +
(µ/128 + 3q + 1)2

2129
+

1

293
+

1

2tl
.

If we setq = 232 andµ = 250 as before, and if we taketl ≥ 43, then the above equation

becomes

Advauthc
CWC-BC-tl(A) ≤ Advprp

BC(CA) +
1

241

which means that, assuming that the underlying block cipher is a securePRP, an attacker

will not be able to break the unforgeability ofCWC-BC-tl with probability much greater

than2−41.

Chosen-ciphertext privacy. Since theCWC-BC-tl scheme preserves privacy under

chosen-plaintext attacks (Theorem 5.4.1)and provides integrity (Theorem 5.4.2) as-

suming thatBC is a secure pseudorandom permutation, it also provides privacy under

chosen-ciphertext attacks under the same assumption aboutBC. Recall Sections 2.6,

3.6, and 4.1.2 for a discussion of the relationship between chosen-plaintext privacy, in-

tegrity, and chosen-ciphertext privacy for authenticated encryption schemes.

5.5 Design Decisions

Finding an appropriate balance between provable security, hardware efficiency,

and software efficiency, while simultaneously avoiding existing intellectual property is-

135

sues, was one of the principle components of this research project. In this section we

discuss how our diverse set of goals affected our design decisions.

The CWC-HASH universal hash function. We chose to simultaneously achieve our

parallelizability, hardware, and software goals by basing the authentication portion of

CWC on the Carter-Wegman [81] universal hash function approach to message authen-

tication. This is because universal hash functions, and especially the one we created for

CWC, can be implemented in multiple ways, thus allowing different platforms and ap-

plications to implementCWC-HASH in the way most appropriate for them. For exam-

ple, hardware implementations will likely parallelize the computation ofCWC-HASH

by splitting it into multiple polynomials inKi
h for somei. In more detail, if the polyno-

mial is

Y1K
β
h + Y2K

β−1
h + Y3K

β−2
h + Y4K

β−3
h + · · ·+ YβKh + Yβ+1 mod 2127 − 1 .

then, settingi = 2, andy = K2
h mod 2127 − 1, and assumingβ is odd for illustration

purposes, we can rewrite the above polynomial as(
Y1y

m + Y3y
m−1 + · · ·+ Yβ

)
x +

(
Y2y

m + Y4y
m−1 + · · ·+ Yβ+1

)
mod 2127 − 1 ,

After splitting the polynomial, hardware implementations will then likely compute each

polynomial using Horner’s rule (e.g., the polynomialaK2i
h + bKi

h + c would be evalu-

ated as(((a)Ki
h + b)Ki

h) + c). Software implementations on modern CPUs, for which

memory is cheap, will likely precompute a number of powers ofKh and evaluate the

CWC-HASH polynomial directly, or almost directly, using a hybrid between a precom-

putation approach and Horner’s rule. We consider a number of possible implementation

strategies in more detail in Section 5.6.

CWC-HASH is an instantiation of the classic polynomial universal hash approach

to message authentication [81], and is closely related to Bernstein’s hash127 [17], which

also evaluates a polynomial modulo2127 − 1. Although hash127 is very fast in soft-

ware, its structure makes it less suitable for use on high-speed hardware. In particular,

136

hash127’s use of 32-bit coefficients, while great for software implementations with pre-

computed powers ofKh, means that hardware implementations using Horner’s rule will

be “wasting work.” Specifically, even with 32-bit coefficients, incorporating each new

coefficient using Horner’s rule will require a 127x127-bit multiply because the accu-

mulated value will be 127 bits long. By defining theCWC-HASH coefficients to be

96-bits long, we increase the performance of Horner’s rule implementations by a factor

of three. (We could have gone even further and made the coefficients 126 bits long,

but doing so would have required additional complexity to perform bit and byte shifting

within the coefficients.) An alternative approach for increasing the performance of a

serial implementation of Horner’s rule would be to reduce the size of theCWC-HASH

subkeyKh to 96 bits. We discuss why we rejected this option in more detail later, but

remark here that there are more efficient strategies than Horner’s rule for implementing

CWC-HASH in software, and that in a parallelized approach the valuesKi
h, i ≥ 2, will

most often be full 127-bit values even ifKh is only96-bits long.

On using a single key. From a security perspective, it would have been perfectly ac-

ceptable, and in fact more traditional, to make theCWC-CTR block cipher key and

the twoCWC-MAC block cipher keys independent. Like others [13, 82], however, we

acknowledge that there are several important reasons for sharing keys between the en-

cryption and authentication portions of modes such asCWC. One of the most important

reasons is simplicity of key management. Indeed, fetching key material can be a major

bottleneck in high-speed hardware, and minimizing key material is thus important. This

fact is also why we derive the hash subkey from the block cipher key rather than use

an independent hash subkey. We could have defined a mode that derived a number of

essentially independent block cipher and hash keys from a single block cipher key, but

doing so would either have required more memory or more computation and, because

we have proofs that our construction is secure, would have been unnecessary.

Sharing the block cipher key in the way described above and deriving the hash

subkey from the block cipher key did, however, mean that we had to be careful with

137

our proofs of security. To facilitate our proofs, we took extra care in our design to

ensure that there would never be a collision in the plaintext inputs to the block cipher

between the different usages of the block cipher. For example, by definingCWC-HASH

to produce a 127-bit value as output, we know that the first application ofBC to

CWC-HASHK(A, σ) in CWC-MAC will always have its first bit set to0. To avoid a col-

lision with the input to the keystream generator, the block cipher inputs inCWC-CTR

always have the first two bits set to10. When using the block cipher to create the hash

subkeyKh, the first two bits of the input are set to11.

On the choice of parameters. Part of this effort involved specifying the appropri-

ate parameters for theCWC encryption mode. Example parameters include the nonce

length and the way the nonce is encoded in the input to the block cipher. We chose to

fix these parameters for interoperability purposes, but note that our general approach in

Section 5.7 does not have theses parameters fixed. We chose to set the nonce length to

88 bits in order to handle future IPsec sequence numbers. And we chose to set the block

counter length to32 bits in order to allowCWC to be used with IPsec jumbograms

and other large packets. We also chose to use big-endian byte ordering for consistency

purposes and to maintain compatibility with McGrew’s ICM Internet-Draft [57] and the

IETF, which strongly favors big-endian byte-ordering.

Handling arbitrary bit-length messages. Since we do not believe that many appli-

cations will actually require the ability to encrypt arbitrary bit-length messages, we do

not defineCWC to take arbitrary bit-length messages as input. That said, we did design

CWC in such a way that it will be easy to modify the specification to take arbitrary bit-

length messages without affecting interoperability with existing implementations when

octet-strings are communicated. For example, one could augment the computation of

Yβ+1 in CWC-HASH as follows:

rA ← |A| mod 8 ; rσ ← |σ| mod 8 ; Yβ+1 ← 2120 · rA + 2112 · rσ + 264 · lA + lσ .

138

Of course, a cleaner approach for handling arbitrary bit-length messages would be to

computelA ← |A| and lσ ← |σ| in CWC-HASH. We do not defineCWC this way

because we do not consider it a good trade-off to define a mode for arbitrary bit-length

messages at the expense of octet-oriented systems.

64-bit block ciphers. We did not defineCWC for use with64-bit block ciphers be-

cause we are targeting future high-speed cryptographic applications. Nevertheless, one

can instantiate the general CWC approach in Section 5.7 with 64-bit block ciphers.

A 64-bit instantiation may, however, require several undesirable tradeoffs, e.g., in the

length of the nonce.

On the length of the hash subkey. As noted earlier, it is possible to use smaller

subkeysKh in CWC-HASH (simply truncateBCK(110126) appropriately). Recall that

we have fixed the block length ofBC to 128 bits. Lethkl denote the length of the hash

subkey in an altered construction. Ifhkl < 127, then the upper-bound in Equation 5.2

becomes

Advprp
BC(CA) +

(µ/128 + 3q + 1)2

2129
+

(n + m)/96 + 2

2hkl
+

1

2tl
.

Consider an application that setshkl to 96. If we replacem andn by their maximum

possible values, the upper-bound becomes

Advprp
BC(CA) +

(µ/128 + 3q + 1)2

2129
+

1

262
+

1

2tl
.

Since2−62 is already very small (and, in fact, dominated by the(µ/128 + 3q + 1)2 ·

2−129 term for some reasonable values ofq andµ), from a provable-security perspective,

developers would be justified in using 96-bit hash subkeys.

Rather than use shorter hash subkeys, however, our current CWC instantiation in

Section 5.3 uses 127-bit hash subkeys. We do so for several reasons. First, in hardware,

to obtain maximum speed, one would parallelize theCWC hash function by evaluating,

for example, two polynomials inK2
h in parallel. As noted before, sinceK2

h would gen-

erally not be 96-bits long, there is no performance advantage with using 96-bit subkeys

139

Kh in this situation. In software, the use of 96-bit hash subkeys could lead to improved

performance when evaluating the polynomial using Horner’s rule. However, we esti-

mate that the performance of such a construction will be close to the performance of

the current construct when not using Horner’s rule but using pre-computed powers of

Kh. Since we believe that high-performance implementations will not benefit from the

use of 96-bit hash subkeys (i.e., the additional31 key bits come with no or negligible

additional cost), we have chosen to fix the length of our hash subkeys to127 bits.

There may occasionally be reasons to use aCWC variant with hash subkeys even

shorter than96 bits. When these situations arise, one must exercise caution since the

use of the shorter hash subkeys could significantly impact security. For example, using

a 64-bit hash subkey would increase the upper-bound on the probability of an adversary

forging to around2−30, which may be too large for some applications.

On computing the tag. In CWC the MAC consists of hashing(A, σ), enciphering the

hash with the block cipher, and thenXORing the result with some keystream (i.e., in the

current proposal the tag isBCK(107‖N‖032)⊕ BCK(CWC-HASHK(A, σ))).

Instead of the two block cipher applications, one could useBCK(h′K(N, A, σ)) as

the tag, whereh′ is a modified version ofCWC-HASH designed to hash 3-tuples instead

of pairs of strings (this is important because the nonce must also be authenticated).

The main disadvantage of this approach is that it would change the upper-bound in

Equation 5.2 to

Advprp
BC(CA) +

(µ/128 + 3q + 1)2

2129
+ q2 ·

(
n + m

2133
+

1

2125

)
+

1

2tl

(note the newq2 term). If we setn = MaxAdLen, m = MaxMsgLen, q = 232, and

µ = 250, then for anytl ≥ 29, we get that the advantage of an adversary in breaking the

unforgeability of this modified CWC variant is upper-bounded by2−27, which, although

not extremely large, is worse than the upper-bound of2−41 we get using Equation 5.2.

Even if n andm are at most one million blocks long, we see that the integrity upper-

bound for the altered CWC construction is worse than the upper-bound for the CWC

construction we present in Section 5.3. More generally, this means that for reasonable

140

values ofn, m, q, µ, the insecurity upper-bounds of this alternative will be worse than

the insecurity upper-bounds of theCWC mode described in Section 5.3. Furthermore,

the upper-bound would be even worse if one keys the hash function with shorter keys,

which may happen in some situations.

Another possible way to reduce the number of block cipher invocations necessary

to compute the MAC would be to take the output of the current hash function and run

it through another hash function that is almost-XOR-universal (see Section 5.7 for a

description of this property). However, this approach is not attractive because it requires

additional key material. In particular, while this approach may save one block cipher

operation, in hardware the block cipher operation is actually smaller and simpler than

managing the extra key material, given that the hardware already has a block cipher

encryptor running at high speed. One could take another block cipher operation to

generate the extra key material, but doing so would largely defeat the purpose, except

that this block cipher operation could be precomputed or done in parallel.

Another possibility would be to use something likeBCK(N) + Y1K
β+2
h + · · · +

YβK3
h + lAK2

h + lσKh mod 2127 − 1, encoded as a 127-bit string and truncated totl bits,

as the MAC (hereBCK(N) is interpreted as an integer). Doing so would, however,

result in a new integrity upper-bound

Advprp
BC(CA) +

(µ/128 + 2q + 1)2 + 4q + 4

2129
+

(n + m)/96 + 5

2tl
.

If we taken andm to beMaxAdLen andMaxMsgLen, respectively, then the upper-bound

becomes

Advprp
BC(CA) +

(µ/128 + 2q + 1)2 + 4q + 4

2129
+

234

2tl
.

Compared to Equation 5.2, we see the presence of a234−tl term. This means that, in

some situations, when using the above upper-bound as a guide for parameter selection,

tag lengths must be longer than one might expect. For example, iftl = 32, then the

above equation would upper-bound the advantage of an adversary against this modified

construction as 1. This means that 32-bit tags should not be used with this modified

construction when authenticating long messages. While one might consider this more

141

of a “certificational” problem than a real problem, we view this property as undesirable.

(The attack that Ferguson [33] recently discovered against GCM with small tags exploits

the fact that GCM operates as per this CWC alternative.)

EAX2. Motivated by EAX2 [13], one possible alternative toCWC might be to use

BCK(11105‖N) both as the value to encryptR in CWC-MAC and as the initial counter

to CTR mode-encryptM (with the first two bits of the counter always set to10).

Other EAX2-motivated constructions also exist. For example, the tag might be set to

BCK(h(X0‖N)) ⊕ BCK(h(X1‖A)) ⊕ BCK(h(X2‖σ)), whereX0, X1, X2 are strings,

none of which is a prefix of the other, andh is a parallelizable universal hash function,

like CWC-HASH but hashing only single strings (as opposed to pairs of strings). Com-

pared toCWC, these alternatives have the ability to take longer nonces as input, and,

from a functional perspective, can be applied to strings up to2126 blocks long. But we

do not view this as a reason to prefer these alternatives overCWC. From a practical

perspective, we do not foresee applications requiring nonces longer than 11 octets, or

needing to encrypt messages longer than232− 1 blocks. Moreover, from a security per-

spective, applications should not encrypt too many packets between rekeyings, implying

that even 11 octet nonces should be more than sufficient. We do comment, however, that

we believe the alternatives discussed in this paragraph are still more attractive than EAX

because, likeCWC but unlike EAX, these alternatives are parallelizable.

Using existing MACs. We chose not to base the authentication portion of our new

mode on XOR-MAC [5] or PMAC [23] because of patent concerns and our software

performance requirements; we chose not to base the authentication portion on software-

efficient MACs such as HMAC [3] because of our hardware parallelizability require-

ment.

142

5.6 Performance

Hardware. Since one of our main goals is to achieve high performance in hardware

and, in particular, to provide a solution for future 10 Gbps IPsec (and other) network

devices, we focus first on hardware costs. As we noted earlier, it should take approx-

imately 300 Kgates to achieve 10 Gbps throughput forCWC-AES when using 0.13

micron CMOS ASIC technology. This estimate, which is applicable to AES with all

key lengths, includes four AES counter-mode encryption engines, each running at 200

MHz and requiring about 25Kgates each. In addition, there are two 32x128-bit mul-

tiply/accumulate engines, each running at 200 MHz with a latency of four clocks, one

each for the even and odd polynomial coefficients. Simply keeping these engines “fed”

may be challenging, but that is generally true of any 10 Gbps path. There may be better

methods to structure an implementation, depending on the particular ASIC vendor li-

brary and technology. Regardless of the implementation strategy, 10 Gbps is achievable

because of the inherent parallelism ofCWC.

