
Authenticated Storage Using Small Trusted Hardware

Hsin-Jung Yang Victor Costan Nickolai Zeldovich Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory

Massachusettes Institute of Technology
{hjyang, costan, nickolai, devadas}@mit.edu

ABSTRACT

A major security concern with outsourcing data storage to third-
party providers is authenticating the integrity and freshness of data.
State-of-the-art software-based approaches require clients to main-
tain state and cannot immediately detect forking attacks, while ap-
proaches that introduce limited trusted hardware (e.g., a monotonic
counter) at the storage server achieve low throughput. This pa-
per proposes a new design for authenticating data storage using
a small piece of high-performance trusted hardware attached to an
untrusted server. The proposed design achieves significantly higher
throughput than previous designs. The server-side trusted hardware
allows clients to authenticate data integrity and freshness without
keeping any mutable client-side state. Our design achieves high
performance by parallelizing server-side authentication operations
and permitting the untrusted server to maintain caches and sched-
ule disk writes, while enforcing precise crash recovery and write
access control.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Authentication

Keywords

Secure storage; Trusted hardware; Authentication; Integrity; Fresh-
ness; Replay attack; Forking attack

1. INTRODUCTION
Cloud-based data storage services are becoming increasingly pop-

ular, allowing users to back up their data remotely, access the data
from any connected device, as well as collaborate on the shared
data. For example, Amazon S3 [1] and Google Storage [17] offer
scalable storage services to end users, enterprises, and other cloud
services providers. Dropbox [10], Apple iCloud [2], and Google
Drive [18] further provide file sharing and synchronization services
among multiple devices and users. The outsourced data storage ser-
vice provides users convenience and global data accessibility at low
cost, and frees them from the burden of maintaining huge local data
storage.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCSW’13, November 8, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2490-8/13/11 ...$15.00.

http://dx.doi.org/10.1145/2517488.2517494.

Although there are powerful economic reasons to adopt cloud
storage, outsourcing data introduces some potential risks, typically
thought of in terms of confidentiality, availability, integrity, and
freshness. These risks arise due to many factors, including mali-
cious attacks on the storage provider, insider attacks, administra-
tive mistakes, or traditional hardware failures. Most of these con-
cerns can be resolved by software: confidentiality by encryption,
availability by appropriate data replication, and integrity by digital
signatures and message authentication codes. On the contrary, it
is difficult to ensure freshness in software when there are multiple
clients involved.

Freshness requires the data read from a server to match the lat-
est write, and it is difficult to enforce in software because it requires
knowing about all possible writes that the server may have acknowl-
edged. With a naïve client that has no client-side mutable state,
a malicious server can perform a replay attack by answering the
client’s read request with properly signed but stale data. This attack
can be detected if the client remembers the last operation he/she has
performed [23]. In the presence of multiple clients, a server can
“fork” its state to prevent one client from seeing another client’s
writes, and detecting such attacks requires one client to learn about
the other client’s writes out of band [23].

To detect forking attacks, software-based solutions [6, 33, 24,
12] require user-to-user communication and thus cannot achieve
immediate detection. Hardware-based solutions [8, 22, 36], on the
other hand, add a piece of trusted hardware to the system. The
trusted hardware typically provides a secure log or a monotonic
counter, preventing a malicious server from reversing the system
state to its previous value or presenting valid but inconsistent sys-
tem states to different users. However, such trusted hardware is of-
ten resource-constrained, and becomes a performance bottleneck.

To improve the performance of trusted hardware while keeping
the cost low, Costan et al. in a position paper [9] proposed splitting
the functionality of the trusted hardware into two chips: a P (pro-
cessing) chip and an S (state) chip. The P chip has high computing
power to perform sensitive computations, and the S chip has secure
non-volatile memory (NVRAM) to store the system state. How-
ever, Costan et al.’s design does not address two possible attacks
that can violate integrity and freshness guarantees: (1) a server (or
other malicious users) can pretend to be a legitimate user and per-
form unauthorized/replayed writes without being detected, and (2)
a server can maliciously discard the users’ updates that are already
acknowledged by disrupting the P chip’s supply power and reset-
ting it with the stale state stored on the S chip. Prior work also
does not address the key challenge of crash recovery: a server that
crashes before data is written to the disk may be forced to stop
providing service altogether, due to the inconsistency between the
disk and the state stored on the S chip. Furthermore, to our best

knowledge, neither results nor implementation have been provided
to prove whether split trusted hardware achieves high performance.

In this paper, we rectify the security vulnerabilities in the S-P
chip model proposed by Costan et al. and provide a detailed de-
sign augmented with a precise write access control scheme and sys-
tem state protection against power loss. In addition, we propose
an efficient crash recovery mechanism to improve system reliabil-
ity. To prove our design achieves high performance while ensuring
data integrity and freshness, this paper presents a full-system im-
plementation and end-to-end evaluation of the proposed system for
authenticated storage. Our system achieves high throughput by par-
allelizing the operations carried out on the server and the P chip
and permitting the untrusted server to manage caches and schedule
disk writes to optimize disk I/O.

We implement our prototype trusted hardware on an FPGA and
connect it to a Linux server. A client model is also implemented
in Linux and it runs an ext2 file system on top of our authenti-
cated block storage. We demonstrate that (1) our system perfor-
mance is comparable to that of the Network File System (NFS) [31,
32] and (2) the security mechanisms introduce little performance
overhead—around 10% for typical file system benchmark work-
loads under a realistic network scenario. In addition, we provide
customized solutions based on micro-benchmark results: (1) For
performance-focused storage providers, our design can achieve 2.4
GB/s throughput using an ASIC paired with a smart card chip; (2)
For budget-focused storage providers, our design scales to a single-
chip solution that is feasible under today’s NVRAM process and
can achieve 377MB/s throughput, which is much higher than that
of other existing single-chip solutions [36]. This single-chip solu-
tion does not follow the high-level concept proposed in [9].

The main contributions of this work are as follows:

• A detailed design and implementation of a trusted hardware
platform that provides integrity and freshness guarantees and
achieves high throughput and low latency.

• A state protection scheme that tackles the security vulnera-
bility caused by power attacks on the split trusted hardware.

• A write access control scheme that prevents unauthorized
writes from violating integrity and freshness guarantees.

