
Authenticated Hash Tables

Charalampos Papamanthou
Dept. of Computer Science

Brown University
Providence RI, USA

Roberto Tamassia
Dept. of Computer Science

Brown University
Providence RI, USA

Nikos Triandopoulos
Dept. of Computer Science

University of Aarhus
Aarhus, Denmark

ABSTRACT

Hash tables are fundamental data structures that optimally
answer membership queries. Suppose a client stores n ele-
ments in a hash table that is outsourced at a remote server
so that the client can save space or achieve load balancing.
Authenticating the hash table functionality, i.e., verifying
the correctness of queries answered by the server and ensur-
ing the integrity of the stored data, is crucial because the
server, lying outside the administrative control of the client,
can be malicious.

We design efficient and secure protocols for optimally au-
thenticating membership queries on hash tables: for any
fixed constants 0 < ǫ < 1 and κ > 1/ǫ, the server can pro-
vide a proof of integrity of the answer to a (non-)membership
query in constant time, requiring O

(

nǫ/ logκǫ−1 n
)

time to
treat updates, yet keeping the communication and verifica-
tion costs constant. This is the first construction for authen-
ticating a hash table with constant query cost and sublinear
update cost. Our solution employs the RSA accumulator in
a nested way over the stored data, strictly improving upon
previous accumulator-based solutions. Our construction ap-
plies to two concrete data authentication models and lends
itself to a scheme that achieves different trade-offs—namely,
constant update time and O(nǫ/ logκǫ n) query time for fixed
ǫ > 0 and κ > 0. An experimental evaluation of our solution
shows very good scalability.

Categories and Subject Descriptors

C.2.4 [Communication Networks]: Distributed Systems;
E.1 [Data Structures]; H.3.4 [Information Storage and
Retrieval]: Systems and Software

General Terms

Algorithms, Security, Theory, Verification

Keywords

Hash tables, Authentication, Verification, RSA accumulator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08 October 27–31, 2008, Alexandria, Virginia, USA
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

1. INTRODUCTION
Recently, there has been an increasing interest in remote

storage of information and data, where people outsource
their personal files at service providers that offer huge stor-
age space and fast network connections (e.g., Amazon S3). In
this way, clients create virtual hard drives consisting of on-
line storage units that are operated by remote and geograph-
ically dispersed servers. In addition to a convenient solution
to space-shortage, data-archiving or back-up issues, remote
storage allows for load-balanced distributed data manage-
ment (e.g., database outsourcing). Indeed, large data vol-
umes can become available to end applications through high-
bandwidth connections to the data-hosting servers, which
can rapidly answer queries arriving at high rates. Hence,
data sources need to be online only when they wish to up-
date their published data.

In such settings, the ability to check the integrity of re-
motely stored data is an important security property, or oth-
erwise a malicious server can easily tamper with a client’s
data (e.g., delete or modify a file). Also, without some kind of
verification mechanisms, this attack can never be detected,
no matter what trust relations the client and the server may
a priori share. Thus, it is always desirable that operations
on remote data be authenticated. In particular, answers to
client queries should be verified and either validated to be
correct or rejected because they do not reflect the true state
of the client’s outsourced data.

In this paper, we study the simplest, but very important,
form of this data authentication problem, where we wish to
authenticate (non-)membership queries over a dynamic set
of n data elements that is stored at an untrusted server with
the use of a hash table. Used widely by numerous applica-
tions, hash tables are fundamental data structures for an-
swering set-membership queries optimally, in expected con-
stant time; it is, therefore, important in practice and also
theoretically interesting to authenticate their functionality.

Following a standard approach, we augment the hash table
with an authentication structure that uses a cryptographic
primitive to define a succinct (e.g., few bytes long) secure di-
gest, a“fingerprint”of the entire stored set. Computed on the
correct data, this digest will serve as a secure set description
subject to which the answer to a (non-)membership query
will be verified at the client by means of a corresponding
proof provided by the server. Our main goal is to design
protocols that implement this methodology both securely,
against a computationally bounded server, and efficiently,
with respect to any communication and computation over-
heads incurred due to the hash table authentication.

In particular, we wish to minimize the amount of informa-
tion communicated (after an update—insertion in/deletion
from the set) from the data source to the server, and also
the size of the proof sent (after a client’s query) from the
server to the client, ideally keeping both complexities con-
stant. Analogously, since client-side applications usually con-
nect to the servers from mobile devices with limited comput-
ing power and slow connectivity (e.g., cell-phones), we wish
that all computations (due to verifications) performed at the
clients are as efficient as possible, ideally constant. More im-
portantly, we wish to preserve the optimal query complexity
of the hash table, while keeping the costs due to set updates
sublinear in the set’s size: ideally, the server should authen-
ticate (non-)membership queries in constant time, or other-
wise we lose the optimal property that hash tables offer!

Developing secure protocols for hash tables that authenti-
cate (non-)membership queries in constant time has been a
long-standing open problem [25]. Using cryptographic (col-
lision resistant) hashing and Merkle’s tree construction [23]
to produce the set’s digest, (non-)membership queries in sets
can be authenticated with logarithmic costs (e.g., [4, 15, 25,
28, 34]), which is optimal for any hash-based approach, as
it has been shown in [33]. Breaking this logarithmic barrier,
therefore, requires employing an alternative cryptographic
primitive. One-way accumulators and their dynamic exten-
sions [2, 3, 6, 26] are constructions for accumulating a set
of n elements into a short value, subject to which each ac-
cumulated element has a short witness (proof) that can be
used to verify in constant time its membership in the set.
Although this property, along with precomputed element wit-
nesses, clearly allows for set-membership verification in O(1)
time, it has not been known how this can lead to practical
schemes: indeed, straightforward techniques for recomput-
ing the correct witnesses after element updates require at
least linear costs (O(n) or O(n log n) depending on the ac-
cumulator), thus incurring high update cost at the server.

In our main result we show how to use the RSA accumula-
tor (e.g., [6]) in a hierarchical way over the set and the under-
lying hash table, to securely authenticate both membership
and non-membership queries and fully achieve our complex-
ity goals. That is, in our authentication scheme communi-
cation and verification costs are constant, the query cost is
constant and the update cost is sublinear, realizing the first
authenticated hash table with this performance. Our scheme
strictly improves upon previous schemes based on accumu-
lators. We base the security of our protocols on the security
of the RSA accumulator, which holds under the, currently
standard, strong RSA assumption.

Moreover, aiming at authentication solutions that cover a
wide application area, we instantiate our core authentication
scheme—without sacrificing its performance guarantees—to
two concrete, widely-used data authentication models, which
we call the three-party and two-party authentication models,
both closely related to our remote-storage setting.

The three-party model has been used to define the con-
cept of authenticated data structures [25, 32] and involves
a trusted source that replicates a data set to one or more
untrusted servers, as well as one or more clients that access
the data set by querying one of the servers. Along with the
answer to a query, the server provides the client with a proof
that when combined with the (authentic) data-set digest can
verify the correctness of the answer. This digest is, periodi-
cally or after any update, produced, time-stamped (to defeat

replay attacks) and signed by the source (a PKI is assumed),
and is forwarded to the server(s) to be included in any an-
swer sent to a client. This model offers load-balancing and
computation outsourcing for data publication applications,
therefore the source typically keeps the same data set and
authentication structure as the server; this can potentially
allow the source to facilitate the server’s task by communi-
cating appropriate update authentication information after
set updates.

The two-party model, instead, involves a client that, be-
ing simultaneously the data source and the data consumer,
fully outsources the data set to an untrusted server, keeping
locally only the data-set digest (of constant size), subject
to which any operation (update or query, executed by the
server) on the remotely stored data is verified, again using
a corresponding proof provided by the server. This model
offers both storage and computation outsourcing, but only
the data owner has access to the stored set. Here, the main
challenge is to maintain at all times a state (digest) that
is consistent with the history of updates, typically requir-
ing more involved authentication structures. This model is
related to the memory-checking model [4]. For a detailed
description of the models we refer to [13, 15, 28].

Finally, to meet the needs of different data-access pat-
terns, we extend our three-party authentication scheme to
achieve a reverse performance, i.e., sublinear query cost, but
constant update cost. Also, aiming at practical solutions, we
perform a detailed evaluation and performance analysis of
our authentication schemes, discussing many implementa-
tion details and showing that, under concrete scenarios and
certain assumptions, our protocols achieve very good perfor-
mance, scalability and a high degree of practicality.

