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Location-aware publish/subscribe is an important location-based service based on server-initiatedmodel. O�en times, the owner of
massive spatio-textual messages and subscriptions outsources its location-aware publish/subscribe services to a third-party service
provider, for example, cloud service provider, who is responsible for delivering messages to their relevant subscribers. �e issue
arising here is that the messages delivered by the service provider might be tailored for pro�t purposes, intentionally or not.
�erefore, it is essential to develop mechanisms which allow subscribers to verify the correctness of the messages delivered by the
service provider. In this paper, we study the problem of authenticating messages in outsourced location-aware publish/subscribe
services. We propose an authenticated framework which not only can deliver the messages e	ciently but also can make the
subscribers’ authentication available with low cost. Extensive experiments on a real-world dataset demonstrate the e
ectiveness
and e	ciency of our proposed authenticated framework.

1. Introduction

With the rapid development of mobile Internet and
positioning-enabled devices (e.g., smart phones), massive
amount of data that contain both text information and
geographical location information are being generated
at an unprecedented scale on the Web. �is enables
location-based services (LBS), such as Foursquare
(https://foursquare.com) and Yelp (https://www.yelp.com),
to be extensively deployed in many systems and widely
accepted by Internet users. Location-aware publish/subscribe
is an important kind of service based on server-initiated
model (relative to user-initiated model, like spatial-keyword
query) in LBS. For example, in a Groupon system,
subscribers register their spatio-textual subscriptions to
capture their interests (e.g., “Adidas shoe discount at Beijing,
China”) (for the rest of this paper, we use “subscriber” and
“subscription” interchangeably if the context is clear). For
each Groupon message with textual description and location
(e.g., “Adidas running shoes at cheap prices at Adidas factory
store, Beijing, China”), the system delivers the message to
relevant subscribers.

Since location-aware publish/subscribe is a compute-
intensive task, if the data owner of massive spatio-textual
messages and subscriptions wants to e	ciently deliver each
message to relevant subscribers, to strengthen its ability of
computing, it needs to build up basic IT infrastructure and
hire specialized personnel. However, as such cost might be
una
ordable for small-to-medium businesses, outsourcing
the data and computations to a third-party service provider
(e.g., a cloud service provider) has been an appealing option.
Yet, this outsourcing model presents a great challenge that
the messages delivered by the service provider might be
incomplete or incorrect.�ere are a variety of reasons for this.
First, the service provider might deliver tailored messages
to favor its sponsors. Second, the service provider might
use some inferior algorithms and deliver the suboptimal
messages to the subscribers to save computing resources.
�ird, with the growing popularity of the cloud, more and
more security breaches and attacks on such systems have
been reported. In case an attacker takes control of the service
provider’s server, it may forge the messages for its own
interest.
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Figure 1: System model.

�e aforementioned reasons necessitate the development
of mechanisms that allow subscribers to authenticate the
messages delivered by the service provider. �ey should be
veri�ed in terms of two conditions: (1) soundness and (2)
completeness. �e former means that the messages are not
tampered with, while the latter implies that no valid message
is missing.

In this paper, to make one step further towards prac-
tical deployment of location-aware publish/subscribe in
untrusted outsourcing environments, we study the problem
of authenticating messages in outsourced location-aware
publish/subscribe services. To address this problem, we
present an authenticated location-aware publish/subscribe
framework. We assume that messages are allowed a max-
imum delay Δ� to be delivered to their corresponding
subscribers. �e data owner organizes the messages withinΔ�� (Δ�� ≤ Δ�) in an authenticated data structure (ADS)
calledTMR-tree. Based on theTMR-tree, the service provider
�rst computes the relevant messages for each subscription.
During this process, we present an inverted index pruning
technique to reduce the times of inverted index (used to index
the subscriptions) traversal, thus improving the e	ciency
of computing the relevant messages for each subscription.
�en, the service provider constructs a veri�cation object
(VO) for each subscription and the corresponding subscriber
can authenticate the messages delivered to it. A thorough
experimental study on a real-world dataset is conducted over
a wide range of workload settings to evaluate the e
ectiveness
and e	ciency of our proposed framework in terms of various
performance metrics.

Roadmap. �e rest of this paper is organized as follows. Sec-
tion 2 introduces some preliminaries, which include system
model, problem de�nition, and background knowledge. Sec-
tion 3 presents our proposed authenticated location-aware
publish/subscribe framework. In Section 4, we experimen-
tally evaluate the performance of our proposed framework.
Related work on the location-aware publish/subscribe and

authenticated query processing is surveyed in Section 5. In
the end, we conclude the paper in Section 6.

2. Preliminaries

In this section, we �rst describe our system model. �en, we
de�ne the problem studied in this paper. At last, we introduce
some background knowledge on cryptographic primitives
and location-aware publish/subscribe which underlie our
proposed framework.

2.1. System Model. As shown in Figure 1, our system involves
four entities: the data owner, the service provider, the sub-
scribers, and the key distribution center (KDC).

First, the data owner builds an authenticated data struc-
ture (ADS) over the messages within Δ�� (Δ�� ≤ Δ�; recall
that Δ� is a prede�ned maximum permissible delivery delay)
and signs the ADS using the private key distributed by
the KDC. �en, the data owner outsources the location-
aware publish/subscribe services to the service provider, who
provides the storage resources for the messages, the ADS,
the signature of the ADS, and algorithms. Based on the
ADS, the service provider �nds the messages which are
relevant to the registered subscriptions and constructs a
veri�cation object (VO) for each subscription. A�er that,
the service provider delivers the messages and the VO to
corresponding subscribers. �e subscribers authenticate the
soundness and completeness of these messages using the VO

and the public key distributed by theKDC.

�roughout this paper, we assume that (1) theKDC and
the data owner are trusted but the service provider is the
potential adversary and might fabricate the messages (inten-
tionally or not); (2) the KDC or the data owner does not
collude with the service provider; (3) the computation and
storage capacities of the service provider are polynomially
bounded.
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2.2. Problem De�nition. In this paper, we study the problem
of authenticating messages in outsourced location-aware
publish/subscribe services. �at is, the subscribers register
their interests as subscriptions in the system �rst. �en,
the service provider not only needs to e	ciently deliver
the messages within Δ�� to the relevant subscribers whose
subscriptions have high relevancy to the messages, but also
needs to construct aVO for each subscriber to allow them to
authenticate the soundness and completeness of the delivered
messages.�eVO should be constructed as small as possible
for minimizing the communication cost between the service
provider and subscribers. Meanwhile, the VO should be
suitable for subscribers’ authentication for minimizing the
computational cost at the subscribers side.

2.3. Background Knowledge

2.3.1. Cryptographic Primitives. We present the essential
cryptographic primitives on one-way hash function, crypto-
graphic signature, and Merkle hash tree as follows.

One-Way Hash Function. A one-way hash function ℎ(⋅)maps
a message � of arbitrary length to a �xed-length output
H(�). It works in one direction. It is easy to computeH(�)
for a message �. However, it is computationally infeasible to
�nd a message that maps to a givenH(⋅).
Cryptographic Signature. A cryptographic signature (or sim-
ply signature) is a mathematical scheme for demonstrating
the authenticity of a digital message. A signer applies for
a pair of private key and public key from the KDC. �e
former is kept by the signer secretly and the latter is publicly
distributed. A digital message can be signed using the private
key.�e authenticity of themessage can be veri�ed by anyone
who receives this message using the public key.