• A crash recovery mechanism to protect the system from acci-
dental or malicious crashes, which both allows the untrusted
server to schedule disk writes and still provides strong fresh-
ness guarantees.

• An end-to-end evaluation that shows our design introduces
little overhead on file system benchmarks.

• A single-chip solution of our prototype is shown to achieve
much higher throughput than existing hardware solutions.

The rest of this paper is organized as follows: Section 2 presents
the related work. Section 3 provides an overview of our system,
and Section 4 describes its design. Implementation details and opti-
mizations are discussed in Section 5. Section 6 evaluates the system
performance. Section 7 concludes the paper.

2. RELATED WORK
To ensure data integrity by detecting unauthorized data modifica-

tion, cryptographic hashes, message authentication codes (MACs),
and digital signatures are commonly adopted in current systems [15,
21, 29]. In addition, fine-grained access control is needed to sepa-
rate the writers from the readers in the same file. For example, in
Plutus [21], each file is associated with a public/private key pair to
differentiate read/write access. For each file, a private file-sign key

is handed only to the writers, while the readers have the correspond-
ing public file-verify key. When updating the file, an authorized
writer recomputes the hash of the file (which is the root hash calcu-
lated from the block hashes using the Merkle tree technique [27]),
signs the hash with the file-sign key, and places the signed hash in
the file header. Then, readers can check the integrity of the file by
using the file-verify key to verify the signed hash.

Freshness verification of outsourced storage is more challenging,
especially when serving a large number of clients. When issuing a
read request to a cloud server, a client cannot detect the server’s mis-
behavior using the signature verification scheme mentioned above
if the server performs a replay attack by maliciously sending the
stale data with a valid signature from an authorized user. This kind
of attack can cause freshness violations.

In a single-client setting, a replay attack can be detected if the
client is aware of the latest operation he or she has performed. Cryp-
tographic hashes can be used to guarantee both integrity and fresh-
ness. A naïve approach is to store a hash for each memory block
in the client’s local trusted memory and verify the retrieved data
against the corresponding hash value. For large amounts of data,
tree-based structures [27, 19, 11] have been proposed to reduce the
memory overhead of trusted memory to a constant size. In tree-
based approaches, the tree root represents the current state of the
entire memory, and it can be made tamper-resistant and guaranteed
to be fresh if stored in trusted memory. The trusted memory can be
the client’s local memory in this case. For example, the Merkle tree
technique [27] is commonly used in outsourced file systems [20,
16] to reduce the storage overhead at the client-side to a constant.
In our design, we also apply the Merkle tree technique but store the
root hash securely at the server side.

In a multi-client system, ensuring freshness is more difficult. In
a group collaboration scenario, a cloud server can maliciously pre-
vent each group member from finding out that the other has updated
the data by showing each member a separate copy of data. This
kind of replay attack is called a forking attack, which was first ad-
dressed by Mazières and Shasha in [25, 26]. Mazières and Shasha
introduced the forking consistency condition in [26], showing that
a forking attack can be detected unless clients cannot communi-
cate with each other and can never again see each other’s updates.
The SUNDR system [23] was the first storage system using fork-
ing consistency techniques on an untrusted server, and there were
subsequent fork-based protocols, such as [7] and [5]. User-to-user
communication is required to detect server misbehavior: for exam-
ple, FAUST [6] and Venus [33] allowed clients to exchange mes-
sages among themselves. To improve the efficiency, FAUST weak-
ened the forking consistency guarantee, and Venus separated the
consistency mechanism from storage operations and operated it in
the background. Depot [24] and SPORC [12] further supported dis-
connected operations and allowed clients to recover from malicious
forks. In addition to storage services, forking consistency has been
recently applied to a more general computing platform [4].

Software approaches mentioned above allow totally untrusted
servers and rely on end-to-end checks to guarantee integrity. Al-
though some software solutions can detect and even recover from
malicious forks, they require communication among clients and
therefore cannot detect attacks immediately. Hardware solutions,
on the other hand, use trusted hardware as the root of trust to pro-
vide stronger security guarantees as compared to software-only ap-
proaches and simplify software authentication schemes.

To immediately detect forking attacks, a piece of trusted hard-
ware is used as a trusted computing base (TCB) and attached to the
system. Critical functionality is moved to the TCB to ensure trust-
worthiness. The Trusted Platform Module (TPM) [35], a low-cost

tamper-resistant cryptoprocessor introduced by the Trusted Com-
puting Group (TCG), is an example of such trusted hardware. Since
TPMs became available in modern PCs, many researchers have de-
veloped systems that use the TPM to improve security guarantees.

Attested append-only memory (A2M) proposed by Chun et al. [8]
provided the abstraction of a trusted log that can remove equivoca-
tion and improve the degree of Byzantine fault tolerance. Van Dijk
et al. used an online untrusted server together with a trusted times-
tamp device (TTD) implemented on the TPM to immediately detect
forking and replay attacks [36]. Levin et al. proposed TrInc [22],
which is a simplified abstraction model and can be implemented
on the TPM. In both TrInc and TTD, monotonic counters were
used to detect conflicting statements sent from the untrusted sever
to different clients.

Trusted hardware designed for these secure storage services re-
quires secure NVRAM for long-term storage as well as control
logic and cryptographic engines. However, it is difficult to achieve
high-performance computation while keeping cost low by combin-
ing all the building blocks on a single chip, because the silicon fab-
rication technology for the NVRAM and that for high-performance
computational logic are different. Therefore, today’s trusted hard-
ware is generally slow, which affects the throughput and latency of
the whole system. To avoid this problem, Costan et al. proposed
splitting the functionality of the TCB into two chips: a P chip with
high throughput and an S chip with secure NVRAM [9]. The P
chip and S chip are securely paired to serve as a single TCB. Com-
pared to previous single-chip solutions, this two-chip model allows
trusted hardware to perform more complicated operations without
performance degradation. However, Costan et al. did not address
potential power attacks on the split trusted hardware, and the pro-
posed system was vulnerable to unauthorized writes that can cause
integrity and freshness violations.

In this work, in order to immediately detect forking attacks and
minimize the clients’ workload, we place the trusted components
at the server side. To enhance efficiency, as suggested in [9], we
use an S-P chip pair as the TCB model in our prototype system. To
rectify the security vulnerabilities in the previous S-P chip model,
we propose a freshness-guaranteed write access control, a state pro-
tection scheme, and a crash-recovery scheme to deal with unau-
thorized/replayed writes and power loss events. Finally, we pro-
vide a detailed evaluation showing that we can significantly reduce
overheads caused by security checks on trusted hardware, and in-
crease the capabilities of trusted storage systems, e.g., the number
of clients and bandwidth, significantly beyond [36, 22].

