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Abstract. In this paper, we investigate the authenticated encryption
paradigm, and its security against blockwise adaptive adversaries,
mounting chosen ciphertext attacks on on-the-fly cryptographic devices.
We remark that most of the existing solutions are insecure in this
context, since they provide a decryption oracle for any ciphertext. We
then propose a generic construction called Decrypt-Then-Mask, and
prove its security in the blockwise adversarial model. The advantage of
this proposal is to apply minimal changes to the encryption protocol. In
fact, in our solution, only the decryption protocol is modified, while the
encryption part is left unchanged. Finally, we propose an instantiation
of this scheme, using the encrypted CBC-MAC algorithm, a secure
pseudorandom number generator and the Delayed variant of the CBC
encryption scheme.

Keywords: Symmetric encryption, authenticated encryption, cho-
sen ciphertext attacks, blockwise adversaries, provable security.

1 Introduction

An authenticated encryption scheme is a secret key scheme providing both pri-
vacy and integrity. In [7], Bellare and Namprempre have studied how to combine
encryption scheme and message authentication code (MAC) to construct a se-
cure composition against chosen ciphertext attacks. They have proved that the
generically secure way is to first encrypt the data with a symmetric encryption
scheme and then compute a MAC of the ciphertext. They called this method the
“Encrypt-Then-MAC” paradigm. From the receiver point of view, the “Verify-
Then-Decrypt” method is performed by first checking the MAC and if (and only
if) the tag is correct, by decrypting.

Some other constructions for authenticated encryption have recently been
proposed, [18, 21]. All these constructions ensure both integrity and confiden-
tiality in a single pass and are thus more efficient than the Encrypt-Then-MAC
composition. Furthermore, the decryption method is now slightly different: in-
tegrity is checked at the end of the decryption process. A lot of papers have also
studied how to ensure integrity and confidentiality in a single pass (as in [8, 1]).
The main result of these papers is that providing integrity with an encryption
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scheme with redundancy and/or encoding is not generically secure. Some require-
ments are needed on the encoding scheme for the composition to be generically
secure. For example, Vaudenay has shown in [23] that using a public redundancy
is not a secure way to provide security against chosen ciphertext attacks. Indeed,
some reaction attacks are possible: this shows that encoding schemes are usually
not sufficient to provide authenticity. Another reaction attack has recently been
proposed in [6] against the SSH binary Packet Protocol, proving that this scheme
may be insecure in some contexts. However, lot of schemes are now well known to
be secure in the strong sense, as the generic Encrypt-then-MAC composition, or
single pass schemes as IACBC [18], OCB [21]... Thus constructing authenticated
encryption schemes does not seem to be an open problem anymore.

However, in some practical applications the sender and the receiver of an
authenticated ciphertext use a cryptographic device to perform the encryption,
the checking and the decryption operations. In many cases, this cryptographic
module uses a smart card with a limited storage. Due to memory restrictions,
the card cannot store the whole ciphertext C to first check the tag τ and then
decrypt C if τ was valid, as assumed in the standard model (or store the whole
plaintext after decryption, check its integrity and output it only if valid).

To overcome this problem, interactions between the card and the rest of the
world are usually performed on-the-fly. However, in [17], a new security flaw
of on-line implementations was pointed out. The basic idea is to notice that
with such implementations, messages are no longer atomic objects, as assumed
in the usual security proofs. This idea leads to a new class of attacks called
blockwise adaptive. Adversaries using such attacks see the kth ciphertext block
before having supplied the (k + 1)th plaintext block. Note that some techniques
used in [6] to attack the SSH protocol are linked with this kind of attackers.
In [17], only blockwise adaptive chosen plaintext attacks were considered. In
this paper, we focus on blockwise adaptive chosen ciphertext attacks and look at
the precautions that have to be taken, not only during the encryption phase,
but also during the decryption phase, both executed on-the-fly.

Recently another work has been published, formalizing the remotely keyed
authenticated encryption [11]. It solves the problem of authenticated encryp-
tion on a high bandwidth and insecure channel using a limited bandwidth and
memory but highly secure cryptographic device. The work of [11] also proposes
a generic way to solve this problem, but the solution they give transforms both
the encryption and the decryption parts. In their solution, and in the previous
work of [9], the main idea is to use a session key to encrypt the data. The cryp-
tographic device just encrypts this session key and authenticates a hash of the
ciphertext. However, in well-established standards such as SSH or SSL, designers
cannot accept to change the protocol only for low memory devices. Consequently,
our aim is to provide a solution that only modifies the decryption protocol.