1.1 Our Contributions

1. We propose a new cryptographic construction for set-
membership verification that is based on combining
the RSA accumulator in a nested way over a tree of
constant depth. We formally prove the security of the
new scheme based only on the widely accepted and
used strong RSA assumption.

2. We introduce authenticated hash tables and we show
how to exploit the efficiency of hash tables to develop
an authenticated data structure supporting both mem-
bership and non-membership queries on sets drawn
from general universes. We give solutions for authen-
ticating a hash table both in the two-party and three-
party authentication models.

3. We improve the complexity bounds of previous work
while still being provably secure. Namely, we reduce
the query time and the size of the update authentica-
tion information from O(nǫ) [14] (at present, the best
known upper bound for authenticating set-membership
queries using RSA accumulators) to O(1), and also the
update time from O(nǫ) to O

(

nǫ/ logκǫ−1 n
)

for any
fixed constants κ > 0, 0 < ǫ < 1 such that κǫ > 1.
This answers an open problem posed in [25]. Also, we
extend our scheme to get a different trade-off between
query and update costs, namely constant update time
with O(nǫ/ logκǫ n) query time for constants 0 < ǫ < 1
and κ > 0 (see Table 1).

Table 1: Comparison of existing schemes for authenticating set-membership queries in a set of size n w.r.t.
used techniques and various complexity measures. Here, 0 < ǫ < 1 and κ > 1/ǫ are fixed constants, NA stands
for “not applicable”, DH for “Diffie-Hellman”, exp for “exponentiation” and BM for “bilinear mapping”. All
complexity measures refer to n (not to the security parameter) and are asymptotic expected values. Our
main scheme maintains O(1) communication, verification and query costs, still achieving sublinear update
cost (O

(

nǫ/ logκǫ−1 n
)

), thus outperforming existing accumulation-based schemes; it also uses a standard cryp-
tographic assumption. Confined to the 3-party model, our extended scheme achieves a different trade-off
between update and query costs. Update costs in our schemes are amortized expected values. In all schemes,
the server uses O(n) space and the client uses O(1) space. In the 3-party model an additional signature cost
is incurred (signed digest).

reference model assumption proof update query update verify crypto
size info. time time time oper.

[4, 15, 22, 25, 28] both collision resistance log n 1 log n log n log n hashing

[1] 2-party strong RSA 1 NA 1 NA 1 exp

[6, 30] both strong RSA 1 1 1 n log n 1 exp

[26] both strong DH 1 1 1 n 1 exp, BM

[14] 3-party strong RSA 1 nǫ nǫ nǫ 1 exp

main scheme both strong RSA 1 1 1 nǫ/ logκǫ−1 n 1 exp

extension 3-party strong RSA 1 1 nǫ/ logκǫ n 1 1 exp

4. We give a practical evaluation of our scheme using
state of the art software [31] for primitive operations
(namely, modular exponentiations, multiplications, in-
verse computations). We show that for κ = 1 and
ǫ = 0.1 our scheme scales very well.

5. We propose studying lower bounds for authenticated
set-membership queries using cryptographic accumu-
lators.

1.2 Related Work
There has been a lot of work on authenticating member-

ship queries using different algorithmic and cryptographic
approaches. A summary and qualitative comparison can be
found in Table 1.

Several authenticated data structures based on crypto-
graphic hashing have been developed for membership queries
(e.g., [4, 15, 22, 25, 28]), both in the two-party and three-
party authentication models. These data structures achieve
O(log n) proof size, query time, update time and verification
time. These bounds are optimal for hash-based methods, as
was shown in [33]. Variations of this approach and exten-
sions to other types of queries have also been investigated
(e.g., [5, 12, 17, 34]).

Solutions for authenticated membership queries in vari-
ous settings using another cryptographic primitive, namely
one-way accumulators, were introduced by Benaloh and de
Mare [3]. Based on the RSA exponentiation function, this
scheme implements a secure one-way function that satisfies
quasi-commutativity, a useful property that usual hash func-
tions lack. This RSA accumulator is used to summarize a
set so that set-membership can be verified with O(1) over-
head. Refinements of the RSA accumulator are also given
in [2], where except for one-wayness, collision resistance is
achieved, and also in [11, 30]. Dynamic accumulators (along
with protocols for zero-knowledge proofs) were introduced
in [6], where, using the trapdoor information (these pro-
tocols are secure, assuming an honest prover), the time to
update the accumulated value or a witness is independent
on the number of the accumulated elements.

A first step towards a different direction, where we assume
that we cannot trust the prover and therefore the trapdoor
information (e.g., the group order φ(N)) is kept secret, but
applicable only to the three-party model, was made in [14];
in this work, general O(nǫ) bounds are derived for various
complexity measures such as query and update time. An au-
thenticated data structure that combines hierarchical hash-
ing with the accumulation-based scheme of [14] is presented
in [16], and a similar hybrid authentication scheme appears
in [27].

Accumulators using other cryptographic primitives (gen-
eral groups with bilinear pairings) the security of which
is based on other assumptions (hardness of strong Diffie-
Hellman problem) are presented in [26]. However, updates
in [26] are inefficient when the trapdoor information is not
known: individual precomputed witnesses can each be up-
dated in constant time, thus incurring a linear total cost for
updating all the witnesses after an update in the set. Effi-
cient dynamic accumulators for non-membership proofs are
presented in [20]. Accumulators for batch updates are pre-
sented in [35] and accumulator-like expressions to authen-
ticate static sets for provable data possession are presented
in [1]. The work in [29] studies efficient algorithms for accu-
mulators with unknown trapdoor information. Finally in [10]
and simultaneously with our work, logarithmic lower bounds
as well as constructions achieving query-update cost trade-
offs that are similar to our work, have been studied in the
memory-checking model [4].

1.3 Organization of the Paper
In Section 2, we introduce some necessary cryptographic

and algorithmic ideas needed for the development of our con-
struction. We also give the security definition of our scheme.
In Section 3, we develop our main authentication construc-
tion and prove its security, providing a solution for static
sets. In Section 4, we apply our construction to hash tables
and derive our main results. In Section 5, we provide an eval-
uation and analysis of our method showing its practicality,
and finally in Section 6, we conclude with future work and
interesting open problems.

2. PRELIMINARIES
In this section we describe some algorithmic and crypto-

graphic methods and other concepts used in our approach.

Hash Tables. The main functionality of the hash table data
structure is the support of super efficient look-ups in O(1)
time of elements that belong to a general set (not neces-
sarily ordered). Different ways to implement the hash table
data structure have been extensively studied (e.g., [9, 18,
19, 21, 24]), where the basic idea behind them is the follow-
ing. Suppose we wish to store n elements from a universe U
in a data structure so that we can have expected constant
look-up time. For totally ordered universes and by search-
ing based on comparisons, it is well known that we need
Ω(log n) time. However, we can do better: Set up a one-
dimensional table T [1 . . . m] where m = O(n), fix a special
function h : U → {1, . . . , m}, such that for any two elements
e1, e2 ∈ U it is Pr [h(e1) = h(e2)] ≤

1
m

, and store element
e in slot T (h(e)). The probabilistic property that holds for
h, combined with the fact that h can be computed in O(1)
time, leads to the conclusion that there is always a constant
expected number of elements that map to the same slot i
(1 ≤ i ≤ m) and, therefore, look-up takes constant expected
time.

But this nice property of hash tables comes at some cost.
The expected constant-time look-up holds only when the
number of elements stored in the hash table does not change,
i.e., when the hash table is static. When there are insertions
and deletions, it is obvious that we might end up in a sit-
uation where there are more than O(1) elements stored in
some slot of the hash table, which increases the time needed
for queries. To maintain slots that few elements map to, we
might have to increase the size of the hash table by a con-
stant factor (e.g., double the size), which is expensive since
we have to rehash all the elements of the hash table by using
another hash function. Therefore, there might be one update
(over a course of O(n) updates) that takes time O(n) and
not O(1). That leads to the fact that hash tables support
expected O(1) time queries, but updates in O(1) expected
amortized time. Methods that vary the size of the hash ta-
ble, for the sake of maintaining O(1) query time, fall into
the general category of dynamic hashing, satisfying:

Theorem 1 (Dynamic Hashing [8]). For a set of size
n, dynamic hashing can be implemented to use O(n) space
and have O(1) expected query cost for membership queries
and O(1) expected amortized cost for insertions or deletions.