3. GOALS AND OVERVIEW
To build a practical cloud storage system that can immediately

detect integrity and freshness violations, our design should achieve
the following goals: (1) Integrity and freshness guarantees, (2) Sim-
ple data checking and management done by clients, (3) Simple
API (single request/response transaction per operation) between
the server and its clients, (4) Little local storage, (5) Acceptable
overhead and cost, and (6) Customized solutions in which storage
providers are able to adjust their systems according to the perfor-
mance and cost trade-off.

3.1 System Overview
To build a trusted cloud storage system that efficiently guarantees

integrity and freshness of cloud data, we attach a piece of trusted
hardware to an untrusted server and adopt the S-P chip model as the
trusted hardware; that is, the functionality of the trusted hardware
is split into S and P chips. The P chip, which can be an FPGA board
or an ASIC, has high computing power but only volatile memory,

server

disk
client1

client2

Internet

PubEK, Ecert

S-P Chip

trusted

PubEK, Ecert

Figure 1: System model

Trusted Zone Untrusted Zone

Disk

Session Table

Server

Merkle Tree Engine

Tree Cache

P Chip

Tree Controller

Hash Controller

Boot Logic

Boot Engine

request

Secure NVRAM
S Chip

data

hmac

boot

signal

Session Cache

RSA and AES Engine

Data Hash Engine

integrity

check signal

Disk Controller

to client

from client

AES

Figure 2: Design overview

while the S chip, which can be a smart card, has secure NVRAM
but only constrained resources.

Figure 1 represents the system model. For simplicity, we make
an assumption that a single-server system provides its clients with a
block-oriented API to access a large virtual disk. The clients access
the cloud storage service via the Internet; the untrusted server is
connected to the disk and the trusted S-P chip pair.

To access/modify the cloud data, the clients send read/write re-
quests, wait for the responses, and then check data integrity and
freshness. The untrusted server schedules requests from the clients,
handles disk I/O, and controls the communication between the P
chip and S chip. The S-P chip pair shares a unique and secret
HMAC key with each client, and thus essentially becomes an ex-
tension of the clients. The S-P chip pair is trusted to update and
store the system’s state, manage write access control, verify data
integrity, and authenticate the responses sent to the client using the
HMAC key. More specifically, the P chip performs all of the sen-
sitive computations and stores the system’s state when the system
is powered, and the S chip securely stores the system’s state across
power cycles. This scheme simplifies the computation and verifica-
tion that need to be done by clients in software-based solutions, and
abstracts away the design complexity and implementation details.

3.2 Threat Model
In our system model shown in Figure 1, the cloud server is un-

trusted: it may answer the clients’ read requests with stale or cor-
rupted data, and it may pretend to be a client and overwrite the
client’s data. The server may maliciously crash and disrupt the P
chip’s supply power to drop the clients’ recent updates. The disk
is vulnerable to attackers and hardware failures, so the data stored
on the disk may not be correct. All connection channels within the
system (including the communication between the S and P chips)
are also untrusted. Any message traveling on the channels may be
altered to an arbitrary or stale value. A client is trusted with the
data he/she is authorized to access, but the client may try to modify
the data outside the scope of his/her access privilege.

Table 1: Notation

Notation Description

H(X) the hash value of X

{M}K the encryption of message M with the key K

HMACK(M) the HMAC of message M with key K

MTXYN
the message type indicating that a message is
sent from X to Y with sub-type N

This work allows clients to identify the correctness of the re-
sponses sent from the server. If the received response is incorrect,
the client will not accept it and will resend the original request or
report the event to the system manager. Therefore, receiving an in-
correct response can be considered as a missing response and can
be treated as a denial-of-service attack, which falls out of the scope
of this work.

3.3 Chain of Trust
The S chip and P chip are securely paired during manufactur-

ing time and thus can be seen as a single TCB. The two chips
share an endorsement key pair (PubEK,PrivEK) and a symmetric
encryption key SK. The manufacturer, who can be seen as a CA,
signs PubEK and produces the endorsement certificate (ECert) to
promise that PrivEK is only known to the S-P pair. Our S-P pairing
procedure is similar to that described in [9]. We use the S-P chip
pair as the root of trust and establish the chain of trust, allowing
clients to trust the computation and verification performed by our
storage system.

When a client connects to the cloud server, ECert (and PubEK)
is presented to the client for verification. If the verification is suc-
cessful, which means PubEK can be trusted, the client can secretly
share an HMAC key with the S-P chip pair by encrypting the HMAC
key under PubEK. The S-P chip pair can then use the HMAC key
to authenticate the response messages sent to the client.

In this work, we also provide a single-chip solution where the
S chip and P chip are integrated into an ASIC. This chip can be
viewed as a smart card running at a higher frequency with addi-
tional logic for data hashing. The detailed specification is described
in Section 6.3.2. In this solution, the communication between the
S and P chips becomes on-chip and can be trusted, so the pair-
ing scheme is no longer required. This single chip also generates
(PubEK,PrivEK) and SK at manufacturing time and follows the
chain of trust model described above.

4. DESIGN
Figure 2 represents our prototype system architecture, which con-

sists of two parts: an untrusted server with an untrusted disk, and
a trusted S-P chip pair. This section introduces our system’s char-
acteristics and describes how we achieve the security and perfor-
mance goals. The detailed hardware mechanisms are discussed in
Section 5. Table 1 lists the symbols used in our design concepts
and protocols. More details about our exact protocol are provided
in a separate technical report [37].

4.1 Memory Authentication
To verify the integrity and freshness of the disk data, we build

a Merkle tree [27] on top of the disk (see Figure 3). The hash
function’s collision resistance property allows the Merkle tree root,
which is also called the root hash, to represent the current disk state.
The root hash is calculated and stored in the S-P chip pair, so it
can be trusted against any corruption or replay attacks. The root
hash is guaranteed to be always fresh, and leaf hashes are verified

B0 B1 B2 B3 B4 B5 B6 B7

h1

h2 h3

h4 h5 h6 h7

h8 h9 h10 h11 h12 h13 h14 h15

hi = H(Bi-N)

hi

h2i h2i+1

hi = H(h2i h2i+1)

Bi-N

hi

N: tree size

Figure 3: A Merkle tree example for a disk with 8 blocks

by the S-P chip pair to be consistent with the root hash and sent
to the clients in the response messages, which are authenticated
using HMACs. Therefore, a client can detect any data corruption
or forking attack by verifying the received data against the received
leaf hash. There is no need to communicate with other clients to
check the data consistency.

