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ABSTRACT
When a message is transformed into a ciphertext in a way
designed to protect both its privacy and authenticity, there
may be additional information, such as a packet header, that
travels alongside the ciphertext (at least conceptually) and
must get authenticated with it. We formalize and investigate
this authenticated-encryption with associated-data (AEAD)
problem. Though the problem has long been addressed in
cryptographic practice, it was never provided a definition or
even a name. We do this, and go on to look at efficient solu-
tions for AEAD, both in general and for the authenticated-
encryption scheme OCB. For the general setting we study
two simple ways to turn an authenticated-encryption scheme
that does not support associated-data into one that does:
nonce stealing and ciphertext translation. For the case of
OCB we construct an AEAD-scheme by combining OCB
and the pseudorandom function PMAC, using the same key
for both algorithms. We prove that, despite “interaction”
between the two schemes when using a common key, the
combination is sound. We also consider achieving AEAD
by the generic composition of a nonce-based, privacy-only
encryption scheme and a pseudorandom function.
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1. INTRODUCTION
Security practice has long recognized the following cryp-

tographic problem: flow a message in such a way that part
of it is privacy-protected, part of it is in the clear, and all
of it is authenticated. In this paper we formalize and inves-
tigate this goal, which we call authenticated-encryption with
associated-data (AEAD).

The generic composition approach. In the past, pro-
tocol designers addressed AEAD using the generic composi-
tion paradigm (as first named and investigated by [3]), where
one glues together a (privacy-only) encryption scheme and
a message authentication code (MAC). One might, for ex-
ample, encrypt a string M , prepend a header H, and then
MAC the resulting string. Solutions like this are so natural
and obvious that it seems to have escaped notice that one
was addressing a cryptographic problem in its own right.

What brought about the recognition of AEAD as a dis-
tinct cryptographic problem was the development of tech-
niques that provide privacy+authenticity without using the
generic composition paradigm. Beginning with Jutla [15]
and continuing with Gligor et al. [9] and Rogaway et al. [22]
there emerged new block-cipher modes that entwined pri-
vacy and authenticity in a single, compact mode. Such “in-
tegrated” authenticated-encryption (AE) schemes promised
improved efficiency compared to the generic composition of
conventional mechanisms. But the schemes also had a signif-
icant (and initially unnoticed) shortcoming: an apparent in-
ability to efficiently authenticate a string of associated-data,
such as a message header, binding this to the ciphertext.

Naive solutions. To see some of the issues, consider a
protocol that flows a message H‖C‖T where H is a message
header and C is determined by encrypting a plaintext M
under a key K1 and T is determined by MACing the string
H ‖ C under a key K2. Suppose, to make things faster, we
wish to modify this flow to employ an AE-scheme such as
OCB [22]. (1) We cannot just send an OCB-encrypted H‖M
because, presumably, H had to be in the clear for purposes
of routing or parsing the message. (2) Nor can we OCB-
encrypt just M and send this along with H, for in this case
we would have done nothing to authenticate H. (3) We can
not get around this problem by sending a message consisting
of H, a MAC over H, and the OCB-encrypted M , because
we would have done nothing to bind H to M . (4) We could
send H, the OCB-encrypted M , and a MAC taken over
both H and the OCB-encrypted M , but this would lengthen
the transmitted message and waste time computing a MAC
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over information that was already authenticity-protected by
OCB. (5) We could send an OCB-encrypted H ‖ M along
with H, now encrypting H only as a means to provide for
its authenticity, but doing this would again lengthen the
message sent. (6) We might try to erase this inefficiency
by having the sender omit from the ciphertext the portion
of it that corresponds to H (assuming that the ciphertext
has such a structure, as it does with OCB). But such an
approach does not, in general, work: an AE-scheme is not
required to provide authenticity if misused in this way (and
modes like [15, 22] do not provide authenticity if so misused).

Contributions of this paper. This paper singles out
AEAD as a cryptographically-significant problem and pro-
vides a provable-security treatment of it. First we give a
definition for the security of an AEAD-scheme. Our defi-
nition is very strong; in particular, the attack-model gives
the adversary the ability to control the associated-data H,
while the notion of adversarial success generalizes the notion
of authenticity of ciphertexts [4, 17].

Second, we describe two ways to turn an AE-scheme into
an AEAD-scheme. One method, suggested by Cam-Winget
and Walker [6], we call nonce stealing. The method is simple
and useful, but somewhat limited in its applicability as, in
practice, the associated-data H can only be a few bytes. A
less restrictive approach, ciphertext translation, works like
this: we use the AE-scheme to encrypt message M under a
key K, getting an intermediate ciphertext CT ; we apply a
hash-function FK′ to the associated data H to get an offset
∆; and then the final ciphertext C is CT except that ∆ is
xored into its last |∆| bits. When the associated-data is the
empty string we let C = CT so that the AEAD-scheme will
be a proper extension of the AE-scheme. Notice that if H is
held fixed during a communications session then ∆ may be
precomputed, essentially eliminating the per-message cost
of binding in H. We prove that ciphertext translation pro-
duces a secure AEAD-scheme if the underlying AE-scheme
is secure and F is good either as an almost-xor-universal
(AXU) hash-function or a pseudorandom function (PRF).

Third, we concretize and adjust the general ciphertext-
translation solution to yield a suggestion tailored to OCB
[22]. Namely, define OĊB = (K̇, Ė , Ḋ) by combining OCB
and PMAC according to ciphertext translation—except use
the same key for both primitives.1 So to compute ĖN,H

K (M)
the message M is OCB-encrypted under key K to get C =
C ‖ T = EN

K (M) where C is the “ciphertext core” and T
is a τ -bit “tag”; associated-data H, if nonempty, is PMAC-
authenticated [5] under the same key to yield a τ -bit re-
sult ∆ = PMACK(H) (set ∆ = 0τ if H = ε); and the

OĊB-ciphertext is ĖN,H
K (M) = C ‖ (T ⊕ ∆). We favor this

OCB-extension because it is simple to implement (especially
when the associated-data is less than one block long), retains
OCB’s use of a single block-cipher key, is fully parallelizable
in both M and H, has near-zero per-message cost when H
is fixed per session, and one recovers a parallelizable PRF
MACK(H) as OĊB.Enc0,H

K (ε).

1 We emphasize that the reuse of cryptographic keys across
two cryptographic mechanisms is, in general, a dangerous
thing to do. This practice should be contemplated only
when there is a proof establishing that, for the target con-
text, key re-use does not lead to trouble. Once a key is used
across two different mechanisms the combined mechanism
must be thought of as a single, atomic mechanism.

Finally, we examine achieving AEAD by generic composi-
tion. In particular, we look at gluing together a nonce-based
symmetric encryption scheme and a PRF. Our results here
seem a bit different from those in [3] (both encrypt-then-mac
and mac-then-encrypt work fine), but that is not surprising,
because we start from somewhat different tools.