Note that by choosing a suitable function that distributes n
elements into buckets (i.e., array slots), we can have f1(n)
buckets and maintain the expected bucket size (i.e., elements
within the bucket) to be f2(n), for general f1(·), f2(·) such
that f1(n) · f2(n) = O(n). Therefore we have the following
corollary:

Corollary 1. Let f1(·), f2(·) be functions such that for
all n it is f1(n) · f2(n) = O(n). Dynamic hashing can be
implemented to use O(n) space and have O(f2(n)) expected
query cost for membership queries, O(f2(n)) expected amor-
tized cost for insertions and deletions, and O(f1(n)) buckets.

We use the above result in our schemes, where f1(n) =
O(n/ logκ n) and f2(n) = O(logκ n) for some fixed κ > 0.

Prime Representatives. In our construction we exten-
sively use the notion of prime representatives, which were

initially introduced in [2] and provide a solution whenever it
is necessary to map general elements to prime numbers—in
our setting, for security reasons. In particular, a method for
mapping a k-bit element ei to a 3k-bit prime xi is to use
two-universal hash functions, as introduced by Carter and
Wegman [7]. A family H = {h : A → B} of functions is
two-universal if, for all w1 6= w2 and for a randomly cho-
sen function h from H, it is Pr[h(w1) = h(w2)] ≤ 1/|B|.
In our context, set A consists of 3k-bit boolean vectors and
set B consists of k-bit boolean vectors, and we use the two
universal function h(x) = Fx, where F is a k × 3k boolean
matrix. Since the linear system h(x) = Fx has more than
one solution, one k-bit element is mapped to more than one
3k-bit elements. We are interested in finding only one such
solution which is prime; this can be computed as follows:

Lemma 1 (Prime Representatives [11, 14]). Let H
be a two-universal family of functions from {0, 1}3k to {0, 1}k

and h ∈ H. For any element ei ∈ {0, 1}k, with high probabil-
ity, we can compute a prime xi ∈ {0, 1}3k so that h(xi) = ei,
by sampling O(k2) times from the set of inverses h−1(ei).

This means that we can compute prime representatives in
expected constant time, since the dimension of our problem
is the number of the elements in the hash table, n. Also,
solving the k×3k linear system in order to compute the set of
inverses can be performed in polynomial time in k, by using
standard methods (e.g., Gaussian elimination). Finally, note
that prime representatives are computed (and stored) only
once, since computing multiple times a prime representative
of the same element does not output the same prime, for
Lemma 1 describes a randomized process. From now on,
given a k-bit element x, we denote with r(x) the 3k-bit prime
representative that is computed as described above.

Cryptographic Accumulators. If k denotes the security
parameter, we first give the definition of negligible functions.

Definition 1 (Negligible Function). We say that a
real-valued function ν(k) over natural numbers is neg(k) if
for any nonzero polynomial p, there exists m such that ∀n >
m, |ν(n)| < 1

p(n)
.

One basic cryptographic primitive that we use in our ap-
proach is the cryptographic accumulator [2, 3, 6, 26], which
provides an efficient technique to produce a short (com-
putational) proof that a certain element is a member of
a certain set. We use the RSA accumulator which works
as follows. Suppose we have the set of k-bit elements E =
{e1, e2, . . . , en}. Let N be a k′-bit RSA modulus (k′ > 3k),
namely N = pq, where p, q are strong primes [6]. We can effi-
ciently represent E with a k′-bit integer, namely the integer
f(E) = gr(e1)r(e2)...r(en) mod N , where g ∈ QRN [6] and
r(ei) is a 3k-bit prime representative. This representation
has the property that any computational bounded adver-
sary A, that does not know φ(N), cannot find another set
of elements E ′ 6= E such that f(E ′) = f(E), unless A breaks
the strong RSA assumption [2], which is stated as follows:

Definition 2 (Strong RSA Assumption). Given an
RSA modulus N and a random element x ∈ ZN , it is hard (it
happens with probability neg(k), i.e., negligible in the secu-
rity parameter k) for a computationally bounded adversary
A to find y > 1 and a such that ay = x mod N .

We now present a useful lemma (we defer the proof to the
full version of the paper).

Lemma 2. Let k be the security parameter, h be a two-
universal hash function that maps 3w-bit primes to w-bit
integers and N be a (w + 1)-bit RSA modulus with w =
Θ(k). Given a set of elements E and h, the probability that a
computationally bounded adversary A, knowing only N and
g, can find a set E ′ 6= E such that f(E ′) = f(E) is neg(k).

The following result is a consequence of Lemma 2:

Corollary 2. Let k be the security parameter, h be a
two-universal hash function mapping 3w-bit primes to w-bit
integers and N be a (w + 1)-bit RSA modulus with w =
Θ(k). Given a set of elements E and h, the probability that a
computationally bounded adversary A, knowing only N and
g, can find A and x /∈ E such that Ar(x) = f(E) is neg(k).

Note that we need to use prime representatives in order to
avoid collisions, as observed in [2]. We now continue with the
security definition of a membership authentication scheme,
which captures the security requirements of the hash table
authenticated data structure.

Security. Suppose S is a set we wish to authenticate mem-
bership in (essentially to authenticate the correctness of
queries of type “does x belong to S?”) and let pk be the
public key. The adversary is given oracle access to all the al-
gorithms for updating and querying S and also for verifying
answers. In general, these algorithms are:

1. {S′, d′} ← update(upd, S), where d′ is the new digest
of S after the update (we recall that the digest of S
is a short description of S, e.g., the root hash of a
Merkle tree), upd is an update supported by the data
structure and S, S′ are the old and new (updated) sets
respectively;

2. Π(x)← query(x), where Π(x) is the proof returned to
a query for an element x;

3. {accept, reject} ← verify(x, Π(x), d), where d is the cur-
rent digest of S and Π(x) is the proof, both used for
verifying membership of x in S.

The formal security definition for a membership authentica-
tion scheme of a set S is as follows:

Definition 3 (Security). Suppose k is the security
parameter and A is a computationally bounded adversary
that is given the public key pk. Our set S initially is empty
and S = S0. The adversary A chooses and issues an update
updi ∈ {ins(xi), del(xi)} in the set Si for i = 0, . . . , t and
therefore computes {Si+1, di+1} ← update(updi, Si) where
d0 is defined to be the state (digest) of an empty set and t is
polynomially dependent on the security parameter k. After
that stage (update stage) the adversary has produced St+1

and dt+1. Then he enters the attack stage where he chooses
an element y /∈ St+1 and computes a proof Π(y). We say that
the authentication scheme for set membership is secure if the
probability that accept← verify(y, Π(y), dt+1) is neg(k).

Note that the above security definition captures the notion
of an adversary that tries to forge proofs for elements that do
not belong to the existing set. Also we provide the adversary
with the flexibility to do his own updates and choose his
own elements to forge. Note that this security definition is
applicable to both models (two-party/three-party).

Finally, we describe the setup phase of our schemes, where
we will see why w = Θ(k) (in Lemma 2 and Corollary 2).

System Setup. Let k be the security parameter. In the two-
party model, the client initially picks constants 0 < ǫ < 1
and κ > 1/ǫ, and also picks l = ⌈1/ǫ⌉ RSA moduli Ni =
piqi (i = 1, . . . , l), where pi, qi are strong primes [6]. The
length of the RSA modulus Ni, |Ni|, is defined by the re-
cursive relation |Ni+1| = 3|Ni|+ 1, where |N1| = 3k + 1 and
i = 1, . . . , l − 1. Note that since l is constant all the RSA
moduli have asymptotically the same dependence on the se-
curity parameter k. The client reveals Ni (i = 1, . . . , l) to the
untrusted server but keeps φ(Ni) = (pi − 1)(qi − 1) secret.
The client also picks l public bases gi ∈ QRNi

to be used
for exponentiation. Finally, given l families of two-universal
hash functions H1, H2, . . . , Hl, the client randomly picks one
function hi ∈ Hi and reveals hi to the server who will be us-
ing that function to compute multiple prime representatives.
The function hi is such that it maps (|Ni| − 1)-bit primes
to ((|Ni| − 1)/3)-bit integers. For the three-party model the
setup is exactly the same with the difference that the source
now knows everything (and picks the RSA moduli and two-
universal hash functions himself) that the untrusted servers
know and also φ(Ni). Note that it is very important not to
reveal φ(Ni) to the untrusted entities, since if we do, the se-
curity of the whole system collapses, as they would be able
in this way to compute inverses and forge proofs. Note that
since 1/ǫ is constant, the client needs constant space.

The choice of the domains and ranges of functions hi and
of the lengths of moduli Ni is due to the fact that the prime
representatives that we use should be less than the respective
moduli (see [30]). This will be clear in the description of
our main construction in Section 3. Finally note that, using
ideas from [2], it is possible to avoid the increasing size of the
moduli and instead use only one size for all Ni’s. By doing
so, however, we are forced to prove security in the random
oracle model (using cryptographic hash functions), which is
fine for practical applications (see Section 5).