Our Results. In this paper we study how authenticated encryption can be se-
curely implemented when dealing with blockwise adaptive adversaries using cho-
sen ciphertext attacks. We show how to securely implement on-line decryption.
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In particular, an adversary should not be able to feed a decryption oracle with an
invalid ciphertext and obtain the corresponding plaintext. We first describe the
usual on-the-fly implementations of the Encrypt-Then-MAC composition and
of authenticated encryption in one pass. We show how such implementations
lead to totally insecure schemes when considering blockwise adversaries. Trivial
attacks are possible: they provide to the adversary a decryption oracle without
any check of the integrity. Since the basic encryption schemes are generally not
secure against chosen ciphertext attacks, this leads to major security flaws.

After having formally described the blockwise adaptive security model, both
for confidentiality and integrity, we propose, as an alternative to existing solu-
tions, a new generic construction and we prove its security. This solution requires
an encryption scheme only secure against blockwise adversaries mounting cho-
sen plaintext attacks, together with a new decryption protocol. The main idea
is to blind the plaintext blocks obtained after decryption by XORing them with
a pseudorandom sequence of bits. Then, when the integrity of the ciphertext is
checked, the seed used to generate the pseudorandom sequence is returned. Thus
the cryptographic device does not need neither memory to store the plaintext
nor multiple sending of the ciphertext. Finally, section 6 of this paper presents
a practical instantiation of this generic composition.

2 Blockwise Attacks against Naive Implementations

In smart cards or with online protocols, authenticated encryption schemes use
on-the-fly interactions. In such a setting, the decryption process is not easy to
implement, since both privacy and integrity should be provided. Most of the
existing solutions are insecure since these interactive processes greatly facilitate
chosen ciphertext attacks. Indeed, they do not prevent attackers from getting
decryptions of invalid messages. The following paragraphs describe why classical
constructions are insecure.

In practice, two naive methods are widely used. Both implement the Encrypt-
Then-MAC composition or single pass authenticated encryptions. Let (C, τ) be
an authenticated ciphertext. For the first decryption process, the ciphertext C
is sent block by block to the smart card, which gradually returns for each block
the corresponding plaintext block. In the same time, the crypto device updates
the MAC computation. At the end, the tag τ is sent to the card which checks its
validity. With this method, the user learns the plaintext even if the ciphertext
was invalid, since integrity is checked after the plaintext has been returned. For
example, with the OCB authenticated encryption scheme (see [21] for further
details on this scheme), the authenticated ciphertext C = C1|| . . . ‖Cm‖τ is sent
block by block to the card: it decrypts each block Ci into Mi, sends it to the
receiver and updates the Checksum for the MAC computation. When the card
receives the tag τ it just checks its validity by comparing it with the value it has
computed. The result of this comparison does not matter since the adversary has
received the plaintext. As a consequence, the card provides a decryption oracle
for the underlying encryption scheme. Since most of the existing encryption
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modes are not secure against chosen ciphertext attacks, such a technique often
leads to insecure schemes.

The second naive technique works as follows: an authenticated ciphertext
(C, τ) is sent to the smart card, block by block, or buffer by buffer. The card
just checks its validity: if τ is valid, in a second pass, the ciphertext C is sent again
to the card. The transmission is made on-the-fly, i.e., for each ciphertext block
sent, the card outputs the corresponding plaintext block. The main drawback
of this protocol is that no verification can be made to check whether the same
ciphertext has been sent twice. This leads to a major security flaw: in a first pass,
an adversary can send any valid ciphertext, in the sense of integrity, and in the
second pass, another one, possibly invalid, which will be nonetheless decrypted.

Such security flaws call for a formal definition of security for authenticated en-
cryption schemes secure against blockwise adaptive adversaries, and for schemes
ensuring this security level.

3 Preliminaries

Recently in [17], some results appeared concerning the insecurity of some en-
cryption schemes in a new adversarial model. This notion is meaningful when
implementing digital signed streams as in [15], or when considering on-line en-
cryption schemes which do not require the whole plaintext before beginning the
encryption. In this section we formally describe these adversaries and the associ-
ated security model for both privacy and integrity against chosen plaintext and
ciphertext attacks.