Since OCB isCWC’s main competitor for high-speed environments, it is worth

comparingCWC with OCB instantiated with AES (we do not compareCWC with CCM

and EAX here since the latter two are not parallelizable). We first note thatCWC-AES

saves some gates because we only have to implement AES encryption in hardware, i.e.,

we do not need to implement the inverse of the block cipher. However, at 10 Gbps OCB

still probably requires only about half the silicon area ofCWC-AES. The main ques-

tion for many hardware designers is thus whether the extra silicon area forCWC-AES

costs more than three royalty payments, as well as negotiation costs and overhead. With

respect to negotiation costs and royalty payments, we note that despite significant de-

mands, to date the relevant parties have not all offered publicly available IP fee sched-

ules. Given this fact, and given today’s silicon costs, we believe that the extra silicon for

CWC-AES is probably cheaper overall than the negotiation costs and IP fees required

for OCB.

143

Software. One can also implementCWC-AES efficiently in software. Table 5.1

shows timing information forCWC-AES, as well as CCM-AES and EAX-AES, on

a 1.133GHz mobile Pentium III dual-booting RedHat Linux 9 (kernel 2.4.20-8) and

Windows 2000 SP2. The numbers in the table are the clocks per byte for different mes-

sage lengths averaged over 50 000 runs and include the entire time for setting up (e.g.,

expanding the AES key-schedule) and encrypting. All implementations were in C and

written by Brian Gladman [34] and use 128-bit AES keys. The Linux compiler was gcc

version 3.2.2; the Windows compiler was Visual Studio 6.0. OCB runs at about twice

the speeds given in Table 5.1.

From Table 5.1 we conclude that the three patent-free modes, as currently im-

plemented by Gladman, share similar software performances. The “best” performing

one appears to depend on OS/compiler and the length of the message being processed.

On Linux, it appears thatCWC-AES performs slightly better than EAX-AES for all

message lengths that we tested, and better than CCM-AES for the longer messages,

whereas Gladman’s CCM-AES and EAX-AES implementations slightly outperform his

CWC-AES implementation on Windows for all the message lengths that we tested.

Note, however, that all the implementations used to compute Table 5.1 were writ-

ten in C. Furthermore, the currentCWC-AES code does not make use of all of the

optimization techniques, and in particular precomputation, that we describe below. By

switching to assembly and using the additional optimization techniques, we anticipate

the speed forCWC-HASH to drop to better than 8 clocks per byte, whereas the speed

for the CBC-MAC portion of CCM-AES and EAX-AES will be limited by the speed of

AES (the best reported speed for AES on a Pentium III is 14.1 cpb, due to a proprietary

library by Helger Lipmaa; Gladman’s free hand-optimized Windows assembly imple-

mentation runs at 17.5 cpb [54]). Returning to the speed ofCWC-HASH, for reference

we note that Bernstein’s related hash127 [17] runs around 4 cpb on a Pentium III when

written in assembly and using the precomputation approach. Bernstein’s hash127 also

works by evaluating a polynomial modulo2127−1; the main difference is that the coeffi-

cients for hash127 are 32 bits long, whereas the coefficients forCWC-HASH are 96 bits

144

long (recall Section 5.5, which discusses why we use 96-bit coefficients). We also note

that the performance ofCWC-HASH will increase dramatically on 64-bit architectures

with larger multiplies; an initial implementation on a G5 using 64-bit integer operations

runs at around 6 cpb (when running the G5 in 32-bit mode, the hash function runs at

around 15 cpb). Bernstein agrees that it is possible to significantly improve our initial

performance results forCWC-HASH [18], but does not give performance numbers in

his paper (rather, he proposes a new hash function that evaluates a polynomial modulo

2130 − 5).

Since the implementation ofCWC-HASH is more complicated than the imple-

mentation of theCWC-CTR portion of CWC, we devote the rest of this section to

discussingCWC-HASH.

Precomputation. As noted in Section 5.5, there are two general approaches to im-

plementingCWC-HASH in software. The first is to use Horner’s rule. The second is

to evaluate the polynomial directly, which can be faster if one precomputes powers of

the hash keyKh at setup time (here the powers ofKh can be viewed as an expanded

key-schedule). In particular, as noted in Section 5.5, evaluating the polynomial using

Horner’s rule requires a 127x127-bit multiply for each coefficient, whereas evaluating

the polynomial directly using precomputed powers ofKh requires a 96x127-bit multiply

for each coefficient. (We discuss in Section 5.5 why we did not make the hash subkey

96-bits, which could have sped up a serial Horner’s rule implementation.) Bernstein

observed the advantage with precomputation in the context of hash127 [17].

The above description of the precomputation approach assumed that if the poly-

nomial isY1K
γ−1
h + · · · + Yγ−1Kh + Yγ (i.e., the polynomial hasγ coefficients), then

we had precomputed the powers ofKi
h for all i ∈ {1, . . . , γ − 1}. The precomputa-

tion approach extends naturally to the case where we have precomputed the powersKj
h,

j ∈ {1, . . . , n}, for somen ≤ γ− 1. For simplicity, first assume that we know the poly-

nomial has a multiple ofn coefficients. For such a polynomial, one processes the firstn

coefficients (to getY1K
n−1
h + . . .+Yn−1Kh +Yn), then multiplies the intermediate result

145

by Kn
h (to getY1K

2n−1
h + . . . + Yn−1K

n+1
h + YnK

n
h). After that, one can continue pro-

cessing data with the same precomputed values (to getY1K
2n−1
h + . . .+Y2n−1Kh +Y2n),

and so on. Note that each chunk ofn coefficients takes(n − 1) 96x127-bit multiplies,

and all but the last chunk takes an additional 127x127-bit multiply. Now assume that

the number of coefficientsm in the polynomial is not necessarily a multiple ofn. If

m is known in advance, one could first processm mod n coefficients, multiply byKn
h ,

then process inn-coefficient chunks as before. Alternately, as long as the end of the

message is knownn coefficients in advance, one could processn-coefficients chunks,

and then finish off the finalm mod n coefficients using Horner’s rule. Or, if the number

of coefficients in the polynomial is not known until the final coefficient is reached, one

could process the message inn-coefficient chunks and then multiply by a precomputed

power ofK−1
h once the end of the message hash been reached.

Naturally, precomputation requires extra memory, but that is usually cheap and

plentiful in a software-based environment. Using 32-bit multiplies, the precomputation

approach requires 12 32-bit multiplies per 96-bit coefficient, as well as 17 adds, all of

which may carry. In assembly, most of these carry operations can be implemented for

free, or close to free by using a special variant of the add instruction that adds in the

operand as well as the value of the carry from the previous add operation. But when im-

plemented in C, they will generally compile to code that requires a conditional branch

and an extra addition. An implementation using Horner’s rule requires an additional

four multiplies and three additions with carry per coefficient, adding about 33% over-

head, since the multiplies dominate the additions. A 64-bit platform only requires four

multiplies and four adds (which may all carry), no matter the implementation strategy

taken, which explains why implementations ofCWC-HASH for 64-bit architectures are

much faster.

Exploiting the parallelism of some instruction sets. On most 32-bit platforms,

it turns out that the integer execution unit is not the fastest way to implement

CWC-HASH. Many platforms have multimedia instructions that one can use to speed

146

up the implementation. As another alternative, Bernstein demonstrates that on some

platforms one can use the floating point unit to implement this class of universal hash

function more efficiently than one can with the integer unit. This is particularly true on

the x86 platform where, in contrast to using the standard registers, two floating point

multiples can be started in close proximity without introducing a pipeline stall. That is,

the x86 can effectively perform two floating-point operations in parallel. The disadvan-

tage of using floating-point registers is that the operands for the individual multiplies

need to be small, so that the operations can be done without loss of precision. On the

x86, Bernstein multiplies 24-bit values, allowing the sums of product terms to fit into

double precision values with 53 bits of precision without loss of information. Bernstein

details many ways to optimize this sort of calculation in [17].

There are only two main differences between the structure of the polynomials of

Bernstein’s hash127 andCWC-HASH. The first is that Bernstein uses signed coeffi-

cients, whereasCWC-HASH uses unsigned coefficients; this should have little impact

on efficiency. The other difference is that Bernstein uses 32-bit coefficients, whereas

CWC-HASH uses 96-bit coefficients. While both solutions average one multiplica-

tion per byte when using integer math, Bernstein’s solution requires only .75 addi-

tions per byte, whereasCWC-HASH requires 1.42 additions per byte, nearly twice as

many. Using 32-bit multiplies to build a 96x127 multiplier (assuming precomputation),

CWC-HASH should therefore perform no worse than at half the speed of hash127.

When using 24-bit floating point coefficients to build a multiply (without applying any

non-obvious optimizations), hash127 requires 12 multiplies and 16 adds per 32-bit word.

CWC can get by with 8 multiples per word and 12.67 additions per word. This is be-

cause a 96-bit coefficient fits exactly into four 24-bit values, meaning we can use a 6x4

multiply for every three words. With 32-bit coefficients, we need to use two 24-bit

values to represent each coefficient, resulting in a single 6x2 multiply that needs to be

performed for each word.

Gladman’s C implementation ofCWC-HASH uses floating point arithmetic, but

uses Horner’s rule instead of performing precomputation to achieve extra speed. Noth-

147

ing about theCWC hash indicates that it should run any worse than half the speed of

hash127, if implemented in a similar manner, in assembly, and using the floating point

registers and precomputation. This upper-bound paints an encouraging picture forCWC

performance, because hash127 on a Pentium III runs around 4 cpb when implemented in

assembly and using the floating point registers and precomputation. This indicates that

a well-optimized software version ofCWC-HASH should run no slower than 8 cycles

per byte on the same machine.

5.7 Security Proofs

Before proving Theorem 5.4.1 and Theorem 5.4.2, we first state results about the

general CWC construction; see Lemma 5.7.2 and Lemma 5.7.3 below. We then show

how Theorems 5.4.1 and 5.4.2 follow from Lemmas 5.7.2 and 5.7.3. We then prove

these two lemmas.

5.7.1 More Definitions

Universal hash functions. A hash functionHF = (Kh,H) consists of two algorithms

and is defined over some key spaceKeySpHF , some message spaceMsgSpHF , and some

hash spaceHashSpHF . The randomized key generation algorithm returns a random

key K ∈ KeySpHF ; we denote this asK
$← Kh. The deterministic hash algorithm

takes a keyK ∈ KeySpHF and a messageM ∈ MsgSpHF and returns a hash value

h ∈ HashSpHF ; we denote this ash ← HK(M). Let H
$← HF be shorthand for

K
$← Kh ; H ← HK .

The hash functionHF is said to beε-almost universal(ε-AU) if for all distinct

m, m′ ∈ MsgSpHF ,

Pr
[

H
$← HF : H(m) = H(m′)

]
≤ ε .

The hash functionHF is said to beε-almostXOR universal(ε-AXU) if HashSpHF =

{0, 1}n for some positive integern and for all distinctm, m′ ∈ MsgSpHF and c ∈

148

{0, 1}n,

Pr
[

H
$← HF : H(m)⊕H(m′) = c

]
≤ ε .

Pseudorandom functions. We restate the definition of pseudorandom functions from

Section 2.2, using slightly different notation. LetF be a family of functions fromD to

R. Let A be an adversary with access to an oracle and that returns a bit. Then we define

Advprf
F (A) as

Advprf
F (A) = Pr

[
f

$← F : Af(·) = 1
]
− Pr

[
g

$← Rand[D, R] : Ag(·) = 1
]

.

As in Section 2.2,Advprf
F (A) denotes thePRF-advantage ofA in distinguishing a ran-

dom instance ofF from a random function fromD to R.

Message authentication. We now present the definition of a MAC that we will use

for the remainder of this chapter. The definition we give below is like the definition in

Section 4.2.2 except that here we restrict ourselves to MACs with stateless and deter-

ministic tagging algorithms. In detail, a nonced message authentication schemeMA =

(Km, T ,V) consists of three algorithms and is defined over some key spaceKeySpMA,

some nonce spaceNonceSpMA, some message spaceMsgSpMA, and some tag space

TagSpMA. The randomized key generation algorithm returns a keyK ∈ KeySpMA;

we denote this asK
$← Km. The deterministic tagging algorithmT takes a key

K ∈ KeySpMA, a nonceN ∈ NonceSpMA, and a messageM ∈ MsgSpMA and re-

turns a tagτ ∈ TagSpMA; we denote this process asτ ← T N
K (M) or τ ← TK(N, M).

The deterministic verification algorithmV takes as input a keyK ∈ KeySpMA, a nonce

N ∈ NonceSpMA, a messageM ∈ MsgSpMA, and a candidate tagτ ∈ {0, 1}∗, com-

putesτ ′ = T N
K (M), and returnsaccept if τ ′ = τ and returnsreject otherwise.

Let F be a forging adversary and consider an experiment in which we first pick

a random keyK
$← Km and then runF with oracle access toTK(·, ·). We say thatF

forgesif F returns a triple(N, M, τ) such thatVN
K (M, τ) = accept butF did not make

a query(N, M) to TK(·, ·) that resulted in a responseτ . Then

Advuf
MA(F) = Pr

[
K

$← Km : F TK(·,·) forges
]

149

denotes theUF-advantageof F in breaking theunforgeabilityof MA. An adversary

is nonce-respectingif it never queries its tagging oracle with the same nonce twice.

Intuitively,MA is unforgeable if theUF-advantage of all nonce-respecting adversaries

with reasonable resources is small.

5.7.2 The General CWC Construction

We now describe our generalization of the CWC construction.

Construction 5.7.1 [General CWC.] Let l, L, n, o, t, k be positive integers such that

t ≤ L. (Further restrictions will be placed shortly.) Essentially,l is the length of the

input to aPRF(e.g., 128),L is the length of the output from thePRF(e.g., 128),n is the

length of the nonce (e.g., 88),o is the length of the offset (e.g., 32),t is the length of the

desired tag (e.g., 64 or 128),k is the length of the hash function’s keysize (e.g., 127).

Let F be a family of functions from{0, 1}l to {0, 1}L. LetHF = (Kh,H) be

a family of hash functions withHashSpHF = {0, 1}l andKeySpHF = {0, 1}k (and

Kh works by randomly selecting and returning an element from{0, 1}k with uniform

probability). Letctr0 : Zdk/Le → {0, 1}l, ctr1 : {0, 1}n × (Z2o − {0}) → {0, 1}l

and ctr2 : {0, 1}n → {0, 1}l be efficiently-computable injective functions. IfW =

{ ctr0(O) : O ∈ Zdk/Le }, X = { ctr1(N, O) : N ∈ {0, 1}n, O ∈ (Z2o − {0}) },

Y = {ctr2(N) : N ∈ {0, 1}n}, andZ = {HK(M) : K ∈ KeySpHF , M ∈ MsgSpHF },

we require thatW , X, Y , andZ be pairwise mutually exclusive.

Let extract : {0, 1}dk/Le·L → {0, 1}k be a function that takes as input adk/Le·L-

bit string and that outputs ak-bit string. We require thatextract always pick the same

k bits from the input string and always outputs those bits in the exact same order (e.g.,

extract returns the firstk bits of its input).