3. BASE CONSTRUCTION
In this section we describe the main construction for au-

thenticating set-membership in a hash table. Initially we
present a general scheme which can be extended in order
to achieve better complexity bounds for the hash table.

3.1 The RSA Tree
Let 0 < ǫ < 1 be a constant and S = {e1, e2, . . . , en} be

the set of elements we would like to authenticate. We build
a tree T (ǫ) (the tree is a function of ǫ) on top of S, which
we call the RSA tree of S, such that:

1. The leaves of the tree T (ǫ) store the actual elements
e1, e2, . . . , en;

2. T (ǫ) consists of exactly ⌈ 1
ǫ
⌉+ 1 levels;

3. Every node of T (ǫ) has O(nǫ) children;

4. Level i in the tree contains O(n1−iǫ) nodes (the root
node of the tree lies in the maximum level).

The RSA tree, whose structure for a set of 64 elements is
shown in Figure 1, can be viewed as a normal search tree
that resembles the B-tree data structure. However there are
some differences: first, every internal node of the RSA tree,
instead of having a constant upper bound on its degree, it
has a bound that is a function of the number of its leaves, n;
also, its depth is always maintained to be constant (O

(

1
ǫ

)

).

d

r

gfe p

7 2 9 3

a b c

Figure 1: The RSA tree of a set consisting of 64 elements. Here, ǫ = 1
3
. Therefore, every internal node has 4

children, there are 4 = 1
ǫ

+ 1 levels and at level i = 0, 1, 2, 3 there are 641−i/3 nodes respectively.

It easy to see that, with such a tree, we can support queries
in O(nǫ) time. Also, updates take O(nǫ) amortized time
since, as we are not allowed to vary the tree’s depth, we
periodically (e.g., when the number of elements of the tree
doubles) rebuild the tree spending O(n) time. Note that, by
using binary trees to index the elements within each internal
node of the RSA tree, queries can be answered in O(log n)
time and updates can be processed in O(log n) amortized
time. Yet, the reason we build this flat tree is not to use it
as a search structure, but rather to design an authentica-
tion structure, for defining the digest of S, that matches the
optimal querying performance of hash tables.

Therefore, by hierarchically employing the RSA accumula-
tor over set S, we augment the RSA tree with a collection of
accumulation values. In particular, for any tree node v we de-
fine an RSA digest χ(v) of node v, recursively along the tree
structure, in the same way as in a Merkle tree; namely, as a
function of the RSA digests of its children. Let h1, h2, . . . , hl,
l = ⌈ 1

ǫ
⌉, be two-universal hash functions, where hi maps wi-

bit elements to 3wi-bit primes, i = 1, . . . , l. For every leaf
node v in tree T (ǫ) (recall: leaf nodes lie at level 0) that
stores element e, we set χ(v) = e, while for every non-leaf
node v in T (ǫ) that lies in level 1 ≤ i ≤ l, we set:

χ(v) = g
∏

u∈N(v) ri(χ(u))

i mod Ni, (1)

where ri(χ(u)) is a prime representative of χ(u) computed
using function hi (i.e., the prime representative of a quantity
modulo Ni−1 for i > 1), N(v) is the set of children of node v
and gi ∈ QRNi

.

Definition 4. Given a set S = {e1, e2, . . . , en} of n el-
ements, l RSA moduli N1, N2, . . . , Nl, l two-universal func-
tions h1, h2, . . . , hl and the RSA tree T (ǫ) built on top of
them, we define the RSA digest χ(S) of the set S to be equal
to χ(r), where r is the root of the tree T (ǫ).

Note that, given a set S, the RSA digest χ(S) depends on the
elements in S and the used RSA moduli and two-universal
functions, but not on the structure of the tree, because the
structure of T (ǫ), for a given ǫ, is deterministic and the RSA
exponentiation function is quasi-commutative. For simplic-
ity, we use both χ(Sv) and χ(v) to denote the RSA digest of
node v, Sv being the set of elements contained in the subtree
rooted at node v. We next show the main security property
of our new authentication structure.

Theorem 2 (Collision Resistance). Let k be the se-
curity parameter and S1 = {e1, e2, . . . , en} a set of n ele-
ments. Given the associated RSA tree T1(ǫ) built on top of
S1, under the strong RSA assumption, the probability that

a computationally bounded adversary A, knowing only the
RSA moduli Ni and gi, 1 ≤ i ≤ l (l = ⌈1/ǫ⌉), can find
another set S2 6= S1 such that χ(S1) = χ(S2) is neg(k).

Proof: (Sketch.) Suppose the adversary A has found an-
other set S2 6= S1 on which A has built a tree T2(ǫ) (ǫ is
fixed) such that χ(S2) = χ(S1). We apply Lemma 2 for all
levels and prove that the probability of finding a collision at
the last level of the tree is bounded by a negligible function.
We defer the complete proof to the full version of the paper.
2

3.2 Authenticating Static Sets
We now describe how we can use the RSA tree authenti-

cation structure to optimally verify membership in a static
set in constant time. The following methods form the basis
for our main authentication schemes in the next section.

Let S = {e1, e2, . . . , en} be the static set that is out-
sourced to an untrusted server. As we saw in Section 2 (sys-
tem setup), the RSA moduli Ni and bases gi, 1 ≤ i ≤ l,
are public. The server stores set S and builds the RSA tree
T (ǫ) on top of S. For every node v of T (ǫ) that lies at level
i (0 ≤ i ≤ l−1), the server also stores the prime representa-
tive ri+1(Sv) that has been computed for this subtree using
function hi+1. The client stores only the set digest d = χ(S).

Queries. We describe the algorithm that the server runs for
constructing a proof needed to validate an element x ∈ S.
Let v0, v1, . . . , vl be the path from x to the root of T (ǫ),
r = vl. Let B(v) denote the set of siblings of node v in
T (ǫ). The proof Π(x) is the ordered sequence π1, π2, . . . , πl,
where πi is a tuple of a prime representative and a “branch”
witness, i.e., a witness that authenticates the missing node
of the path from the queried node to the root of the tree, vl.
Thus, item πi of proof Π(x) (i = 1, . . . , l) is defined as:

πi =
(

ri(χ(vi)), g
∏

u∈B(vi)
ri(χ(u))

i mod Ni

)

. (2)

For simplicity, we set αi = ri(χ(vi)) and

βi = g
∏

u∈B(vi)
ri(χ(u))

i mod Ni. (3)

Clearly, the size of the proof is O(1), since l = ⌈ 1
ǫ
⌉. For

example in Figure 1, the proof for element 2 consists of 3
tuples:

π1 =
(

r1(2), g
r1(7)r1(9)r1(3)
1 mod N1

)

,

π2 =
(

r2(χ(a)), g
r2(χ(b))r2(χ(c))r2(χ(d))
2 mod N2

)

,

π3 =
(

r3(χ(f)), g
r3(χ(e))r3(χ(g))r3(χ(p))
3 mod N3

)

.

Note that, as we are considering the static case, it is more
time-efficient to use precomputed witnesses.

Verification. Given the proof Π(x) = π1, π2, . . . , πl for an
element x, the client verifies the membership of x in S as
follows. First the client checks if h1(α1) = x (α1 is the prime
representative used for the queried element x); then, for i =
2, . . . , l, the client verifies that the following relations hold:

hi(αi) = β
αi−1

i−1 mod Ni−1. (4)

Also, the client verifies the global RSA digest against the lo-
cally stored digest, namely that the following relation holds:

d = β
αl

l mod Nl. (5)

The client accepts only if all the relations above hold. As we
prove later, the server can forge a proof for an element y /∈ S
with negligible probability in the security parameter k.

Security. The public key pk in our scheme (see Definition 3)
consists of l = ⌈ 1

ǫ
⌉, the RSA moduli N1, N2, . . . , Nl (not

φ(Ni)), the exponentiation bases g1, g2, . . . , gl and the two-
universal functions h1, h2, . . . , hl. Also the adversary is given
oracle access to all the algorithms that update and query the
RSA tree and also verify queries. The digest d that appears
in Definition 3 is the root digest of the RSA tree. Also, for
an element x, Π(x) is the set of branch witnesses as defined
in Equation 3. The following theorem describes the security
of our new construction. The security of our scheme is based
on the strong RSA assumption.

Theorem 3. Our scheme that uses the RSA tree for au-
thenticating a static set of n elements is secure under the
strong RSA assumption and according to Definition 3.