Merkle Hash Tree. �e Merkle hash tree (MHT) [1] is an
authenticated data structure used for collectively authenticat-
ing a set of messages. �eMHT is a binary tree and built in
a bottom-up manner, by �rst computing the hash values of
the messages in leaf nodes. �e hash value of each internal
node is derived from its two children nodes. Finally, the hash
value of the root is signed by the owner of the messages. �e
MHT can be used to authenticate any subset of messages, in
conjunctionwith a proof.�e proof consists of the signed root
and sibling nodes (auxiliary hash values) on the path from the
root down to the messages which need to be authenticated.

2.3.2. Location-Aware Publish/Subscribe. We present the
state-of-the-art method [2] for location-aware publish/sub-
scribe as follows.

A location-aware publish/subscribe service delivers each
message, denoted by � = (�.�	
, �.����), to its relevant
subscribers who register spatio-textual subscriptions (each
subscription is denoted by 
 = (
.�	
, 
.����)) to capture
their interests. �.�	
 (
.�	
) is a spatial location with the
latitude and longitude. �.���� (
.����) is a set of keywords{�1, �2, . . . , �|�.����|} ({�1, �2, . . . , �|�.����|}) and each keyword is
associatedwith a weight�(��)which can be set as the inverted

document frequency (IDF) of the keyword. To quantify the
relevancy between a subscription and a message, [2] used a
spatio-textual similarity function

SIM (
, �) = � ⋅ TSIM (
, �) + (1 − �) ⋅ SSIM (
, �) , (1)

where

TSIM (
, �) = ∑�∈�.����∩�.���� � (�)
∑�∈�.���� � (�) (2)

is a textual similarity function which is similar to the
weighted Jaccard coe	cient and

SSIM (
, �) = max(0, 1 − DIST (
.�	
, �.�	
)
maxDIST

) (3)

is a spatial similarity function, whereDIST(
.�	
, �.�	
) is the
Euclidian distance between 
.�	
 and �.�	
, and maxDIST
is the maximum user-tolerated Euclidian distance between
subscriptions and messages (which can be set as the max-
imum distance between subscriptions). � is a preference
parameter to tune the weight of textual and spatial similarity.
A subscription 
 and a message � are called relevant if their
similarity exceeds a threshold �. Since subscribers usually
have di
erent preferences and requirements on � and �
(e.g., some subscribers prefer highly relevant results while
some subscribers want to get more results), subscribers are
allowed to parameterize their parameters � and �. �erefore,
a parameterized spatio-textual subscription can be rede�ned
as 
 = (
.�	
, 
.����, 
.�, 
.�). Figure 2 shows an example of 11
parameterized spatio-textual subscriptions and 7 messages.

To deliver messages to relevant subscribers e	ciently,
[2] proposed a spatial-oriented pre�x to prune irrelevant
subscriptions and devised a �lter-veri�cation framework. In
particular, with respect to the textual �lter, [2] claimed that
if a subscription 
 is relevant to a message �, they must
share at least one common keyword in the so-called pre�x
of 
, which is computed from the textual similarity threshold.
More speci�cally, based on (1), given a subscription 
, since
the spatial similarity cannot exceed 1, [2] deduced a textual
similarity threshold


.�T = 
.� − (1 − 
.�)
.� . (4)

When 
.�T > 0, based on 
.�T, [2] selected a pre�x for
each subscription 
.�e keywords in 
.���� are sorted by their
weights in descending order and a minimum � such that

∑|�.����|�=� � (��)� (
.����) < 
.�T (5)

is computed, where �(
.����) is the total weight of key-
words in 
.����. �erefore, the pre�x of 
 can be de�ned
as SIG(
) = {�1, �2, . . . , ��−1}. Since the total weight of

keywords a�er �� is smaller than 
.�T, if a subscription 
 is
relevant to a message � (i.e., TSIM(
, �) ≥ 
.�T), they must
share at least one common keyword in SIG(
).



4 Security and Communication Networks

Y
-a

xi
s

X-axis

0.2

0.4

0.6

0.8

1

0.4 0.6 0.80.2 1

ID

Weight

Discount NIKE T-shirt Shoes

t5 t4 t3 t2 t1

0.5 0.4 0.3 0.2 0.1

Keywords

Keywords

Adidas

subscriptions (s.loc, s.text, s., s.)

s0: ((0.70, 0.96), {t4, t2}, 0.7, 0.8)
s1: ((0.67, 0.72), {t4, t3, t2}, 0.5, 0.8)
s2: ((0.88, 0.83), {t4, t3, t1}, 0.5, 0.7)
s3: ((0.57, 0.89), {t5, t4, t1}, 0.6, 0.75)
s4: ((0.25, 0.14), {t5, t2, t1}, 0.5, 0.6)
s5: ((0.15, 0.32), {t3, t2, t1}, 0.5, 0.6)
s6: ((0.10, 0.65), {t3, t2, t1}, 0.2, 0.7)
s7: ((0.85, 0.04), {t5, t4, t1}, 0.6, 0.7)
s8: ((0.76, 0.12), {t5, t4, t2}, 0.7, 0.7)
s9: ((0.88, 0.24), {t4, t2, t1}, 0.5, 0.8)
s10 : ((0.17, 0.77), {t5, t3}, 0.5, 0.8)

messages (m.loc, m.text)

m1: ((0.07, 0.51), {t4, t2})
m2: ((0.19, 0.38), {t4, t3, t1})
m3: ((0.42, 0.40), {t3, t2})
m4: ((0.49, 0.68), {t5, t4, t3})
m5: ((0.38, 0.80), {t5, t4, t2, t1})
m6: ((0.11, 0.79), {t2})
m7: ((0.20, 0.70), {t4, t1})

m7 m4

m5m6

m1

m2

m3

s0

s2

s1

s9

s8

s7

s3

s10

s6

s5

s4

Figure 2: A running example.

When 
.�T ≤ 0, a message � may be relevant to 
 no
matter whether they share common keywords. To address
this issue, for a subscription 
, if 
.� ≤ 1−
.�, [2] introduced a
virtual dummy keyword “∗” with weight of 0 (i.e.,�(∗) = 0),
and the pre�x of 
 includes its keywords and “∗”.

Regarding the spatial �lter, based on the �rst match
keyword (denoted by ��) betweenSIG(
) and� (i.e.,� does
not contain keywords before �� inSIG(
)), [2] estimated an
upper textual similarity bound of� to 
 as follows:

UTB (
 | ��) = ∑|�.����|�=� �(��)� (
.����) ≥ TSIM (
, �) . (6)

Accordingly, [2] estimated a lower spatial similarity bound
between 
 and� as follows:

LSB (
 | ��) = 
.� − 
.� ⋅ UTB (
 | ��)1 − 
.� ≤ SSIM (
, �) . (7)

For anymessage, if its spatial similarity to 
 is smaller than the
lower spatial similarity bound LSB(
 | ��), the subscription 

can be safely pruned.

Since given a subscription 
 and a message �, we do not
know which keyword is their �rst match keyword (if they
have), and the �rst match keywords for di
erent messages
to the subscription are di
erent, for each keyword � in
SIG(
), and [2] computed the lower spatial similarity bound
LSB(
 | �). �is pre�x of each subscription 
 with lower
spatial similarity bound is called spatial-oriented pre�x. If
subscription 
 is relevant to message �, there must exist a
keyword � inSIG(
)∩� such that SSIM(
, �) ≥ LSB(
 | �).