To improve the efficiency of the Merkle tree authentication, we
let the P chip cache some tree nodes. The caching concept is sim-
ilar to what Gassend et al. proposed in [13]: once a tree node is
authenticated and cached on-chip, it can be seen as a local tree root.
While Gassend et al. use the secure processor’s L2 cache, which is
on-chip and assumed to be trusted, to cache tree nodes, we cache
the tree nodes on the P chip and let the untrusted server control the
caching policy. This is because software has much higher flexibility
to switch between different caching policies in order to match the
data access patterns requested by various cloud-based applications.

In our prototype system, the entire Merkle tree is stored on the
untrusted server. The P chip caches tree nodes; its Merkle tree
engine (see Figure 2) updates the cached nodes to reflect write op-
erations and verifies the tree nodes to authenticate read operations.

The Merkle tree engine manages the cached nodes according to
the commands sent from the server’s tree controller, which controls
the caching policy. There are three cache management commands:
(1) the LOAD command asks the tree engine to load a certain tree
node and evict a cached node if necessary; (2) the VERIFY com-
mand asks the tree engine to authenticate two child nodes against
their parent node; (3) the UPDATE command asks the tree engine
to calculate and update the tree nodes on a certain path from a leaf
node to the root. These commands are sent from the untrusted
server; therefore, the tree engine performs additional checks for
each command to prevent integrity and freshness violations. If any
verification step fails, the integrity check signal is raised to report
the error to the system manager.

4.2 Message Authentication
We use the HMAC technique to create an authenticated channel

over the untrusted connection between each client and the trusted
S-P chip pair. Requests/responses are verified with HMACs to pre-
vent message corruption or replay attacks. Each HMAC key should
be only known to the client and the S-P chip pair.

Figure 4 describes how we securely share the HMAC key be-
tween a client and the S-P chip pair with minimal performance
overhead even when the system serves multiple clients. The client
and server communicate via a session-based protocol.

Each time a client connects to the server, the client first requests
a session. Each session has a unique HMAC key, so an HMAC key
is also called a session key (Skey). To share Skey with the S-P chip,
the client encrypts Skey with PubEK and sends it along with the
request for a new session. Then server assigns a new session ID

Client Server P chip
encrypted HMAC key ({Skey}PubEK)

processed key

({Skey}SK)

decrypt {Skey}PubEK

re-encrypt Skey

store (Sid, {Skey}SK)

session ID

(S id
)

Client Server P chip

session ID

processed key({Skey}SK)

Session Initialization Read/Write Operation

session ID

session cache entry
obtain Skey

(session cache miss)

(session cache hit)

decrypt {Skey}SK -> get Skey

store Skey

Figure 4: HMAC key management protocol

to the client and forwards the encrypted key ({Skey}PubEK) to the
P chip. The P chip can decrypt {Skey}PubEK using PrivEK, which
is only known to the S-P chip pair. To eliminate the need for key
transmission in future read/write operations, the P chip caches Skey.
In addition, the P chip generates the processed key by re-encrypting
Skey with the symmetric key SK and stores it on the server, because
symmetric key decryption is much faster than public key decryp-
tion. During each read/write operation, the client sends the session
ID with the request, and Skey can be obtained from the P chip’s
cache or from the decryption of {Skey}SK stored on the server.

4.3 Write Access Control
We let the S-P chip pair manage write access control to ensure

fresh writes and prevent unauthorized writes from the server and
clients. No unauthorized user or malicious server can overwrite a
block without being detected by the S-P chip pair or an authorized
user. In addition, all writes are ensured to be fresh; that is, an old
write from an authorized user cannot be replayed. Note that we do
not focus on read access control in our system because a client can
prevent unauthorized reads by encrypting the data locally, storing
the encrypted data on the cloud, and sharing the read access key
with authorized users without changing the system design.

To manage a situation where a data block has multiple authorized
writers, we assume a coherence model in which each user should
be aware of the latest update when requesting a write operation.
Each set of blocks with the same authorized writers has a unique
write access key (Wkey), which is only known to the authorized
writers and the S-P chip pair. In addition, to protect data against re-
play attacks, each block is associated with a revision number (Vid),
which increases during each write operation, and each Merkle leaf
node should reflect the change of the associated Wkey and Vid . In
this way, any change of Wkey and Vid in any data block would
change the root hash, and therefore cannot be hidden by the un-
trusted server. In the following paragraphs, we describe this write
access control scheme in more detail.

For each block, in addition to the data itself, the server also stores
the block’s write access information, which consists of the hash of
the write key (H(Wkey)) and the revision number (Vid). To guaran-
tee that the write access information stored on the server is correct
and fresh, we slightly modify the original Merkle tree by changing
the function used to compute each leaf node to reflect any change
of the write access information. The new formula is shown in Equa-
tion 1, where H refers to the cryptographic hash function used in
the Merkle tree. It is similar to adding an additional layer under the
bottom of the Merkle tree. Each leaf node in the original Merkle
tree now has three children: the original leaf hash (H(data)), the
hash of the write key (H(Wkey)), and the revision number (Vid).
We refer the children of each leaf node to leafarg.

leaf = H(H(data)||Vid ||H(Wkey)) = H(leafarg) (1)

Figure 5 describes how the P chip manages the write access con-
trol. When a client reads a block, the server sends the latest revi-
sion number (Vid) along with the response. On the next write to
the same block, the client encrypts the write key (Wkey) and the
new revision number (Vid+1) under Skey, then sends the encrypted
message as well as the hash of the new write key (H(Wkey∗)) along
with the write request. Wkey∗ is different from Wkey only if the
client wants to change the access information, e.g., revoking a cer-
tain user’s write access. The P chip first authenticates the access
information stored on the server by checking it against the verified
leaf node. Then, the P chip checks the client’s access information
against what is stored on the server. If the write keys are not consis-
tent, the P chip rejects the write request directly. If the client’s new
revision number is not larger than the one stored on the server by
1, the P chip sends the client the correct revision number (the one
stored on the server) to inform the client that some other authorized
users have already updated the block and the client’s write request
needs to be re-issued. If verification is successful, the P chip gener-
ates the new leaf value to reflect the change of the access informa-
tion and performs tree updates. In this scheme, only the users with
correct Wkey can increase Vid and send a valid {Wkey||Vid +1}Skey

to perform updates, and H(Wkey) and Vid stored on the server are
guaranteed to be correct and fresh under the Merkle tree protection.