3.1 Privacy

Privacy in the Standard Model. In the standard model, privacy of an en-
cryption scheme is viewed as ciphertext indistinguishability (IND), defined in [3].
This notion is modeled through a “left-or-right”(LOR) game: the adversary is
allowed to feed the left-or-right encryption oracle EK(LR(·, ·, b)) with queries of
the form (M i

0, M
i
1) where M i

0 and M i
1 are two equal length messages. First, the

oracle chooses a random bit b, and, for all queries (M i
0, M

i
1), always encrypts the

message M i
b and returns a ciphertext Ci

b. The adversary’s goal is to guess the
bit b with non-negligible advantage in polynomial time. If an encryption scheme
SE withstands an adversary performing a chosen plaintext attack (CPA), then
we say that SE is IND-CPA secure. If the adversary has access, in addition, to
a decryption oracle, taking as input a ciphertext C and outputting the corre-
sponding plaintext M , the adversary is said to mount a chosen ciphertext attack
(CCA). For a complete description of these notions the reader can refer to [3].

Privacy in the Blockwise Adversarial Model. In this setting, adversaries
are adaptive during their queries to the different encryption oracles. The block-
wise left or right encryption oracle Ebl

K(LR(·, ·, b)) can be requested in an on-
line manner. The adversaries send queries block by block, i.e. they submit
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(mi
0[k], mi

1[k]). The oracle encrypts message block mi
b[k] according to the bit b

chosen at the beginning of the game, and immediately outputs the ciphertext
block ci

b[k], without waiting for the next plaintext block. The adversary can now
adapt each plaintext block according to the previous ciphertext blocks. In the
case of chosen ciphertext attacks, the adversary has also access to a blockwise
decryption oracle, taking as input a ciphertext block c[k] and returning the cor-
responding plaintext block m[k]. This better models implementations for which
interactions are made on-the-fly between a user and his crypto device. Such ad-
versaries are called blockwise adaptive. Note that when dealing with smart cards,
more than one block can be stored and interactions could contain larger buffers.
However adversaries can still adapt their queries between each buffer, and thus
one can assume that single blocks are sent (here, the word block is redefined to
cover a complete buffer). This leads to the notions of Blockwise Chosen Plaintext
Attacks (BCPA) or Blockwise Chosen Ciphertext Attacks (BCCA).

A recent work of Fouque, Martinet and Poupard [14] has formalized this
notion in a stronger way: in their work they have considered concurrent block-
wise adaptive adversaries. In this setting, the adversaries may run a polynomial
number (in the security parameter) of encryption and/or decryption sessions in
parallel. Such a notion is clearly stronger than the one we need here. A scheme
proved secure in their model is thus clearly also secure in the weaker model
considered here. The formal definition and description of the experiments we
consider are given in appendix A.1.

3.2 Integrity of Ciphertexts

The notion of integrity of ciphertexts (INT-CTXT) has been first introduced
in [19] and independently in [7]. It formalizes the idea that it should be compu-
tationally infeasible for a polynomial-time adversary performing a chosen mes-
sage attack (CMA), to produce an authenticated ciphertext, for a message, not
previously queried to the oracle (weak unforgeability) or even already queried
(strong unforgeability). The chosen message attack is modeled by giving access
to an oracle, that takes as input a message M and returns an authenticated
ciphertext (C, τ), and to a verification oracle, taking as input an authenticated
ciphertext (C, τ) and returning a bit b depending on the validity of the tag. The
strongest security notion used for integrity is the strong unforgeability. Of course
this distinction with the weak unforgeability does not have sense in the case of
deterministic MAC schemes. However, for probabilistic ones, this security notion
is the stronger one we can expect for a MAC scheme.

In the case of integrity, the blockwise adversarial model modifies the encryp-
tion oracle: it is requested with on-line queries and it outputs the authenticated
ciphertext blocks on-the-fly. During the game, the verification oracle does not
output anything and just waits until the end of the query. If it is valid, it returns
b = 1 and otherwise, it returns b = 0. The queries are made on-the-fly but this
does not make any change in the formalism of the experiment, as no intermediate
results are provided to the adversary. Thus, integrity in the blockwise adversarial
model is only slightly different from the standard model, since the encryption
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oracle is blockwise oriented. A description of the adversary experiment is given
in appendix A.2. In the following we say that a scheme is B-INT-CTXT secure
if any “reasonable” adversary cannot win this game with significant probability.