Based on the spatial-oriented pre�x, [2] devised a �lter-
veri�cation framework. In particular, an inverted index is
built on the spatial-oriented pre�xes �rst. �en, in the �lter
phase, for each message keyword �, the framework retrieves
the inverted listL(�) of � and for each subscription 
 inL(�),

if SSIM(
, �) ≥ LSB(
 | �), 
 is put into the candidate set.
In the veri�cation phase, based on (1), the framework veri�es
whether each candidate 
 is an answer, and if yes, the message� is delivered to 
.
3. Authenticated Location-Aware

Publish/Subscribe Framework

In this section, we present our proposed authenticated
location-aware publish/subscribe framework. In the pub-
lish/subscribe scenario, the messages delivered to the sub-
scribers need to be veri�ed as correct or not (i.e., soundness
and completeness). However, compared with the subscrip-
tions data, the messages data set is in�nite, which can be
regarded as the stream data. In such a situation, we (actually
the data owner in the practical framework) cannot construct
an authenticated data structure (ADS) over the in�nite
messages data and, based on such a structure, construct the
VO for subscribers’ authentication.�erefore, intuitively, we
need to sign every comingmessage andwhen the signedmes-
sage is delivered to its corresponding subscribers, they can
authenticate this message. However, when many messages
need to be delivered to only one subscriber (the subscriber
registers many interests in the framework), since every
message has a signature, the communication cost between the
service provider and this subscriber is high. Moreover, since
the decryption of the signature is not a cheap operation, the
authentication cost at the subscriber is also high. To tackle
this problem, we present an authenticated location-aware
publish/subscribe framework, which not only can deliver the
messages more e	ciently than the framework in the existing
work [2], but also can make the subscribers’ authentication
available with low communication and authentication cost.

�e main idea of our framework is to assume that the
messages are allowed a maximum delay Δ� to be delivered
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Figure 3: Illustration of TMR-tree (partial).

to their corresponding subscribers. Under this circumstance,
a batch of messages, rather than only one message, can be
computed at a time. We organize these messages in a Merkle
hash tree (MHT) like structure (i.e., theADS).Whenmore
than one message is delivered to a subscriber, only one sig-
nature is returned, thereby reducing the communication and
authentication cost. Moreover, recall that, in [2], an inverted
index of spatial-oriented pre�xes of all the subscriptions is
constructed and when a message comes, the framework
retrieves the inverted index to compute which subscription is
relevant to this message. �e message needs to be computed
with every subscription inL(�) of every message keyword �.
To reduce the computational cost and improve the e	ciency
of messages delivery, we present an inverted index pruning
technique. By using the constraint of the spatial proximity
between these messages (the messages are also organized in
an R-tree like structure), we can prune some subscriptions
which cannot become the delivery destinations from the
inverted index and thus they need not be involved in the
further computation.

3.1. Text-AwareMerkle R-Tree (TMR-Tree). We�rst introduce
the method of constructing the ADS, called Text-aware
Merkle R-tree (TMR-tree), at the data owner side. Consider a
prede�nedmaximum permissible delivery delay Δ�. �e data
owner builds one TMR-tree on all the messages within every
time interval Δ�� (Δ�� ≤ Δ�). Speci�cally, the TMR-tree has
four main features:

(i) �e messages in Δ�� are spatially organized in an R-
tree.

(ii) Each node has a pseudo-text which includes the
union of the keywords in its children’s texts. A node� with children V and � has pseudo-text �.���� =
V.���� ∪ �.����.

(iii) Similar to the MHT, the TMR-tree stores one hash
value in each node. Assume the default fanout of the
TMR-tree is 2. A leaf node �with children (messages)
V and � stores hash value H(�) = ℎ(V | �). An
internal node � with children V and � stores hash
value H(�) = ℎ(V | H(V) | � | H(�)), where

H(V) andH(�) are the hash values of V and �. More
speci�cally, the spatial and textual information of V
(�) are both involved in the computation, that is,
H(�) = ℎ(V.�	
 | V.���� | �.�	
 | �.����) if � is a leaf
node in the TMR-tree and H(�) = ℎ(V.�	
 | V.���� |
H(V) | �.�	
 | �.���� | H(�)) if � is an internal node
in the TMR-tree.

(iv) �e hash value of the root of the TMR-tree is signed
by the data owner, producing signature S.

Example 1. Figure 3 shows an example of the TMR-tree
constructed over the messages in Figure 2. Here the fanout
of the TMR-tree is set as 2. �e leaf node �5 has a pseudo-
text {�5, �4, �3, �2, �1} which is the union of its children’s texts,
that is, {�5, �4, �3} ∪ {�5, �4, �2, �1} (�4.���� ∪ �5.����). Since
no matter the leaf or internal node is represented by a
rectangle area (the Minimum Bounding Rectangle (MBR)
of messages or other MBR
 in it), its location is de�ned
by two points which can be the bottom-le� and upper-right
points. For example, �6 is the MBR of �6 and �7 and its
location includes the rectangle’s bottom-le� and upper-right
points ((0.11, 0.70) and (0.20, 0.79)). �e leaf node �5 stores
a hash value H(�5) which summarizes the authentication
information about �5 and it is computed through the spatial
and textual information of its children (messages); that is,
H(�5) = ℎ(�4.�	
 | �4.���� | �5.�	
 | �5.����). Similarly,
the hash value stored in internal node�2 is computed through
the spatial and textual information of its children and their
hash values; that is, H(�2) = ℎ(�5.�	
 | �5.���� | H(�5) |�6.�	
 | �6.���� | H(�6)).
3.2. Filter-Veri�cation Framework with Inverted Index Prun-
ing. We use the idea of �lter-veri�cation framework pro-
posed in [2] and, based on this, present an inverted index
pruning technique to reduce the computational cost, thereby
improving the e	ciency of messages delivery.

Since a location and a pseudo-text are associated with
a node in the TMR-tree, each node in the TMR-tree can
be treated as a dummy message. �e main idea of our
inverted index pruning technique is based on the following
proposition.
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Input: TMR-tree: the text-aware Merkle R-tree on messages within Δ��;L: the inverted index of spatial-oriented pre�xes
Output:A��: answers of each message�� in the TMR-tree

(1) TMR-tree.Root.L� = L;
(2) Initialize Stack �;
(3) �.Push(TMR-tree.Root);
(4) while � is not empty do
(5) � = �.Pop();
(6) for each �� ∈ �.���� do
(7) for each 
� ∈ �.L�(��) do

(8) if SSIM(
�, �) ≥ LSB(
� | ��) then

(9) �.L!(��).Add(
�);
(10) if �.L! ̸= 0 and � is not a message then
(11) �.Push(�.children);
(12) for each �� ∈ �$�-�!��.��%& '	*�
 do
(13) for each 
� ∈ ��.L! do

(14) if Verify(
�, ��) then

(15) A��.Add(
�);
(16) returnA�1,A�2, . . . ,A�
;

Algorithm 1: Filter-veri�cation framework with inverted index pruning.

Proposition 2. If some subscriptions in the inverted index of
spatial-oriented pre�xes (L) are not relevant to a node � (a
dummy message) in the TMR-tree, these subscriptions can be
safely pruned fromL since�’s children (other dummymessages
or true messages) cannot be relevant to these subscriptions with
certainty.

Proof. If a subscription 
 inL is not relevant to a node �, we
have ∃
 ∈ L, SSIM(
, �) < LSB(
 | �). According to (3), we
have

max(0, 1 − DIST (
.�	
, �.�	
)
maxDIST

) < LSB (
 | �) . (8)

∀�� ∈ �, that is, �� is �’s child, since DIST(
.�	
, ��.�	
) ≥
DIST(
.�	
, �.�	
), we have

max(0, 1 − DIST (
.�	
, ��.�	
)
maxDIST

)
≤ max(0, 1 − DIST (
.�	
, �.�	
)

maxDIST
) < LSB (
 | �) .