Origin of the problem. The need to handle associated-
data when using an integrated AE mode was first pointed
out to the author by Burt Kaliski [16]. Several more individ-
uals soon communicated the same sentiment. Those attuned
to this problem were involved in standardization efforts that
needed to bind to a ciphertext some cleartext data, such as
an IP address. People wanted a cheap and secure way to do
this when using an AE-mode such as OCB.

Additional related work. Hawkes and Rose [13] pro-
pose a way to modify Jutla’s IAPM mode [15] in order to cre-
ate an AEAD-scheme. They claim a security proof and that
their method works for authenticated-encryption schemes
beyond IAPM. A proposal by Whiting, Housley and Fergu-
son [23] constructs an AEAD-scheme that entails CTR mode
encryption and the CBC-MAC. A proof is offered by [14].
Somewhat further afield, recent work that considers circum-
stances under which a key may be safely reused across two
different cryptographic mechanisms include [8, 12]. An early
version of the current paper was provided to NIST and has
been on their web site since Nov ’01. The full version of this
paper appears as [21].

Remarks. (1) AE and AEAD schemes employ a nonce.
They have to do this (or be stateful or probabilistic) in or-
der to achieve semantic security [11]. It is the responsibility
of the sender not to reuse any nonce. For this purpose the
sender will need to maintain state (such as a counter) or use
coins. The receiver can be stateless (replay-detection is not
a part of the defined goal) and deterministic. (2) It is out-
side of the model how the associated-data H is made known
to the receiver. We do not consider the associated-data to
be part of the ciphertext, though the receiver will need it in
order to decrypt. The same comments apply the nonce N .
(3) All of our solutions allow one to bind-in the associated-
data H regardless of the length of the plaintext; there is
no restriction such as the plaintext having some minimum
number of bits. (4) Correctness of ciphertext translation
using an AXU hash-function relies on the AE-scheme meet-
ing a stronger-than-usual definition of privacy: ciphertexts
should be indistinguishable from random bits (when the ad-
versary launches a chosen-plaintext attack), which we call
IND$-CPA. This notion, used already in [22], asks more
than IND-CPA, where ciphertexts must be indistinguish-
able from the encryption of random bits. The IND$-CPA
property also allows the direct use of an encryption scheme
as a pseudorandom generator or as a PRF. (5) Given the fre-
quency with which networking protocols need to solve the
AEAD-problem—not the privacy problem, the authenticity
problem, or the AE-problem—we begin to view AEAD as
the “right” goal in many settings. We suggest that it is
the abstract interface of an AEAD-scheme that designers of
secure networking protocols should, in most instances, be
writing to and thinking in terms of. Simply understanding
the signature of an AEAD-scheme—what are the inputs and
outputs—may make a helpful abstraction boundary.
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2. PRELIMINARIES
Adversaries. An adversary is a program with access to an
oracle. Oracle queries are tuples of strings. An adversary is
nonce-respecting if it never repeats the first component, N ,
to its oracle, regardless of oracle responses. Adversaries for
AE and AEAD schemes are always assumed to be nonce-
respecting. We write an oracle as superscript to the adver-
sary that uses it.

AE-schemes. We follow [22] (which builds on [1, 4, 11]) in
defining nonce-using authenticated-encryption schemes and
their security. An authenticated-encryption scheme (an AE-
scheme), or simply an encryption scheme, is a three-tuple
Π = (K, E ,D). Associated to Π are sets Nonce = {0, 1}n

and Message ⊆ {0, 1}∗, the latter having a linear-time mem-
bership test and satisfying M ∈ Message ⇒ M ′ ∈ Message
for any M ′ of the same length as M . The key space K is a
finite nonempty set of strings. Algorithm E is a determinis-
tic algorithm that takes strings K ∈ K and N ∈ Nonce and
M ∈ Message and returns a string C = EN

K (M) = EK(N, M).
Algorithm D is a deterministic algorithm that takes strings
K ∈ K and N ∈ Nonce and C ∈ {0, 1}∗ and returns DN

K(C),
which is either a string in Message or else the distinguished
symbol Invalid. We require that DN

K(EN
K (M)) = M for all

K ∈ K, N ∈ Nonce, and M ∈ Message. We assume that
|EN

K (M)| = �(|M |) for some linear-time computable “length
function” �.

Let $(·, ·) be an oracle that, on input N, M , returns a
random string of length �(|M |) where � is the length func-

tion of Π. Let A be an adversary. Define Advpriv
Π (A) =

Pr[K
$←K: AEK(·,·) = 1]−Pr[A$(·,·) = 1]. We call this notion

IND$-CPA: indistinguishability from random bits under a
chosen-plaintext attack. It appears in [22].

Let Π = (K, E ,D) be an AE-scheme. Choose K
$←K and

run the adversary A, providing it an oracle for EK(·, ·). We
say that adversary A forges (for this key K and on some
particular run) if A outputs a pair (N, C) where DN

K(C) 	=
Invalid and A did not ask a query EK(N, M) that resulted
in a response C. Let Advauth

Π (A) be the probability that A
forges. The probability is over the random choice of K and
over the internal coin tosses, if any, of A.

We note that requiring A to be nonce-respecting does not
give rise to a restrictive notion. Quite the opposite: we are
allowing the adversary to choose the nonce, rather than the
sender, only demanding that it does not request multiple
encryptions under the same nonce. Note too that A being
nonce-respecting does not forbid use of a formerly-queried
nonce within A’s forgery attempt.

AXU hash-functions. Function families and universality
conditions on them originate with Carter and Wegman [7].
A function family is a map F : K × X → {0, 1}τ where K
has an associated distribution and X ⊆ {0, 1}∗. We assume
that X has a linear-time membership test. We use a variant
of the property called almost-xor-universal (AXU), which
was first defined by [19]. For consistency with other notions
we define xor-universality as a kind of adversarial advan-
tage. For F : K × X → {0, 1}τ a function family and A an

adversary, let Advaxu
F (A) be the larger of δ = Pr[K

$←K;
(X1, X2, ∆) ← A : X1 	= X2 and FK(X1) ⊕ FK(X2) = ∆]

and ε = Pr[K
$←K; (X, C) ← A : FK(X) = C].

Pseudorandom functions. Pseudorandom function orig-
inate with [10]; our treatment is a concrete-security one
that follows [2]. Let F : K × X → {0, 1}τ be a function
family. Let Rand(X , τ) be the set of all functions from X
to {0, 1}τ . Define Advprf

F (A) as Pr[K
$←K: AFK(·) = 1] −

Pr[ρ
$← Rand(X , τ): Aρ(·) = 1]. Let Perm(n) be the set of

all permutations from n bits to n bits.

Running-time conventions. When we speak of the run-
ning time of an algorithm we include its description size,
relative to some fixed encoding. If f : K × X → Y then

Timef (q, σ) is the worst-case time to compute K
$←K plus

the time to compute fK(X1), . . . , fK(Xq) where
∑ |Xq| ≤ σ.