4 Authenticated Encryption in the Blockwise Setting

To construct an authenticated encryption scheme, the classical method is to use
an encryption scheme along with a Message Authentication Code (MAC). In [7],
Bellare and Namprempre have shown that if an authenticated encryption scheme
is both IND-CPA secure and INT-CTXT secure, then it is also IND-CCA secure.
They have also studied how to combine encryption and MAC schemes so that
the construction is generically secure: the right way to securely combine them is
to first encrypt the plaintext and then MACing the ciphertext: if the underlying
encryption scheme is only IND-CPA secure and if the MAC scheme is strongly
unforgeable, then the Encrypt-Then-MAC composition is IND-CCA secure.

If one considers now blockwise adaptive adversaries, one can see that the
Encrypt-Then-MAC composition is no longer secure against chosen ciphertext
attacks. Indeed, as we have seen above, such adversaries allow to break the naive
implementations of the Encrypt-Then-MAC. Thus, not only the encryption part
of the composition has to be studied against blockwise adversaries, but also the
decryption part, which may lead to insecure schemes.

To secure these compositions, the first idea is to move the requirements on the
underlying schemes to the blockwise setting. However, this is not sufficient since
the MAC verification and the decryption process are no longer linked. Thus even
if the scheme is IND-BCPA and B-INT-CTXT secure, the composition could be
insecure against chosen ciphertext attacks. For example, we consider the com-
position of the CBC encryption scheme with delay, denoted by DCBC (fully
described and proved secure in [14]), along with the EMAC authentication algo-
rithm, strongly unforgeable ([20, 5]). This scheme, DCBC-Then-EMAC, provides
IND-BCPA and B-INT-CTXT security. However, the already known chosen ci-
phertext attack on the CBC can be performed in the blockwise setting (see [16]
for a detailed description of it) even if the DCBC is combined with the secure
EMAC authentication scheme. This proves that the composed scheme is not
IND-BCCA secure. This remark allows us to give the following proposition:

Proposition 1. There exists a symmetric encryption encryption scheme pro-
viding both IND-BCPA and B-INT-CTXT security but which is not IND-BCCA
secure. That is, we have:

IND-BCPA + B-INT-CTXT �⇒ IND-BCCA

This shows that when dealing with blockwise adaptive adversaries some other
and stronger requirements have to be made on the underlying schemes. The clas-
sical Encrypt-Then-MAC composition and all the known authenticated encryp-
tion schemes cannot be used as it to ensure both confidentiality and integrity.
The protocol itself has to be modified to take into account blockwise adaptive
adversaries.



Authenticated On-Line Encryption 151

5 The Decrypt-Then-Mask Secure Generic Composition

In this section we describe a practical solution to the Verify-Then-Decrypt
paradigm. The composition simply modifies the decryption protocol and thus
is backward compatible with existing schemes. The encryption phase is sup-
posed to be secure in the blockwise model against chosen plaintext attacks. We
also assume that the cryptographic device is memory limited (cannot store the
whole plaintext), but stores the long term secret key. Moreover the receiver of an
authenticated ciphertext is assumed to have access to a Pseudorandom Number
Generator (PRNG), also implemented in the crypto device in charge of the de-
cryption. In this context, we propose a new decryption process, generically secure
against blockwise adaptive adversaries, mounting chosen ciphertext attacks.

5.1 Description

The main idea behind this construction is that the crypto device should not give
any information on the plaintext before having checked the ciphertext integrity.
However, because of its restricted storage capability, it cannot store the plain-
text M , verify the MAC and output M only when valid. Instead, the crypto
device will use a Pseudorandom Number Generator (PRNG) to mask the plain-
text blocks so that they can be returned on-the-fly.

A PRNG consists in two parts: a seed generation algorithm (initialization)
taking as input a security parameter and outputting an initial state s0 ; and
a generation algorithm, taking as input the current state si−1, and outputting
the random string ri along with the next state si. Note that in the model pre-
sented in [10], the initialization algorithm also produces a key which selects one
particular PRNG out of a whole family. However, we suppose here the PRNG is
without key and that the only secret resides in the initial state. In the following
we denote by CC the cryptographic device and by R the user of this device. We
assume the existence of an authenticated encryption scheme SE , taking as input
a key K along with a plaintext M , and returning an authenticated ciphertext.
Without loss of generality, it is denoted by (C, τ), where C is the ciphertext
and τ the MAC on it, although privacy and authenticity could be provided in
a single pass (with IACBC, OCB, ...).