Let SE [F,HF] = (Ke, E ,D) be an AEAD scheme built from function familyF

and hash functionHF and using the above functionsextract, ctr0, ctr1, ctr2. We assume

thatAdSpSE[F,HF]×MsgSpSE[F,HF] ⊆ MsgSpHF and that all messages inMsgSpSE[F,HF]

have length at mostL·(2o−1). Note that the former means that the message space ofHF

150

actually consists of pairs of strings. LetNonceSpSE[F,HF] = {0, 1}n. Let SE [F,HF]’s

component algorithms be defined as follows:

AlgorithmKe

f
$← F

Kh ← extract(f(ctr0(0))‖f(ctr0(1))‖ · · · ‖f(ctr0(dk/Le − 1))) ; H ← HKh

Return〈f, H〉

Algorithm EN,A
〈f,H〉(M)

σ ← CTR-MODEN
f (M)

τ ← first t bits of (f(ctr2(N))⊕ f(H(A, σ)))

Returnσ‖τ

AlgorithmDN,A
〈f,H〉(C)

If |C| < t then return⊥

ParseC asσ‖τ where|τ | = t

If A 6∈ AdSpSE[F,HF] or σ 6∈ MsgSpSE[F,HF] then return⊥

τ ′ ← first t bits of (f(ctr2(N))⊕ f(H(A, σ)))

If τ 6= τ ′ return⊥

M ← CTR-MODEN
f (σ)

ReturnM

Algorithm CTR-MODEN
f (X)

α← d|X|/Le

For i = 1 to α doZi ← f(ctr1(N, i))

Y ← (first |X| bits ofZ1‖Z2‖ · · · ‖Zα)⊕X

ReturnY

Before proceeding we make several observations. Recall that one requirement on the

message space for any AEAD scheme is that if it contains any stringM , then it contains

all strings of length|M |. This means that the membership testσ 6∈ MsgSpSE[F,HF] and

the application ofH to (A, σ) makes sense.

151

As specified in the definition,AdSpSE[F,HF] ×MsgSpSE[F,HF] ⊆ MsgSpHF . This

means that weHF is used to hashpairs of strings, not just string. This is not a serious

restriction since given any hash function that hashes strings it is trivial to construct a

hash function that hashes pairs of strings by encoding the pair of strings as a single

string in some appropriate manner.

It is also worth commenting on the purpose ofctr0, ctr1, andctr2. As shown in

Construction 5.7.1, these functions are used to derive the inputs to the construction’s

underlying functionf . By requiring that none of the outputs collide (i.e., that the sets

W, X, Y, Z in the definition are pairwise mutually exclusive), we ensure that the inputs

to f for different purposes never collide. For example, the inputs tof used for counter

mode encryption will always be different than the inputs tof when enciphering the

output ofH.

5.7.3 Security of the General CWC Construction

We now state the following results for all Construction 5.7.1-style AEAD

schemes. We shall prove Lemmas 5.7.2 and 5.7.3 in Sections 5.7.5 and 5.7.6, respec-

tively.

Lemma 5.7.2 [Integrity of Construction 5.7.1.] Let SE [F,HF] be as in Construc-

tion 5.7.1 and letHF be anε-AU hash function. Then given any nonce-respecting

AUTHC adversaryA againstSE [F,HF], we can construct aPRF adversaryBA against

F such that

Advauthc
SE[F,HF](A) ≤ Advprf

F (BA) + ε + 2−t .

Furthermore, the experiment forBA takes the same time as the experiment forA and,

if A makes at mostq − 1 oracle queries and a total of at mostµ bits of payload data

(for both theseq − 1 oracle queries and the forgery attempt), thenBA makes at most

µ/L + 3q + dk/Le oracle queries.

Lemma 5.7.3 [Privacy of Construction 5.7.1.] Let SE [F,HF] be as in Construc-

tion 5.7.1. Then given a nonce-respectingPRIV$-CPA adversaryA againstSE [F,HF]

152

one can construct aPRFadversaryBA againstF such that

Advpriv$-cpa
SE[F,HF](A) ≤ Advprf

F (BA) .

Furthermore, the experiment forBA takes the same time as the experiment forA and, if

A makes at mostq oracle queries totaling at mostµ bits of payload data, thenBA makes

at mostµ/L + 3q + dk/Le oracle queries.

We interpret these lemmas as follows. Intuitively, the first lemma states that ifF is

a securePRF, if HF is ε-AU whereε is not too large, and ift is not too small, then

SE [F,HF] preserves integrity. We comment that most modern block ciphers (e.g.,

AES) are considered to be securePRPs (and therefore also securePRFs up to a birthday

term). We also comment that we can construct hash functionsHF with provably smallε.

Intuitively, the second lemma states that ifF is a securePRF, thenSE [F,HF] will

preserve privacy.

5.7.4 Proofs of Theorem 5.4.1 and Theorem 5.4.2

The security of the CWC construction from Section 5.3 follows from Lem-

mas 5.7.2 and 5.7.3 assuming that (1) CWC as described in Section 5.3 is really an

instantiation of Construction 5.7.1 and (2) that the hash function used in Section 5.3 is

ε-AU for some smallε. We begin by justifying the second bullet.

Lemma 5.7.4 [CWC-HASH is ε-almost universal.] Consider theCWC-BC-tl con-

struction from Section 5.3. LetHF = (Kh,H) be the hash function whose key genera-

tion algorithm selects a random keyK from {0, 1}127 and letHK be theCWC-HASH

function except that we replace

Z ← last127 bits ofBCK(110126)

with

Z ← K .

153

Note thatAdSpCWC-BC-tl × MsgSpCWC-BC-tl ⊆ MsgSpHF ; that is,HK takes two strings

as input. AssumeHF hashes pairs of strings where the first string is always at most

n ≤ MaxAdLen bits long and the second string is always at mostm ≤ MaxMsgLen bits

long. ThenHF is ε-almost universal where

ε ≤ n + m

2133
+

1

2125
.

Proof of Lemma 5.7.4: Let (A, σ) and(A′, σ′) be two distinct inputs toHK and let

X = (B1, . . . , Bβ+1) and Y = (C1, . . . , Cγ+1) respectively denote their encodings

as vectors of96-bit integers (withBβ+1 andCγ+1 possibly longer than 96-bits long).

Without loss of generality, assumeβ ≤ γ and letX ′ = (B′
1, . . . , B

′
γ+1) whereB′

j = 0

for j ∈ {1, . . . , γ − β} andB′
j = Bj−γ+β for j ∈ {γ − β + 1, . . . , γ + 1} (i.e., prepend

γ − β zero elements to theX vector).

If (A, σ) 6= (A′, σ′) thenX ′ 6= Y . This follows from the fact thatB′
γ+1 andCγ+1

respectively encode the lengths ofA andσ and ofA′ andσ′ and that ifX ′ = Y , then

theB′
γ+1 = Cγ+1 and(A, σ) = (A′, σ′).

Note thatHK(A, σ) = HK(A′, σ′) when(
B′

1 ·K
γ
h + · · ·+ B′

γ ·Kh + B′
γ+1

)
−

(
C1 ·Kγ

h + · · ·+ Cγ ·Kh + Cγ+1

)
= 0 mod 2127 − 1 (5.3)

whereKh is the hash key derived fromK as specified inCWC-HASH. Since the vectors

X ′ andY are not equal,
(
B′

1·K
γ
h+· · ·+B′

γ ·Kh+B′
γ+1

)
−

(
C1·Kγ

h+· · ·+Cγ ·Kh+Cγ+1

)
is a non-zero polynomial of degree at mostγ. Therefore, by the Fundamental Theorem

of Algebra, Equation 5.3 has at mostγ solution modulo2127 − 1.

We are interested in the probability, over the 127-bit keysK, that Equation 5.3 is

true. We note that all keysKh modulo2127 − 1 (except0) have exactly one ways of

occurring and that the 0 key can occur in one additional way (i.e., the all0 string and

the all1 string). This means that of the2127 possible keysK, at mostγ + 1 can lead to

keysKh such that Equation 5.3 is true.

154

Finally, note thatγ is at most2+(n+m)/96 (the+2 comes from the fact that we

append 0 bits toA andσ). Consequently

ε ≤
n+m
96

+ 3

2127
≤ n + m

2133
+

1

2125

as desired.

We now prove Theorem 5.4.1 and Theorem 5.4.2, which are corollaries of Lem-

mas 5.7.2, 5.7.3, and 5.7.4.

Proof of Theorem 5.4.1 and Theorem 5.4.2:To prove these theorems we must show

that theCWC-BC-tl constructions from Section 5.3 are instantiations of Construc-

tion 5.7.1. We begin by noting that the block cipherBC in CWC-BC-tl plays the role of

F in Construction 5.7.1 and that the hash functionCWC-HASH (with the simplified key

generation algorithm from Lemma 5.7.4) plays the role ofHF in Construction 5.7.1.

SinceBC plays the role ofF , we have thatl = L = 128. Furthermore, as

described in Section 5.3,n = 88, o = 32, t = tl, andk = 127. We note that the

output the hash function is a128-bit string whose first bit is always0. This property, as

well as the encodings for the nonce/offsets when encrypting the message and the Carter-

Wegman MAC and when generating the hash key, ensure that requisite properties for

the interactions between the hash function,ctr0, ctr1, andctr2.

A direct comparison of the Construction 5.7.1 algorithms and the algorithms from

Section 5.3 shows that they are equivalent.CWC-BC-tl is therefore an instantiation of

Construction 5.7.1 and the provable security ofCWC-BC-tl follows.

Finally, we apply the standardPRF-PRPswitching technique [6, 12, 75] in order

to model the underlying block cipher as aPRPrather than aPRF in Theorem 5.4.1 and

Theorem 5.4.2.

5.7.5 Proof of Lemma 5.7.2

We being by sketching the proof of Lemma 5.7.2. We first show that applying a

random function to the output of anε-AU hash function yields anε′-AXU hash function

155

(Proposition 5.7.6). We then recall the result of Krawczyk [51] thatXORing the output

of anAXU hash function with a one-time pad yields a secure MAC (Proposition 5.7.8).

Such a MAC essentially corresponds to the second and third boxed steps in Construc-

tion 5.7.1. (We do not need this final block cipher application if the input to the hash

includes the nonce and if we accept a birthday term of the formq2ε.)

We then observe that if we consider a construction like Construction 5.7.1 but with

the latter two boxed steps replaced with calls to a secure MAC that tags pairs of strings

(A, σ) with noncesN , then that construction would be unforgeable (Proposition 5.7.10).

In Proposition 5.7.13 we use the above results to show thatSE [Rand[l, L],HF] pre-

serves integrity (whereSE [Rand[l, L],HF] is as in Construction 5.7.1). Lemma 5.7.2

follows.

From AU to AXU. Let us begin with the following construction.

Construction 5.7.5 [Building AXU hash functions from AU hash functions.] Let

HF = (Kh,H) be a hash function and letHF [t] = (Kh,H), t a positive integer, be the

hash function defined as follows:

Kh

H
$← HF

e
$← Rand[HashSpHF , {0, 1}t]

Return〈H, e〉

H〈H,e〉(M)

Returne(H(M))

Note thatMsgSpHF [t] = MsgSpHF andHashSpHF [t] = {0, 1}t.

Proposition 5.7.6 LetHF , t, andHF [t] be as in Construction 5.7.5. IfHF is ε-AU,

thenHF [t] is (ε + 2−t)-AXU .

This result follows from a result in [68, 78] which states that the composition of an

ε′-AXU hash function, with domainB and rangeC, with an ε-AU hash function, with

domainA and rangeB, is an(ε + ε′)-AXU hash function with domainA and rangeC,

and the fact that the hash function whose key generation algorithm returns a random

function from Rand[HashSpHF , {0, 1}t] is 2−t-AXU .

156

Carter-Wegman MACs. Consider now the following construction.

Construction 5.7.7 [Building MACs from AXU hash functions.] LetHF = (Kh,H)

be a hash function with hash space{0, 1}t, t a positive integer. We can construct a

nonced message authentication schemeMA = (Km, T ,V) as follows:

Km

H
$← HF ; g

$← Rand[NonceSpMA, {0, 1}t]

Return〈H, g〉

T〈H,g〉(N, M)

Returng(N)⊕H(M)

V〈H,g〉(N, M, τ)

If g(N)⊕H(M) = τ then

returnaccept

Else returnreject

Note thatMsgSpMA = MsgSpHF , TagSpMA = {0, 1}t, and thatNonceSpMA is arbi-

trary.

We now state the following result, due to Krawczyk [51].

Proposition 5.7.8 LetHF andMA be as in Construction 5.7.7. IfHF is ε-AXU , then

for all nonce-respectingUF adversariesF attackingMA, Advuf
MA(F) ≤ ε.

As noted in [51], this proposition follows from the facts thatXORing the output of the

hash function withg(N) prevents any loss of information (assuming that the adversary

is nonce-respecting), that a forgery attempt with a previous nonce is upper-bounded by

ε, and that a forgery attempt with a new nonce is upper-bounded by2−t ≤ ε.

Encrypt-then-MAC. Consider the following Encrypt-then-MAC construction.

Construction 5.7.9 [Encrypt-then-MAC.] Let l, L, n, o, t be positive integers. (Fur-

ther restrictions will be placed shortly.) Essentially,l is the length of the input to aPRF

(e.g., 128),L is the length of the output from thePRF (e.g., 128),n is the length of the

nonce (e.g., 88),o is the length of the offset (e.g., 32).

Let F be a family of functions from{0, 1}l to {0, 1}L. LetMA = (Km, T ,V) be

a message authentication scheme withNonceSpMA = {0, 1}n andTagSpMA = {0, 1}t.

157

Let ctr1 : {0, 1}n× (Z2o−{0})→ {0, 1}l be an efficiently-computable injective func-

tion.

Let SE [F,MA] = (Ke, E ,D) be an AEAD scheme built from function family

F and message authentication schemeMA and using the above functionctr1. We

assume thatAdSpSE[F,MA] × MsgSpSE[F,MA] ⊆ MsgSpMA and that all messages in

MsgSpSE[F,MA] have length at mostL · (2o − 1). Note that the former means that the

message space ofMA actually consists of pairs of strings. LetNonceSpSE[F,MA] =

NonceSpMA. LetSE [F,MA]’s component algorithms be defined as follows:

AlgorithmKe

f
$← F

K
$← Km

Return〈f, K〉

Algorithm EN,A
〈f,K〉(M)

σ ← CTR-MODEN
f (M)

τ ← T N
K (A, σ)

Returnσ‖τ

AlgorithmDN,A
〈f,K〉(C)

If |C| < t then return⊥

ParseC asσ‖τ where|τ | = t

If A 6∈ AdSpSE[F,MA] or σ 6∈ MsgSpSE[F,MA] then return⊥

τ ′ ← T N
K (A, σ)

If τ 6= τ ′ return⊥

M ← CTR-MODEN
f (σ)

ReturnM

Algorithm CTR-MODEN
f (X)

α← d|X|/Le

For i = 1 to α do

158

Zi ← f(ctr1(N, i))

Y ← (first |X| bits ofZ1‖Z2‖ · · · ‖Zα)⊕X

ReturnY

Proposition 5.7.10 Let SE [F,MA] be as in Construction 5.7.9. Then given a

nonce-respectingAUTHC adversaryB againstSE [F,MA], we can construct a nonce-

respecting forgery adversaryDB againstMA such that

Advauthc
SE[F,MA](B) ≤ Advuf

MA(DB) .

Furthermore the experiment forDB uses the same time as the experiment forB and if

B makesq encryption oracle queries, thenDB makesq tagging oracle queries.

To prove Proposition 5.7.10, we use the approach in [10] for analyzing Encrypt-then-

MAC constructions. The only difference is that we consider MACs that also take nonces

as input.

Combining these constructions. Let us now combine these constructions.

Construction 5.7.11 [Combined CWC.] Let l, L, n, o, t, k be positive integers such

thatt ≤ L. (Further restrictions will be placed shortly.) Essentially,l is the length of the

input to aPRF(e.g., 128),L is the length of the output from thePRF(e.g., 128),n is the

length of the nonce (e.g., 88),o is the length of the offset (e.g., 32),t is the length of the

desired tag (e.g., 64 or 128),k is the length of the hash function’s keysize (e.g., 128).