(9)

�erefore, 
 is not relevant to �� either.
Algorithm 1 shows the pseudo-code of our framework

with the inverted index pruning technique. It takes the TMR-
tree and L as input. For each node � and each message� in leaf nodes in the TMR-tree, we use �.L! (�.L!) to
denote the inverted index where the subscriptions in �.L!
(�.L!) are likely to be relevant to � (�), which is pruned
from L! of �’s (�’s) parent. We let �.L� (�.L�) denote
L! of �’s (�’s) parent. �us, L! of each node (or message)
is pruned from its L�, which is its parent’s L!. In the
beginning, we set the root’sL� (i.e., TMR-tree.Root.L�) as
L, which is the inverted index of spatial-oriented pre�xes of
all the subscriptions without any pruning (line (1)). �en, we

initialize an empty stack� and push the root into it (lines (2)-
(3)). In the �lter phase, every element in � is computed until� is empty (lines (4)–(11)). First, we pop an element � from� (line (5)). �en, for each keyword �i in �.����, we retrieve
the inverted list �.L�(��) of �� and for each subscription 
�
in �.L�(��), if SSIM(
�, �) ≥ LSB(
� | ��), 
� is added
to �.L!(��) (lines (6)–(9)). Other subscriptions which do
not satisfy the condition in line (8) are pruned from �.L�.
If �.L! ̸= 0 and � is not a message, that is, there exist
some subscriptions in �.L! which might be relevant to �’s
children,�’s children are put into stack� (lines (10)-(11)).�e
subscriptions in each ��.L! are the candidates which might
be relevant to ��. In the veri�cation phase, for each message��, we verify whether each candidate 
� in ��.L! is the
answer of�� and if yes, 
� is added to the answer set of��, that
is,A�� (lines (12)–(15)). A�er computing all the messages in
the TMR-tree, all the answer sets (A�1,A�2, . . . ,A�
) are
together returned (line (16)). Here we assume that there are$messages that come within Δ��. Each subscription inA��
is the delivery destination of the message��.
Example 3. Figure 4 shows an example of procedures of
our proposed inverted index pruning technique in �lter-
veri�cation framework. In step A, the root is popped from
stack � �rst. �en, for each keyword in �		�.���� (�1 to�5 and ∗), we retrieve the corresponding inverted list in�		�.L� to compute the spatial similarity between the root
and each subscription in this inverted list. Take subscription
9 as an example, we retrieve �		�.L�(�1) and compute the
spatial similarity between the root and 
9: SSIM(
9, �		�),
which equals 1. Since SSIM(
9, �		�) = 1 is greater than
LSB(
9 | �1) = 0.60, 
9 is added to �		�.L!(�1). Notice that
the values of spatial similarity between the root and 
0, 
1,
9 in �		�.L�(�4) and 
3, 
7, 
8 in �		�.L�(�5) are smaller
than the values of these subscriptions’ LSB(
 | �); that is,
they do not satisfy the condition in line (8) in Algorithm 1.
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Figure 4: An Example of procedures of �lter-veri�cation framework with inverted index pruning (partial).

�erefore, they are pruned from �		�.L� and are not added
to �		�.L!. �en, since �		�.L! ̸= 0, its children �1
and �2 are pushed into stack �. Similarly, in step B, 
9
in �2.L�(�1), 
9 in �2.L�(�2), 
5 in �2.L�(�3), 
2, 
8 in�2.L�(�4), and 
4 in �2.L�(�5) are pruned from �2.L�.
Note that, in step C, since �6.���� does not contain the
keywords �3 and �5, we neednot compute the spatial similarity
between �6 and each subscription in inverted lists �6.L�(�3)
and�6.L�(�5) (indicated by “###” in the example), and these
subscriptions are also pruned from �6.L�. At last, in step
D, the candidates which might be relevant to �6 are 
0,
4, 
5, 
6, and 
8. Compared with all the subscriptions in
the unpruned inverted index L, the computational cost is
reduced dramatically.

Time Complexity. For the convenience of comparison
between the state-of-the-art method for location-aware pub-
lish/subscribe and our proposed �lter-veri�cation framework
with inverted index pruning technique, we �rst give the time
complexity of �lter-veri�cation framework proposed in [2] as
the following proposition.

Proposition 4. �e time complexity of delivering one message� to its relevant subscriber 
 in �lter-veri�cation framework
proposed in [2] is O(∑�∈�.���� |L(�)| + |
.����|), whereL is the
inverted index built on the spatial-oriented pre�xes.

Proof. In the �lter phase, for each keyword � in �.����
(including the dummy keyword “∗”), the framework
retrieves the inverted listL(�) of � and for each subscription
 in L(�), if SSIM(
, �) ≥ LSB(
 | �), 
 is a candidate to the
message � and we add it into the candidate set. �erefore,
the time complexity of �ltering is O(∑�∈�.���� |L(�)|).

In the veri�cation phase, based on the spatio-textual
similarity function (see (1)), 
 and� are relevant, if and only
if

� (
.���� ∩ �.����) = ∑
�∈�.����∩�.����

� (�)
≥ 
.� − (1 − 
.�) ⋅ SSIM (
, �)
.�

⋅ � (
.����) .
(10)

SSIM(
, �) can be easily computed in O(1) time and�(
.����) can bematerialized; thus it is easy to compute ((
.�−(1−
.�)⋅SSIM(
, �))/(
.�))⋅�(
.����). To compute�(
.����∩�.����), we check whether each keyword � in 
.���� appears
in �.����. If yes, we add the corresponding weight �(�) into�(
.���� ∩�.����). To facilitate the checking, we build a hash
map for keywords in �.����. (We only need to build the
hash map for the message once.) �us the time complexity
of verifying a subscription 
 is O(|
.����|). �erefore, the
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Input: TMR-tree: a text-aware Merkle R-tree on messages within Δ��;A��: answers of each message�� in the TMR-tree
Output:VO
�: theVO for each subscription 
�

(1) for each 
� ∈ A�1 ∪A�2 ∪ ⋅ ⋅ ⋅ ∪A�
 do
(2) VO
�.Init(TMR-tree.Root);
(3) Initialize Queue :;
(4) :.Put(TMR-tree.Root);
(5) while : is not empty do
(6) � = :.Pick();
(7) for each �� ∈ �$�-�!��.��%& '	*�
 do
(8) if Dist(��, �) ≤ 0 then
(9) for each 
� ∈ A�� do

(10) VO
�.Replace(�, “[” + �.children + “]”);

(11) if �.
ℎ;�*!�' %!� '	� ;' : and �ℎ�? %!� '	� ��

%@�
 then
(12) :.Put(�.children);
(13) returnVO
1,VO
2, . . . ,VO
�;

Algorithm 2:VO construction.

time complexity of delivering one message � to its relevant
subscriber 
 in �lter-veri�cation framework proposed in [2]
is O(∑�∈�.���� |L(�)| + |
.����|).

�e time complexity of our proposed �lter-veri�cation
framework with inverted index pruning technique is given by
the following proposition.

Proposition 5. �e time complexity of delivering$messages
that come within Δ�� to their relevant subscribers in our
proposed �lter-veri�cation framework with inverted index

pruning technique is O(∑(1−
)/(1−�)�=1 ∑�∈�� .���� |��.L�(�)| +
∑
�=1 |
�.����|), where & is the fanout of the TMR-tree, �� is
a node in the TMR-tree (also can be treated as a dummy
message), and L� is the inverted index associated with ��’s
parent in which the subscriptions are likely to be relevant to ��’s
parent.