When we write an expression for the running time of an al-
gorithm and that expression includes an O(·), the constants
hidden in the big-O notation are absolute constants, depend-
ing only on the details of the model of computation.

Resource-parameterized advantage. If Π is a scheme
and A is an adversary and Advxxx

Π (A) is a measure of adver-
sarial advantage already defined, then we write Advxxx

Π (R)
to mean the maximal value of Advxxx

Π (A) over all adver-
saries A that use resources bounded by R. Here R is a
list of variables specifying the resources of interest for the
adversary in question. The name of the variable will be
enough to unambiguously indicate the resource in question.
In this paper the adversarial resources to which we pay at-
tention are: t—the running time of the adversary; q—the
number of queries asked by the adversary; σ—the aggregate
length of these queries; σ̂—the length of the longest query;
ς—the length of the adversary’s output. String lengths and
aggregate string lengths can be measured either in bits or
in n-bit blocks (when a value n is understood); when it
matters we will specify the convention. When one mea-
sure lengths in terms of n-bit blocks a string of � bits con-
tributes min{1, �|�|/n
} to the total. Note that an adver-
sary’s queries and its output may encode multiple strings,
and we count in σ and ς the length of the entire string.

3. DEFINITION OF THE GOAL
Syntax. We define an authenticated-encryption scheme with
associated-data (an AEAD-scheme) as a three-tuple Π =
(K, E ,D). Associated to Π are sets of strings Nonce =
{0, 1}n and Message ⊆ {0, 1}∗, as before, and also a set
Header ⊆ {0, 1}∗ that has a linear-time membership test.
The key space K is as before. The encryption algorithm E is
a deterministic algorithm that takes strings K ∈ K and N ∈
Nonce and H ∈ Header and M ∈ Message. It returns a string
C = EN,H

K (M) = EK(N, H, M). Decryption algorithm D is
a deterministic algorithm that takes strings K ∈ K and N ∈
Nonce and H ∈ Header and C ∈ {0, 1}∗. It returns DN,H

K (C),
which is either a string in Message or the distinguished sym-
bol Invalid. We require that DN,H

K (EN,H
K (M)) = M for all

K ∈ K, N ∈ Nonce, H ∈ Header, and M ∈ Message. As
before, |EN

K (M)| = �(|M |) for some linear-time computable
length function �.

Security. Let Π = (K, E ,D) be an AEAD-scheme with
length function �. Let $(·, ·, ·) be an oracle that, on in-
put (N, H, M), returns a random string of �(|M |) bits. Let

AdvPRIV
Π (A) = Pr[K

$←K: AEK(·,·,·) = 1] − Pr[A$(·,·,·) = 1]
measure the advantage of adversary A. We name this no-
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tion IND$-CPA, as before. Note the use of capital letters
(AdvPRIV) for an AEAD-scheme and the use of little letters
(Advpriv) for an AE-scheme.

Let Π = (K, E ,D) be an AEAD-scheme and let A be
an adversary having access to an oracle EK(·, ·, ·) for some
key K. We say that A forges (for this key K and on some

particular run) if A outputs (N, H, C) where DN,H
K (C) 	=

Invalid and A did not ask a query EN,H
K (M) that resulted

in a response C. Define AdvAUTH
Π (A) as the probability

that A forges, where the probability is over K
$←K and the

random coins, if any, of A. Note the use of capital letters
(AdvAUTH) for an AEAD-scheme and the use of little letters
(Advauth) for an AE-scheme.

Informally, an AEAD-scheme Π is “secure” if AdvPRIV
Π (A)

and AdvAUTH
Π (A) are “small” for any “reasonable” adver-

sary A. Theorems make quantitative statements about the
maximum possible value of AdvPRIV

Π (A) and AdvAUTH
Π (A)

among adversaries A with specified resources.

Remarks. Our authenticity definition is very strong: the
attack model is strong insofar as the adversary is allowed
to manipulate both the nonce and the associated-data (sub-
ject to the constraint that no nonce is repeated), and the
adversary’s goal is modest insofar as it “gets credit” even
for forgeries that use bizarre nonces and associated-data
values, whether new or repetitions. In a real system, the
message and the nonce will primarily be controlled by the
sender (for example, the nonce may be a counter) while
the associated-data will primarily be chosen by the sender
and/or the receiver. Still, an adversary may be able to influ-
ence these values. For example, an adversary might force a
nonce to get incremented by thwarting a transmission from
reaching its destination. Allowing the adversary to manip-
ulate N , H, and M , and giving the adversary credit for any
new (N, H, C), leads to a robust definition.

There are of course alternatives to our definition of AEAD
security. In particular, one can use IND-CPA instead of
IND$-CPA, eliminate the nonce and make encryption proba-
bilistic, or eliminate the nonce and make encryption stateful.
All of these choices result in reasonable, weaker, definitions.

4. NONCE STEALING
We now consider a first suggestion, due to Nancy Cam-

Winget and Jesse Walker [6], for incorporating associated-
data into an AE-scheme. We call the method nonce stealing.

Suppose that the nonce in an AE-scheme is n bits but
the application that uses this AE-scheme is content with a
nonce of n̄ bits, where n̄ < n. In such a case associated-
data may be dropped into the unused h = n − n̄ bits. For
example, the nonce for the AE-scheme may be n = 128 bits
but the application may use an n̄ = 32 bit counter for a
nonce, leaving h = 96 bits for associated-data.

More formally, given AE-scheme Π = (K, E ,D) having
nonce space Nonce = {0, 1}n and given a parameter n̄ ∈
[1..n−1] define the AEAD-scheme Π̄ = Π|n̄ = (K̄, Ē , D̄) hav-
ing nonce space Nonce = {0, 1}n̄ and a space of associated-

data Header = {0, 1}n−n̄ and where K̄ = K and ĒN,H
K (M) =

ĒN ‖ H
K (M) and D̄N,H

K (C) = D̄N ‖ H
K (C). This formalization

drops the nonce in front of the associated-data but other
conventions are equally acceptable.

At first glance, nonce stealing might seem of limited use,
because so few bits of associated-data can be accommo-

dated. But often a few bytes is all that one needs (e.g.,
the associated-data may be a 32-bit IPv4 addresses, or a
pair of such addresses). Nonce stealing is simple and adds
essentially no overhead. Its security is captured by following
theorem. The proof is in the full paper [21].

Theorem 1. Let Π be an AE-scheme with nonce space
Nonce = {0, 1}n and let n̄ ∈ [1..n]. Then

AdvPRIV
Π|n̄ (t, q, σ) ≤ Advpriv

Π (t1, q, σ)

AdvAUTH
Π|n̄ (t, q, σ, ς) ≤ Advauth

Π (t2, q, σ, ς)

where t = t1 + O(σ + q) and t = t2 + O(σ + ς + q). ♦

The possibility of nonce stealing provides yet another rea-
son, besides those enumerated in [22], why an AE-scheme is
best designed to employ an arbitrary nonce, as opposed to
a counter or random value.