The user R will use CC to decrypt an authenticated ciphertext (C, τ). The
main idea is to blind the plaintext blocks obtained after decryption of C by
XORing them with a pseudorandom sequence of bits. Then, if the tag τ is valid,
the seed used to generate the pseudorandom sequence is returned. Thus the
cryptographic device does not need neither memory to store the plaintext nor
multiple sending of the ciphertext. Formally, the decryption protocol between
CC and R, described in figure 1, works as follow:

Stage 0 R is given the ciphertext C = c1‖ . . . ‖cn along with a tag τ . He wants
to first check its integrity and, if valid, to decrypt it.
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τ

s

Receiver R(C, τ) Crypto Component CC(K)

(C, τ) = SEK(M)

C = c1‖ . . . ‖cn

s0
R← {0, 1}s

if τ is valid

then s = s0

else, s←⊥

for i = 1, . . . , n

mi = DK(ci)

(ri, si)← PRNG(si−1)

pi = mi ⊕ ri

if s =⊥, C is invalid

else,

s0 = s

for i = 1, . . . , n

(ri, si)← PRNG(si−1)

mi = pi ⊕ ri

Fig. 1. The Decrypt-Then-Mask protocol

Stage 1 CC runs the seed generation algorithm to get a random seed s0 ∈ {0, 1}s
for the PRNG (where s is a security parameter) and generates (r1, s1) =
PRNG(s0). R sends to his crypto device CC the first ciphertext block c1.
CC initializes the tag computation, decrypts c1 to obtain m1 = DK(c1),
computes p1 = m1 ⊕ r1 and returns p1 to R.

Stage 2 R sends the ciphertext on-the-fly. For each ciphertext block ci he re-
ceives, CC updates the tag computation, decrypts ci using the secret key,
and masks it as pi = mi ⊕ ri where (ri, si) = PRNG(si−1). CC finally out-
puts pi. This process continues until the last ciphertext block cn is sent and
CC returns pn.

Stage 3 R finally sends the tag τ to CC which checks its validity. If valid, CC
returns to R the seed s0 used as initial state for the PRNG. Otherwise it
outputs the predefined symbol ⊥.

Stage 4 If (C, τ) was valid, R can decrypt the ciphertext P = p1‖ . . . ‖pn us-
ing s0: for i = 1, . . . , n, (ri, si) = PRNG(si−1) and mi = pi ⊕ ri. Then
M = m1‖ . . . ‖mn is the plaintext corresponding to C. Otherwise, if R re-
ceives ⊥, he cannot recover the plaintext.

Even if the last stage requires a cryptographic operation (One Time Pad with
a pseudorandom sequence of bits), it can be safely performed outside the crypto
device, since no permanent secret is involved. Note that if the tag was valid, the
user R recovers the message M by generating all the ri values from the seed s0.
Otherwise, no information on the plaintext is given to the adversary, according
to the security of the PRNG. Indeed, as the receiver has no information on the
seed and since the one time pad blinds the message, any plaintext could have
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been encrypted in P if the PRNG outputs are indistinguishable from random
strings. Thus the security assumption on the PRNG is to be indistinguishable
from truly random against Known Key Attacks1, as defined in [10]: the adversary
knows the key used to generate the ri values but the seed s0 and the states si

are all hidden.
Note that the main point here is to use the initialization algorithm for each

decryption and then generate a new initial state each time a decryption is re-
quested. Indeed, the final state of the generator should not be used as initial
state in the next use of the PRNG, as often done in practice.

In the sequel, we prove the IND-BCCA security of this Decrypt-Then-Mask
decryption process when using an authenticated encryption scheme IND-BCPA
and B-INT-CTXT secure, along with a IND-KKA secure PRNG.

Remark 1. Hereafter, we assume that the decryption process is regularly clocked,
i.e., if k blocks of ciphertext have been sent, k − l plaintext blocks have been
returned, where l is a public parameter of the scheme. For example, the CBC
encryption scheme is such that l = 1 since the first block corresponds to the IV.
Note that this property is needed during the proof. Otherwise, insecure schemes
can be built, with delayed decryption outputs depending on the plaintext block.
For sake of simplicity, we assume in the sequel that l = 0, meaning that plaintexts
and ciphertexts, excluding the tag, are of the same length. However, the proof
holds for any value of l.