Proof: (Sketch.) Suppose the adversaryA has found a mem-
bership proof for an element y /∈ S, i.e., A has found l
tuples (α1, β1), (α2, β2), . . . , (αl, βl) such that h1(a1) = y,
hi(αi) = β

αi−1

i−1 mod Ni−1 for i = 2, . . . , l and β
αl

l = χ(S)
mod Nl. We use Corollary 2 and Equation 4 inductively on
the (constant) number of levels of the RSA tree to find an
upper bound on the probability that the adversary can forge
proofs of membership. Using the property that the number
of levels of the RSA tree is O(1), we show that the probabil-
ity of a successful attack is negligible. We defer the complete
proof to the full version of the paper. 2

Complexity. In the static case, we do not have to compute
the witnesses each time we query for an element. Namely,
we can store the witnesses in the corresponding nodes of the
tree and therefore reduce the query complexity from O(nǫ)
to O(1) (since the depth of the tree is constant). We can
now present the main result of this section.

Theorem 4. Let 0 < ǫ < 1 be a fixed constant. Under
the strong RSA assumption, we can use the RSA tree with
precomputed witnesses to authenticate a static set S of n
elements in the three-party model by storing a data structure
of size O(n) at both the source and the server such that:
(1) Our scheme is secure according to Definition 3; (2) The
query time is O(1); (3) The size of the proof is O(1); (4) The
verification time is O(1); (5) The client keeps space O(1);
(6) The update authentication information has size O(1).

Note that this result applies also in the two-party model,
with the difference that there is no update authentication

information. Note also that all the constant time complex-
ities have direct relation to 1

ǫ
, namely they are O

(

1
ǫ

)

but
since ǫ is constant they are considered O(1).

4. AUTHENTICATING HASH TABLES
In this section we describe how to use our authentication

structure that is based on the RSA tree to authenticate a
dynamic hash table. We first describe our general algorithms
and protocols for the three-party model, and then extend our
results for the two-party model.

4.1 Three-Party Model
Let ǫ > 1 and κ > 1

ǫ
be fixed constants. The general idea

behind our approach for using the RSA tree to authenticate
hash tables is the following. Let S = {e1, e2, . . . , en} be the
set of elements we would like to authenticate. Instead of
building the RSA tree, T (ǫ), on the elements themselves, as
we did in the case of static sets, we consider the elements
to be in a hash table that has O(n/ logκ n) buckets and
each bucket contains O(logκ n) elements. Note that in this
case the internal nodes of the RSA tree have O(nǫ/ logκǫ n)
children. Overall, we build the same RSA tree, as before,
except that the leaves now hold prime representatives of the
accumulated bucket values instead of the elements.

In particular, consider a bucket L that contains the el-
ements x1, x2, . . . , xh (i.e., these elements lie in the same
bucket, since they have the same value according to the func-
tion used by the hash table to uniformly put elements in the
buckets). The accumulated bucket value of L is defined as

AL = g
r1(x1)r1(x2)...r1(xh)
1 mod N1. Therefore, by comput-

ing these accumulated values of all the buckets, we add one
additional level of accumulations in the RSA tree, that is,
instead of using l = ⌈ 1

ǫ
⌉ levels of accumulations, we are now

using l′ = l + 1 levels. Note that in this first (additional)
level of accumulation, the number of elements that are ac-
cumulated is O(logκ n), and not O(nǫ/ logκǫ n) as before.

Queries and Verification. Suppose we want to construct
the proof for an element x ∈ S. Let v0, v2, . . . , vl′ be the
path from x to the root r of the tree, r = vl′ . As before, the
proof Π(x) is the ordered sequence π1, π2, . . . , πl′ , where πi

is defined in Equation 2. In order to achieve constant-time
queries we must avoid computing πi repeatedly for every sep-
arate query, and therefore we store precomputed witnesses.
Namely, for every non-leaf node v of the RSA tree (we con-
sider as leaves the elements within the buckets) that lies in
level 1 ≤ i ≤ l′, let N(v) be the set of its children. For every
j ∈ N(v) we store at node v the witness

A
(v)
j = g

∏

u∈N(v)−{j} ri(χ(u))

i mod Ni.

Therefore, when we query for x, the server follows the path
v0, v1, . . . , vl′ and collects the corresponding precomputed

witnesses β1 = A
(v1)
j1

, β2 = A
(v2)
j2

, . . . , βl′ = A
(vl′)

jl′
for some

j1, j2, . . . , jl′ (βi is defined in Equation 3). Since the depth of
the tree is constant (⌈ 1

ǫ
⌉+ 2), the time needed for querying

is O(1) (we assume that query time is the time to construct
the proof and not the time to search for the specific element,
which can however be achieved with another hash table data
structure in expected constant time). Finally, verification
can be performed exactly as indicated by Equations 4 and
5 and, thus, takes also O(1) time.

Updates. We now describe how we can efficiently support
updates in the authenticated hash table. Suppose our hash

table currently holds n elements and the source wants to in-
sert an element x in the hash table. That element belongs to
a certain bucket L. Let v0, v2, . . . , vl′ be the path from the
newly inserted element to the root of the tree. Note that the
goal of the update algorithm is twofold: (1) All the RSA di-
gests χ(vi), 1 ≤ i ≤ l′ (note that χ(v0) = x), along the path
from bucket L to the root of the tree, need to be updated;
(2) For all nodes vi, 1 ≤ i ≤ l′, we have to update the local

witnesses A
(vi)
j where j ∈ N(vi). This is required to main-

tain the query complexity to be constant. Finally, note that,
whenever an update is performed, the source sends, together
with the signed RSA digest, the prime representatives of the
updated RSA digests along the path of the update. We use
the following result from [30] for efficiently maintaining up-
dated precomputed witnesses and overall achieving constant
query time.

Lemma 3 (O(n log n) Witness Updates [30]). Let N
be an RSA modulus. Given the elements x1, x2, . . . , xn, N
and g, without the knowledge of φ(N), we can compute Ai =

g
∏

j 6=i xj mod N for i = 1, . . . , n in O(n log n) time.

By using the above lemma, we can prove the following:

Lemma 4. Let 0 < ǫ < 1 and κ > 1/ǫ be fixed constants.
Given a hash table for n elements with O(n/ logκ n) buckets
of expected size O(logκ n) and the RSA tree T (ǫ) built on
top of it, without the knowledge of φ(Ni) (i = 1, . . . , l′), we
can support updates in O(nǫ/ logκǫ−1 n) amortized expected
time.

Proof: (Sketch.) We use Lemma 3 for the internal nodes
and the buckets. Then, we note that over a course of O(n)
updates, there will be an expensive update. Therefore, we
can amortize and since we are using a two-universal hash
function to distribute elements in the bucket, all the results
hold in expectation. We defer the complete proof to the full
version of the paper. 2

Note that if we know φ(Ni) (i = 1, . . . , l′), we can sup-
port updates in O(1) amortized expected time (see details
in Section 5). This is because we can compute inverses and
update witnesses in constant time. However, rebuilding the
hash table is needed and the amortized expected time will

be in this case
∑ t

i=1 O(1)+O(n)

t+1
= O(1). This is very impor-

tant in the three-party model, since the source can do the
updates even more efficiently. We are now ready to present
our main result in the three-party model:

Theorem 5. Let 0 < ǫ < 1 and κ > 1
ǫ

be fixed con-
stants. Under the strong RSA assumption, we can use the
RSA tree with precomputed witnesses to authenticate a dy-
namic hash table of n elements in the three-party model by
storing a data structure of size O(n) at both the source and
the server such that: (1) Our scheme is secure according to
Definition 3; (2) The amortized expected update time at the
server is O

(

nǫ/ logκǫ−1 n
)

; (3) The amortized expected up-
date time at the source is O(1); (4) The query time is O(1);
(5) The size of the proof is O(1); (6) The verification time
is O(1); (7) The client keeps space O(1); (8) The update
authentication information has size O(1).