When the disk is initially empty, the P chip does not check the
access of the first write to each data block. After the first write,
the write key has been established, and the P chip starts to check
subsequent writes following the write access control scheme men-
tioned above. In a real cloud storage case, when a client requests a
chunk of data blocks, the server can first establish a write key for
these data blocks and shares the write key with the client. Then,
the client can overwrite the write key to prevent the server from
modifying the data.

4.4 State Protection against Power Loss
While the S chip is responsible for storing the root hash, which is

the system’s state, across power cycles, the P chip computes and up-
dates the root hash in its volatile memory (the tree cache), in which
the data stored is vulnerable to power loss. To prevent the server
from maliciously or accidentally interrupting the P chip’s supply
power and losing the latest system state, the P chip should keep
sending the latest root hash to the S chip and delay the write re-
sponses to be sent to the clients until the latest root hash is success-
fully stored on the S chip. When a client receives a write response,
the system guarantees that the system state stored in the NVRAM
can reflect the current write operation or the client/S-P chip pair can

Client Server P chip

read

H(Wkey*), data*, {Wkey║Vid+1}Skey
leafarg , leaf,H(Wkey*), H(data*)

 {Wkey║Vid+1}Skey

Vid+1, leaf*

allow update(leaf*)

decrypt {Wkey║Vid+1}Skey

verify leaf, leafarg

check Wkey, Vid+1

 leafarg = H(data) ║ Vid ║H(Wkey) , leaf = H(leafarg)

 leafarg* = H(data*) ║ Vid+1║H(Wkey*) , leaf* = H(leafarg*)

issue

read

issue

write

Vid , HMACSK(Vid)

Vid

Figure 5: Write access control example

Client Server P chip

write1

S chip

update1 store HMACw1

write2

update2
store HMACw2

storeRoot()

s, HMACSK(MTPS1║s║n)

via Server

HMACSK(MTSP1║s║n)

HMACw1, HMACw2

read1

write4
certifyRead1

store HMACr1update4
store HMACw4

read5

certifyRead5

store s

writei : wrtie block i readi : read block i

HMACwi: response for writei HMACri : response for readi

s: root hash n: nonce

MTXYN: message type

HMACr5 data5

n

Figure 6: Root hash storage protocol

detect the inconsistency. Considering that the S chip has long write
times (around 1ms/byte for smart cards [30]), in order to maintain
high throughput, the P chip handles the clients’ new requests but
stores the responses in an on-chip buffer while waiting for the S
chip’s acknowledgment of successfully saving the root hash.

Figure 6 illustrates our root hash storage protocol. After a Merkle
tree update, the P chip generates an HMAC to authenticate the write
operation, stores the HMAC in the on-chip buffer instead of send-
ing it to the client immediately. When receiving the server’s store-
Root() request, the S chip sends a random nonce (n) to the P chip,
and the P chip sends the latest root hash (s) to the S chip. While
waiting for the S chip’s acknowledgment, the P chip keeps handling
clients’ requests and generating responses (HMACwi and HMACri).
The P chip stores the responses that are used to authenticate write
operations or read operations that access the same blocks written by
buffered write operations. The P chip releases the responses only if
it receives a valid acknowledgment from the S chip indicating that
the corresponding root hash has been successfully stored.

R/W Sid Bid N {Wkey║Vid}Skey H(data)

W 36 4 321f… ed20… 53c7…

R 15 4 4b1b…

W 11 6 ac03… c700… ed27…

W 21 5 aef3… ef2b… be42…

W 21 2 345f… 2516… 21a0…

R 53 2 a215...

W 53 7 f213... 87c1… 8b32…

W 12 1 ae2b… 781b… 52cf…

…
…

…
…

…
…

…
…

…
…

…
…

D0 D1 D2 D3 D4 D5 D6 D7

(i-1)
th

 snapshot

Request Log

Di= datai

Normal Storage (Disk)

Storage for Recovery (Disk)

RAM

Li=leafarg_i=H(datai)║Vid_i║ H(Wkeyi)L0 L1 L2 L3 L4 L5 L6 L7

S Chip

i
 th

 snapshot

ith root

(i-1)
th

 i
 th

 root hash

Inconsistent

with Disk

Crash! NVRAM

Figure 7: Crash-recovery mechanism

In the two-chip prototype system, communication between the S
chip and P chip is via server and thus untrusted. To securely store
the latest root hash on the S chip, after the P chip receives the nonce
n from the S chip, it sends out HMACSK(MTPS1||s||n) along with
the root hash s, and the S chip uses HMACSK(MTSP1||s||n) as the
acknowledgment, where MTPS1 and MTSP1 are message types used
to distinguish the HMACs sent by the P chip and by the S chip so
that the server cannot maliciously acknowledge the P chip. In a
single-chip solution, the communication between the S and P chips
becomes trusted, and hence the HMACs for the root hash storage
protocol are no longer needed.

4.5 Crash-Recovery Mechanism
The crash-recovery mechanism ensures that even if the server

accidentally/maliciously crashes, the disk data can be recovered to
the state that is consistent with the root hash stored on the S chip.

There are two possible scenarios in which the disk state after the
server re-boots is not consistent with the root hash stored on the
S chip. One happens when the server crashes after the root hash
is stored on the S chip but the data has not yet been stored on the
disk. The other one happens when the server crashes after the data
is stored on the disk but the corresponding root hash has not yet
been stored on the S chip. To prevent the first scenario, the server
should first flush the data into disk before it passes the root hash
to the S chip, eliminating the possibility that the root hash is newer
than the disk state. To recover from the second scenario, we keep
a request log on the disk where we save a snapshot of the Merkle
tree leaf arguments (H(Wkey),Vid,H(data) for each block).