5.2 Security Proof

In this part we prove that when using the Decrypt-Then-Mask protocol proposed
above, with a IND-BCPA and B-INT-CTXT secure scheme, then the scheme is
also IND-BCCA secure.

Theorem 1 (With the Decrypt-Then-Mask protocol, IND-BCPA and
B-INT-CTXT ⇒ IND-BCCA). Let SE an authenticated encryption scheme
using the decryption protocol described in the figure 1. If SE is B-INT-CTXT
secure and IND-BCPA secure, and if the PRNG used in the decryption protocol
is IND-KKA secure, then SE is IND-BCCA secure. Moreover, we have:

AdvIND−BCCA
SE (k, t, qe, qd, µe, µd) ≤ AdvB−INT−CTXT

SE (k, t, qe, qd, µe, µd)
+ AdvIND−KKA

PRNG (k, t, qd, µd)
+ AdvIND−BCPA

SE (k, t, qe, µe)

Proof. We consider the adversary’s IND-BCCA game defined in section 3.1.
We recall that the adversary has access to a “left-or-right” blockwise oracle
LRB(·, ·, b) taking as input two plaintexts and encrypting one of them depending
on a random bit b. The adversary has also access to a decryption oracle D∗(·, ·)
taking as input a ciphertext C and a candidate tag τ for it, block by block,
1 Here the PRNG we use is supposed to be without any key. Thus one can assume the

key is known and then use this security model.
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and responding the queries as described in the protocol: first, it generates a
seed s0 for its PRNG. Then interactions with the adversary A begin. A sends
to the decryption oracle the ciphertext C, on-the-fly. Each ciphertext block ci

is first decrypted into mi using the decryption algorithm Dk. Then the PRNG
generates a random block ri and the oracle outputs pi = mi ⊕ ri. At the end of
the interactions, the decryption oracle receives the tag τ for the ciphertext. If it
is valid, it outputs the seed s0 for the PRNG. Otherwise, it sends a predefined
symbol ⊥, meaning that the ciphertext is invalid.

The adversary’s goal is to guess with non negligible advantage the bit b used
by the encryption oracle. The adversary A we consider runs in time t, submits
at most qe test messages of at most µe blocks, and qd decryption queries, of at
most µd blocks.

We start from the initial game G0 and we will transform this game to obtain
games G1, G2, and G3. For i = 0, 1, 2, 3, we denote by Si the event that A
guesses the bit b in game Gi.
Game G0. This is the original game, where encryption and decryption oracles
are as described above. S0 is defined to be the event that A correctly guesses the
value of the hidden bit b, in the game G0. Following the definition of security
given in annex A.1, the relation holds:

AdvIND−BCCA
SE,A (k) = |Pr(S0)− 1/2|

Game G1. This game is the same as G0 except that the decryption algorithm
never outputs the seed of the PRNG. Let E1 be the event that some valid
ciphertexts are rejected in game G1. Note that in the security model, A is not
allowed to feed the decryption oracle with outputs of the LRB oracle. Thus
the decryption queries are necessarily forgeries: at least one ciphertext block or
the tag have been modified in a query copied from an answer of the encryption
oracle. Since SE is B-INT-CTXT secure, A cannot forge a valid ciphertext,
except with probability at most AdvB−INT−CTXT

SE,A (k), depending on the scheme.
Then it follows that:

Pr(E1) ≤ AdvB−INT−CTXT
SE,A (k)

Using lemma 1 of [22] and after some probability manipulations, we get:

|Pr(S1)− Pr(S0)| ≤ AdvB−INT−CTXT
SE,A (k)

Game G2. This game is the same as G1, except that the outputs ri of the PRNG
are replaced by purely random blocks Ri. As before, for all decryption blocks
queries ci, the value pi = mi ⊕Ri is returned.

The crucial point here is that the adversary knows the random values re-
turned by the decryption box. Indeed, assume that A wants to have the en-
cryption of message M . Then he queries the left-or-right oracle for the pair of
equal messages (M, M) so that the ciphertext (C, τ) he receives necessarily en-
crypts M . Since the adversary cannot request the decryption oracle directly with
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(C, τ), either one block of C or the tag τ has to be modified to be sent. Thus,
one can suppose that A feeds D∗(·, ·) with the legitimate query (C, τ ′), where
τ ′ �= τ . As a consequence, according to the encryption scheme, the adversary
gets, in the best case, the values pi = mi ⊕ ri. Since he already knows mi, he
can deduce ri. Therefore, we assume that A always knows the random values
generated by the decryption box.