Let F be a family of functions from{0, 1}l to {0, 1}L. LetHF = (Kh,H) be

a family of hash functions withHashSpHF = {0, 1}l andKeySpHF = {0, 1}k (and

Kh works by randomly selecting and returning an element from{0, 1}k with uniform

probability). Letctr1 : {0, 1}n × (Z2o − {0}) → {0, 1}l be an efficiently-computable

injective function. Letextract : {0, 1}dk/Le·L → {0, 1}k be a function that takes as

input a dk/Le · L-bit string and that outputs ak-bit string. We require thatextract

always pick the samek bits from the input string and always outputs those bits in the

exact same order (e.g.,extract returns the firstk bits of its input).

159

Let SE [F,HF] = (Ke, E ,D) be an AEAD scheme built from function family

F and hash functionHF and using the above functionsextract andctr1. We assume

thatAdSpSE[F,HF]×MsgSpSE[F,HF] ⊆ MsgSpHF and that all messages inMsgSpSE[F,HF]

have length at mostL·(2o−1). Note that the former means that the message space ofHF

actually consists of pairs of strings. LetNonceSpSE[F,HF] = {0, 1}n. Let SE [F,HF]’s

component algorithms be defined as follows:

AlgorithmKe

f
$← F

d
$← Rand[Zdk/Le, {0, 1}L]

e
$← Rand[HashSpHF , {0, 1}t]

g
$← Rand[NonceSpSE[F,HF], {0, 1}t]

Kh ← extract(d(0)‖d(1)‖ · · · ‖d(dk/Le − 1)) ; H ← HKh

Return〈f, H, e, g〉

Algorithm EN,A
〈f,H,e,g〉(M)

σ ← CTR-MODEN
f (M)

τ ← g(N)⊕ e(H(A, σ))

Returnσ‖τ

AlgorithmDN,A
〈f,H,e,g〉(C)

If |C| < t then return⊥

ParseC asσ‖τ where|τ | = t

If A 6∈ AdSpSE[F,HF] or σ 6∈ MsgSpSE[F,HF] then return⊥

τ ′ ← g(N)⊕ e(H(A, σ))

If τ 6= τ ′ return⊥

M ← CTR-MODEN
f (σ)

ReturnM

Algorithm CTR-MODEN
f (X)

α← d|X|/Le

160

For i = 1 to α do

Zi ← f(ctr1(N, i))

Y ← (first |X| bits ofZ1‖Z2‖ · · · ‖Zα)⊕X

ReturnY

Proposition 5.7.12 Let SE [F,HF] be as in Construction 5.7.11 and letHF be anε-

AU hash function. Then the advantage of any nonce-respectingAUTHC adversaryA in

breaking the authenticity ofSE [F,HF] is upper bounded by

Advauthc
SE[F,HF](A) ≤ ε + 2−t .

Proof of Proposition 5.7.12: We first note that the stepsd
$←

Rand[Zdk/Le, {0, 1}L] ; Kh ← extract(d(0)‖d(1)‖ · · · ‖d(dk/Le − 1)) ; H ← HKh
is

equivalent to the stepH
$← HF .

Note thate(H(A, σ)) can be rewritten asH〈H,e〉(A, σ) whereHF [t] = (Kh,H) is

composed fromHF per Construction 5.7.5.

Also note thatg(N) ⊕ H〈H,e〉(A, σ) can be replaced withT N
〈H〈H,e〉,g〉

(A, σ) where

MA = (Km, T ,V) is composed fromHF [t] as per Construction 5.7.7.

By Proposition 5.7.10, givenA we can construct an adversaryBA againstMA

such that

Advauthc
SE[F,HF](A) ≤ Advuf

MA(BA) .

By Proposition 5.7.8 we know that

Advuf
MA(BA) ≤ ε′

whereε′ is ε + 2−t (the latter by Proposition 5.7.6).

Integrity of SE [Rand[l, L],HF]. We now consider the integrity of

SE [Rand[l, L],HF].

161

Proposition 5.7.13 Let SE [Rand[l, L],HF] be a AEAD scheme as in Con-

struction 5.7.1. Then for any nonce-respectingAUTHC adversary A against

SE [Rand[l, L],HF], we have that

Advauthc
SE[Rand[l,L],HF](A) ≤ ε + 2−t .

Proof of Proposition 5.7.13: Let SE ′[Rand[l, L],HF] be as in Construction 5.7.11.

Note thatSE [Rand[l, L],HF] andSE ′[Rand[l, L],HF] are identical except that the for-

mer uses only one random functionf andSE ′[Rand[l, L],HF] uses four random func-

tions (one to generate the hash key, one to CTR-mode encrypt the message, one to

encipher the output of the hash function, and one to CTR-mode encrypt the output of

the hash function). Furthermore, recall that, forSE [Rand[l, L],HF], there is never a

collision in the input tof between the four different uses off (this was a requirement

imposed onHF , ctr0, ctr1, andctr2). Consequently, the fact thatSE ′[Rand[l, L],HF]

uses four random functions andSE [Rand[l, L],HF] uses one is immaterial. Hence the

probability thatA forges againstSE [Rand[l, L],HF] is the same as the probability that

it forges againstSE ′[Rand[l, L],HF]. I.e.,

Advauthc
SE[Rand[l,L],HF](A) = Advauthc

SE ′[Rand[l,L],HF](A) .

By Proposition 5.7.12, we know the latter probability is upper bounded byε + 2−t.

Proof of Lemma 5.7.2. We now prove Lemma 5.7.2.

Proof of Lemma 5.7.2: AdversaryBA runsA and replies toA’s oracle queries using

its oraclef . If A returns a valid forgery,BA returns1, otherwiseBA returns0. This

implies that

Advauthc
SE[F,HF](A) = Pr

[
f

$← F : B
f(·)
A = 1

]
and

Advauthc
SE[Rand[l,L],HF](A) = Pr

[
f

$← Rand[l, L] : B
f(·)
A = 1

]
.

Since

Advauthc
SE[Rand[l,L],HF](A) ≤ ε + 2−t

162

by Proposition 5.7.13, we have

Advauthc
SE[F,HF](A) = Advauthc

SE[F,HF](A)−Advauthc
SE[Rand[l,L],HF](A)

+ Advauthc
SE[Rand[l,L],HF](A)

≤ Pr
[

f
$← F : B

f(·)
A = 1

]
− Pr

[
f

$← Rand[l, L] : B
f(·)
A = 1

]
+ ε + 2−t

= Advprf
F (BA) + ε + 2−t

as desired.

5.7.6 Proof of Lemma 5.7.3

Proof of Lemma 5.7.3: Let BA be aPRF adversary againstF that uses adversaryA

and that has oracle access to a functiong : {0, 1}l → {0, 1}L. AdversaryBA runsA

and replies toA’s encryption oracle queries using its own oracleg(·) for the functionf

in Construction 5.7.1. AdversaryBA returns the same bit thatA returns. Then

Pr
[
〈f, H〉 $← Ke : AE〈f,H〉(·,·,·) = 1

]
= Pr

[
g

$← F : B
g(·)
A = 1

]
since whenBA is given a random instance ofF it runsA exactly as ifA was given the

real encryption oracle. Furthermore

Pr
[
A$(·,·,·) = 1

]
= Pr

[
g

$← Rand[l, L] : B
g(·)
A = 1

]
sinceBA replies to all ofA’s oracle queries with independently selected random strings.

Consequently

Advpriv$-cpa
SE[F,HF](A) ≤ Advprf

F (BA)

as desired.

Additional Information

An earlier version of the material in this chapter appears in Fast Software Encryp-

tion, volume 3017 of Lecture Notes in Computer Science [50], copyright the IACR. I

163

was a primary researcher for the theoretical results in this paper. The full citation for

this work is:

Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-

performance conventional authenticated encryption mode. In Bimal Roy

and Willi Meier, editors,Fast Software Encryption, volume 3017 ofLec-

ture Notes in Computer Science, pages 408–426. Springer-Verlag, February

2004.

6 The WinZip Authenticated

Encryption Scheme

WinZip [85] is a popular compression utility for Microsoft Windows computers,

the latest version of which is advertised as having “easy-to-use AES encryption to pro-

tect your sensitive data” [85]. Because of WinZip’s already established large user base,

and because of its advertised encryption feature, we anticipate that many current and

future users will choose to exercise this encryption option with the hopes of crypto-

graphically protecting their personal data. Additionally, because of WinZip’s Microsoft

Outlook email plugin [84] and given other comments on WinZip’s websites [85, 86],

we anticipate that many users will also choose to use WinZip’s encryption feature in an

attempt to cryptographically protect the contents of their email attachments and other

shared data.

Unfortunately, WinZip’s new encryption scheme, called “Advanced Encryption-2”

or AE-2 [83] and shipped with WinZip 9.0, is insecure in a number of natural scenarios.

We exhibit several attacks and then propose ways of fixing the protocol. We believe that

our proposed fixes to the Zip file format are relatively non-intrusive and that they will

require only a moderate amount of reimplementation on the part of WinZip Computing,

Inc. and the vendors of other WinZip-compatible applications.

We include this discussion of WinZip in this dissertation because the WinZip ap-

An earlier version of the material in this chapter appears in the Proceedings of the 11th ACM Con-
ference on Computer and Communications Security [49], copyright the ACM.

164

165

plication has security vulnerabilities despite having a provably secure authenticated en-

cryption scheme as its core (an Encrypt-then-MAC construction using AES in CTR

mode for encryption and HMAC-SHA1 for message authentication). Our attacks do not

violate the provable security of the Encrypt-then-MAC core, but rather exploit problems

with the interface between this secure core and the rest of the WinZip system.

Our results serve to highlight both the limitations of and possible future directions

for the provable security approach. First, our results show that the provable security a

system’s sub-component is, by itself, not sufficient to guarantee the security of the larger

system. Rather, the designer of the larger system must take care when designing that

system; for example, the designer of a larger system must ensure that the larger system

establishes the proper preconditions for the correct use of the sub-component. As other

examples, recall Bellare and Namprempre’s [10] and Krawczyk’s [52] attack against the

generic Encrypt-and-MAC paradigm in Section 2.6.3 and our attack against a natural fix

to the SSH authenticated encryption scheme in Section 3.4.

If we look closer at our results, however, there is a more positive conclusion.

Namely, the makers of WinZip could have deflected many of our attacks if they had

used the provable security approach to help them design the whole AE-2 system, rather

than just incorporate the provably secure Encrypt-then-MAC sub-component into AE-

2 in anad hocmanner. Therefore, the results in this chapter highlight our belief that

there is still much to gain by pushing the provable security approach further into real

systems. This lesson is consistent with the other major thrusts of this dissertation, i.e.,

the work in Chapters 3 and 4 toward modeling and understanding realistic composition-

based authenticated encryption schemes and the work in Chapter 5 on designing an

authenticated encryption scheme around pragmatic constraints.

6.1 Overview

WinZip. We shall write “WinZip” when we mean “WinZip 9.0” or any other recent

version of WinZip or a WinZip-compatible tool that uses the AE-2 authenticated en-

166

cryption scheme [83].1 A WinZip archive can contain multiple files, and when that is

the case, each file is encapsulated independently. For each file to archive, if the length

of the file is above some threshold, WinZip first compresses the file using some standard

compression method such as DEFLATE [31]. WinZip then invokes the AE-2 encryp-

tion method on the output of the previous stage. Specifically, it derives AES [28] and

HMAC-SHA1 [52] keys from the user’s passphrase and then encrypts the output of the

compression stage with AES in counter (CTR) mode (AES-CTR) and authenticates the

resulting ciphertext with HMAC-SHA1. As noted in Section 2.6.3, the underlying AES-

CTR-then-HMAC-SHA1 core is a provably secure authenticated encryption scheme per

results by Bellare and Namprempre [10] and Krawczyk [52] and standard assumptions

on AES-CTR and HMAC-SHA1.

A collection of issues. All our attacks exercise different problems with the way that

WinZip attempts to protect users’ files. Furthermore, our attacks work in a variety of dif-

ferent settings, require a variety of different resources, and accomplish a variety of dif-

ferent goals, which means that different adversaries may prefer different attacks. Since

no single “best” attack exists, since in order to eventually fix the protocol we first wish

to understand the (orthogonal) security issues with the current design, and since we be-

lieve that each of the issues we uncover is informative, we discuss each of the main

problems we found, and their corresponding attacks, in turn. We believe that our ob-

servations also serve to highlight the subtlety of cryptographic design since the WinZip

AE-2 authenticated encryption method uses a provably-secure Encrypt-then-MAC core

in a natural and seemingly secure way and since one of the attacks we discover was

made possible because of the way that WinZip chose to fix a different problem with its

earlier encryption method, AE-1.

The main issues we uncover include the following:

1According to the documentation packaged with WinZip 9.0, “Because the technical specification for
WinZip’s AES format extension is available on the WinZip web site, we anticipate that other Zip file
utilities will add support for this format extension.”

167

Information leakage. According to the WinZip documentation, there is a known

problem with the WinZip encryption architecture in that the metadata of an encrypted

file appears in the WinZip archive in cleartext. Contained in this metadata is the en-

crypted file’s original filename, the file’s last modification date and time, the length of

the original plaintext file, and the length of the resulting ciphertext data, the latter also

being the length of the compressed plaintext data plus some known constant. Although

WinZip Computing, Inc. may have had reasons for leaving these fields unencrypted, the

risks associated with leaving these fields unencrypted should not be discounted. For ex-

ample, if the name of a compressed and encrypted file in thePinkSlips.zip archive

is PinkSlip-Bob.doc , encrypting the files in the archive will not prevent Bob from

learning that he may soon be dismissed. Additionally, a recent result from Kelsey [48]

shows that an adversary knowing only the length of an uncompressed data stream and

the length of the compression output will be able to learn information about the un-

compressed data. For example, from the compression ratio an adversary might learn

the language in which the original file was written [16]. Of course, the mere name,

date, and size of the entire.zip archive may reveal information to an adversary, so the

goal here should not be to prevent all information leakage, but to reduce the amount of

information leakage whenever possible.

Interactions between compression and encryption. One of our chosen-ciphertext

attacks exploits a novel interaction between WinZip’s compression algorithm and the

AE-2 Encrypt-then-MAC core. In particular, although the underlying AES-CTR-then-

HMAC-SHA1 core of AE-2 provably protects both the privacy and the integrity of en-

capsulated data, an attacker can exploit the fact that the metadata fields indicating the

chosen compression method and the length of the original file arenot authenticated by

HMAC-SHA1 as part of AE-2.

An example situation in which an adversary could exploit this flaw is the follow-

ing: two parties, Alice and Bob, wish to use WinZip to protect the privacy and integrity

of some corporate data. To do this, they first agree upon a shared secret passphrase.

168

Suppose Alice uses WinZip to compress and encrypt some file namedF.dat , using

their agreed upon passphrase to key the encryption, and letF.zip denote the resulting

archive. Now suppose Alice sendsF.zip to Bob, perhaps using WinZip’s Outlook

email plugin or by putting it on some corporate file server or an anonymous ftp server.

We argue that the type of security that Alice and Bob would expect in this situation is

very similar to the authenticated encryption notions ofPRIV-CCA-privacy (Section 2.4)

andAUTHC-integrity (Section 2.6).