5. CIPHERTEXT TRANSLATION
We now give a solution to the AEAD-problem that per-

mits arbitrary associated-data. In particular, we show how
to transform an AE-scheme Π into an AEAD-scheme Π̈ =
Π¨F with the help of a function family F : K′ × Header →
{0, 1}τ . We call the technique ciphertext translation.

We begin with some notation. When X and Y are bi-
nary strings of possibly different lengths define X ⊕̂ Y by
prepending enough 0-padding to the shorter string to make
it as long as the longer string, and then xor the two strings.
For example, 0101001 ⊕̂ 111 = 0101110.

Let Π = (K, E ,D) be an AE-scheme in which the length
of any ciphertext is at least τ bits, for some constant τ .
Let Header ⊆ {0, 1}∗ be a set of strings with a linear-time
membership test and let F : K′ × Header → {0, 1}τ be a

function family. Then we define the AEAD-scheme Π̈ =
(K̈, Ë , D̈) = Π¨F as follows: K̈ = K × K′; ËN, H

KK′ (M) =

EN
K (M) if H = ε, and ËN, H

KK′ (M) = EN
K (M) ⊕̂ FK′(H) oth-

erwise; and D̈N, H
KK′(C) = DN

K(C) if H = ε, and D̈N, H
KK′(C) =

DN
K(C ⊕̂ FK′(H)) otherwise. That is, assuming H 	= ε,

take the associated-data H, compute from it ∆ = FK′(H),
and encrypt M by computing its ciphertext without regards
to H, and then xoring in ∆ to the last τ bits.

For more concise notation we sometimes write ËN, H
KK′ (M) =

EN
K (M) ⊕̂ F

∗
K′(H) and D̈N, H

KK′(C) = DN
K(C ⊕̂ F

∗
K′(H)) where

F
∗

K′(H) = ε if H = ε, and F
∗

K′(H) = FK′(H) otherwise.

Remarks. Ciphertext translation has the following pleas-
ant properties: (1) the method applies to any AE-scheme Π;
(2) it is a proper extension of the AE-scheme in the sense

that ËN, ε
KK′(M) = EN

K (M); (3) as such, no overhead is added
to an AE-scheme when associated-data is not used; (4) if H
is static over the course of a session (or even over the course
of several messages) the value ∆ = FK′(H) may be precom-
puted, minimizing the per-message overhead to authenticate
the associated data; (5) because F is a parameter we can
instantiate it in whatever way seems most appropriate to
match the characteristics of E . Ciphertext translation also
has the following unpleasant property: it uses a new key, K′,
different from that used by the underlying AD-scheme Π.
This disadvantage will be erased in Section 6 for the specific
case of Π = OCB and F = PMAC.
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It is not important which bits of the ciphertext get modi-
fied by ∆ = FK′(H); the last bits were chosen for concrete-
ness and because one may wish, as in [22], to think of the
last τ bits of ciphertext as an authenticity-ensuring tag.

The double-dot notation Π̈ = Π¨F serves as a gentle

reminder that two keys are used in the construction, K
and K′. We will later consider the analogous transformation
where a single key is used, denoting this Π̇ = Π · F .

Security of ciphertext translation. Let Π is a secure
AE-scheme. We give two sufficient conditions on the hash
function F in order that Π¨F will be a secure AEAD-scheme.

One is that F is a good AXU hash-function; the other is
that F is a good PRF.

Theorem 2. Let Π = (K, E ,D) be an AE-scheme where
each ciphertext is at least τ bits long. Let F : K′×Header →
{0, 1}τ be a function family. Then

AdvPRIV
Π¨F (t, q, σ) ≤ Advpriv

Π (t1, q, σ)

AdvAUTH
Π¨F (t, q, σ, σ̂, ς) ≤
Advauth

Π (t2, q, σ, ς) + Advpriv
Π (t3, q, σ) +

Advprf
F (t4, 2, σ̂ + ς) + 2−τ

AdvAUTH
Π¨F (t, q, σ, σ̂, ς) ≤
Advauth

Π (t5, q, σ, ς) + Advpriv
Π (t6, q, σ) +

Advaxu
F (σ̂ + ς)

where t = t1 + TimeF (q, σ) + O(σ + q) and t = t2 + t3 +
t4 + 2 TimeF (q + 1, σ + ς) + O(σ + ς + q) and t = t5 + t6 +
2 TimeF (q + 1, σ + ς) + O(σ + ς + q). ♦

Proof. We prove the second inequality; see the full paper
for the rest [21]. Let adversary A attack the authenticity of

Π¨F = (K̈, Ë , D̈). Assume that A runs in time at most t

and asks at most q queries, the longest of at most σ̂ bits,
the queries total at most σ bits, and then A outputs a string
of at most ς bits. We construct Aauth, Apriv, and Aprf .

Adversary Aauth chooses a random K′ $←K′ then runs A.
When A makes its ith oracle query, (Ni, Hi, Mi), adver-
sary Aauth makes the query (Ni, Mi) to it own oracle, get-
ting back a response Ci. Adversary Aauth computes ∆i =
F

∗
K′(Hi) and provides to A the ciphertext C̈i = Ci ⊕̂ ∆i.

After A makes its oracle queries (and Aauth makes the cor-
responding oracle queries) it outputs its forgery attempt

(N, H, C). At that point Aauth computes ∆ = F
∗

K′(H) and
C∗ = C ⊕̂ ∆. Adversary Aauth outputs its own forgery at-
tempt of (N, C∗). Note that Aauth runs in t2 = t+TimeF (q+
1, σ + ς) + O(σ + ς + q) time, makes at most q queries, the
longest of at most σ̂ bits, and these queries total at most σ
bits. Its forgery attempt has at most ς bits.

Adversary Aauth provides adversary A a perfect simula-
tion of the environment that defines the advantage of A in
attacking Π¨F . Still the advantage of Aauth may be less

than that of A because it is possible for A to forge (in an
execution under Aauth) when Aauth does not forge (in that
execution). This happens iff A’s forgery attempt (N, H, C) is
new for it, (N, H, C) 	∈ {(N1, H1, C1), . . . , (Nq, Hq, Cq)}, but

(N, C∗) is not new for Aauth, namely, (N, C ⊕̂ F
∗

K′(H)) =

(Ni, Ci ⊕̂ F
∗

K′(H)) for some i ∈ [1..q]. To analyze the situa-
tion let collides be the event that A makes a forgery attempt