In this game, A can detect the modification in two different ways:

– if A obtains the seed s0, then he can detect the oracle’s misbehavior. Indeed,
he runs the PRNG to obtain the values ri that would have been generated,
and detects that the oracle is cheating, since ri �= Ri except with negligible
probability. However, since we specified in game G1 that the oracle never
outputs s0, this event cannot occur.

– if A can distinguish the PRNG outputs from random bits sequences, he
can also detect the oracle’s misbehavior. However, the PRNG is supposed
to be indistinguishable from random, and thus this bad event occurs with
probability at most AdvIND−KKA

PRNG,A (k).

Finally, since the adversary never obtains the seed for the PRNG, the adver-
sary’s advantage between the two games G1 and G2 depends only on the security
of the PRNG. Thus, we have:

|Pr(S2)− Pr(S1)| ≤ AdvIND−KKA
PRNG,A (k)

where AdvIND−KKA
PRNG (k, t, qd, µd) = maxA{AdvIND−KKA

PRNG,A (k)} is defined to be
the maximum adversary’s advantage in distinguishing the output of the PRNG
from a truly random string, with at most qd queries of length at most µd, and
in time t, when the secret key is known and all the states are hidden. A precise
definition is given in the full version paper [13].
Game G3. We start from G2 and we modify the decryption oracle’s behavior as
follows: instead of decrypting the ciphertext block ci into mi, and then masking it
with a random block Ri, the decryption oracle generates a random block Pi and
outputs it directly. Here the adversary gains no information from the decryption
oracle since he receives random values independent of the previous computations
and oracle calls. Furthermore since the one time pad is unconditionally secure
in the information theoretic sense, and since the outputs of the PRNG are in-
distinguishable from random strings, no information leaks about the plaintext
in the previous game. Thus the adversary gains no advantage between these two
games and we have:

Pr(S3) = Pr(S2)

Moreover the decryption oracle clearly gives no information to the adversary.
So the game of the adversary is the same as for a chosen plaintext attack in the
blockwise sense. Thus, his advantage of guessing the bit b in this game implies:

|Pr(S3)− 1/2| ≤ AdvIND−BCPA
SE,A (k)

Finally, adding all advantages involved in the different games gives the theorem.
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6 Practical Instantiation

In this section, we propose a practical implementation of the Decrypt-Then-Mask
composition with the Delayed CBC, proposed in [17] and proved secure in [14],
along with the FIPS 186 Pseudorandom Number Generator (see [12, 10]).

The Delayed-CBC encryption scheme, denoted by DCBC, has been proposed
as a countermeasure against the blockwise adaptive attack on the classical CBC,
in [17]. In the DCBC encryption mode, the encryption process is on-line : when
it receives the kth input block, it computes the kth output block and returns the
(k−1)th one. Finally, when it receives the stop command, the encryption process
returns the last block. The security proof for the DCBC has been recently made
in [14]. In that paper, the authors prove the DCBC secure against blockwise
chosen plaintext attacks, in the sense of the concurrent left-or-right security. As
mentioned in section 3.1, this notion is stronger than the one we need here.

The generic composition Decrypt-Then-Mask uses a symmetric authenticated
encryption scheme secure in the sense of indistinguishability and integrity. As
shown above, the Delayed CBC can be used to ensure BCPA security. Com-
bined in the Encrypt-Then-MAC composition with the encrypted MAC, called
EMAC [20], it also provides integrity. Thus, the composition DCBC-Then-
EMAC is a secure instantiation of the scheme in the Decrypt-Then-Mask setting.

However, to implement the Decrypt-Then-Mask protocol, a Pseudorandom
Number Generator should be used. Such generators have been proposed in the
literature with different security proofs, depending on the model we consider.
The requirements we have here on the generator are very strong. Indeed, since
the receiver of the ciphertext should also have an implementation of it, we should
assume that the key is known to the adversary and that the only secret is the
initial state chosen by the crypto device. Such security notion has been defined
in [10]. In that paper the authors studied the security of two popular Pseudoran-
dom Number Generators, the ANSI X9.17 and the FIPS 186. In our setting, the
ANSI X9.19 is not appropriate since it is totally insecure when the key is known
to the adversary. However, the FIPS 186 generator is proved secure against
Known Key Attacks, when the states of the generator are hidden, and when the
inputs are not under control of the adversary. This is exactly our setting and
thus we propose to use it in our scheme. The full version of this paper [13] recalls
this security framework and the theorem of [10] for the security of the FIPS 186
generator. One of the constructions provided by the FIPS 186 specifications [12]
is based on the core SHA-1 function with the underlying assumption that it can
be considered as a random function. This assumption is not new and has already
been used in some papers as in [4] and [2]. This seems realistic in practice since
no attack that could suggest such a weakness has been found for this function.
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A Formal Definitions