Finally, note that if we restrict ourselves to the three-party
model, we can achieve constant amortized update time at
the untrusted server too, by keeping the update authenti-
cation information constant and increasing the query time

to expected O (nǫ/ logκǫ n). Namely, the source sends the
updated digests along the path of the update; therefore the
untrusted server does not have to perform the update itself.
However, this method does not use precomputed witnesses
and thus the query time is not constant. Namely, the query
time is expected O (nǫ/ logκǫ n), since it depends on the ran-
domness of the two-universal function used to distribute the
elements in the O(n/ logκ n) buckets. Therefore, we have the
following extended result for the three-party model (note
that in this case we do not need κ > 1

ǫ
):

Theorem 6. Let 0 < ǫ < 1 and κ > 0 be fixed con-
stants. Under the strong RSA assumption, we can use the
RSA tree without precomputed witnesses to authenticate a
dynamic hash table of n elements in the three-party model
by storing a data structure of size O(n) at both the source
and the server such that: (1) Our scheme is secure accord-
ing to Definition 3; (2) The amortized expected update time
at the server is O(1); (3) The amortized expected update
time at the source is O(1); (4) The expected query time is
O (nǫ/ logκǫ n); (5) The size of the proof is O(1); (6) The
verification time is O(1); (7) The client keeps space O(1);
(8) The update authentication information has size O(1).

However, as we will see next, this solution does not apply
to the two-party model, since in the three-party model we
have substantial help from the source.

We finally note that we can choose that scheme being
best suited for the application of interest: in particular, we
can use the scheme of Theorem 5 for applications where
updates do not happen very often and queries are intensive
and frequent, whereas we can use the scheme of Theorem 6
for applications where updates are much more frequent than
queries (e.g., auditing). Finally, we point out that in the
query cost of Theorem 6, there is a low-order term that is
absorbed in the O(·) notation. This term is O(logκ n) and is
the time needed to compute the witness within the bucket.
Therefore, parameter κ affects (though not asymptotically)
the time to compute the witness within the bucket.

4.2 Two-Party Model
We now describe how we can implement an authenti-

cated hash table using the RSA tree with precomputed wit-
nesses in the two-party model. We recall that the two-party
model has the following main differences from the three-
party model:

1. The client locally stores (and updates) the RSA digest
and does not receive a signed RSA digest from the
trusted source, as it happens in the three party model;

2. The client is not issuing only queries to the untrusted
server but is also issuing updates;

3. There is no third trusted party and no PKI is used.

The query and the verification for a certain element are done
exactly in the same way as in the three-party model, namely
both the query and verification take time O(1). Moreover,
the updates at the untrusted server can also be performed in
the same way, namely in O

(

nǫ/ logκǫ−1 n
)

amortized time.
Suppose now the client wants to do an update, e.g., insert
an element x in the existing set of elements S. The client
should somehow be able to locally compute the new RSA
digest χ(S∪x), because the client cannot get the new digest

from the untrusted server as the untrusted server can return
a false digest. We now describe how the client can update
the digest. Let x belong to some bucket L. The server picks
another element y ∈ S that belongs to the same bucket and
sends the proof for y. Subsequently, the server performs the
update for x and, together with the previous proof, it sends
the new prime representatives along the update path. This
extended proof (which not only contains the ordinary proof
for y, but also the new prime representatives along the path)
is called consistency proof, for it is used for updates.

The client now verifies y (by using the previous RSA di-
gest) and has all the information needed to compute the new
RSA digest that corresponds to the set S ∪ {x} (or S − {x}
in the case of a deletion). The most important step is to up-
date the bucket digest (where the update takes place) and
then propagate the update along the path, by executing O(1)
exponentiations and also checking that the new updated di-
gests are consistent with the new prime representatives sent
by the untrusted server (as part of the consistency proof).
The client is able to update the RSA digest in O(1) time,
since the client knows φ(Ni) and therefore can compute in-
verses (see details in Section 5). In the case of a query, the
proof provided by the server has similar structure as in the
update case and is simply called verification proof.

Note that when the server rebuilds the hash table, the
client has to receive all the elements and locally rebuild the
hash table. Therefore, the amortized space the client needs
is O(1) and the consistency proof has O(1) amortized size.
We can now state our main result for the two-party model:

Theorem 7. Let 0 < ǫ < 1 and κ > 1
ǫ

be fixed constants.
Under the strong RSA assumption, we can use the RSA tree
with precomputed witnesses to authenticate a dynamic hash
table of n elements in the two-party model by storing a data
structure of size O(n) such that: (1) Our scheme is secure
according to Definition 3; (2) The amortized expected update
time at the server is O

(

nǫ/ logκǫ−1 n
)

; (3) The amortized
expected update time at the client is O(1); (4) The query
time is O(1); (5) The size of the verification proof is O(1);
(6) The amortized size of the consistency proof is O(1); (7)
The verification time is O(1); (8) The client keeps amortized
space O(1).

4.3 Authenticating Non-Membership
So far our results have been presented for authenticated

membership queries. We describe now how non-membership
queries can also be supported. To do that, in each bucket L,
we maintain all elements yi ∈ L sorted—in case elements are
drawn from an unordered universe, we first apply a crypto-
graphic hash function to impose some order on the elements.
Let y1, y2, . . . , y|L| be the elements stored in a bucket L in
increasing order. Instead of computing prime representatives
of yi we compute prime representatives of the |L|+1 intervals
(yi, yi+1) for i = 0, . . . , |L|, where y0 and y|L|+1 denote −∞
and +∞, respectively. The proof of non-membership for an
element x ∈ (yi, yi+1) is equivalent to the proof of member-
ship for interval (yi, yi+1). As the bucket size is maintained
to be O(logκ n), Theorems 5 and 7 hold for non-membership
proofs as well. Finally, Theorem 6 holds as well, with the
only difference that the amortized expected update time at
the source and at the server is now O(logκ n), since at every
update the source will have to recompute the digest of the
O(logκ n)-sized bucket, for the sorted pairs must be updated.

5. EVALUATION AND ANALYSIS
In this section we provide an evaluation of our authen-

ticated hash table structure. First, we count the number
of primitive operations (mainly exponentiations) that every
complexity measure (update, query, proof size, size of up-
date authentication information) uses for general values of ǫ
and κ. Note that this is feasible since there is no significant
overhead of (hidden) constant factors in our scheme. The
only constant factors included in our complexities are well-
understood, namely, functions of ǫ and κ. We are going to
evaluate the three-party version of the hash table described
in Theorem 6, where everything is constant, apart from the
query time, which is O(nǫ/ logκǫ n). As we saw in Section 2,
we have to use multiple RSA moduli N1, N2, . . . , Nl.

However, since the size of each modulus is increasing with
1/ǫ, for the experiments, as observed in Section 2, we are go-
ing to restrict the input of each level of accumulation to be
the output of a cryptographic hash function, e.g., SHA-256
plus a constant number of extra bits that, when appended to
the output of the hash function, give a prime number. There-
fore, we do not use prime representatives, but use a 1024-bit
modulus N for all tree levels. Basically, instead of having
prime representatives ri to represent an element xi through
the two-universal function hi, where hi(ri) = xi, we use di-
rectly the prime value g(xi) + 2t (and not ri = h−1

i (xi)),
where t = O(1) is the minimum number of bits we need to
append to g(xi) such that g(xi) + 2t is prime and g(xi) is
the output of SHA-256 for example. This makes our scheme
more practical and still secure, since, as correctly observed
by Baric and Pfitzmann [2], the security of using the out-
put of a cryptographic hash function plus some extra bits as
the input of the RSA accumulator is based on random ora-
cles, which is sufficiently good for practical reasons. There-
fore, for each level, the input values to the accumulator are
(256+t)-bit values (output of SHA-256 plus the bits we need
to append to get the prime) and the same RSA modulus N
is used, which is 1024 bits. We defer the proof of security of
our scheme in the random oracle model to the full version
of the paper.

In our scheme we set t = 14. By the prime distribution
theorem, which states that the number of primes less than
x is approximately x

ln x
, we have that the number of primes

between x and y (x ≤ y) is ≃ y
ln y
− x

ln x
. Since 2b is a very

large number, we can approximate the number of primes in

the interval [2b+t, 2b+t +2t] with 2t

ln(2b+t)
, where b is the bit-

length of the output of the cryptographic hash function and
t is the number of extra bits we add. We can now prove that
we hit a prime with probability p, if we sample (there are
around 87 primes for b = 256 and t = 14)

ln(1− p)

ln
(

1− 2
(b+t) ln(2)

)

times in the interval [2b+t, 2b+t + 2t] (we only sample from
the odd numbers in [2b+t, 2b+t + 2t]). For our scheme, for
p = 0.99, if we use SHA-256, i.e., b = 256, and add an extra
t = 14 bits, we need to sample around 428 times. That
means that we can efficiently extend our SHA-256 digest to
a 270-bit prime exponent by using an extra 14 bits. Finally,
we note that if we use the algorithm presented in [2], which
for i = 0, . . . , t checks to see if 2t+b + 2i is a prime, we need
only O(t) time. However, this method does not guarantee
finding a prime.