Figure 7 shows how the recovery scheme works. When the server
sends out a storeRoot() command and obtains the latest root hash
(ith root hash) from the P chip, it flushes data into the disk, takes
a snapshot of the current Merkle tree leaf arguments (ith snapshot)
and stores it on the disk. After the data and snapshot are stored on
the disk, the server sends the root hash to the S chip and continues

Table 2: API between client and server

Command Client Arguments and Server Responses

connect()
Args: None

Resp: PubEK, ECert

createSession()
Args: {Skeya}PubEK

Resp: Sid
b

readBlock()
Args: Sid , Bid

c, nd, HMAC(reqR)e

Resp: data, Vid
f, HMAC(respR)g

writeBlock()
Args: Sid , data, H(data), {Wkey||Vid}Skey

Bid , n, H(Wkey∗), HMAC(reqW)h

Resp: HMAC(respW1)
iif write succeeds;

V ∗
id , HMAC(respW2)

jif invalid Vid

closeSession()
Args: Sid

Resp: None
a HMAC Key b Session ID c Block ID d Nonce
e HMACSkey(MTCP0||Bid||n)

f Revision number
g HMACSkey(MTPC0||Bid||n||H(data)||Vid)
h HMACSkey(MTCP1||Bid||n||H(data)||H(Wkey∗))
i HMACSkey(MTPC1||Bid||n||H(data))
j HMACSkey(MTPC2||Bid||n||Vid)

to handle clients’ new requests. The Merkle tree and access infor-
mation stored in the RAM are updated by new write requests. The
request log buffers all the requests whose responses are buffered by
the P chip without storing any actual write data. Note that we also
keep the previous snapshot ((i− 1)th snapshot) on disk so that the
system is able to recover from a crash that happens after the server
sends the root hash but before the root hash is successfully stored.
When the server receives the S chip’s acknowledgment saying that
the ith root hash is successfully stored, it clears all the requests that
are not newer than the ith root hash from the request log.

When the server reboots after crashes, it first re-loads the snap-
shots, re-builds the two Merkle trees, and chooses the one that is
consistent with the S chip’s root hash. Then, the server re-performs
the requests in the request log until the root hash is consistent with
the disk state. If the untrusted server fails to correctly perform this
crash-recovery mechanism, the clients will be able to detect the in-
consistency between the disk state and the state stored on the S chip
when they issuing read requests. We assume that each write of a
data block is atomic; that is, the file system guarantees that writing
the whole amount of data within one data block is not interrupted.

4.6 Trusted Storage Protocol
Table 2 shows the API between each client and the server. In

the following we describe how the components in our system work
together to provide a trusted storage service.

When the cloud server boots, the server’s boot logic re-pairs the
S chip and P chip and executes the recovery procedure if the server
re-boots from a crash. When a client requests a new session, the
server assigns a new session ID (Sid) to the client and stores the
client’s HMAC key (Skey) as described in Section 4.2. After the
session is created, the client uses Sid to communicate with the stor-
age system, sending read/write requests to access/modify the data.
For a read request, the server reads disk data and asks the P chip
to verify the Merkle tree nodes and to generate an HMAC for au-
thentication. As described in Section 4.4, the P chip buffers the
HMAC if the client tries to access the data that is not yet reflected
by the S chip’s root hash. For a write request, the P chip checks the
client’s write access and only allows authorized users with a correct
revision number to update the Merkle tree (see Section 4.3). The

Table 3: P chip implementation summary

Modules FFs LUTs Block RAM/FIFO

Data Hash Engine 4408 5597 0 kB

Merkle Tree Engine 4823 9731 2952 kB

Ethernet Modules 1130 1228 144 kB

Total 10361 16556 3096 kB

server writes the data into the disk and asks the P chip to send the
latest root hash to the S chip. The P chip buffers the HMAC for the
write operation until the root hash is successfully stored on the S
chip. At the same time, the server stores the required information
on the disk as described in Section 4.5 so that the system is able to
recover from crashes.

5. IMPLEMENTATION
In this section, we present the implementation details of our pro-

totype system. To evaluate the system performance and overhead
introduced by security mechanisms, we implement the client and
server on Linux platforms. The client and server communicate over
TCP, and both of them are running at user-level. The P chip is im-
plemented on an FPGA board, which connects to the server using
Gigabit Ethernet. To increase the implementation efficiency while
maintaining the evaluation accuracy, the timing and functionality
of the S chip are modeled by the server. For convenience, we refer
to the implemented system as ABS (authenticated block storage),
which consists of an ABS-server and an ABS-client.

5.1 P Chip Implementation
We implemented the P chip on a Xilinx Virtex-5 FPGA, using

Gigabit Ethernet to connect with the server. Inside the P chip (see
Figure 2), the AES engine, data hash engine, and Merkle tree en-
gine can be executed in parallel while sharing a single Ethernet I/O.
The implementation of the boot engine and the session cache can
be safely omitted and modeled by the server because they only in-
troduce constant overhead per reboot or per session.

The AES engine [3] is mainly designed for symmetric decryption
of the client’s write access information used in our write access con-
trol protocol (see Section 4.3), which requires one symmetric de-
cryption and two hash calculations to be performed on the P chip.
The AES engine can also be reused for the boot process and the
HMAC key decryption. The data hash engine is used to verify the
integrity of data sent from a client by checking the computed hash
against the hash sent from the client. We implemented a 4-stage
pipelined SHA-1 engine ([34]) for performance reasons. This hash
engine can also be replaced by a software hash function without
degrading the security level when hardware resources are limited.
If the server mis-computes the hash and allows the wrong data to
be stored on disk, the inconsistency can be detected by the client
on the next read to the same block. The Merkle tree engine uses an-
other pipelined hash engine to perform hash verifications and tree
updates. The tree engine can pipeline multiple tree updates on dif-
ferent update paths (while the update steps on the same path need
to be serialized) and reduce the number of hash operations by merg-
ing the hash operation performed by sibling nodes. Table 3 shows
a summary of the resources used by the P chip.