Proof. A TMR-tree is constructed over the $ messages that
come within Δ��. If the fanout of the TMR-tree is &, in the
worst case, the height of the TMR-tree (excluding the layer of

messages) is ℎ = log
� . �us, the number of internal and leaf

nodes in the TMR-tree (assuming the root has depth 1) is

&0 + ⋅ ⋅ ⋅ + &ℎ−1 = 1 − &ℎ1 − & = 1 − &log��

1 − & = 1 −$1 − & . (11)

In the �lter phase, when visiting a node � (or a message�) in the TMR-tree, we retrieve its L�, prune �.L�
(or �.L�), and generate �.L! (or �.L!). �erefore, the
time complexity of �ltering with inverted index pruning is

O(∑(1−
)/(1−�)�=1 ∑�∈�� .���� |��.L�(�)|).
In the veri�cation phase, suppose each message �

within Δ�� is delivered to only one subscriber. �e time
complexity of verifying whether $ subscriptions are the

answers of messages is O(∑
�=1 |
�.����|). �erefore, the time
complexity of delivering $ messages that come within

Δ�� to their relevant subscribers in our proposed �lter-
veri�cation framework with inverted index pruning tech-

nique is O(∑(1−
)/(1−�)�=1 ∑�∈��.���� |��.L�(�)| + ∑
�=1 |
�.����|).
Compared with the �lter-veri�cation framework pro-

posed in [2], our proposed �lter-veri�cation framework
with inverted index pruning technique needs to visit more
inverted indexes (the inverted indexes associated with inter-
nal and leaf nodes in the TMR-tree). However, since the
subscriptions in each node’s inverted index are constantly
pruned from the root to the leaf nodes in the TMR-tree,
the total times of inverted index traversal are reduced.
�erefore, our proposed �lter-veri�cation framework with
inverted index pruning technique can be considered e	cient,
which also can be demonstrated from our experimental study
(Section 4).

3.3. VO Construction and Authentication. A�er �nding the
subscribers who are the delivery destinations of messages,
that is, A��, the service provider still needs to construct a
VO for each subscriber for their authentication. Algorithm 2
shows the pseudo-code of constructing the VO. It takes the
TMR-tree and answers of each message �� (A��) as input.
First, we initialize aVO for each subscription inA�1∪A�2∪⋅ ⋅ ⋅ ∪A�
 (VO
�) with the root of the TMR-tree (lines (1)-
(2)). �en, we initialize an empty queue : and put the root
into it (lines (3)-(4)). Every element in : is computed until: is empty (lines (5)–(12)). When the distance between a
message�� and the picked element� (from:) is smaller than
0, that is,�� is in the subtree rooted at�, for each subscription
� inA��, we replace� inVO
� with three parts: (1) the token
“[”; (2) �’s children; and (3) the token “]” (lines (6)–(10)).
Note that we use a pair of tokens “[” and “]” to indicate the
scope of the entries in�.�en, if�’s children are not in: and
they are not messages, they are put into: (lines (11)-(12)). At
last, the constructed VO
� is delivered to each subscriber 
�
with the corresponding messages (line (13)). Here we assume
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Figure 5: An example of procedures ofVO construction (VO
6).

that there are A subscribers to whom the messages will be
delivered.

Example 6. Following the example in Figure 2, a�er
computing the delivery destinations of messages �1 to �7,
we obtain their answer sets as follows:A�1 : 
6,A�2 : 
5, 
6,
A�3 : 
5, A�4 : 
2, 
3, 
7, 
10, A�5 : 
0, 
3, 
4, 
7, 
8,
A�6 : 
6, and A�7 : 
6. Here we take the construction of
the VO of 
6 (VO
6) as an example (shown in Figure 5)
and messages �1, �2, �6, and �7 will be delivered to
6. In step A, the root is picked from the queue :.
Obviously, DIST(�1.�	
, !		�.�	
), DIST(�2.�	
, !		�.�	
),
DIST(�6.�	
, !		�.�	
), and DIST(�7.�	
, !		�.�	
) are
all smaller than 0. �erefore, we replace “root” in
VO
6 with “[�1�2]”. Since �1 and �2 are not in :
and they are not messages, they are put into :. �e
steps B, C, and D are similar to A. In step E, since�1, �2, �6, and �7 are not in the subtree root at�4, that is, DIST(�1.�	
, �4.�	
), DIST(�2.�	
, �4.�	
),
DIST(�6.�	
, �4.�	
), and DIST(�7.�	
, �4.�	
) are all
greater than 0, “�4” in VO
6 is not replaced and thus
VO
6 remains unchanged. Due to the similar reason, in
step F, VO
6 still remains unchanged. At last, in step
G, a�er computing the last element �6 in :, VO
6 is
“[[[�1�2]�4][�5[�6�7]]]”.

To authenticate the soundness of deliveredmessages, each
subscriber 
� needs to scan theirVO
� to recompute the hash
value of the root of the TMR-tree and compare it against the
root signature using the data owner’s public key distributed
by the KDC. Since each VO
� includes the entries which

have been visited during messages delivery, the subscriber
can simulate the procedure of the TMR-tree traversal and
recursively reconstruct each MBR and compute its hash
value in a bottom-up manner. Speci�cally, each MBR and
its hash value can be computed from the entries in its child
node which are indicated by “[” and “]”.

To authenticate the completeness of delivered messages,
the subscriber 
� needs to check that each message in results
is indeed present in VO
� and whether they satisfy the
parameters � and �. What is more, the subscriber still needs
to check that the other entries returned in the VO
� do not
satisfy � and �.
Example 7. Still taking 
6 as an example, the subscriber can
recursively reconstruct �3 from �1 and �2, �1 from �3 and�4, �6 from �6 and �7, �2 from �5 and �6, and at last the
root from �1 and �2 and compute its hash value to compare
it against the root signature to authenticate the soundness of
deliveredmessages�1,�2,�6, and�7. As for authenticating
the completeness of�1,�2,�6, and�7, the subscriber needs
to recompute whether they satisfy 
6.� = 0.2 and 
6.� = 0.7,
while �4 and �5 do not.

From the example we can see that when more than one
message is delivered to a subscriber, only one signature is
returned, thus reducing the communication and authentica-
tion cost.

Space and Time Complexity. We �rst give a baseline method
for the problem of authenticating messages in outsourced
location-aware publish/subscribe services. �en, we give the
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space complexity of itsVO and compare it with our proposed
authenticated location-aware publish/subscribe framework.
We also compare the authentication’s time complexity of
baseline method and our framework.

Baseline: the data owner signs every message withinΔ�� and when the signed messages are delivered to
their corresponding subscribers, each VO
� consists
of the messages (to 
�) and their signatures. �en, the
subscriber 
� can verify the soundness by computing
the hash value of each message inVO
� and compar-
ing it against the message’s signature. Recomputing
the spatio-textual similarity between each message in
VO
� and the subscription 
� enables the subscriber
to verify the completeness.

�e space complexity of the VO of baseline method is
given by following proposition.

Proposition 8. If there are � messages which are delivered to
a subscriber 
 at one time, the VO size for 
, that is, the space
complexity ofVO
, isO(∑��=1 |��|+�|S|), where |S| is the size
of the signature and each |��| includes the size of its spatial and
textual information.

Compared with the baseline method, the space com-
plexity of VO of our proposed authenticated location-
aware publish/subscribe framework is given by the following
proposition.