A.1 Privacy

Here are described the experiments we consider:

ExptIND−BCPA
SE,A (k) ExptIND−BCCA

SE,A (k)
Pick a random bit b ∈ {0, 1} Pick a random bit b ∈ {0, 1}
K

R← K(k) K
R← K(k)

d← AEbl
K (LR(·,·,b)) d← AEbl

K (LR(·,·,b)),Dbl
K(·)

if d = b, return 1, else return 0 if d = b, return 1, else return 0

where Ebl
K(LR(·, ·, b)) is an encryption oracle taking as input two blocks of mes-

sages and returning the encryption of one of them depending on the bit b, and
where Dbl

K(·) is a decryption oracle taking as input a ciphertext block and re-
turning the corresponding plaintext. We denote by IND-BCPA (respectively by
IND-BCCA) the security in the blockwise model against chosen plaintext attacks
(respectively chosen ciphertext attacks). The adversary’s advantage in winning
the IND-BCPA and the IND-BCCA games are defined as:

AdvIND−BCPA
SE,A (k) =

∣
∣
∣Pr[ExptIND−BCPA

SE,A (k) = 1]− 1/2
∣
∣
∣

AdvIND−BCCA
SE,A (k) =

∣
∣
∣Pr[ExptIND−BCCA

SE,A (k) = 1]− 1/2
∣
∣
∣
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Therefore, we define the security bound of the scheme in the IND-BCPA and in
the IND-BCCA senses by:

AdvIND−BCPA
SE (k, t, qe, µe) = max

A
{AdvIND−BCPA

SE,A (k)}
AdvIND−BCCA

SE (k, t, qe, qd, µe, µd) = max
A
{AdvIND−BCCA

SE,A (k)}

where the maximum is over all legitimate A having time-complexity t, asking
to the oracle at most qe encryption queries totaling µe blocks, and possibly qd

decryption queries totaling µd blocks. The time complexity is defined to be the
worst case total execution time of the experiment plus the size of the code of
the adversary. We consider that the time complexity is polynomially bounded
in the security parameter k. A secret-key encryption scheme is said to be IND-
BCPA (respectively IND-BCCA) secure, if for all polynomial time, probabilistic
adversaries, the advantage in the respective games is negligible as a function of
the security parameter k.

A.2 Integrity

The experiment we consider is as follows:

ExptB−INT−CTXT
SE,A (k)

K
R← K(k)

If AEbl
K(·),D∗

K(·,·)(k) makes a query (C, τ) to the oracle D∗
K(·, ·) such that

- D∗
K(C, τ) returns 1, and

- (C, τ) was never an output of EK(·)
then return 1, else return 0.

where Ebl
K(·) is a blockwise authenticated encryption oracle taking as input

a plaintext M on-the-fly and returning a pair (C, τ) of ciphertext and tag, and
where D∗

K(·, ·) is a decryption oracle taking as input a ciphertext C along with
a candidate tag τ for it, and returning a bit b such that b = 1 if valid and b = 0
otherwise. Note that the adversary A is not allowed to feed the decryption oracle
D∗

K(·, ·) with outputs of the encryption oracle. Otherwise, he could trivially win
the game. So, if (C, τ) is an output of the encryption oracle, then the adversary
should modify at least one block of C or the tag τ before calling the decryption
oracle.

The adversary’s advantage in winning the B-INT-CTXT game is defined as:

AdvB−INT−CTXT
SE,A (k) = Pr[ExptB−INT−CTXT

SE,A (k) = 1]

Therefore, we define the security bound of the scheme in the B-INT-CTXT sense
by:

AdvB−INT−CTXT
SE (k, t, qe, qd, µe, µd) = max

A
{AdvB−INT−CTXT

SE,A (k)}

where the maximum is over all legitimate A having time-complexity t, asking
to the oracle at most qe encryption queries totaling at most µe blocks, and at
most qd decryption queries totaling at most µd blocks.
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