Unfortunately, an adversary, Mallory, could break the security of WinZip under

this model. For example, assume that Mallory has the ability to change the contents of

F.zip , replacing it with a modified version,F-prime.zip , that has a different value

in the metadata field indicating the chosen compression method and an appropriately

revised value for the plaintext file length. When Bob tries to decrypt and uncompress

F-prime.zip , he will use the incorrect decompression method, and the contents of

F.dat upon extraction will not be the original contents ofF.dat , but will now look

like completely unintelligible garbageG. Now suppose that Mallory can obtainG in

some way. For example, suppose Bob sends the frustrated note “The file you sent was

garbage!” to Alice. If Mallory intercepts that note, he might reply to Bob, while pretend-

ing to be Alice, “I think I’ve had this problem before; could you send the garbage that

came out so that I can figure out what happened; it’s just garbage, there’s no reason not

to include it in an email.” Mallory, after obtainingG, can reconstruct the true contents

of Alice’s originalF.dat file.

We believe that the above attack scenario is realistic. It is the same scenario that

Katz and Schneier [46] and Jallad, Katz, and Schneier [42] used when attacking email

encryption programs and PGP, so any attack against WinZip’s Outlook email plugin

under the same scenario is at least as damaging; one difference is that our attack is

applicable to WinZip in its default setting, whereas the previous attacks against PGP

require the user to choose a non-default setting or to encrypt already compressed data.

Even when users do not use WinZip’s Outlook plugin to send encrypted attachments,

we believe that there are other natural scenarios in which an adversary could mount

169

our attack. For example, employees of at least one large corporation, Diebold Election

Systems, transported important election-related files, compressed and encrypted into Zip

archives, via an anonymous ftp site [43].2 Given Jones’ [43] discussion of Diebold’s

procedures, we would be surprised if an adversary able to modifyF.zip could not

also get access to the decrypted, garbage-looking outputG. Lastly, even if security-

conscious users might try to prevent an adversary from learningG, we believe that

security products should remain secure even in the face of potential misuses by non-

security conscious users, which further suggests that the attack we describe is significant

and should be protected against.

On the names of files and their interpretations. There are a number of systems

that associate software applications with filenames; for example, a Microsoft Windows

machine will by default open.doc files with Microsoft Word and.ppt files with Mi-

crosoft Power Point. Unfortunately, WinZip’s AE-2 authenticated encryption method

does not authenticate an encrypted file’s filename metadata field, meaning that Mallory

could modify the names of the encrypted files in an archive without triggering any detec-

tion mechanism within the extraction utility. This is problematic since, on a system like

Microsoft Windows, it is important for an extracted file to have the same extension as

the original file. Otherwise, when Bob tries to open that file, he will accidentally use the

wrong application, get an error message, and thereby possibly allow Mallory to mount

an attack similar to the one described in the previous heading. The issue described here

is orthogonal to the issue of leaving an encrypted file’s filename unencrypted; specifi-

cally, the issue is not that the filename is stored in cleartext, but that the filename is not

authenticated, though also encrypting the filename would not hurt.

We discuss other issues that can arise from allowing an adversary to modify the

names of encrypted files. The main lesson with all of these issues is that a file encryption

utility must not only protect the integrity of thecontentsof an encrypted file, but must

also protect the integrity of all of themetadata, like the filename or filename extension,

2These events preceded WinZip’s invention of AE-2; Diebold used the traditional Zip encryption
method.

170

necessary for the surrounding system to correctly interpret that data.

Interactions with AE-1 and a protocol rollback attack. According to the WinZip

AE-2 specification [83], the AE-2 authenticated encryption method fixes a security prob-

lem with an earlier AE-1 authenticated encryption method. Further, according to [83],

software implementing the AE-2 authenticated encryption method must be able to de-

crypt files encrypted with AE-1. While AE-2 does protect against a specific attack

against AE-1, there is a protocol rollback attack against WinZip that exploits the fact

that an adversary can force WinZip to use the AE-1 decryption method on an AE-2-

encrypted file. The attack also exploits the fact that in addition to using HMAC-SHA1,

AE-1 also uses a 32-bit CRC of the unencrypted file.

The attack works in the same setting as the previous attacks. In this attack, Mallory

interceptsF.zip , makes a guess of the contents ofF.dat , and creates a replacement

F-prime.zip based off his guess. If Bob can successfully decryptF-prime.zip ,

i.e., if Bob doesn’t complain to Alice that the file failed to decrypt because of a failed

CRC check, then Mallory learns with high probability whether his guess was correct.

To compare this attack with the previous attack, note that Mallory only needs to learn

whetherF-prime.zip decrypted successfully. On the other hand, Mallory only learns

whether his guess was correct. Still, this may constitute a serious attack if Mallory

knows that the contents ofF.dat is from a small set of possible values, perhaps because

of pre-existing knowledge of the message space or additional information gleaned from

the compression ratio, and wants to know which value it is. In some situations Mallory

may learn more than just whether his guess was correct; details in Section 6.6.

Archives with encrypted and unencrypted files. According to the WinZip AE-2

specification, archives can contain both encrypted and unencrypted files. While this

may have some functionality and usability advantages, there is also a rather serious se-

curity disadvantage. In particular, when a user invokes WinZip 9.0’s extraction utility

on an archive containing both encrypted and unencrypted files, WinZip 9.0 will ask for

a passphrase. It will then proceed to extractall of the files in the archive, without telling

171

the user which files were encrypted and which were not. The user will thus think that

all the files in the archive were encrypted (and authenticated), but, in fact, an adversary

could have complete control over the contents of all but one of the files in the archive

(one file must remain encrypted under the user’s passphrase in order to force WinZip 9.0

to prompt the user for the passphrase). In Section 6.7 we provide evidence that suggests

that although WinZip Computing, Inc. was unaware of the attack we found when they

designed AE-2, other Zip manufacturers may have been aware of it, or at least knew that

there were risks associated with allowing both encrypted and unencrypted files in Zip

archives.

Key collisions and repeated keystream. When encrypting a file, WinZip first takes

the user’s passphrase and derives cryptographic keys for AES and for HMAC-SHA1.

The key derivation process is randomized; one of the reasons for this randomization is

so that two different files encrypted with the same passphrase will use different AES and

HMAC-SHA1 keys. Unfortunately, because not enough randomness is used in the key

derivation process, we expect AES key collisions after encrypting only232 files when

using AES with128-bit keys. Furthermore, the AE-2 specification says that the initial

CTR mode counter is always zero.3 Combining these two observations, we can expect

CTR mode keystream reuse after encrypting only around232 files, which is much less

than the264 files we would expect if we chose a different random key for each file.

Additionally, assuming that the encrypted files are all of realistic size, then this is also

less than the number of files we would expect if we used AES in CTR mode with just a

single key but a randomly selected initial counter for each file.

Because WinZip encrypts each file in an archive independently, all232 files need

not be put into separate archives; we expect keystream reuse even if all232 files are

distributed amongst only a small set of WinZip archives. The problems with keystream

3Previously we said that the underlying Encrypt-then-MAC core of AE-2 is a provablyPRIV-CCA- and
AUTHC-secure authenticated encryption scheme per Bellare and Namprempre [10] and Krawczyk [52].
Because the initial CTR mode counter is always zero, we were assuming that each key is used to encrypt at
most one message, which is typically the case with WinZip assuming that less than232 files are encrypted
per passphrase.

172

reuse are well known: once Alice reuses keystream, Mallory will be able to learn in-

formation about the compressed and encrypted plaintext. In a worst-case scenario, if

Mallory knew the entire content of the larger, after compression, of two files encrypted

with the same keystream, then Mallory would immediately know the entire contents of

the other file.

Other ways of attacking WinZip. There are other ways in which an adversary might

attack WinZip or any other compression utility. For example, as noted in the WinZip

documentation, an adversary might try to capture a user’s passphrase by installing a key-

board logger on the user’s computer or might try to resurrect a plaintext file from mem-

ory. We also observe what we believe to be a new integrity attack against self-extracting

password-protected executables: an adversary wanting to replace the data encapsulated

by a password-protected self-extracting executable could write a new executable, with a

similar user interface to the real self-extracting executable, that asks for but ignores the

user-entered passphrase and simply creates a data file of the adversary’s choice. How-

ever, attacks such as these are unrelated to the AE-2 encryption method, and since our

focus is on the AE-2 encryption method and WinZip’s use of cryptography, we do not

consider these attacks further.

Secure alternatives. In response to the cryptographic issues and attacks we found,

we discuss a number of approaches for fixing the WinZip encryption method while

simultaneously minimizing the changes to the AE-2 specification.

Other Zip encryption methods. There are a number of other passphrase-based Zip

encryption methods besides WinZip’s new AE-2. The traditional Zip encryption mech-

anism [40] has similar functionality to AE-2, but it has significantly worse security: the

traditional Zip stream cipher has been broken [21, 77] and the contents of traditionally-

encrypted archives can be efficiently recovered from the Zip archives directly, i.e., there

is no need to mount a chosen-ciphertext attack like the ones we describe above.

173

PKWARE also recently announced a new passphrase-based encryption mecha-

nism called EFS [65]. The January 2004 version of the PKWARE’s EFS specifica-

tion [66], as well as the traditional Zip encryption mechanism, are all vulnerable to

our attacks that exploit generic properties of the Zip file format, namely the attacks ex-

ploiting (1) the information leakage of an encrypted file’s metadata, (2) the fact that an

encrypted file’s filename is not authenticated, and (3) the fact that an archive can contain

both encrypted and unencrypted files. Although the global applicability of issue (1) is

by now folklore knowledge, and we have evidence to believe that some people, although

unfortunately not WinZip Computing, Inc., may have known about some aspects of issue

(3), we have seen no previous discussions of issue (2). The lack of previous discussions

and awareness of these latter and other issues is likely because, until the creation of

applications like Zip Outlook plugins, and until the publication of works like Katz and

Schneier [46], the risks of chosen-ciphertext attacks were under-estimated.

The EFS specification [65], dated April 26, 2004 and appearing after the origi-

nal release of the material in this chapter (IACR ePrint Report 2004/078), adds a new

“filename encryption” feature that will encrypt the filename and other metadata fields

of encrypted files. Although EFS’s approach for addressing issue (1) is different than

ours, and is an option that users or administrators may fail to turn on (it was not the de-

fault in the version we tested), we are pleased to find that our suggestions for fixing (1)

are less intrusive to the Zip file format than PKWARE’s (when “filename encryption” is

turned on under PKWARE’s new specification [65], PKWARE-encrypted archives are

not parsable under the traditional Zip specification [40]). Unfortunately, PKWARE’s

new “filename encryption” feature alone cannot always fully protect against variants of

our problems with issues (2) and (3), largely because encryption alone does not imply

authentication. PKWARE’s specification [65] also includes the ability to encrypt and

sign files using public key cryptography, assuming the presence of the requisite addi-

tional infrastructure, though it is worth noting that the “certificate processing method

for ZIP file encryption remains under development . . . and is subject to change without

notice [65].”

174

Although a full treatment of PKWARE’s new EFS passphrase-based encryption

mechanism, as well as PKWARE’s use of public key cryptography, is outside the scope

of this chapter, we make a few observations here. The passphrase-based encryption

mechanism does not include a message authentication code at all, and thus does not

appear to have been designed to protect the privacy or integrity of files under chosen-

ciphertext attacks. This is problematic since, although digital signatures can be used

to protect the authenticity of the encapsulated data, it is still important to protect the

authenticity of files encrypted with passphrases when the necessary infrastructure for

digital signatures is not available, or when a user does not want to be bound to the con-

tents of a file with a digital signature. The specification is also incomplete, making it not

only difficult to implement the system from the specification alone, but to fully analyze

the system for potential security problems without making conjectures about how the

system is actually supposed to behave; e.g., if the user or developer chooses RC4 for

encryption, how exactly is RC4 supposed to be used and are results like Mironov’s [61]

taken into consideration? Where the specification is unambiguous, the specification still

leaves decisions, such as the choice of the underlying cipher (e.g., 40-bit RC2, 64-bit

RC4, 3DES, AES) and the length of the randomnessRD when deriving encryption keys,

up to the choice of implementors. This is a concern since even if PKWARE makes safe

choices with respect to these decisions, there is nothing in the specification to prevent

third-party developers from making unsafe choices.

Additional related works. Biham [20] introduced the notion of key-collision attacks

in the context of DES, noting that we expect one key collision after encrypting about

228 messages using randomly selected 56-bit DES keys; our keystream reuse attack in

Section 6.8 is related to Biham’s key-collision attack except that it is more efficient than

a normal key collision attack because of the way that WinZip derives AES keys from

passphrases. Wagner and Schneier discuss protocol rollback attacks in [80].

175

6.2 The WinZip Compression and Encryption Method

WinZip’s compression architecture follows the Info-ZIP specification [40]. The

AES-based AE-2 extension is described on WinZip’s website [83]. The difference be-

tween the AE-2 authenticated encryption method and the AE-1 authenticated encryption

method is slight and is mentioned at the end of this section.

Basic structure. We present here the basic Zip file format and the AE-2 extensions,

omitting details that are not relevant to our attacks and to our security improvements.

A Zip archive can contain multiple files. When archiving a set of files, WinZip

creates tworecordsfor each file, amain file recordand acentral directory record. The

resulting Zip archive contains all of the main file records concatenated together followed

by all of the central directory records. Following the central directory records is anend

of archive record, which is not relevant to our attacks and suggested improvements. The

main file recordcontains metadata about the file, like the filename, as well as the file’s

contents, the latter typically being compressed and, in the case of AE-2, encrypted. The

contents of each file is compressed and encrypted independently. Thecentral directory

recordmirrors the metadata stored in the main file record and also contains information

about the location of the file’s corresponding main file record in the Zip archive. One of

the reasons for the existence of the central directory record is for usability when working

with multi-volume floppy or CD archives. For example, when extracting a file from a

multi-volume CD archive, the user can insert the last CD, WinZip can read the central

directory information, and then WinZip can prompt the user to insert the CD containing

the main file record.

When referring to the fields of a Zip archive, byte strings will be written like

504b0304 bs, meaning that the first byte is50bs = 80, the second byte is4bbs = 75,

and so on. Integers, such as lengths, that are stored in multi-byte fields are encoded in

little endian format.

176

Main file record. According to the Info-ZIP specification [40], and barring certain

extensions that do not affect our attacks, all main file records have the following structure

(the fields important to our work are highlighted): main file record indicator (4 bytes,

always504b0304 bs), version needed to extract (2 bytes), general purpose bit flag (2

bytes),compression method(2 bytes),last modification time(2 bytes),last modification

date(2 bytes),32-bit CRC(4 bytes), compressed size (4 bytes),uncompressed size(4

bytes), filename length (2 bytes), extra field length (2 bytes),filename(variable size),

andextra field(variable size). Following the above fields, but still part of the main file

record, is thefile datafield.

Central directory record. The central directory record for a file consists of the fol-

lowing fields (important fields highlighted): central directory record indicator (4 bytes,

always504b0102 bs), version made by (2 bytes), version needed to extract (2 bytes),

general purpose bit flag (2 bytes),compression method(2 bytes),last modification time

(2 bytes),last modification date(2 bytes),32-bit CRC(4 bytes), compressed size (4

bytes),uncompressed size(4 bytes), filename length (2 bytes), extra field length (2

bytes), file comment length (2 bytes), disk number start (2 bytes), internal file attributes

(2 bytes), external file attributes (4 bytes), relative offset of local header (4 bytes),file-

name(variable size),extra field(variable size), and file comment (variable size).