Primitive Operations. The main (primitive) operations
used in our scheme are:

1. Exponentiation modulo N ;

2. Computation of inverses modulo φ(N);

3. Multiplication modulo φ(N);

4. SHA-256 computation of 1024-bit integers.

We benchmarked the time needed for these operations on
a 64-bit, 2.8GHz Intel based, dual-core, dual processor ma-
chine with 2GB main memory and 2MB cache, running De-
bian Linux. For modular exponentiation, inverse computa-
tion and multiplication we used NTL [31], a standard opti-
mized library for number theory, interfaced with C++. For
200 runs the average time for computing the power of a 1024-
bit number to a 270-bit exponent and then reducing modulo
N was found to be t1 = 1.5ms, and the average time for
computing the inverse of a 270-bit number modulo φ(N)
was t2 = 0.00009ms. Also multiplication of 270-bit num-
bers modulo φ(N) was found to be t3 = 0.00016ms. Finally,
for SHA-256, we used the standard C implementation from
gcrypt.h and, over 200 runs, the time to compute the 256-bit
digest of a 1024-bit number was found to be t4 = 0.01ms.
As expected, exponentiation dominates most of the time.

Updates. Let f be a function that takes as input a 1024-
bit integer x, computes its SHA-256-bit digest and extends
it to a 270-bit prime, by adding the appropriate 14 bits. We
are going to assume that the time for applying f(·) to x is
dominated by the SHA-256 computation and is equal to t4 =
0.01ms. As we saw in Theorem 6 the updates are performed
by the source as follows. Suppose the source wants to delete
element x in bucket L. Let d1, d2, . . . , dl be the RSA digests
along the path from x to the root (d1 is the RSA digest of
the certain bucket and dl is the root RSA digest). The source

first computes d′
1 = d

f(x)−1

1 mod N which is the new value
of the bucket. Note that this is feasible to compute, since
the source knows φ(N). Therefore so far, the source has
performed one f(·) computation (actually the source has to
do this f(·) computation only during insertions, since during
deletions the value f(x) of the element x that is deleted
has already been computed), one inverse computation and
one exponentiation. Next, for each i = 2, . . . , l, the source
computes d′

i by setting

d′
i = d

f(di−1)−1f(d′
i−1)

i mod N.

Since f(di−1) is precomputed, the source has to do one f(·)
computation, one inverse computation, one multiplication
and one exponentiation. Therefore, the total update time is

tupdate = t1 + t2 + t4 + ǫ−1(t1 + t2 + t3 + t4), (6)

which is not dependent on n.

Verification. The verification is performed by doing ǫ−1+1
exponentiations and f(·) computations. Namely, by using
f(·) instead of prime representatives, Equation 4 becomes
αi = f(β

αi−1

i−1 mod N) (this is actually performed by cut-
ting the last 14 bits of ai and comparing the result with the
SHA-256 digest of β

αi−1

i−1 mod N). Therefore,

tverify = (ǫ−1 + 1)(t1 + t4), (7)

which is also not dependent on n.

Table 2: Actual values of the complexity measures of
our scheme (computed with the derived equations)
for various values of ǫ = 0.1, 0.125, 0.3, 0.5, κ = 1 and
n = 100, 000, 000. Note that n (number of items in the
hash table) influences only query time.

proof update query update verify
ǫ size info. time time time

(KB) (KB) (ms) (ms) (ms)
0.1 1.77 1.90 107.95 16.61 16.60
0.125 1.45 1.58 119.38 13.59 13.58
0.3 0.70 0.82 507.99 6.54 6.53
0.5 0.48 0.61 5831.70 4.53 4.52

0 2 4 6 8 10

x 10
7

0

100

200

300

400

500

600

700

800

900

number of elements in the data structure

ti
m

e
 (

m
s
)

query time for various values of ε and κ

ε = 0.1, κ = 1

ε = 0.1, κ = opt

ε = 0.3, κ = 1

ε = 0.3, κ = opt

ε = 0.35, κ = 1

ε = 0.35, κ = opt

Figure 2: This figure shows how query time scales
as the number of the elements in the hash table in-
creases, for different values of ǫ = 0.35, 0.3, 0.1 and
κ = 1 or κ = opt, an optimal value for given ǫ. Note
that for ǫ = 0.1 querying is very efficient, as we have
fewer exponentiations per level.

Queries. For the queries we have to do logκ n exponenti-
ations at the first level and nǫ/ logκǫ n exponentiations for
the remaining ǫ−1 levels. Therefore,

tquery = (ǫ−1nǫ/ logκǫ n + logκ n)t1. (8)

Note that we do not have to do f(·) computations since all
the f(·) values are precomputed. Also we cannot use cheap
multiplications (and one exponentiation per level), since the
security collapses if we reveal φ(N) to the server.

Communication Complexity. The proof and the update
authentication information are ǫ−1+1 pairs of 1024-bit num-
bers and 270-bit f(·) values. Thus,

sproof = (ǫ−1 + 1)(1024 + 270). (9)

The update authentication information includes also a sig-
nature on the final (root) RSA digest, i.e., 1024 bits more.

In order to perform an actual evaluation of our scheme, we
set ǫ = 0.1, 0.125, 0.3, 0.5 (the RSA tree has 10, 8, 3, 2 levels
respectively) and κ = 1 (each bucket has log n elements).
Table 2 shows the evaluation of all the above measures for

a hash table that contains 100,000,000 elements, where we
vary the value of ǫ, namely the number of levels of the RSA
tree. We can now make the following observations: First, as ǫ
increases, the verification time and the update time decrease
since they are proportional to ǫ−1. However, query time in-
creases since the internal nodes of the tree become larger
and more exponentiations have to be performed. Finally, in
terms of communication cost, our system is very efficient
since only at most 1.90KB have to be communicated.

In Figure 2, we can see how query time scales with increas-
ing number of elements in the hash table. Here we observe
that for ǫ = 0.1, the query time scales very efficiently and
specifically, for n = 100, 000, 000 elements stored in the hash
table, the time to produce a proof for an element is about
100ms. Note that in Figure 2 we use the value κ = 1 or the
optimal value κ = opt (see the last paragraph about how
opt is obtained). The query time for κ = opt is about 70 ms.

0 2 4 6 8 10

x 10
7

0

50

100

150

200

250

number of elements in the data structure

ti
m

e
 (

m
s
)

query time compared with that of [GTH] for various values of ε and κ

our scheme (ε = 0.1, κ = 1)

our scheme (ε = 0.1, κ = opt)

[GTH] (ε = 0.1)

our scheme (ε = 0.2, κ = 1)

our scheme (ε = 0.2, κ = opt)

[GTH] (ε = 0.2)

Figure 3: Comparison of query time with [GTH] for
ǫ = 0.1, 0.2.

We next compare our scheme with the scheme of [14], de-
noted [GTH], which uses the RSA accumulator and proves
security using the strong RSA assumption. As shown in Ta-
ble 1, their query time, update authentication information
and update time is O(nǫ) for some constant 0 < ǫ < 1.
However the constant hidden in the O(·) notation is 1−ǫ

ǫ
.

Therefore, their actual query time is 1−ǫ
ǫ

nǫt1. In Figure 3,
we plot our scheme’s query time and the query time from
[GTH] for ǫ = 0.1, 0.2 and κ = 1 or κ = opt. We see that
our system scales better for ǫ = 0.2. For ǫ = 0.1 our system
scales almost the same for κ = opt and scales better for κ = 1
only when n ≥ 1016, which justifies the better asymptotic
notation. However, the update time and update authentica-
tion information of our scheme are maintained constant and
do not depend on n, justifying the scalability of our system.