Proposition 9. If there are � messages which are delivered
to a subscriber 
 at one time, the space complexity of VO

is O(∑��=1 |��| + ∑��=1 |��| + |S|), where |S| is the size of the
signature. �� is a dummy message and we assume there are C
dummy messages that are included inVO
.

From the above propositions we can see that, in our
proposed �lter-veri�cation framework with inverted index
pruning technique, if more than one message is delivered to
a subscriber, only one signature is returned. Although our
framework has C dummy messages in its VO, its VO size is
still smaller than that of the baseline method when � is large
since the signatures are space consuming.

Since the authentication time is co-related to the size of
VO, the time complexity of authentication of our proposed
�lter-veri�cation framework with inverted index pruning
technique is also smaller than that of the baseline method.

4. Experimental Study

In this section, we proceed to conduct extensive experiments
to evaluate the performance of our proposed authenticated
location-aware publish/subscribe framework.

4.1. Experiment Setup

4.1.1. Datasets. Similar to [2], we use a real-world dataset
POI which contains 10 million points of interests in USA.
We randomly select 1–5 keywords from each POI to generate
subscriptions. �us the average keyword number in each

subscription is 3. �e maximum permissible response delayΔ� and the messages delivery interval Δ�� (Δ�� ≤ Δ�) are both
set as 5mins. During this interval, we randomly select 2000
POIs as messages. To generate long messages, we combine 10
POIs as a single message. �e average keyword number in
each message is 41.

4.1.2. Parameters. �e performance of our proposed frame-
work is evaluated by varying the preference 
.� (0.1, 0.3, 0.5,
0.7, and 0.9) and threshold 
.� (0.5, 0.6, 0.7, 0.8, and 0.9). We
set 
.� as 0.5 and 
.� as 0.7 in the default setting.Whenwe vary
a parameter, the other parameter will be in the default setting.
We use inverted document frequency (IDF) to generate
keywords weights.

4.1.3. System Con�guration. All the experiments are run on
a server with Intel(R) Xeon(R) CPU E5-2609 v2 @2.5GHz
(Quad Core) and 64GB RAM, running Linux Ubuntu. We
use in-memory setting and the programs are implemented in
C++.

4.1.4. Performance Metrics. �e metrics for performance
evaluation include

(i) PAS and PC: percentage of accessed subscriptions
and candidates, which indicate the ratios of accessed
subscriptions in the inverted index of spatial-oriented
pre�xes and candidates to the number of total sub-
scriptions

(ii) FS: time of �nding the relevant subscriptions for each
message within Δ��

(iii) CVO: time of constructing theVO

(iv) VOS:VO size, which a
ects the communication cost
between the service provider and subscribers

(v) AM: time of authenticating the messages at the
subscribers side

Note that, in our framework, we process a batch of
messages at one time; thus each time we �rst get a total value
of each metric. �en, for the metrics PAS, PC, and FS, we
report the average value corresponding to each message and,
for the metrics CVO, VOS, and AM, we report the average
value corresponding to each subscriber.

4.1.5. Algorithms. For metrics (i), (ii), and (iii), algorithms to
be evaluated in our experiments include (1) SP (the method
of �nding the relevant subscriptions for each message using
the spatial-oriented pre�xes, which is proposed in [2]); (2) SP
+ IIP (our �lter-veri�cation framework with inverted index
pruning technique); (3) VOC (our method of constructing
theVO).

For metrics (iv) and (v), algorithms to be evaluated
include (1) ALPF (our authenticated location-aware pub-
lish/subscribe framework) and (2) BL (the baseline method).

Note that, to the best of our knowledge, this is the �rst
attempt to de�ne and solve the problem of authenticating
messages in outsourced location-aware publish/subscribe
services. �erefore, no existing algorithm is included in our
experiments as comparative analysis.
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Figure 7: Evaluation of FS and CVO.

4.2. Performance Study

4.2.1. Cost at the Service Provider. �e cost at the service
provider is evaluated from two aspects. First, in Figure 6, we
evaluate the ratios of accessed subscriptions and candidates
(as a function of 
.� and 
.�) to the number of total
subscriptions (PAS andPC),where the accessed subscriptions
refer to subscriptions that are accessed in the inverted index
and candidates refer to subscriptions that are veri�ed using
the Verify function in Algorithm 1. Second, as shown in
Figure 7, we evaluate the running time (as a function of
.� and 
.�), which includes the time of �nding the relevant

subscriptions for eachmessage (FS) and constructing theVO

(CVO).
According to Figures 6 and 7, we make the following

observations. First, SP + IIP outperforms SP; that is, the PAS
and PC of SP + IIP are both smaller than those of SP (shown
in Figure 6). Besides, FS of SP + IIP is smaller than that of SP
(shown in Figure 7). �e reason lies in that SP + IIP uses the
inverted index pruning technique to prune the subscriptions
from the inverted index of spatial-oriented pre�xes. �ese
pruned subscriptions are not relevant to the messages and
thus they need not be involved in the computation. Second,
with the increase of 
.�, the performance of SP and SP
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Figure 8: Evaluation of VOS.

+ IIP increases, because for larger 
.� there are smaller
number of subscriptions required to be visited and veri�ed,
and we have greater opportunity to prune more irrelevant
subscriptions. �ird, with the decrease of 
.�, SP and SP
+ IIP take much longer time, because for smaller 
.�, the
spatial similarity is more important and they cannot estimate
accurate pre�x bounds. Fourth, as 
.� (
.�) increases, CVO
increases (decreases) slightly since we use the answers of each
message to construct the VO and CVO depending on the
number of answers.With the increase of 
.� (
.�), we getmore
(less) answers and thus CVO increases (decreases). Fi�h,
although in our framework it costs extra time to construct
VO for subscribers’ authentication, the total running time
(FS + CVO) is still better than SP. For example, in Figure 7,
when 
.� = 0.3, SP + IIP costs around 60ms and VOC
costs about 20ms, thus the total running time is about 80ms,
which is still less than the cost of SP, 90ms.

4.2.2. Cost between the Service Provider and Subscribers. We
evaluate the metric VOS, that is, VO size, which a
ects the
communication overhead between the service provider and
subscribers. Figure 8 shows VOS under the experimental
settings by varying 
.� and 
.�.

From Figure 8, we make the following observations.
First, ALPF outperforms BL since we process a batch of
messages rather than only one message at a time and when
many messages are delivered to a subscriber 
�, the VO
�
consists of only one signature, which is computed using
the root hash value of the TMR-tree. However, in BL, the
VO
� would include the signatures of everymessage. Second,
with the increase of 
.� (
.�), VOS increases (decreases) in
a near linear manner. �e reason lies in that VOS depends
on the number of messages delivered to each subscriber.
When 
.� (
.�) increases, the number of answers of each
message increases (decreases) and, conversely, the number of
messages delivered to each subscriber increases (decreases).

�ird, the biggest value of VOS is about 240KB when 
.� =0.5. �is value is acceptable especially when more than one
message needs to be veri�ed by a subscriber.

4.2.3. Cost at the Subscribers. �e last metric AM, that is,
the time of authenticating the messages at the subscribers
side, is evaluated. AM is crucial since the subscribers may
have limited computing resources. Figure 9 shows AM as a
function of 
.� and 
.�.