(N, C ‖ T ) after asking (N1, H1, M1), . . . , (Nq, Hq, Mq) and
getting responses C1‖T1, . . . , Cq‖Tq, where N = Ni for some

i ∈ [1..q] and C = Ci but T ⊕̂ F
∗

K′(H)) = Ti ⊕̂ F
∗

K′(Hi)).
The last condition is the same as: T ⊕ Ti = FK′(H) ⊕
FK′(Hi) if H 	= ε and H ′ 	= ε; and T ⊕ Ti = FK′(H)
if H 	= ε and Hi = ε; and T ⊕ Ti = FK′(Hi) if H = ε
and Hi 	= ε; and T = Ti if H = ε and Hi = ε. The
last possibility would mean that (N, H, C) is not a forgery
and thus it can be ignored. We have that AdvAUTH

Π¨F (A) =

Pr[A
Π¨F

forges ] ≤ Pr[AΠ
auth forges ]+Pr[A

Π¨F
collides]. By

hybrid argument we bound Pr[A
Π¨F

collides] in terms of

Advpriv
Π (·) and Advprf

F (·) values. Note Pr[A
Π¨F

collides] =

(Pr[A
Π¨F

collides] − Pr[A
$¨F

collides]) + (Pr[A
$¨F

collides] −
Pr[A

$¨R
collides]) + Pr[A

$¨R
collides] where $ is the oracle

that, on input (N, H, M), returns �(|M |) random bits (for �
the length function of the encryption scheme), and where R
is selected from Rand({0, 1}∗, τ). We now claim:

Pr[A
Π¨F

collides]−Pr[A
$¨F

collides] ≤ Advpriv
Π (t3, q, σ, σ̂) (1)

Pr[A
$¨F

collides]−Pr[A
$¨R

collides] ≤ Advprf
Π (t4, 2, σ̂ + ς) (2)

Pr[A
$¨R

collides] ≤ 2−τ (3)

for values t3 and t4 yet to be specified.
To justify (1) and compute t3 construct Apriv as follows.

It begins by choosing K
$←K′ and then runs adversary A.

When A makes its ith oracle query, (Ni, Hi, Mi), adver-
sary Apriv makes its own oracle call of (Ni, Mi), getting a

response Ci. Adversary Apriv then computes ∆i = F
∗

K′(Hi)

and returns to A the value C̈i = Ci ⊕̂ ∆i. When A halts,
outputting a forgery attempt (N, H, C), adversary Apriv com-
putes if event collides has occurred: it checks if (N, H, C) is

new for A but (N, C ⊕̂ F
∗

K′(H)) is not new for Apriv. If so
then Apriv outputs 1; otherwise, it outputs 0. The running
time of Apriv is t3 = t+TimeF (q+1, σ+ ς)+O(σ+ ς +q), it
asks at most q queries and these total at most σ bits. Also,

Advpriv
Π (Apriv) = Pr[A

Π¨F
collides] − Pr[A

$¨F
collides].

To justify (2) and compute t4 construct adversary Aprf as
follows. When A makes its ith oracle query, (Ni, Hi, Mi),

adversary Aprf computes C̈i
$←{0, 1}�(|Mi|) where � is the

length function of the encryption scheme Π. AdversaryAprf

then answers A’s query with C̈i. When A outputs a forgery
attempt (N, H, C) and halts, adversary Aprf asks its ora-
cle H, getting a response ∆, and then it asks its oracle Hi,
getting a response ∆i. Adversary Aprf then computes if
event collides has occurred: it checks if (N, H, C) is new
for A but (N, C ⊕̂ ∆) is not new for Aprf . If so then Aprf

outputs the bit 1; otherwise, it outputs 0. The running
time of Aprf is t4 = t + O(σ + ς + q), it asks 2 queries
and these total at most σ̂ + ς bits. Also, by definition,

Advprf
F (Aprf) = Pr[A

$¨F
collides] − Pr[A

$¨R
collides].

We now verify (3). For A to produce a collision when
interacting with a $¨R oracle it must produce Ti, Hi, T, H

such that T ⊕Ti = RK′(H)⊕RK′(Hi) if H 	= ε and H ′ 	= ε;
or T ⊕ Ti = RK′(H) if H 	= ε and Hi = ε; or T ⊕ Ti =
RK′(Hi) if H = ε and Hi 	= ε. Equivalently, A succeeds
in making a collision if, given no queries, it can predict of
its oracle RK′(·) the value of RK′(H)⊕RK′(Hi) for chosen
and distinct Hi, H; or if it can predict of its oracle RK′(·)
the value of RK′(H) for a chosen H. This happens with
probability 2−τ .
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AXU hash-function vs. PRF. According to Theorem 2
the function family F used for ciphertext translation needs
only to satisfy a verifiable, probabilistic criteria (the third
inequality of the theorem). Still, there are some advan-
tages to using a function family F secure according to the
complexity-theoretic criterion of being a good PRF (the sec-
ond inequality of the theorem). One advantage is that using
a PRF for F facilitates using Π¨F as a deterministic MAC:

let the message M to encrypt be the empty string, let the
nonce be N = 0, and let the message that one wants to MAC
be the associated-data H. This addresses a question posed
by Rivest, who asked if OCB can be used in some simple
way to give a MAC [20]. (Note that trying to use OCB [22]
or IAPM [15] as a MAC by sending only the tag block does
not work.) When building an AEAD-scheme based on an
AE-scheme like those in [15, 22] a more significant advantage
of using a PRF for F is that it leads to a simpler algorithm
than one would get by choosing any known universal hash
function (e.g., one based on polynomial evaluation in a finite
field). We expand on this in the following section.

6. SINGLE-KEY OCB · PMAC
When Π = (K, E ,D) is an AE-scheme we defined cipher-

text translation, Π̈ = Π¨F = (K̈, Ë , D̈), to use two different

keys, K and K′. Using two keys is necessary insofar as the
analogous single-key construction Π̇ = Π · F = (K̇, Ė , Ḋ)

where K̇ = K and ĖN, H
K (M) = EN

K (M) ⊕̂ F
∗

K(H) and

ḊN, H
K (C) = DN

K(C) ⊕̂ F
∗

K(H) certainly will not, in gen-
eral, work; it is easy to exhibit a counterexample to demon-
strate this. Nonetheless, we single out a useful case where
the single-key definition does work: when coupling Π =
OCB [22] with F = PMAC [5].

Throughout this section the following holds. The block
length n is fixed, as is an underlying block cipher E: K ×
{0, 1}n → {0, 1}n and tag length τ ∈ [1..n]. When combin-
ing OCB and PMAC we use the same block cipher E and tag
length τ for both algorithms. We write OĊB = (K̇, Ė , Ḋ) =

OCB · PMAC and OC̈B = (K̈, Ë , D̈) = OCB¨PMAC. String

lengths are measured in n-bit blocks. For convenience, we
recall the definitions of OCB and PMAC in Appendix A.

To be explicit, we are constructing the AEAD-scheme
OĊB = OCB · PMAC = (K̇, Ė , Ḋ) from OCB = (K, E ,D)
and PMAC: K × {0, 1}∗ → {0, 1}τ in the following way.