Tuning Constants ǫ and κ. We conclude this analysis sec-
tion by providing a way to optimally tune the parameters
ǫ and κ so that we can achieve the minimum query time
in practice. Suppose our hash table stores at some point n
elements. We want to choose the values of ǫ and κ such that
the query time is minimum. If we take the partial deriva-
tives of tquery = (ǫ−1nǫ/ logκǫ n + logκ n)t1 (we fix n, and

our free variables are ǫ and κ), after some algebra, we see
that the minimum query time is achieved for ǫ = 1

ln n−1
and

κ = 1
ln log n

. If we now keep κ fixed, the minimum query time

is achieved for ǫ = 1
ln n−ln logκ n

, whereas if we keep ǫ fixed,

the minimum query time is achieved for κ = ǫ ln n
(1+ǫ) ln log n

. Re-

call that the hash table is rebuilt when its size is doubled.
Thus, we can use the above formulas to optimally tune ǫ and
κ when rebuilding the hash table, thus optimizing query au-
thentication. Finally, since for security reasons ǫ should not
be a function of n, it is preferable to fix ǫ and tune κ accord-
ingly (we have used this in Figures 2 and 3 for κ = opt). This
is actually equivalent to optimally balancing the work within
the buckets and the work of an internal node of the RSA tree,
and gives a partition of our elements in O(n1/(1+ǫ)) buckets,

each bucket having O(nǫ/(1+ǫ)) elements. In this way, we
can prove using the same techniques that the amortized ex-
pected update time in Theorem 5 is O(nǫ/(1+ǫ) log n), while

the expected query time in Theorem 6 is O(nǫ/(1+ǫ)). All
other complexity measures are still O(1).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new, provably secure, crypto-

graphic construction for authenticating the hash table func-
tionality. We use nested RSA accumulators on a tree of con-
stant depth in order to provide with authenticated hash ta-
ble queries with constant query and verification costs and
sublinear update costs. Our results are applicable to both
the two-party and three-party data authentication models.
We use our method to authenticate general set-membership
queries and overall improve previous works that use crypto-
graphic accumulators, reducing main complexity measures
(such as query costs—time to produce the proof) to con-
stant, yet, still improving the update time, which for any
fixed constants 0 < ǫ < 1 and κ > 1/ǫ is shown to be
O

(

nǫ/ logκǫ−1 n
)

. An alternative scheme we propose keeps
update cost constant while having O (nǫ/ logκǫ n) query cost.

An open problem of great importance is reducing these
bounds to log n and still keeping all the other complexity
measures constant. Even better, one could ask if there is
a solution for authenticating hash tables and still keeping
all the complexities constant. This also implies a direction
towards studying lower bounds for set-membership authen-
tication (as, e.g., in [10, 33]): given a cryptographic primitive
or authentication model, what is the best we can do in terms
of complexity (and still being provable secure)? This work
suggests that there is a trade-off between security and com-
plexity which might be a starting point in studying lower
bounds. Finally, it would be interesting to look into how we
can provide with non-amortized results for Theorem 7.

Acknowledgments

This research was supported by the U.S. National Science
Foundation under grants IIS–0713403 and OCI–0724806, by
the Center for Geometric Computing and the Kanellakis
Fellowship at Brown University and by the Center for Al-
gorithmic Game Theory at the University of Aarhus under
an award from the Carlsberg Foundation. The views in this
paper do not necessarily reflect the views of the sponsors.
We thank Michael Goodrich, Anna Lysyanskaya, John Sav-
age and Ioannis Vergados for many useful discussions, and
Chris Erway for providing pointers to the NTL library.

7. REFERENCES
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In Proc. ACM Conf. on
Computer and Communications Security (CCS), pp.
598-609, 2007.

[2] N. Baric and B. Pfitzmann. Collision-free
accumulators and fail-stop signature schemes without
trees. In Proc. EUROCRYPT, pp. 480-494, 1997.

[3] J. Benaloh and M. de Mare. One-way accumulators: A
decentralized alternative to digital signatures. In Proc.
EUROCRYPT, pp. 274-285, 1993.

[4] M. Blum, W. Evans, P. Gemmell, S. Kannan, and
M. Naor. Checking the correctness of memories. In
Proc.IEEE Symp. on Foundations of Computer
Science (FOCS), pp. 90-99, 1991.

[5] A. Buldas, P. Laud, and H. Lipmaa. Accountable
certificate management using undeniable attestations.
In Proc. ACM Conf. on Computer and
Communications Security (CCS), pp. 9-18, 2000.

[6] J. Camenisch and A. Lysyanskaya. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. In Proc. CRYPTO, pp. 61-76,
2002.

[7] I. L. Carter and M. N. Wegman. Universal classes of
hash functions. In Proc. ACM Symp. on Theory of
Computing (STOC), pp. 106-112, 1977.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press,
Cambridge, MA, 2nd edition, 2001.

[9] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer
auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic
perfect hashing: upper and lower bounds. SIAM J.
Comput., 23:738-761, 1994.

[10] C. Dwork, M. Naor, G. N. Rothblum, and
V. Vaikuntanathan. How efficient can memory
checking be? Manuscript, 2008.

[11] R. Gennaro, S. Halevi, and T. Rabin. Secure
hash-and-sign signatures without the random oracle.
In Proc. EUROCRYPT, pp. 123-139, 1999.

[12] M. T. Goodrich, C. Papamanthou, and R. Tamassia.
On the cost of persistence and authentication in skip
lists. In Proc. Workshop on Experimental Algorithms
(WEA), pp. 94-107, 2007.

[13] M. T. Goodrich, C. Papamanthou, R. Tamassia, and
N. Triandopoulos. Athos: Efficient authentication of
outsourced file systems. In Proc. Information Security
Conf. (ISC), pp. 80-96, 2008.

[14] M. T. Goodrich, R. Tamassia, and J. Hasic. An
efficient dynamic and distributed cryptographic
accumulator. In Proc. Information Security Conf.
(ISC), pp. 372-388, 2002.

[15] M. T. Goodrich, R. Tamassia, and A. Schwerin.
Implementation of an authenticated dictionary with
skip lists and commutative hashing. In Proc. DARPA
Information Survivability Conference and Exposition
II (DISCEX II), pp 68-82, 2001.

[16] M. T. Goodrich, R. Tamassia, and N. Triandopoulos.
Super-efficient verification of dynamic outsourced
databases. In Proc. CT-RSA, pp. 407-424, 2008.

[17] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and
R. Cohen. Authenticated data structures for graph

and geometric searching. In Proc. CT-RSA, pp.
295-313, 2003.

[18] A. Hutflesz, H.-W. Six, and P. Widmayer. Globally
order preserving multidimensional linear hashing. In
Proc. IEEE Int. Conf. on Data Engineering (ICDE),
pp. 572-579, 1988.

[19] C. M. Kenyon and J. S. Vitter. Maximum queue size
and hashing with lazy deletion. Algorithmica,
6:597–619, 1991.

[20] J. Li, N. Li, and R. Xue. Universal accumulators with
efficient nonmembership proofs. In Proc. Applied
Cryptography and Network Security (ACNS), pp.
253-269, 2007.

[21] N. Linial and O. Sasson. Non-expansive hashing. In
Proc. ACM Symp. on Theory of Computing (STOC),
pp. 509-517, 1996.

[22] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz,
A. Kwong, and S. G. Stubblebine. A general model for
authenticated data structures. Algorithmica,
39(1):21–41, 2004.

[23] R. C. Merkle. A certified digital signature. In Proc.
CRYPTO, pp. 218–238, 1989.

[24] J. K. Mullin. Spiral storage: Efficient dynamic hashing
with constant-performance. Computer J., 28:330–334,
1985.

[25] M. Naor and K. Nissim. Certificate revocation and
certificate update. In Proc. USENIX Security
Symposium, pp. 217-228, 1998.

[26] L. Nguyen. Accumulators from bilinear pairings and
applications. In Proc. CT-RSA, pp. 275-292, 2005.

[27] G. Nuckolls. Verified query results from hybrid
authentication trees. In Proc. Data and Applications
Security (DBSec), pages 84–98, 2005.

[28] C. Papamanthou and R. Tamassia. Time and space
efficient algorithms for two-party authenticated data
structures. In Proc. Int. Conf. on Information and
Communications Security (ICICS), pp. 1-15, 2007.

[29] T. Sander. Efficient accumulators without trapdoor
(Extended abstract). In Proc. Int. Conf. on
Information and Communications Security (ICICS),
pp. 252-262, 1999.

[30] T. Sander, A. Ta-Shma, and M. Yung. Blind,
auditable membership proofs. In Proc. Financial
Cryptography (FC), pp. 53-71, 2000.

[31] V. Shoup. NTL: A library for doing number theory.
http://www.shoup.net/ntl/.

[32] R. Tamassia. Authenticated data structures. In Proc.
European Symp. on Algorithms (ESA), pp. 2-5, 2003.

[33] R. Tamassia and N. Triandopoulos. Computational
bounds on hierarchical data processing with
applications to information security. In Proc. Int.
Colloquium on Automata, Languages and
Programming (ICALP), pp. 153-165, 2005.

[34] R. Tamassia and N. Triandopoulos. Efficient content
authentication in peer-to-peer networks. In Proc.
Applied Cryptography and Network Security (ACNS),
pp. 354-372, 2007.

[35] P. Wang, H. Wang, and J. Pieprzyk. A new dynamic
accumulator for batch updates. In Proc. Int. Conf. on
Information and Communications Security (ICICS),
pp. 98-112, 2007.