5.2 S Chip Implementation
The S chip has fixed and limited functionality and thus has little

space for performance optimization. Therefore, for simplicity, in-
stead of implementing the S chip on a smartcard, we modeled its
functionality and timing on the server. The speed of the S chip can

FPGA

Server

Client

re
a
d

re

q
u

e
st

Data Access (RAM or RAM+Disk)

Tree Operaion + HMAC

LO
A

D
V

E
R

IF
Y

LO
A

D

V
E
R

IF
Y H

M
A

C

d
a
ta

H
M

A
C

Process time

t

t

t

C
E
R

T
IF

Y

Figure 8: Timeline of a read operation

affect the system latency overhead because of the root hash storage
protocol (see Section 4.4), which requires the P chip to buffer the
responses of the write operations and related read operations until
the latest root hash is stored on the S chip. The latency overhead
depends on the issuing rate of the server’s storeRoot() requests and
the round-trip time, which consists of the time the server spends
on flushing the data to disk, the time the S chip spends on stor-
ing the 20-byte root hash (around 20ms), checking and generating
HMACs (around 2ms if using a 32-bit RISC CPU or less time if
using a SHA-1 hardware engine). To evaluate the root hash stor-
age protocol, the modeled S chip sends back the acknowledgment
22ms after it receives the latest root hash.

5.3 Server Implementation
We built the server on Linux. As shown in Figure 2, the data con-

troller handles disk accesses; the hash controller and tree controller
send commands via the Ethernet controller to control the compu-
tation on the P chip. The server schedules operations following
the trusted storage procedure described in Section 4.6. To achieve
parallel execution, we put the data controller on another thread.

Figure 8 shows the timeline of a read operation. When receiving
a read request, the server reads the data from the disk or the buffer
cache. Meanwhile, the server sends the tree operation commands
to the FPGA and asks the FPGA to generate an HMAC for authen-
tication. After the server receives the data and HMAC, the server
sends them to the client and starts to handle the next request.

When handling a write operation, the server checks the integrity
of data sent from the client by re-computing the hash of data and
checking against the client’s data hash before the server writes the
data to disk. To minimize the latency, we perform speculative
writes: the server writes the data into the buffer cache in parallel
with the hash engine operation. If the verification fails, the data in
the buffer cache should be discarded. The operating system should
be modified so that it only writes correct data blocks to the disk.

Figure 9 shows the timeline of a write operation. When receiv-
ing a write request, the server sends the client’s data and encrypted
write access information ({Wkey||Vid}Skey) to the FPGA; in the
meantime, the server writes the data into the buffer cache. After
the data and write access information are verified, the server sends
tree cache commands to the FPGA and data to the disk. The P chip
generates and buffers the write response (HMAC) until receiving
the root hash storage acknowledgment from the S chip. The server
schedules the root hash storage protocol by sending out storeRoot()
requests and forwarding the root hash from the P chip to the S chip
after the data and Merkle tree snapshot are stored on the disk. Since
the disk write controlled by the operating system can be done in
the background, the next request can be handled once the server
finishes writing the data to the buffer cache and the FPGA finishes
generating the HMAC. Therefore, in general, the disk write time
(as well as the S chip write time) does not affect the system through-
put if the P chip’s response buffer is large enough.

Client

Application ABS-Client (NBD Server)

NBD req/resp

handler

Data Cache

Security Checker

ABS

req/resp

handlerN
B

D
 C

li
e

n
t

Filesystem

(ext2)

ABS-Server

Figure 10: The client model

The throughput and latency of the buffer cache can be seen as
the optimal performance our system can achieve, since all data sent
from the server or from the disk must pass through the buffer cache.
If there is a perfect caching scheme and a sufficient number of hard
disks, then the disk read time will be close to the RAM access time,
and disk write time will not affect the system throughput but only
introduce a constant latency. In Section 6.1, we measure the opti-
mal system throughput by measuring the data access time to/from
the buffer cache when running micro-benchmarks. Instead of mod-
ifying the operating system, we store all test data in a RAM buffer,
which mimics the buffer cache with a 100% hit rate. In Section 6.2,
we evaluate our system using a real disk and analyze the disk im-
pact on system latency when running file system benchmarks.

5.4 Client Implementation
To allow end-to-end evaluation that takes the network latency

and throughput into account (see Section 6.2), we implemented
a client model as shown in Figure 10. User applications are run-
ning on top of the ext2 filesystem that is mounted on a network
block device (NBD). When a user-program accesses the filesystem,
the NBD client forwards the request to the ABS-client, which pro-
cesses and sends the request to ABS-server, where the data physi-
cally resides.

The communication between the ABS-client and ABS-server fol-
lows the client-server API described in Table 2. To amortize the
overhead introduced by security mechanisms, ABS prefers block
sizes that are larger than the block size of a typical filesystem. For
example, in our evaluation, we fix the block size of ABS as 1MB,
while ext2 uses 4KB blocks. To handle requests in different block
sizes, the ABS-client merges continuous reads and writes to elim-
inate redundant requests to the ABS-server and adds read-modify-
writes to deal with partial writes. To further optimize the perfor-
mance of large block sizes, we keep a 16MB local write-through
cache in the ABS-client and allow partial write data with the hash
of the whole block to be sent to the server.

6. EVALUATION
This section evaluates the throughput and latency of our proto-

type system. The performance overhead introduced by providing
integrity and freshness guarantees is analyzed. We also provide sug-
gestions on hardware requirements for different storage providers.

To conduct our experiments, the ABS-server program runs on an
Intel Core i7-980X 3.33GHz processor with 6 cores and 12GB of
DDR3-1333 RAM. The ABS-server computer connects with a Xil-
inx Virtex-5 XC5VLX110T FPGA board and an ABS-client com-
puter, which is an Intel Core i7-920X 2.67GHz 4 core processor,
via Gigabit Ethernet. The client-server connection can be config-
ured to add additional latency and impose bandwidth limits.