The nonce space for OĊB remains Nonce = {0, 1}n. The

key space remains K̇ = K. The space of associated-data
is Header = {0, 1}∗. Encryption is defined by ĖN, H

K (M) =
EN

K (M) ⊕̂ PMAC∗
K(H). Decryption is done according to

ḊN, H
K (C) = DN

K(C) ⊕̂ PMAC∗
K(H). Recall that under

the notation introduced already, PMAC∗
K(H) is the empty

string if H = ε and it is PMACK(H) otherwise.

Interference. To prove the security of OĊB one might
hope to establish that there is no significant interaction be-
tween what goes on in OCB and in PMAC when the two
algorithms use a common key K. One would aim to show
that all the internal values generated by the algorithms will,
almost certainly, be distinct. But an inspection of OCB and
PMAC reveals that this is simply not true. First there is
the common definition of the variable L = EK(0n) used by
the algorithms. Worse still is the fact that OCB defines an
internal variable R = EK(N⊕L) while PMAC defines an in-

ternal variable Y [1] = EK(M [1]⊕L). Both N and M [1] are
under the adversary’s control, and so it can force OCB’s R
and PMAC’s Y [1] to take on identical values. Though it is
not clear how an adversary can exploit such interaction, its
possibility would normally spell serious trouble: either the
joint scheme really will be breakable, or it won’t be break-
able but the prospects for a reasonable proof will be dim.

We prove that, despite the interactions described above,
OCB · PMAC is secure. We manage to prove this with-
out opening up the (already complex) proofs for OCB and
PMAC—something that might have seemed unavoidable in
the presence of such cross-scheme interactions.

Security of OĊB. The main result of this section is a
quantitative bound on the security (privacy and authentic-

ity) of OĊB = OCB · PMAC.

Theorem 3.

AdvPRIV
OĊB[Perm(n),τ ](q, σ) ≤ 9.5 σ2

1 / 2n

AdvAUTH
OĊB[Perm(n),τ ](q, σ, ς) ≤ 13 σ2

2 / 2n + 2−τ

where σ1 = σ + q + 3 and σ2 = σ + q + 5ς + 11. ♦

We have stated the theorem for the information-theoretic
setting, where one is using a random permutation instead of
a “real” block cipher. Passing to the complexity-theoretic
setting is standard. The needed complexity-theoretic as-
sumption is a pseudorandom permutation for privacy, and
a strong pseudorandom permutation for authenticity. Since
our target is Theorem 3 we henceforth understand OCB,
OĊB, OC̈B, and PMAC to all be taken over the block ci-
pher Perm(n), sometimes omitting this from the notation.

Proof idea. From [5, 22] and Theorem 2 we know right

off that OC̈B = OCB¨PMAC = (K̈, Ë , D̈) is secure. We

would like to show that OĊB = OCB · PMAC = (K̇, Ė , Ḋ)
is secure, too. So, at least for privacy, it would be enough
to show that reasonable adversaries can’t do a good job at

distinguishing an oracle for Ėπ (for π
$← Perm(n)) from an

oracle for Ëπ,π′ (for π, π′ $← Perm(n)). We show this by care-
fully expanding the adversary’s capabilities when attack-
ing Ė or Ë . We define two oracles, Ȯ and Ö. The oracles
begin by choosing random permutations π and (π, π′), re-
spectively. Each oracle then accepts ten types of queries.
The oracles have been designed so that, using Ȯ an ad-
versary can compute Ėπ for a random π; and using Ö an
adversary can compute Ėπ,π′ for a random π, π′. Then we

show that oracles Ȯ and Ö are themselves adversarially in-
distinguishable.

Some subtleties arise when trying to work out this ap-
proach. One is that the oracles Ȯ and Ö must enable the
adversary to compute Ḋ and D̈ as well as Ė and Ë . This
is necessary to ensure that indistinguishability of Ȯ and Ö
implies authenticity of OĊB. The oracles themselves must
be made simple enough to reason about, powerful enough
that an adversary can compute what is needed, but not so
powerful that the oracles become distinguishable.

Oracles Ȯ and Ö, and valid queries to them. Ora-
cle Ȯ and Ö are defined in Figure 1. The description there
omits checks on the validity of oracle queries, which we now
explain. An oracle query Q = (ty , N, i, M) that follows a
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sequence of oracle queries Q = (Q1, . . . , Qr) with responses
Z = (Z1, . . . , Zr) is said to be valid if all of the following
hold:

(V0) ty ∈ [0..9] and N ∈ {0, 1}n and i ∈ [1..2n−1 − 1] and
M ∈ {0, 1}∗.

(V1) If ty ∈ [1..4] then (ty , N, i, M) 	∈ Q; if ty = 5
then (5, ·, i, M) 	∈ Q (for any value filling in the dot,
language that we henceforth omit); if ty = 6 then
(6, ·, ·, M) 	∈ Q; if ty = 7 then (7, ·, ·, M) 	∈ Q; if
ty = 8 then (8, N, ·, M) 	∈ Q; and if ty = 9 then
(9, N, ·, M) 	∈ Q.

(V2) If ty = 1 then there is no Qs = (4, N, i, ·) ∈ Q that
returned Zs = M ; and if ty = 4 then there was no
Qs = (1, N, i, ·) ∈ Q that returned Zs = M .

(V3) If ty = 1 then (3, N, i, ·) 	∈ Q and if ty = 3 then
(1, N, i, ·) 	∈ Q.

(V4) If ty = 5 then i 	= 1.

(V5) If ty = 6 then M 	= 0n.

(V6) There is no (0, ·, ·, ·) 	∈ Q, and if ty = 0 then there is
some (·, N, ·, ·) ∈ Q.

We say that a sequence of queries Q = (Q1, . . . , Qq) and
their responses Z = (Z1, . . . , Zq) is valid if each query Qs is
valid given the earlier queries (Q1, . . . , Qs−1) and their re-
sponses (Z1, . . . , Zs−1). We also demand that the last query
Qq = (0, ·, ·, ·) be of type 0.

A query Q following (Q,Z) is invalid if it is not valid. We

define Ȯ and Ö to return a random n-bit string in response
to any invalid query. Since the validity condition is easily
checked by an adversary one can assume without loss of
generality that adversaries do not ask invalid queries.

Let us sketch the meaning of the validity conditions. Con-
dition V0 says not to consider ill-formed queries or queries
with i = 0. It also guarantees that the first bit of i (when
regarded as an n-bit string) is 0. Conditions V1 and V2 de-
mand that an adversary not ask a query that it already
knows the answer to. Condition V3 prohibits an adver-
sary from asking both π(iL ⊕ R)] ⊕ iL ⊕ R and π(iL ⊕ R).
Condition V4 keeps the adversary from trivially learning an
R-value, while condition V5 keeps the adversary from triv-
ially learning L. Query type 0 lets the adversary add iL⊕R
to a value of its choice, but condition V6 says that it can
only do this once and it must have already asked a query
that used the N that gave rise to this R.