AE-2 settings and the AE-2 extra data field. The following is applicable to both the

main file record and the central directory record. When the AE-2 WinZip encryption

algorithm is turned on, the four bytes reserved for the 32-bit CRC are set to zero, bit 0

of the general purpose flag is set to 1, and the two bytes reserved for the compression

method are set to6300 bs. The extra data field will consist of the following 11 bytes

(again, important fields highlighted): extra field header id (2 bytes, always0199 bs), data

size (2 bytes,0700 bs for AE-2 since there are seven remaining bytes in the 11-byte extra

data field),version number(2 bytes, always0200 bs for AE-2), 2-character vendor ID

(2 bytes, always4145 bs for AE-2), value indicating AES encryption strength (1 byte),

andthe actual compression method used to compress the file(2 bytes). The encryption

177

strength field will be01bs (resp.,02bs or 03bs) if the file is encrypted with AES using

a 128-bit (resp.,192-bit or 256-bit) key. Example values for the actual compression

method are0800 bs if the file is DEFLATEd [31] and0000 bs if no compression is used.

File data field. When a file is AE-2-encrypted, the file data field of the main file record

contains the following information:salt (variable length),password verification value

(2 bytes),encrypted file data(variable length), and theauthentication code(10 bytes).

The salt is 8 bytes (resp., 12 bytes or 16 bytes) long if the AES key is 128 bits (resp.,

192 bits or 256 bits) long.

The encrypted file data and authentication code. Before applying the AE-2 authen-

ticated encryption method, the contents of the plaintext file is compressed according

to the “actual compression method used to compress the file” field of the AE-2 extra

data field described above. Then an AES encryption key, an HMAC-SHA1 key, and a

password verification value are derived from the user’s passphrase and a salt using the

PBKDF2-HMAC-SHA1 algorithm [45]. The length of the salt depends on the chosen

length of the AES key and is described above. The specification [83] states that the

salt should not repeat, and since this must be true across different invocations of the

compression tool, suggests making the salt a random value.

The derived AES key is used to encrypt the compressed data using AES in CTR

mode with the initial counter set to zero. The compressed plaintext data is not padded

before encryption. After encryption, the encrypted data is MACed using HMAC-SHA1

and the derived MAC key, and 80 bits of the HMAC-SHA1 output are used as the au-

thentication code.

Differences between AE-1 and AE-2. The only differences between the AE-2

method and the earlier AE-1 method is that in AE-1 the version number in the main

file record’s and central directory record’s extra data fields are0100 bs and the 32-bit

CRC fields are not all zero but actually contains the CRC of the original unencrypted

data, which the WinZip specification [83] states must be checked upon extraction. The

178

motivation for zeroing out the CRC field in AE-2 is because the CRC of the plaintext

will leak information about the plaintext.

6.3 Information Leakage

The metadata fields of encrypted files leak important and potentially security-

critical information in several ways. The names of the encrypted files are stored in

cleartext, which can obviously be a concern. The files’ last modification dates and times

are also stored unencrypted, which can be used to infer some relationship between the

contents of different encrypted files or some event in the past. Additionally, the length

of plaintext files are stored in the files’ metadata fields unencrypted. This is a concern

since, based on Kelsey’s recent results about compression as a side-channel [48], an

adversary can learn information about the plaintext simply given the lengths of both the

original and the compressed data. As Kelsey notes, information leakage via the com-

pression ratio of files becomes particularly effective if Mallory has pre-existing partial

knowledge of the plaintext or if Mallory can see the compression ratio of multiple re-

lated files, e.g., different versions of the same file over time. The WinZip documentation

notes that these pieces of information are included unencrypted in the file’s metadata,

but the risks associated with leaving these fields unencrypted is not considered. Fur-

thermore, many users may fail to read the documentation, and thus may not realize that

these information leakage side-channels exist in the first place.

It is a well known fact that the classic Zip encryption method [40] also leaks the

information that we mention above, plus the 32-bit CRC of an encrypted file’s original

plaintext. It is interesting to ask why WinZip Computing, Inc. did not fix this problem

in their new AE-2 specification. The most likely conjecture is that WinZip Computing,

Inc. chose not to do so either because of engineering or design complexities, or because

of functionality issues (e.g., they wanted to allow users to be get a directory listing of the

contents in their encrypted archives without having to enter a passphrase). To address the

former reason, we discuss technical approaches for addressing the information leakage

179

concerns in Section 6.10.

6.4 Exploiting the Interaction Between Compression

and Encryption

Recall the setup described in Section 6.1, where Alice encryptsF.dat and sends

the resulting Zip archive,F.zip , to Bob, but where Mallory prevents the delivery of

F.zip and instead gives Bob a file,F-prime.zip , that is related toF.zip but that is

slightly different. The critical observation for our attack is that despite the fact that the

underlying encryption core is a provably secure Encrypt-then-MAC authenticated en-

cryption scheme, the compression method and original file length fields in an encrypted

file’s main file and central directory records arenot authenticated, which means that an

adversary can change these fields without voiding the HMAC-SHA1 authentication tag

attached to the file. Consequently, assuming that the new uncompressed file length field

is correct or that the extraction tool does not check that field, when Bob attempts to

decrypt and decompress the modified fileF-prime.zip , the MAC verification will

succeed and WinZip will not report any errors. But because the adversary changed the

compression method, the file will be decompressed using the wrong algorithm and the

resulting contentsG of the extracted file will look like garbage. This issue immediately

violates the type of security goal captured by theAUTHC definition in Section 2.6. If

Mallory can learnG, which we argue in Section 6.1 is reasonable in some cases, Mallory

can recover the original contents of Alice’s fileF.dat . This latter step, in addition to

being of concern in practice, violates the type of security goal captured by thePRIV-CCA

definition in Section 2.4.

Implementing the attack. When mounting the attack, Mallory would likely change

the compression method indicators in the main file and central directory records from

0800 bs, which appears to be WinZip’s default and which corresponds the DEFLATE

algorithm [31], to0000 bs, which corresponds to no compression. This is very easy to

180

do and very efficient and can be done in a linear pass through the file, as can updating

the original file length field. We implemented this attack against WinZip 9.0. To create

F-prime.zip from F.zip , rather than parseF.zip and switch the compression

type from0800 bs to 0000 bs, we found that the Unixtcsh command line

cat F.zip |\

sed ’s/\(\x02\x00\x41\x45\x01\)\x08\x00/\1\x00\x00/g’\

> F-prime.zip

was sufficient in all of the cases that we tried, showing that the attack is indeed very easy

to mount.4 We would only expect the above command line to not work as desired if the

7-byte string02004145010800 bs appears inF.tar in a place not corresponding to

the extra data field of a file’s main file or central directory records. Since the WinZip 9.0

extraction tool did not seem to verify the length of the extracted file, we did not need to

modify the original file length fields of the file’s main file and central directory records.

Subtlety of cryptographic design. Recall that in AE-1 the CRC field of an encrypted

file’s header contains the CRC of the original plaintext file but that the field is all zero

in AE-2. When trying to mount the above attack against AE-1, since the extraction

utility will also verify the CRC of the plaintext, which will typically fail because the

plaintext is now different, the resulting garbage-looking dataG will not be saved and

the attack will not immediately go through. While it is true that if Bob is crafty he may

be able to viewF.dat (the file with contentsG) among the temporary files created by

WinZip during the extraction process and before the CRC failure is noted, sendG to

Alice, and thereby leakG to Mallory, it might be unrealistic for Mallory to assume that

Bob will find F.dat among WinZip’s temporary files, at least not without more active

intervention by Mallory. This discussion highlights the subtlety of cryptographic design

since the vulnerability presented in this section was accidentally introduced when the

authors of the specification tried to fix a different problem with AE-1.

4Different versions ofsed appear to handle binary streams differently. The attack worked on default
RedHat 9.0 systems withsed version 4.0.3.

181

6.5 Exploiting the Association of Applications to File-

names

To complement the attack in Section 6.4, we note that on many systems, including

Microsoft Windows machines, software applications are automatically attached to files

based on the files’ filename extensions; e.g., Microsoft Windows will by default open

.doc files with Microsoft Word. Since the filename fields of an encrypted file’s main

file and central directory records are unauthenticated, an adversary could modify those

field without voiding the MAC included at the end of the encrypted file’s main file

record. Once Mallory does this, he can mount a variant of the attack in Section 6.4

since applications will usually report an error when trying to open a file of the wrong

extension. Fortunately, some applications give descriptive error messages and Bob may

realize that the file has the wrong filename extension (e.g., Microsoft Excel gives the

error “File.xls : file format is not valid” when opening a document created with

Microsoft Word), but this is largely serendipitous and should not be relied upon for

security. This discussion suggests that a file encryption utility must not only protect

the integrity of the encapsulated data itself, but also the metadata, like the filename

extension, necessary for the surrounding system to correctly interpret that data.

We also observe that an adversary could benefit from changing the names of the

encrypted files in an archive while still maintaining the files’ original extensions. For

example, if Alice’s salary is currently higher than Mallory’s, Mallory could swap the

names of the filesAlice-Salary.dat and Mallory-Salary.dat in an en-

crypted archiveSalaries.zip without triggering any detection mechanism within

the extraction utility.

6.6 Exploiting the Interaction Between AE-1 and AE-2

The motivation for the change from AE-1 to AE-2 is that in AE-1 the CRC of the

plaintext file is included unencrypted in an AE-1-encrypted WinZip archive, and that

182

will leak information about the encrypted files’ contents. While the CRC is no longer

included in the output of the AE-2 authenticated encryption method, one can exploit an

interaction between AE-1 and AE-2 in the followingPRIV-CCA-style attack that reveals

information about an AE-2-encrypted file’s CRC to an adversary. Our attack makes

use of the fact that, according to the AE-2 specification [83], Zip tools that understand

AE-2 must be able to decrypt files encrypted with AE-1 and must verify the CRC upon

extraction.

Details. Recall thePRIV-CCA-based setting used in Section 6.4 and Section 6.5. As-

sume Alice sends the encrypted fileF.zip to Bob, but assume that Mallory can modify

the file in transit and can learn whether Bob can successfully extract the file he receives

using the passphrase he shares with Alice. Now suppose that Mallory has a guess for

what the original contents ofF are, but is not completely sure and wants to verify his

guessH. He can do this as follows: compute the 32-bit CRC ofH and then modify

F.zip such that the version number in the main file and central directory records’ extra

data fields are0100 bs and the CRC fields in the file’s main file and central directory

records has the CRC ofH. Let F-prime.zip denote the Mallory-doctored file. If

Mallory’s guess is correct, then Bob will be able to extractF from F-prime.zip

without any error. Otherwise, Bob will with high probability see an error dialog box

which, when using WinZip 9.0, says “Data error encountered in fileC:\F [.] Possibly

recoverable, contacthelp@winzip.com and mention error code 56.” By observing

Bob’s reaction, Mallory will with high probability learn whether his guess was correct.

If we look more closely at how WinZip behaves when it attempts to extract a

modified file with an incorrect CRC guess, it appears that the file is first extracted, the

CRC is checked, the user is told that the CRC check failed, and then the extracted file is

deleted. This means that if Bob is crafty he will be able to access the unencrypted file

between when it is extracted and when it is automatically deleted after the CRC check

fails. Even if Bob does this, which we expect to be unlikely, he may not be confident

in the correct extraction of the file and, if so, will likely convey this lack of confidence

183

to Alice. Other implementations of the AE-2 specification may delete the extracted file

before informing the user that the CRC check failed.

Extension. Although not necessarily the case with all Zip tools but in the case of

WinZip, after dismissing the initial error dialog box Bob will have the option of viewing

a more detailed error log. If Bob chooses to see this error log, he will see a line like the

following:

bad CRC 1845405d (should be 1945405d)

If Bob decides to copy and paste this detailed error message in an email to Alice or

help@winzip.com , and if Mallory sees this email, then Mallory will learn the CRC

of the plaintext file, and thereby learn additional information about the plaintext.

6.7 Attacking Zip Encryption at the File Level

When a Zip archive contains multiple files, each of the files in the archive is en-

capsulated independently, which means that some files in an archive may only be com-

pressed and some may be both compressed and encrypted. This fact makes the WinZip

AE-2 authenticated encryption method vulnerable to a number of attacks. Consider

the following: Mallory knows that the encrypted archiveSalaries.zip contains

the filesAlice.dat , Bob.dat andMallory.dat , all encrypted using AE-2 un-

der the CFO’s secret passphrase. Now, because of the properties described above, an

adversary could remove the encryptedMallory.dat file from theSalaries.zip

archive and replace it with anew, unencryptedfile, also namedMallory.dat , but

with the contents of Mallory’s choice. When the CFO tries to extract the files in the

archive using the WinZip 9.0 application, she will be prompted for her passphrase since

the filesAlice.dat andBob.dat are still encrypted. WinZip will then extract the

files Alice.dat , Bob.dat , and Mallory.dat . Since the CFO had to enter her

passphrase, she will likely believe that the extractedMallory.dat file is the same one

that she encrypted, and thus contains Mallory’s real salary, when in fact the contents of

184

Mallory.dat are completely under Mallory’s control. Similarly, if Alice creates an

archive containing both encrypted and unencrypted files and sends that archiveF.zip

to Bob, Mallory will be able to easily modify the contents of the unencrypted files in

the archive. But, like in the previous attack, since Bob has to enter a passphrase to ex-

tract the contents of the archive, and because no warning is given about some files being

unencrypted, Bob will believe that all the files were encrypted by Alice and that they

contain Alice’s original content.

WinZip Computing, Inc. does not appear to have been aware of the above attacks

when they specified AE-2 [83] and when they implemented WinZip 9.0, as supported

both by the fact that WinZip 9.0 does not generate a warning when extracting an archive

containing both encrypted and unencrypted files, and by quotes taken from the AE-2

specification [83], which only mention usability reasons for encrypting all the files in

an archive and which do not suggest that vendors issue warnings when encountering

unencrypted files in an archive with encrypted files. E.g., the specification states: “The

presence of both encrypted and unencrypted files in a Zip [archive] may trigger user

warnings in some Zip file utilities, so the user experience may be improved if all files

(including zero-length files) are encrypted. Again, however, this is only a recommenda-

tion.” This quote does suggest that other Zip vendors may have known of the attack we

describe above, or at least knew to be wary of archives containing both encrypted and

unencrypted files.

Because files in a Zip archive are encrypted on a per-file basis, an adversary could

also delete files from an archive. An adversary could also create a composite Zip archive

with encrypted files taken from multiple different archives, but we view these properties

as less interesting than the first attacks in this section. Related to the first attacks in

this section, in Section 6.5 we observed that an adversary could swap the filenames of

different encrypted files, and that he could also use this fact to modify the contents of

Alice’s encrypted files; the attacks in Section 6.5 exploit a different security problem,

that for encrypted files the filenames are not authenticated.

185

6.8 Keystream Reuse

When AE-2 is used with a 128-bit AES key, one can expect CTR mode keystream

reuse after encrypting approximately232 files, which is much less than one would expect

given that AES has 128-bit blocks. (When using 192-bit AES keys with AE-2, we expect

keystream reuse after encrypting248 files; when using 256-bit AES keys, we expect

collisions after encrypting264 files). The security problems with reusing keystream are

well-known, and therefore we can expect the AE-2 authenticated encryption method

with 128-bit AES keys to start leaking additional information about the compressed and

encrypted plaintext after232 files are encrypted with the same passphrase.

This problem arises for two reasons. First, the salt used when deriving the AES

and HMAC-SHA1 keys from the passphrase is only 64 bits (resp., 96 bits and 128 bits)

long when the desired AES key length is 128 bits (resp., 192 bits and 256 bits). Second,

AES-CTR is specified to always use zero as the initial block counter. The former means

that, with 128-bit keys, after encrypting232 files we expect there to be one AES key that

we used twice. The latter means that when we use the same AES key twice, we will use

the same keystream both times.