According to Figure 9, we �rst �nd that, in ALPF, it always
costs subscribers less time to authenticate the messages
delivered to them than that in BL. �is is because in ALPF
when the soundness is veri�ed, subscribers just need to
decrypt one signature and recompute the root hash value
of the TMR-tree to compare against it. However, in BL,
the number of decryption operations equals the number of
messages delivered to the subscribers but decryption is not a
cheap operation comparingwith the hashing operation.�us,
ALPF outperforms BL. Second, we �nd that, with the increase
of 
.� (
.�), AM increases (decreases) in a near linear manner
since AM is always related to VOS and they have the same
changing situation. �ird, the worst case of authenticating
themessages costs subscribers about 1.2 s, which is reasonable
and would not have too many bad e
ects on the subscribers
experience.

4.2.4. Security Analysis. In this paper, we study the problem
of authenticating messages in outsourced location-aware
publish/subscribe services. �erefore, our goal of security
analysis is to prove that our proposed authenticated location-
aware publish/subscribe framework can guarantee the veri-
�cation of soundness and completeness of messages by their
corresponding subscribers.

Proof of Soundness. Assume that a message � delivered to
a subscriber 
 is bogus or modi�ed. In this paper, we adopt
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Figure 9: Evaluation of AM.

the commonly used hash function SHA1 [3]. Because SHA1
is collision-resistant and the hash value of the root of the
TMR-tree is computed recursively from the messages that
come within Δ��, which must include �, the recomputed
root hash value of the TMR-tree cannot be veri�ed against
the signature, which can be detected by the subscriber 
.
�erefore, through our framework, subscribers can receive
soundmessages from the service provider.

Proof of Completeness. Let � be a message satisfying the
parameters � and � which is delivered to a subscriber 
. For
the recomputed hash value of the root of the TMR-tree to
match the signature (i.e., the soundness is satis�ed), there are
the following two cases:

(i) �emessage� is included in the correspondingVO
.
In this case, the subscriber 
 can con�rmwhether this
message is the result of using the returned spatial and
textual information of�.

(ii) �e message � is not included in the corresponding
VO
. In this case, it must be in the subtree rooted at� which is included inVO
. However, the subscriber
 cannot make sure that � does not satisfy � and �
since if � is the result, � must satisfy � and �, which
alarms the subscriber about potential violation of the
completeness.

�erefore, through our framework, subscribers can receive
completemessages from the service provider.

5. Related Work

Our work is related to the location-aware publish/subscribe
and authenticated query processing. Sections 5.1 and 5.2
retrospect the related work done in these areas.

5.1. Location-Aware Publish/Subscribe. Recently, location-
aware publish/subscribe has attracted considerable attention.
Most studies in this �eld can be categorized according to
di
erent evaluation methods of relevancy between subscrip-
tions and messages [2, 4–8]. In particular, [4–7] use a spatial
region to indicate the spatial information of each subscription
and spatial overlap to evaluate spatial similarity and “AND”,
“OR” semantics or Boolean expressions to evaluate textual
relevancy, while [2, 8] combine the textual relevancy and
spatial similarity into a ranking function to quantify the
relevancy between subscriptions and messages.

More speci�cally, regarding the �rst category, Chen et al.
[4] study the problem of matching Boolean range continuous
queries over a stream of incoming spatio-textual messages
in real time. A Boolean range continuous query is to con-
tinually retrieve the spatio-textual messages arriving before
the user-speci�ed expiration time such that the retrieved
spatio-textual messages satisfy the user’s keywords which are
connected by “AND” or “OR” semantics and are located in
the query range. �e authors present IQ-Tree, which is a
hybrid index based on Quad-tree and inverted �les. In [5],
Li et al. study the location-aware publish/subscribe, which
delivers a message to its corresponding subscribers having
spatial overlap with the message and all the keywords in the
subscriptions are contained in the message (“AND” seman-
tic). �ey propose the ��-tree, which extends the R-tree by
selecting some representative keywords from subscriptions
and adding them into R-tree nodes to enable textual pruning.
Both matching algorithms of [4, 5] follow the �ltering-and-
re�nement paradigm. More recently, although they study the
same problem, Wang et al. [6] �nd that, in [4, 5], the spatial
factor is always prioritized during the index construction
regardless of the keyword distribution of the query set and
the inverted indexing technique is not well-suited to textual
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�ltering. �erefore, they utilize the keyword partition and
space partition in one tree structure when constructing the
index for queries based on expected matching cost. �ey
compute the cost based on the number of queries associated
with each partition and the probability of whether the
partition is explored duringmessage matching, instead of the
complexity of �lter and veri�cation steps. Guo et al. [7] study
�ltering dynamic streams for continuous moving Boolean
subscriptions. Di
erent from previous works, it continuously
monitors users’ locations and sends nearby messages in
real time and it allows users to specify their interests with
Boolean expressions, which provides better �exibility and
expressiveness in shaping an interest.

With respect to the second category, as introduced in
Section 2.3, Hu et al. [2] study the parameterized location-
aware publish/subscribe, which requires subscribers to spec-
ify parameters to enable personalized �ltering. In [8], Chen
et al. study top-F spatial-keyword publish/subscribe, which
aims to continuously feed the user with new spatio-textual
messages whose temporal spatial-keyword scores are ranked
within the top-F. �ey use a Quad-tree to partition the whole
space. Each subscription is assigned to a number of covering
cells, forming a disjoint partition of the entire space and an
inverted �le ordered by subscription id is built to organize
the subscriptions assigned to each cell.

5.2. Authenticated Query Processing. Authenticated query
processing has been studied extensively. Most studies on
query authentication are based on anADS, Merkle hash tree
(MHT) [1], as introduced in Section 2.3. �e notion of the
MHT is generalized to multiway trees and widely adapted
to various index structures. Typical examples include the
Merkle B-tree and its variant Embedded Merkle B-tree [9].
Following the concept of theMHT, the authenticated query
processing problem has also been studied for the relational
data [9, 10], data streams [11–15], and textual search engines
[16].

In the spatial databases domain, based on the MHT,
there are also many query authentication applications. Yang
et al. [17] �rst introduce the query authentication problem
to the domain of spatial data and study the authentication of
spatial range queries.�ey propose anADS called MR-tree,
which combines the ideas of MB-tree [9] and �∗-tree [18].
Yiu et al. investigate how to e	ciently authenticate movingFNN queries [19], moving range queries [20], and shortest-
path queries [21]. More recently, Hu et al. [22] and Chen
et al. [23] develop new schemes for range and top-F query
authentication that preserve the location privacy of queried
objects. Besides, Lin et al. [24] investigate the authentication
of location-based skyline queries. A new ADS called MR-
Sky-tree is proposed. Authentication of reverse F nearest
neighbor query is studied by Li et al. in [25]. For the mixed
data types, such as spatio-textual data, Su et al. [26] and
Wu et al. [27] study the authentication problem for snapshot
and moving top-F spatial-keyword queries, respectively. Yan
et al. [28] explore the authentication problem in the area
of spatio-textual similarity joins. Instead of only supporting
the relational data as [10] does, the proposed authentication
schemes in [28] can support spatial data. Zhang et al. [29]

study the authentication of location-based top-F queries
which ask for the POIs in a certain region andwith the highestF ratings for an interested POI attribute.

Besides the MHT, there are some other index struc-
tures which can be used to construct the ADS, such as
Voronoi diagram and pre�x-tree. Hu et al. [30] propose a
novel approach that authenticates spatial queries based on
the neighborhood information derived from the Voronoi
diagram. �e problem of authenticating query results in
data integration services is studied by Chen et al. in [31],
which addresses multisource data authentication that can
simultaneously support a wide range of query types. Based on
the pre�x-tree, they propose Homomorphic Secret Sharing
Seal, which is to merge the authentication codes of nonresult
values with a common pre�x, thus allowing them to be
veri�ed as a whole.