Closeness of Ȯ and Ö. For oracles X and Y define
Advdist

X ,Y(A) =
∣∣Pr[AX = 1] − Pr[AY = 1]

∣∣. This immedi-
ately gives the corresponding resource-bounded notion, as
explained at the end of Section 2. The main technical lemma
that we need can now be stated. It’s proof is given in the
full version of this paper [21]. Recall that n has been fixed

and oracles Ȯ and Ö silently depend on this parameter.

Lemma 4. Advdist
Ȯ, Ö (q) ≤ 8q2/2n ♦

Relating OĊB and OC̈B security. We have defined Ȯ in
such a way that having an oracle for Ȯπ lets one compute Ėπ

on any number of points and lets one compute Ḋπ on one
point. Similarly, we have defined Ö in such a way that
having an oracle for Öπ,π′ lets one compute Ëπ,π′ on any

number of points and lets one compute Ḋπ,π′ on one point.

We use this to relate the security of OĊB to the security

Initialization

π
$← Perm(n); L ← π(0n)

To respond to query Ȯ(ty, N, i, M)
R ← π(N ⊕ L)
case ty of

0: return M ⊕ iL ⊕ R
1: return π(M ⊕ iL ⊕ R) ⊕ iL ⊕ R
2: return π(M ⊕ iL ⊕ R ⊕ L · x−1)
3: return π(M ⊕ iL ⊕ R)
4: return π−1(C ⊕ iL ⊕ R) ⊕ iL ⊕ R
5: return π(M ⊕ iL) //i �= 1
6: return π(M) //M �= 0n

7: return π(M ⊕ L · x−1)
8: return π(M ⊕ R)
9: return π(M ⊕ R ⊕ L · x−1)

Initialization

π
$← Perm(n); L ← π(0n); π′ $← Perm(n); L′ ← π(0n)

To respond to query Ö(ty, N, i, M)
R ← π(N ⊕ L); R′ ← π(N ⊕ L′)
case ty of

0: return M ⊕ iL ⊕ R
1: return π(M ⊕ iL ⊕ R) ⊕ iL ⊕ R
2: return π(M ⊕ iL ⊕ R ⊕ L · x−1)
3: return π(M ⊕ iL ⊕ R)
4: return π−1(C ⊕ iL ⊕ R) ⊕ iL ⊕ R
5: return π′(M ⊕ iL′) //i �= 1
6: return π′(M) //M �= 0n

7: return π′(M ⊕ L′ · x−1)
8: return π′(M ⊕ R′)
9: return π′(M ⊕ R′ ⊕ L′ · x−1)

Figure 1: Oracles Ȯ (top) and Ö (bottom).

of OC̈B and the distinguishability of Ȯ and Ö. We have
the following result. The proof is in the full version of this
paper [21].

Lemma 5.

AdvPRIV
OĊB (q, σ) ≤ AdvPRIV

OC̈B (q, σ) + Advdist
Ȯ, Ö(σ)

AdvAUTH
OĊB (q, σ, ς) ≤ AdvAUTH

OC̈B (q, σ, ς) + Advdist
Ȯ, Ö(σ + ς)

♦
Concluding Theorem 3. We can now complete the proof
of Theorem 3. We will use the following results from [5, 22]:

Advpriv
OCB[Perm(n),τ ](q, σ) ≤ 1.5 σ2

1/2n

Advauth
OCB[Perm(n),τ ](q, σ, ς) ≤ 1.5 σ2

2/2n + 2−τ

Advprf
PMAC[Perm(n),τ ](q, σ) ≤ 2 σ2

3/2n

where σ1 = σ+q+3 and σ2 = σ+q+5ς +11 and σ3 = σ+1.
Combining the equations above with Theorem 2 we have
that

AdvPRIV
OCB¨PMAC[Perm(n),τ ](q, σ) ≤ 1.5 σ2

1/2n

AdvAUTH
OCB¨PMAC[Perm(n),τ ](q, σ, ς) ≤ 5 σ2

2/2n + 2−τ

Combining Lemma 4, Lemma 5, and the two equations
above we get:

AdvPRIV
OĊB (q, σ) ≤ 9.5σ2

1/2n

AdvAUTH
OĊB (q, σ, ς) ≤ 13 σ2

2/2n + 2−τ

This completes the proof of Theorem 3.
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7. GENERIC COMPOSITION
So far we have focused on making an AEAD-scheme Π̄

out of an AE-scheme Π and a function family F . How-
ever, it makes just as much sense to construct Π̄ from a
(privacy-only) encryption scheme Π and a function family F .
Following [3], we call the construction of an AE/AEAD-
scheme from a privacy-only encryption scheme and a MAC
the generic composition approach.

We consider two different methods for generic composi-
tion: (1) nonce-based, AD-using, encrypt-then-mac, where,
using a nonce N , one encrypts message M to a ciphertext C
and then MACs the associated-data H along with N and C
to get a tag T to accompany C; and (2) nonce-based, AD-
using mac-then-encrypt, where one MACs the associated-
data H and the message M and a nonce N to make a tag T ,
and then encrypts, using N , the message M and the tag T .
See Figure 2.

Our viewpoints in this section are strongly motivated
by [3]. But we have already made definitional choices differ-
ent from theirs, and this does impact our findings.

Encrypt-then-MAC. Let 〈X, Y 〉 denote a string that en-
codes strings X and Y . In particular, X and Y should
be recoverable, and in linear time, from 〈X, Y 〉. Let Π =
(K, E ,D) be an encryption scheme. For simplicity, assume Π
has a message space of Message = {0, 1}∗. Let its nonce
space be Nonce = {0, 1}n. Let F : K′ × {0, 1}∗ → {0, 1}τ be
a function family. Let Header ⊆ {0, 1}∗. Given all this, we
define the AEAD-scheme [Π, F ] = (K̄, Ē , D̄) as follows:

K̄ = K ×K′.
ĒN,H

K,K′(M) = C ‖ T where C = EN
K (M) and T =

FK′(〈N, H, C〉).
D̄N,H

K,K′(C) = DN
K(C) if |C| ≥ τ and C = C ‖ T where

|T | = τ and FK′(〈N, H, C〉) = T ; and D̄N,H
K,K′(C) =

Invalid otherwise.

Note that in the construction above, to match our nonce-
based treatment of AEAD-schemes, we have assumed a sym-
metric encryption scheme Π that explicitly surfaces its nonce
(as opposed to its being a probabilistic or stateful encryption
encryption scheme).

As one might expect, if Π is a secure encryption scheme (in

the Advpriv
Π sense) and F is a good pseudorandom function

(in the Advprf
F -sense) then [Π, F ] is a good AEAD-scheme.

The quantitative result is as follows. The proof is in the full
paper [21].