6.9 Dictionary Attacks

One of the reasons for using PBKDF2 [45] and a salt when deriving AES and

HMAC-SHA1 keys from passphrases is to impede dictionary attacks. Specifically, an

exhaustive search through the most common passphrases will be slow because of the

computational requirements for PBDKF2, and a dictionary of HMAC-SHA1 keys, cor-

responding to the most common passphrases and all possible salt values, will be ex-

tremely large because of the number of possible salt values.

But since a different salt is used to encrypt each file, an adversary may not need

to useall possible salt values when populating an HMAC-SHA1 key dictionary. In par-

ticular, Mallory would only need to populate the dictionary using enough different salt

values to ensure, with high probability, that one of the salt values that a user uses when

186

encrypting her files will collide with one of the salt values that Mallory used when cre-

ating his dictionary. For example, if the salt is 8 bytes long and if each user is expect

to encrypt on the order of232 files, then Mallory would only need to use232 different

salt values when creating his HMAC-SHA1 dictionary. The dictionary can be indexed

off of the saltand the two-byte password verification value; the password verification

value thus further reduces the amount of HMAC-SHA1 keys the attacker has to try in

the dictionary attack. Once Mallory finds an HMAC-SHA1 key such that the MAC

of the encrypted file verifies, he will with high probability learn the user’s correspond-

ing passphrase, and thereafter be able to decrypt all of the files encrypted under that

passphrase. While this is a time-memory trade-off in terms of not having to compute

PBKDF2 for every passphrase guess, the memory and precomputation requirements are

still quite enormous.

6.10 Fixes

In this section we consider fixes to the problems we discussed in Section 6.3

through Section 6.9, starting with Sections 6.4–6.9 and returning to Section 6.3 at the

end. We also discuss our preferred instantiations of these suggestions.

Authenticate all. To address the problems raised in Section 6.4, one approach might

be to MAC the original uncompressed plaintext instead of the ciphertext and then en-

crypt the resulting tag in a MAC-then-Encrypt-style construction. We recall from Sec-

tion 2.6.3 and Chapter 4 that, while MAC-then-Encrypt is not generically secure, it

is possible to base secure authenticated encryption schemes on the MAC-then-Encrypt

paradigm. Alternatively, we could build on WinZip’s current provably secure Encrypt-

then-MAC core. If we continue to use the existing Encrypt-then-MAC core, we still

note the following general design principle for cryptographic encapsulation methods:

a cryptographic encapsulation algorithm should authenticateall of the information that

an extractor/decapsulator will use when reconstructing the original data, excluding the

187

authentication tag itself and assuming that the extractor already has a copy of the shared

authentication key. In the case of WinZip, since the compression type field of an en-

crypted file’s header will be accessed when extracting an encrypted file, this means that

the compression type value should be MACed along with the AES-CTR-generated ci-

phertext. We can naturally extend this general principle to mandate the authentication

of all data necessary to ensure the correctinterpretationof the data once the data has

been correctly reconstructed, which means that the filename, date, and any other im-

portant metadata fields in an encrypted file’s header must also be authenticated, which

addresses the concerns raised in Section 6.5. If WinZip Computing, Inc. does not mind

deviating further from their current AES-CTR-then-HMAC-SHA1 construction, then

the new encryption core can be any provably-secure AEAD scheme as long as the im-

portant metadata fields are authenticated.

Addressing protocol rollback attacks. To prevent protocol rollback attacks like the

one described in Section 6.6, it might be tempting to apply the above principle and

create a new scheme that MACs the encryption method version number field in the extra

data field of an encrypted file’s header. Unfortunately, this may not necessarily work

since here we are concerned about attacks that exploit the interaction between different

encapsulation/decapsulation schemes, and, in particular, interactions with schemes, AE-

1 and AE-2, that have already been specified and that do not currently authenticate that

field. To see why this is a problem, note that an adversary could move the extra data

MACed using the new method into the ciphertext portion of an AE-2-format archive and

thereby mount a protocol rollback attack.

While one might try MACing information not directly available to an adversary,

such as the encipherment of some nonce, we view such an approach as inelegant. Rather,

we suggest diversifying the AES and HMAC-SHA1 key derivation process in such a

way that the AES and HMAC-SHA1 keys derived from some passphrase and salt us-

ing the new encryption method will be different from the keys derived from the same

passphrase and salt when using the AE-1 and AE-2 encryption methods. This could

188

involve prepending the encryption method version number, vendor ID, and encryption

strength field to the salt before running the key derivation procedure. If it were not the

case that the length of the salt for AE-1 and AE-2 were fixed, but if the length of the

salt was variable and if the length of the salt is encoded in a metadata field of an en-

crypted file, then even our solution here would not be a sufficient since an adversary

could simply add the method version number, vendor ID, and encryption strength field

into the (now larger) salt in an AE-2-formatted archive. For similar reasons, there is still

the potential of interaction with other (non-WinZip) applications that uses PBKDF2-

HMAC-SHA1, but it seems impossible for WinZip to complete avoid such interactions

with applications that are not under their control.

Addressing the concerns in Section 6.7. There are several possible solutions for the

problems that we raised in Section 6.7. The obvious approach of authenticating an entire

archive would likely break some of WinZip Computing, Inc.’s functionality design cri-

teria, namely the desire to (efficiently) handle updates to large archives, and in particular

archives spanning multiple CD volumes. Another approach might be to authenticate the

entire central directory (the concatenation of all the central directory records), since the

central directory will always be stored at the end of the archive, and in particular on the

last CD in a multi-volume archive. Toward this end, we note that the Zip specification

already has the ability to sign the central directory using public key cryptography, so

adding the ability to authenticate the central directory using a MAC is certainly reason-

able. However, we point out that this solution has a number of issues that one must be

careful of. For example, the extractor must check the consistency between the metadata

in a file’s main file record and a file’s central directory record. If we are concerned

about adversaries deleting files from an archive, then the absence of files must also be

checked (this may follow as a corollary of checking the consistency of the individual

files if the consistency check includes main file record offsets, which are stored in the

central directory record). But of most concern is the fact that authenticating the cen-

tral directory alone willnot prevent an attacker from modifying unencrypted files in an

189

archive. Rather, those unencrypted files must be cryptographically bound to the cen-

tral directory in some way, perhaps by including a MAC of an unencrypted files in its

central directory record. Another potential problem with this solution is thatif authen-

ticating the central directory is an option, then one must be careful to ensure that an

adversary cannot simply take a Zip archive, turn that option off, and remove the MAC

of the central directory. One possible way of handling this might be to use different AES

and HMAC-SHA1 keys when the option is turned on and when the option is turned off.

Alternatively, a reasonable solution might simply be torequireapplications implement-

ing the AE-2 decryption algorithm toalwaysreport a warning when an archive contains

both encrypted and unencrypted files.

Addressing keystream reuse and dictionary attacks. To address the issues raised

in Section 6.8, we suggest two possible solutions. First, one could double the current

salt length. Alternatively, instead of always using zero as the initial AES-CTR mode

counter, one could use a random initial counter selected from the set of all possible128-

bit integers. The initial counter should be included in the resulting archive and should

also be included in the string to be MACed. Furthermore, under this approach the same

AES and HMAC-SHA1 keys can be used with all files protected by the same passphrase;

i.e., the same randomly-selected salt could be used with all such files in an archive. The

latter property is a performance gain since in the current design, where a different salt is

used with each file, the passphrase-based key derivation step dominates the time when

creating or extracting archives containing lots of small files. When adding new files to

an existing archive, it is important to select new salts or to verify that the users knows the

passphrase corresponding to the files encrypted with the existing salt values (otherwise

an attacker could force a user to use a salt of the attacker’s choice, which would make

dictionary attacks more feasible).

Possible solutions to the issues raised in Section 6.9 include increasing the length

of the salt or using the same salt when encrypting multiple files. Fortunately, these two

recommendations align with our recommendations for the issues raised in Section 6.8.

190

Additionally, we suggest not storing the password verification values in a file’s metadata

since it can be used to quickly eliminate keys in a dictionary attack against a user’s

passphrase.

Minimizing information leakage. There are a number of different approaches for ad-

dressing the information leakage concerns raised in Section 6.3. The latest (April 26,

2004) specification from PKWARE [65], which is incompatible with WinZip’s new en-

cryption method, introduces an option for encrypting the metadata fields of an encrypted

file; when the option is turned on (it is not on by default), PKWARE’s SecureZIP prod-

uct encrypts the entire central directory and removes most of the metadata information

from a file’s main file record, either by zeroing out the appropriate fields or replacing

them with random data. Aside from the fact that the central directory is not MACed,

our two main concerns with PKWARE’s solution are that (1) we believe that protecting

against information leakage from an encrypted file’s header should not be an option and

(2) archives created with the above option turned on are no longer parsable under the

traditional Zip specification [40]. In contrast, our proposed fixes involve modifying the

main file and central directory records such that privacy-critical metadata information is

always hidden and the resulting Zip archives are still parsable under the traditional Zip

specification [40].

We can achieve this goal in several ways. For example, using AES in CTR mode,

it would be possible to encrypt specific metadata fields of a file’s main file record and

central directory record in-place. In the case of the central directory record, this ap-

proach would require us to copy the salt necessary to derive the encryption key from

the file data field of the main file record into the extra data field of the central directory

record. Unfortunately, this solution must still leak the length of a file’s filename since,

under this approach, we cannot encrypt any information necessary for parsing the file,

and the length of a file’s filename is necessary information.

The solution that we prefer is to not encrypt portions of a file’s main file record

and central directory records in-place, but to encrypt (and also authenticate) the main

191

file record and the central directory record completely. Our solution would then store

the resulting ciphertext in the file data or extra data fields of a wrapper main file record

or wrapper central directory record, respectively. Preceding the ciphertexts must be

the information, like the salt, necessary to derive the file’s cryptographic keys from

the user’s passphrase. The metadata fields of these wrapper records can be fixed, or

random, as long as the “compression method field” in the main file record indicates that

the record is just serving as a wrapper for an encrypted file. When extracting an archive,

the extractor should see this specific compression method type, decrypt the wrapped

data, and then treat the resulting plaintext as an unencrypted record to parse as normal.

In order to give an intuitive error message to users who try to decrypt a file en-

crypted under this method, we suggest making the filename field of the wrapper records

something likeWinZipEncryptedFile ; one could even add more information, like

a URL. Lastly, another attractive property of this solution is that, by also authenticating

these records completely, this solution immediately implements our previous recom-

mendations for addressing the concerns in Section 6.4 and Section 6.5.

A possible instantiation. Given the recommendations made in the above paragraphs,

one possible instantiation might be the following, which is based on AE-2 but which

we call BE since it is different enough to warrant a new name. For each file to archive,

compress the file and create main file and central directory records as if encryption was

not used. Then select a random value the same length as the salt in AE-2, concatenate

information about the encryption scheme (BE algorithm identifier, version number, and

AES-key-length value) with the random value, and call the resulting value the salt for

BE. Derive AES and HMAC-SHA1 keys from the user’s passphrase and the salt using

PBKDF2-HMAC-SHA1. Then use that AES key to CTR mode encrypt all of the main

file and central directory records, using a randomly selected initial counter (IV) for

each record (the main file and the central directory records for a single file should have

different random IVs). Then MAC the IVs concatenated with each of the ciphertexts

using HMAC-SHA1. Then concatenate the BE algorithm identifier, version number,

192

AES-key-length, the random value in the salt, the CTR mode IV, the ciphertext, and the

MAC for each record. No password verification value is stored in these resulting strings.

For the resulting string consisting of the encryption of the main file record, load it into

the data portion of a wrapper main file record that has bit 0 of the general purpose flag

set to 1 (meaning that the file is encrypted) and that has a “compression method” field

indicating that the file is encrypted under our new encryption method; the other fields

can be anything that does not leak information about the wrapped file. For the resulting

string consisting of the central directory record, load it into the extra data portion of a

wrapper central directory record that has the same general purpose flag and compression

method as for the wrapper main file record.

When extracting an archive, the user must be warned whenever encountering an

unencrypted file in an archive with encrypted files. The MAC must also be checked

during decryption. Although all the data necessary to reconstruct a file is stored in the

file’s wrapped main file record, we still maintain the central directory record since it

is part of the classic Zip file format [40] and since it will be used by some parties to

quickly find specific files in an archive. If there are inconsistencies between a file’s pair

of records, an error should occur.

Although the same random value in the salt can be used for multiple files when

encrypting them all at once, a new random value should be chosen if the user decides to

update a file or add a new file to an archive. Alternatively, when updating a file or adding

a new file to an archive, if one wants to use the same random value in the salt as before,

they must check that the user’s passphrase combined with the existing salts successfully

decrypts currently-encrypted files. If either of these solutions were not in place, then an

adversary could replace the random values in the salts in an archive with any value of

his choice, and create a dictionary of AES and HMAC-SHA1 keys corresponding to the

single chosen salt value. Additionally, when changing the contents of the file, and to

avoid keystream reuse, a new random initial counter for CTR mode must be selected.

The security of this construction follows from the earlier discussions in this section

and the provable security of AES-CTR-then-HMAC-SHA1; unlike with AE-2, we can

193

employ Bellare and Namprempre’s [10] and Krawczyk’s [52] positive results on the

generic Encrypt-then-MAC paradigm when discussing BE since we are now encrypting

all the data of interest, rather than just a portion of it. The risks associated to AES key

collision attacks are minimized by the use of a random IV in AES-CTR (specifically,

AES key collisions no longer immediately imply keystream reuse). BE can still leak

information from the compression ratio of a file if the adversary knows the original

length of the file (the original length is now no longer visible directly from the archive

itself); this is acceptable because we are unaware of any solution to the information-

leakage-through-compression problem without adding additional padding and thereby

reducing some of the space savings generally associated with compression. Our new

method is more efficient than AE-2 when adding multiple files to an archive in batch, or

extracting multiple archives from a file in batch; this is because PBKDF2 is intentionally

slow by design and, unlike AE-2, BE only invokes PBKDF2 once for all files added to

an archive at the same time.

Additional Information

An earlier version of the material in this chapter appears in the Proceedings of the

11th ACM Conference on Computer and Communications Security [49], copyright the

ACM. I was a primary researcher and single-author on this paper. The full citation for

this work is:

Tadayoshi Kohno. Attacking and repairing the WinZip encryption scheme.

In Birgit Pfitzmann, editor,Proceedings of the 11th ACM Conference on

Computer and Communications Security, pages 72–81. ACM Press, Octo-

ber 2004.

Bibliography

[1] J. H. An and M. Bellare. Does encryption with redundancy provide authentic-
ity? In B. Pfitzmann, editor,Advances in Cryptology – EUROCRYPT 2001, vol-
ume 2045 ofLecture Notes in Computer Science, pages 512–528. Springer-Verlag,
Berlin Germany, 2001.

[2] M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In C. Dwork, editor,Advances in Cryptology – CRYPTO 2006, Lecture
Notes in Computer Science. Springer-Verlag, Berlin Germany, 2006.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In N. Koblitz, editor,Advances in Cryptology – CRYPTO ’96,
volume 1109 ofLecture Notes in Computer Science, pages 1–15. Springer-Verlag,
Berlin Germany, Aug. 1996.

[4] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. InProceedings of the 38th Annual Symposium on Founda-
tions of Computer Science, pages 394–403. IEEE Computer Society Press, 1997.

[5] M. Bellare, R. Gúerin, and P. Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions. In D. Coppersmith, editor,
Advances in Cryptology – CRYPTO ’95, volume 963 ofLecture Notes in Computer
Science, pages 15–28. Springer-Verlag, Berlin Germany, Aug. 1995.