6. Conclusion

In this paper we have studied the problem of authenticating
messages in outsourced location-aware publish/subscribe
services. We propose an authenticated location-aware pub-
lish/subscribe framework, including an ADS TMR-tree
to organize the messages that come within Δ��, a �lter-
veri�cation framework with inverted index pruning tech-
nique to e	ciently deliver the messages to their relevant
subscribers, and the methods of constructing the VO and
authenticating the delivered messages at the subscribers side.
Experimental results on a real-world dataset show that our
framework achieves high performance.

Conflicts of Interest

�e authors declare that there are no con�icts of interest
regarding the publication of this paper.

Acknowledgments

�is work was supported in part by the National Natural
Science Foundation of China under Grant 61502047 and
the Coconstruction Program with the Beijing Municipal
Commission of Education.

References

[1] R. C. Merkle, “A certi�ed digital signature,” in Proceedings of the
9th Annual International Cryptology Conference on Advances in
Cryptology, vol. 435, pp. 218–238, Springer, August 1989.

[2] H. Hu, Y. Liu, G. Li, J. Feng, and K.-L. Tan, “A location-aware
publish/subscribe framework for parameterized spatio-textual
subscriptions,” in Proceedings of the 2015 31st IEEE International
Conference on Data Engineering, ICDE 2015, pp. 711–722, April
2015.

[3] Q. Dang, “Changes in Federal Information Processing Standard
(FIPS) 180-4, Secure Hash Standard,” Cryptologia, vol. 37, no. 1,
pp. 69–73, 2013.

[4] L. Chen, G. Cong, and X. Cao, “An e	cient query indexing
mechanism for �ltering geo-textual data,” in Proceedings of



Security and Communication Networks 15

the 2013 ACM SIGMOD Conference on Management of Data,
SIGMOD 2013, pp. 749–760, June 2013.

[5] G. Li, Y. Wang, T. Wang, and J. Feng, “Location-aware pub-
lish/subscribe,” in Proceedings of the the 19th ACM SIGKDD
international conference, p. 802, Chicago, Ill, USA, August 2013.

[6] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang, “AP-
Tree: E	ciently support continuous spatial-keyword queries
over stream,” in Proceedings of the 2015 31st IEEE International
Conference on Data Engineering, ICDE 2015, pp. 1107–1118, April
2015.

[7] L. Guo, D. Zhang, G. Li, K.-L. Tan, and Z. Bao, “Location-
aware pub/sub system: When continuous moving queries meet
dynamic event streams,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD
2015, pp. 843–857, June 2015.

[8] L. Chen, G. Cong, X. Cao, and K.-L. Tan, “Temporal Spatial-
Keyword Top-k publish/subscribe,” in Proceedings of the 2015
31st IEEE International Conference on Data Engineering, ICDE
2015, pp. 255–266, April 2015.

[9] F. Li, M. Hadjiele�heriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in
Proceedings of the 2006 ACMSIGMOD International Conference
on Management of Data, pp. 121–132, June 2006.

[10] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis, “Authenti-
cated join processing in outsourced databases,” in Proceedings
of the International Conference on Management of Data and
28th Symposium on Principles of Database Systems, SIGMOD-
PODS’09, pp. 5–17, July 2009.

[11] F. Li, K. Yi, M. Hadjiele�heriou, and G. Kollios, “Proof-infused
streams: Enabling authentication of sliding window queries on
streams,” VLDB, pp. 147–158, 2007.

[12] S. Papadopoulos, Y. Yang, and D. Papadias, “Continuous
authentication on data streams,” VLDB Journal, pp. 135–146,
2007.

[13] S. Papadopoulos, Y. Yang, and D. Papadias, “Continuous
authentication on relational streams,”VLDB Journal, vol. 19, no.
2, pp. 161–180, 2010.

[14] S. Papadopoulos, A. Deligiannakis, G. Cormode, and M. Garo-
falakis, “Lightweight authentication of linear algebraic queries
on data streams,” in Proceedings of the 2013 ACM SIGMOD
Conference onManagement ofData, SIGMOD2013, pp. 881–892,
June 2013.

[15] S. Papadopoulos, G. Cormode, A. Deligiannakis, and M. Garo-
falakis, “Lightweight query authentication on streams,” ACM
Transactions on Database Systems, vol. 39, no. 4, article 30, 45
pages, 2014.

[16] H. Pang and K. Mouratidis, “Authenticating the query results of
text search engines,” VLDB, pp. 126–137, 2008.

[17] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Spatial
outsourcing for location-based services,” in Proceedings of the
2008 IEEE 24th International Conference on Data Engineering,
ICDE’08, pp. 1082–1091, April 2008.

[18] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “R*-an
e	cient and robust access method for points and rectangles,” in
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 322–331, May 1990.

[19] M. L. Yiu, E. Lo, and D. Yung, “Authentication of moving
kNN queries,” in Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, ICDE 2011, pp. 565–576, April
2011.

[20] D. Yung, E. Lo, and M. L. Yiu, “Authentication of moving range
queries,” inProceedings of the 21st ACMInternational Conference
on Information and Knowledge Management, CIKM 2012, pp.
1372–1381, November 2012.

[21] M. L. Yiu, Y. Lin, and K. Mouratidis, “E	cient veri�cation of
shortest path search via authenticated hints,” in Proceedings of
the 26th IEEE International Conference on Data Engineering,
ICDE 2010, pp. 237–248, March 2010.

[22] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-
based services without compromising location privacy,” in
Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12, pp. 301–312, May 2012.

[23] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k queries in
location-based services with con�dentiality,” VLDB, vol. 7, no.
1, pp. 49–60, 2013.

[24] X. Lin, J. Xu, and H. Hu, “Authentication of location-based
skyline queries,” in Proceedings of the 20th ACM Conference on
Information and Knowledge Management, CIKM’11, pp. 1583–
1588, October 2011.

[25] G. Li, C. Luo, and J. Li, “Authentication of reverse k nearest
neighbor query,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes
in Bioinformatics), vol. 9049, pp. 625–640, 2015.

[26] S. Su,H. Yan, X. Cheng, P. Tang, P. Xu, and J. Xu, “Authentication
of top-k spatial keyword queries in outsourced databases,” Lec-
tureNotes in Computer Science (including subseries LectureNotes
in Arti�cial Intelligence and LectureNotes in Bioinformatics), vol.
9049, pp. 567–588, 2015.

[27] D. Wu, B. Choi, J. Xu, and C. S. Jensen, “Authentication of
Moving Top-k Spatial Keyword Queries,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 4, pp. 922–935,
2015.

[28] H. Yan, X. Cheng, S. Su, Q. Zhang, and J. Xu, “Authenticated
spatio-textual similarity joins in untrusted cloud environ-
ments,” ICPADS, pp. 685–694, 2016.

[29] R. Zhang, Y. Zhang, and C. Zhang, “Secure top-k query
processing via untrusted location-based service providers,” in
Proceedings of the IEEE Conference on Computer Communica-
tions, INFOCOM 2012, pp. 1170–1178, March 2012.

[30] L. Hu,W.Ku, S. Bakiras, andC. Shahabi, “Spatial query integrity
with voronoi neighbors,” IEEE Transactions on Knowledge and
Data Engineering, vol. 25, no. 4, pp. 863–876, 2013.

[31] Q. Chen, H. Hu, and J. Xu, “Authenticated online data integra-
tion services,” in Proceedings of the ACMSIGMOD International
Conference onManagement of Data, SIGMOD 2015, pp. 167–181,
June 2015.



Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at

https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