Theorem 6. Let Π = (K, E ,D) be an encryption scheme
with message space {0, 1}∗ and let F : K′×{0, 1}∗ → {0, 1}τ

be a function family. Then

AdvPRIV
[Π,F ](t, q, σ) ≤ Advpriv

Π (t1, q, σ) + Advprf
F (t2, q, σ)

AdvAUTH
[Π,F ] (t, q, σ, ς) ≤ Advprf

F (t3, q + 1, σ + ς) + 2−τ

where t = t1 + t2 + TimeF (q, σ) + O(σ + q) and t = t3 +
TimeE(q, σ + ς) + O(σ + ς + q). ♦
Mac-then-encrypt. Let Π = (K, E ,D), F : K′ × {0, 1}∗ →
{0, 1}τ , Header ⊆ {0, 1}∗, Message = {0, 1}∗ and Nonce =
{0, 1}n all be as before. Then we define the AEAD-scheme
[F, Π] = (K̄, Ē , D̄) as follows:

K̄ = K ×K′.
ĒN,H

K,K′(M) = EN
K (〈M, T 〉) where T = FK′(〈N, H, M〉).

D̄N,H
K,K′(C) = M if 〈M, T 〉 = DN

K(C) where |T | = τ

and T = FK′(〈N, H, M〉); and D̄N,H
K,K′(C) = Invalid

otherwise.

Following [3] one might expect that [F, Π] may be insecure
even when F is secure as a pseudorandom function and Π
achieves privacy. But the definitions we are using differ from
those in [3] and [F, Π] is in fact secure under natural as-
sumptions. The essential difference lies in the nonce-based
treatment of encryption we have used; this forces there to be
only one possible ciphertext for a plaintext (once the nonce
is pinned down), eliminating the kind of counter-example
demonstrated by [3]. The proof of the following is in the full
paper [21].

Theorem 7. Let Π = (K, E ,D) be an encryption scheme
with message space {0, 1}∗ and let F : K′×{0, 1}∗ → {0, 1}τ

be a function family. Then

AdvPRIV
[F,Π](t, q, σ) ≤ Advpriv

Π (t1, q, σ)

AdvAUTH
[F,Π] (t, q, σ, ς) ≤ Advprf

F (t2, q + 1, σ + ς) + 2−τ

where t = t1 + TimeF (q, σ) + O(σ + q) and t = t2 +
TimeE(q, σ) + TimeD(1, ς) + O(σ + ς + q). ♦

Remarks. The two constructions of this section use a
nonce-based symmetric encryption scheme that is secure in
the Advpriv sense. It needs to be emphasized that conven-
tional modes of operation, like CBC mode with the IV as
the nonce, do not achieve good security in this sense. Thus
one can not expect to achieve a secure AEAD-scheme, in
the sense we have defined it, by using the constructions of
this section and encrypting under CBC mode, with the IV
as the nonce. There are simple ways to achieve the notion
of privacy defined here, starting from a block cipher, but an
investigation of this topic would take us too far afield.
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APPENDIX

A. DEFINITIONS OF OCB AND PMAC
The following material is taken from [5, 22]. Through-

out, fix integer n > 0. Let ntz(i) (where i ≥ 1) be the
number of trailing 0-bits in the binary representation of in-
teger i. If X ∈ {0, 1}∗ then len(X) = max{1, �|X|/n
}.
For X ∈ {0, 1}∗ and |X| ≤ n let X 0∗ = X 0n−|X|. Let

pad(X) be X if |X| = n and X10n−|X|−1 if |X| < n. Let
GF(2n) be the field with 2n points. We think of a point a
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Figure 3: OCB. The plaintext is M , the key is K, the nonce is N , the key space is K. Each Z[i] = γi · L ⊕ R.
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Figure 4: PMAC. Message M and key K.

Value L = EK(0n) is derived from K.

in GF(2n) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}n or as
the polynomial a(x) = an−1x

n−1 + · · ·+ a1x+ a0. Addition
and multiplication is defined in the usual way where, for
multiplication, we fix an irreducible degree n polynomial.
Define γ = γn by γ1 = (0 1) and, for � > 0, γ�+1 = (0γ�

0

0γ�
1 · · · 0γ�

2�−2 0γ�
2�−1 1γ�

2�−1 1γ�
2�−2 · · · 1γ�

1 1γ�
0). We write

“Partition M into M [1] · · ·M [m]” for “Let m = len(M) and
let M [1], . . . , M [m] be strings such that M [1] · · ·M [m] = M
and |M [i]| = n for 1 ≤ i < m.” We write “Partition C

into C[1] · · ·C[m] T” for “if |C| < τ then return Invalid.
Otherwise let C = C [first |C| − τ bits], T = C[last τ bits],
and m = len(C), and let C[1], . . . , C[m] be strings such that
C[1] · · ·C[m] = C and |C[i]| = n for 1 ≤ i < m.”

To use OCB or PMAC one must specify a block cipher
E: K × {0, 1}n → {0, 1}n. One must also specify a tag
length τ ∈ [1..n]. We let OCB[E, τ ] and PMAC[E, τ ] be

the algorithms with the indicated parameters. Encryption
and decryption under OCB depend on an n-bit nonce N .
OCB and PMAC are defined below. For an illustration, see
Figures 3 and 4.

Algorithm EN
K (M)

Partition M into M [1] · · ·M [m]
L ← EK(0n); R ← EK(N ⊕ L)
for i ← 1 to m do Z[i] = γi · L ⊕ R
for i ← 1 to m − 1 do C[i] ← EK(M [i] ⊕ Z[i]) ⊕ Z[i]
X[m] ← len(M [m]) ⊕ L · x−1 ⊕ Z[m]
Y [m] ← EK(X[m])
C[m] ← Y [m] ⊕ M [m]; C ← C[1] · · ·C[m]
Checksum ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]
T ← EK(Checksum ⊕ Z[m]) [first τ bits]
return C ← C ‖ T

Algorithm DN
K (C)

Partition C into C[1] · · ·C[m] T
L ← EK(0n); R ← EK(N ⊕ L)
for i ← 1 to m do Z[i] = γi · L ⊕ R
for i ← 1 to m − 1 do M [i] ← E−1

K (C[i] ⊕ Z[i]) ⊕ Z[i]
X[m] ← len(C[m]) ⊕ L · x−1 ⊕ Z[m]
Y [m] ← EK(X[m])
M [m] ← Y [m] ⊕ C[m]; M ← M [1] · · ·M [m]
Checksum ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]
T ′ ← EK(Checksum ⊕ Z[m]) [first τ bits]
if T = T ′ then return M else return Invalid

Algorithm PMACK (M)
L ← EK(0n); if |M | > n2n then return 0τ

Partition M into M [1] · · ·M [m]
for i ← 1 to m − 1 do

X[i] ← M [i] ⊕ γi · L
Y [i] ← EK(X[i])

Σ ← Y [1] ⊕ Y [2] ⊕ · · · ⊕ Y [m − 1] ⊕ pad(M [m])
if |M [m]| = n then X[m] = Σ ⊕ L · x−1

else X[m] ← Σ
T = EK(X[m]) [first τ bits]
return T
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