[6] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-
ing message authentication code.Journal of Computer and System Sciences,
61(3):362–399, 2000.

[7] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In E. Biham, editor,Advances in Cryptology
– EUROCRYPT 2003, volume 2656 ofLecture Notes in Computer Science, pages
491–506. Springer-Verlag, Berlin Germany, May 2003.

[8] M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the Encode-then-Encrypt-
and-MAC paradigm. ACM Transactions on Information and System Security,
7(2):206–241, May 2004.

194

195

[9] M. Bellare, T. Kohno, and C. Namprempre. SSH transport layer encryption modes.
IETF RFC 4344, Jan. 2006.

[10] M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
Advances in Cryptology – ASIACRYPT 2000, volume 1976 ofLecture Notes in
Computer Science, pages 531–545. Springer-Verlag, Berlin Germany, Dec. 2000.

[11] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography. In T. Okamoto, edi-
tor,Advances in Cryptology – ASIACRYPT 2000, volume 1976 ofLecture Notes in
Computer Science, pages 317–330. Springer-Verlag, Berlin Germany, Dec. 2000.

[12] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security
of triple encryption. In S. Vaudenay, editor,Advances in Cryptology – EURO-
CRYPT 2006, Lecture Notes in Computer Science. Springer-Verlag, Berlin Ger-
many, 2006.

[13] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In B. Roy
and W. Meier, editors,Fast Software Encryption – FSE 2004, Lecture Notes in
Computer Science. Springer-Verlag, Berlin Germany, May 2004.

[14] S. Bellovin. Problem areas for the IP security protocols. InProceedings of the 6th
USENIX Security Symposium, pages 1–16, San Jose, California, July 1996.

[15] S. Bellovin and M. Blaze. Cryptographic modes of operation for the internet. In
Second NIST Workshop on Modes of Operation, 2001.

[16] D. Benedetto, E. Caglioti, and V. Loreto. Language trees and Zipping.Physical
Review Letters, 88(4), Jan. 2002.

[17] D. Bernstein. Floating-point arithmetic and message authentication, 2000. Avail-
able at http://cr.yp.to/papers.html#hash127 .

[18] D. J. Bernstein. The Poly1305-AES message-authentication code. In H. Gilbert
and H. Handschuh, editors,Fast Software Encryption – FSE 2005, Lecture Notes
in Computer Science. Springer-Verlag, Berlin Germany, 2005.

[19] E. Biham. New types of cryptanalytic attacks using related keys. In T. Helleseth,
editor,Advances in Cryptology – EUROCRYPT ’93, volume 765 ofLecture Notes
in Computer Science, pages 398–409. Springer-Verlag, Berlin Germany, 1993.

[20] E. Biham. How to decrypt or even substitute DES-encrypted messages in228 steps.
Information Processing Letters, 84, 2002.

[21] E. Biham and P. Kocher. A known plaintext attack on the PKZIP stream cipher. In
B. Preneel, editor,Fast Software Encryption – FSE ’ 94, volume 1008 ofLecture
Notes in Computer Science. Springer-Verlag, Berlin Germany, 1994.

196

[22] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and
secure message authentication. In M. Wiener, editor,Advances in Cryptology –
CRYPTO ’99, volume 1666 ofLecture Notes in Computer Science, pages 216–
233. Springer-Verlag, Berlin Germany, Aug. 1999.

[23] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In L. Knudsen, editor,Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 ofLecture Notes in Computer Science. Springer-Ver-
lag, Berlin Germany, 2002.

[24] N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communications:
The insecurity of 802.11. InSeventh Annual International Conference on Mobile
Computing and Networking, 2001.

[25] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In B. Pfitzmann, editor,Advances in Cryptology –
EUROCRYPT 2001, volume 2045 ofLecture Notes in Computer Science, pages
451–472. Springer-Verlag, Berlin Germany, 2001.

[26] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and
secure channels. In L. Knudsen, editor,Advances in Cryptology – EUROCRYPT
2002, volume 2332 ofLecture Notes in Computer Science, pages 337–351. Spring-
er-Verlag, Berlin Germany, 2002.

[27] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password interception in a
SSL/TLS channel. In D. Boneh, editor,Advances in Cryptology – CRYPTO 2003,
Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany, 2003.

[28] J. Daemen and V. Rijmen.The Design of Rijndael: AES–The Advanced Encryption
Standard. Springer-Verlag, Berlin Germany, 2002.

[29] W. Dai. An attack against SSH2 protocol, Feb. 2002. Email to theietf-ssh@
netbsd.org email list.

[30] DES modes of operation. National Institute of Standards and Technology, NIST
FIPS PUB 81, U.S. Department of Commerce, Dec. 1980.

[31] P. Deutsch. DEFLATE compressed data format specification version 1.3. IETF
RFC 1951, May 1996.

[32] W. Diffie and M. E. Hellman. Privacy and authentication: An introduction to
cryptography.Proceedings of the IEEE, 67(3):397–427, Mar. 1979.

[33] N. Ferguson. Authentication weaknesses in GCM. Public comment to NIST. Avail-
able athttp://csrc.nist.gov/CryptoToolkit/modes/comments/
CWC-GCM/Ferguson2.pdf , 2005.

197

[34] B. Gladman. AES and combined encryption/authentication modes, 2003. Avail-
able at http://fp.gladman.plus.com/AES/index.htm .

[35] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In M. Matsui, editor,Fast Software Encryption
– FSE 2001, volume 2355 ofLecture Notes in Computer Science, pages 92–108.
Springer-Verlag, Berlin Germany, 2001.

[36] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of
random functions. In R. Blakely, editor,Advances in Cryptology – CRYPTO ’84,
volume 196 ofLecture Notes in Computer Science, pages 276–288. Springer-Ver-
lag, Berlin Germany, 1985.

[37] S. Goldwasser and S. Micali. Probabilistic encryption.Journal of Computer and
System Science, 28:270–299, 1984.

[38] S. Halevi. EME∗: Extending EME to handle arbitrary-length messages with as-
sociated data. Cryptology ePrint Archive Report 2004/125,http://eprint.
iacr.org/ , 2004.

[39] C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key
cryptosystems. In V. Varadharajan and Y. Mu, editors,Proceedings of Information
and Communication Security, ICICS’99, volume 1726 ofLecture Notes in Com-
puter Science, pages 2–12. Springer-Verlag, Berlin Germany, Nov. 1999.

[40] Info-ZIP. Info-ZIP note, 20011203, Dec. 2001. Available atftp://ftp.
info-zip.org/pub/infozip/doc/appnote-011203-iz.zip .

[41] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. In T. Johansson, editor,
Fast Software Encryption – FSE 2003, Lecture Notes in Computer Science. Spring-
er-Verlag, Berlin Germany, 2003.

[42] K. Jallad, J. Katz, and B. Schneier. Implementation of chosen-ciphertext attacks
against PGP and GnuPG. In A. H. Chan and V. D. Gligor, editors,Information
Security, 5th International Conference, volume 2433 ofLecture Notes in Computer
Science, pages 90–101. Springer-Verlag, Berlin Germany, 2002.

[43] D. W. Jones.The Case of the Diebold FTP Site, July 2003. Available athttp:
//www.cs.uiowa.edu/˜jones/voting/dieboldftp.html .

[44] C. Jutla. Encryption modes with almost free message integrity. In B. Pfitzmann,
editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 ofLecture
Notes in Computer Science, pages 529–544. Springer-Verlag, Berlin Germany,
May 2001.

[45] B. Kaliski. PKCS #5: Password-based cryptography specification version 2.0.
IETF RFC 2898, Sept. 2000.

198

[46] J. Katz and B. Schneier. A chosen ciphertext attack against several e-mail encryp-
tion protocols. InNinth USENIX Security Symposium, 2000.

[47] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In B. Schneier, editor,Fast Software Encryption – FSE 2000, vol-
ume 1978 ofLecture Notes in Computer Science, pages 284–299. Springer-Verlag,
Berlin Germany, Apr. 2000.

[48] J. Kelsey. Compression and information leakage of plaintext. In V. Rijmen and
J. Daemen, editors,Fast Software Encryption – FSE 2002, volume 2365 ofLec-
ture Notes in Computer Science, pages 263–276. Springer-Verlag, Berlin Germany,
2002.

[49] T. Kohno. Attacking and repairing the WinZip encryption scheme. In B. Pfitzmann,
editor,Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, pages 72–81. ACM Press, Oct. 2004.

[50] T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional
authenticated encryption mode. In B. Roy and W. Meier, editors,Fast Software
Encryption, volume 3017 ofLecture Notes in Computer Science, pages 408–426.
Springer-Verlag, Feb. 2004.

[51] H. Krawczyk. LFSR-based hashing and authentication. In Y. Desmedt, editor,Ad-
vances in Cryptology – CRYPTO ’94, Lecture Notes in Computer Science. Spring-
er-Verlag, Berlin Germany, Aug. 1994.

[52] H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In J. Kilian, editor,Advances in Cryptology
– CRYPTO 2001, volume 2139 ofLecture Notes in Computer Science, pages 310–
331. Springer-Verlag, Berlin Germany, Aug. 2001.

[53] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message
authenticationa. IETF Internet Request for Comments 2104, Feb. 1997.

[54] H. Lipmaa. AES/Rijndael: speed, 2003. Available athttp://www.tcs.hut.
fi/˜helger/aes/rijndael.html .

[55] H. Lipmaa, P. Rogaway, and D. Wagner. CTR-mode encryption. InFirst NIST
Workshop on Modes of Operation, 2000.

[56] M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions.SIAM J. Computation, 17(2), Apr. 1988.

[57] D. McGrew. Integer counter mode, Oct. 2002. Available athttp://www.
ietf.org/internet-drafts/draft-irtf-cfrg-icm-01.txt .

199

[58] D. McGrew. The truncated multi-modular hash function (TMMH), version two,
Oct. 2002. Available at http://www.ietf.org/internet-drafts/
draft-irtf-cfrg-tmmh-00.txt .

[59] D. McGrew. The universal security transform, Oct. 2002. Available athttp:
//www.ietf.org/internet-drafts/draft-irtf-cfrg-ust-01.
txt .

[60] D. McGrew and J. Viega. The security and performance of the Galois/Counter
Mode (GCM) of operation. In A. Canteaut and K. Viswanathan, editors,Progress
in Cryptology – INDOCRYPT 2004, volume 3348 ofLecture Notes in Computer
Science, pages 343–355. Springer-Verlag, Berlin Germany, Dec. 2004.

[61] I. Mironov. (Not so) random shuffles of RC4. In M. Yung, editor,Advances in
Cryptology – CRYPTO 2002, Lecture Notes in Computer Science, pages 304–319.
Springer-Verlag, Berlin Germany, 2002.

[62] C. Namprempre. Secure channels based on authenticated encryption schemes:
A simple characterization. In Y. Zheng, editor,Advances in Cryptology – ASI-
ACRYPT 2002, volume 2501 ofLecture Notes in Computer Science, pages 515–
532. Springer-Verlag, Berlin Germany, Dec. 2002.

[63] M. Naor and O. Reingold. On the construction of pseudorandom permutations:
Luby-rackoff revisited.J. Cryptology, 12(1):29–66, 1999.

[64] W. Nevelsteen and B. Preneel. Software performance of universal hash functions.
In J. Stern, editor,Advances in Cryptology – EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science, pages 24–41. Springer-Verlag, Berlin Ger-
many, 1999.

[65] PKWARE. APPNOTE.TXT - .ZIP File Format Specification, Apr. 2004. Version
6.2.0, available athttp://www.pkware.com/products/enterprise/
white_papers/appnote.txt .

[66] PKWARE. APPNOTE.TXT - .ZIP File Format Specification, Jan. 2004. Version
6.1.0, replaced by [65].

[67] P. Rogaway. Problems with proposed IP cryptography, 1995. Avail-
able at http://www.cs.ucdavis.edu/˜rogaway/papers/
draft-rogaway-ipsec-comments-00.txt .

[68] P. Rogaway. Bucket hashing and its applications to fast message authentication.
Journal of Cryptology, 12:91–115, 1999.

[69] P. Rogaway. Authenticated encryption with associated data. In V. Atluri, editor,
Proceedings of the 9th Conference on Computer and Communications Security.
ACM Press, Nov. 2002.

200

[70] P. Rogaway. The AEM authenticated-encryption mode, 2003. Specification
1.3, available at http://www.cs.ucdavis.edu/˜rogaway/papers/
offsets.html .

[71] P. Rogaway. Nonce-based symmetric encryption. In B. Roy and W. Meier, edi-
tors,Fast Software Encryption – FSE 2004, Lecture Notes in Computer Science.
Springer-Verlag, Berlin Germany, May 2004.

[72] P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for
efficient authenticated encryption.ACM Transactions on Information and System
Security, 6(3):365–403, 2003.

[73] P. Rogaway and D. Wagner. A critique of CCM. Cryptology ePrint Archive Report
2003/070,http://eprint.iacr.org/ , 2003.

[74] V. Shoup. On fast and provably secure message authentication based on univer-
sal hashing. In N. Koblitz, editor,Advances in Cryptology – CRYPTO ’96, vol-
ume 1109 ofLecture Notes in Computer Science, pages 313–328. Springer-Verlag,
Berlin Germany, Aug. 1996.

[75] V. Shoup. Sequences of games: A tool for taming complexity in security proofs.
Cryptology ePrint Archive Report 2004/332,http://eprint.iacr.org/ ,
2004.

[76] D. X. Song, D. Wagner, and X. Tian. Timing analysis of keystrokes and timing
attacks on SSH. InProceedings of the 10th USENIX Security Symposium, pages
337–352, Washington, DC, Aug. 2001.

[77] M. Stay. ZIP attacks with reduced known plaintext. In M. Matsui, editor,Fast
Software Encryption – FSE 2001, volume 2355 ofLecture Notes in Computer
Science, pages 124–134. Springer-Verlag, Berlin Germany, 2001.

[78] D. Stinson. Universal hashing and authentication codes.Designs, Codes and
Cryptography, 4:369–380, 1994.

[79] S. Vaudenay. Security flaws induced by CBC padding – applications to SSL,
IPSEC, WTLS In L. Knudsen, editor,Advances in Cryptology – EUROCRYPT
2002, volume 2332 ofLecture Notes in Computer Science, pages 534–545. Spring-
er-Verlag, Berlin Germany, 2002.

[80] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. InProceedings of
the Second USENIX Workshop on Electronic Commerce, 1996.

[81] M. Wegman and L. Carter. New hash functions and their use in authentication and
set equality.Journal of Computer and System Sciences, 22:265–279, 1981.

201

[82] D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC (CCM). Sub-
mission to NIST. Available athttp://csrc.nist.gov/CryptoToolkit/
modes/proposedmodes/ , 2002.

[83] WinZip Computing, Inc. AES encryption information: Encryption specification
AE-2, Jan. 2004. Version 1.02, available athttp://www.winzip.com/aes_
info.htm .

[84] WinZip Computing, Inc. Download WinZip add-ons, Apr. 2004. Available at
http://www.winzip.com/daddons.htm .

[85] WinZip Computing, Inc. Homepage, Mar. 2004. Available athttp://www.
winzip.com/ .

[86] WinZip Computing, Inc. What’s new in WinZip 9.0, Mar. 2004. Available at
http://www.winzip.com/whatsnew90.htm .

[87] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH transport
layer protocol, 2002. Draft 12, available athttp://www.ietf.org/html.
charters/secsh-charter.html .