In our experiments, we fix the disk size as 1TB and block size as
1MB, which is close to the block sizes used in current cloud storage
system. For example, Dropbox uses 4MB blocks, and the Google

Write Data to Disk

FPGA

Client

w
ri

te

re
q

u
e

st

Write to RAM

Decrypt {Wkey║Vid}Skey and verify

hashd
at

a

st
re

am
o

f
d
at

a

Tree

UPDATE

LO
A

D
V

ER
IF

Y
LO

A
D

V
ER

IF
Y

U
P

D
A

T
E

ro
o

t

H
M

A
C

Process time

t

t

t

Server
(with modeled

S chip)

Hash Data

{W
ke

y║
V id

} Sk
ey

le
af

ar
g

Tree Operaion

(VERIFY leaf)

verify

leafarg

st
o

re
R

o
o

t(
)

A
C

K

(modeled S chip)
H

M
A

C

Tree Snapshot

to Disk

22ms

Figure 9: Timeline of a write operation

Table 4: Micro-benchmarks

Benchmark Type Description

read/write only cont sequentially read/write 2GB

read/write only period
sequentially read/write the same
256MB space 8 times

read only random randomly read from 2GB

write only random randomly write from 2GB

random read write
randomly read or write from 2GB
(read probability = 0.8)

Table 5: Detailed timing analysis (in ms)

Benchmark
Data

Access
Hash

Tree +
HMAC

read
only

random

Baseline 4.01E-1 0 1.69E-3

ABS-SOFT 3.93E-1 0 2.02E-2

ABS-HARD 3.97E-1 0 2.04E-2

write
only

random

Baseline 1.76E-1 2.29 2.40E-3

ABS-SOFT 1.74E-1 2.33 3.72E-2

ABS-HARD 1.69E-1 9.51 3.69E-2

File System uses 64MB chunks [14]. For a storage provider, the
best choice of the block size depends on its clients’ access patterns.

6.1 Micro-Benchmarks
To analyze the overhead introduced by the memory authentica-

tion scheme and the maximum throughput that the ABS-server can
provide, we built another system assuming the server is trusted
and refer to it as Baseline. Baseline-server is trusted to generate
HMACs and perform all the authentication and permission checks.
We run micro-benchmarks (listed in Table 4) on the Baseline-server
and ABS-server and then compare their performance. To measure
the throughput upper bound, two servers were simplified by remov-
ing the real disk as well as the root hash storage protocol and crash-
recovery mechanism that are affected by the S chip and the disk
write time. As mentioned in Section 5.3, we store all the test data
in the RAM buffer and measure the data access time to/from the
RAM buffer. Both the RAM buffer size and the working set size
are set as 2GB.

We compare the performance of the Baseline and ABS in terms
of average processing time, which is measured from when the server
dequeues a request until when the server finishes processing it. In
Table 4, in addition to the random accesses, the continuous data
accesses simulate backup applications for a single client, while the
repeated data accesses simulate group collaboration on the same
chunk of data.

Table 6: ABS performance summary

Configuration ABS-SOFT ABS-HARD

Randomly
Write

Throughput 411MB/s 104MB/s

Latency 2.4ms 12.3ms

Randomly
Read

Throughput 2.4GB/s

Latency 0.4ms

0

1

2

3

4

5

6

7

8

9

10

read only

cont

read only

period

read only

random

write only

cont

write only

period

write only

random

random

read write

A
v
e

ra
g

e
 P

ro
ce

ss
in

g
 T

im
e

 (
m

se
c)

Baseline ABS-SOFT ABS-HARD

Figure 11: Average processing time comparison a

a2048 operations on 1MB data blocks with tree cache size = 214

Figure 11 shows the processing time comparison between the
Baseline and ABS with two configurations: using a hardware data
hash engine (ABS-HARD) or a software hash (ABS-SOFT). The
three schemes have the same performance when handling reads,
while ABS-HARD is four times slower when handling writes. To
understand which component slows down the system, we performed
detailed timing analysis as shown in Table 5. When handling reads,
the processing time is equal to the data access time. The latency of
Merkle tree and HMAC operations is completely hidden because
they are fast enough and can be executed in parallel with data ac-
cess. When handling writes, the hash operation dominates the pro-
cessing time and introduces large overhead in ABS-HARD because
the throughput and latency of the hash engine are limited by the
Ethernet connection, which has the throughput of 125MB/s.

Table 6 shows the performance of ABS-SOFT and ABS-HARD.
The hash engine in our prototype hardware has lower throughput
and higher latency due to the limitation of Ethernet I/O, and it runs
at a much lower clock frequency (125MHz, which is also limited by
the Ethernet speed) compared to that of the software hash function
(3.33GHz). However, in a real storage system, these limitations can
be easily removed by using an ASIC as the P chip. The clock fre-
quency can be increased to 500MHz or 1GHz, and a faster data bus,
such as PCI Express x16, can be used. Moreover, it is cheaper and
more energy-efficient to have multiple hash engines in hardware to
achieve throughput higher than that of software hash function.

Table 7: Modified Andrew Benchmark (in sec)

Slow Network Fast Network

Pure Block Device (4KB) 19.98 10.05

Pure Block Device (1MB) 17.70 10.48

ABS (no sync, 1MB) 17.32 11.27

ABS (sync, 1MB) 24.31 13.76

NFS (async) 72.20 2.35

NFS (sync) 95.12 21.35

0

5

10

15

20

25

30

cp in Mathmatica.zip

(476MB)

unzip Mathmatica

(476MB)

cp out Mathmatica

folder (459MB)

R
u

n
ti

m
e

 (
S

e
c)

Pure Block Device (4KB)

Pure Block Device (1MB)

ABS (no sync, 1MB)

ABS (sync, 1MB)

NFS (async)

NFS (sync)

(a) Fast network with 0.2ms latency and 1Gbit/s bandwidth

0

20

40

60

80

100

120

140

160

180

200

cp in Mathmatica.zip

(476MB)

unzip Mathmatica

(476MB)

cp out Mathmatica

folder (459MB)

R
u

n
ti

m
e

 (
S

e
c)

Pure Block Device (4KB)

Pure Block Device (1MB)

ABS (no sync, 1MB)

ABS (sync, 1MB)

NFS (async)

NFS (sync)

(b) Slow network with 30.2ms latency and 100Mbit/s bandwidth

Figure 12: Runtime comparison on the Mathematica benchmark

6.2 File System Benchmarks
In addition to micro-benchmarks, which are used to measure

the maximum system throughput and analyze the overhead intro-
duced by the security checks at the server side, we performed end-
to-end evaluation that takes client side overhead and network la-
tency/bandwidth into account. During our end-to-end evaluation,
all security protocols are active and implemented as described in
detail in Section 4 and 5. A real disk is used to analyze the impact
of disk access time on the full system latency, and the S chip is
simulated in software with a modeled response time.

We focus on two kinds of practical workloads: (1) copying and
unzipping an Mathematica 6.0 distribution, which represent read-
ing and writing large files; (2) the Modified Andrew Benchmark
(MAB) [28], which emulates typical user behavior. We ran two
benchmarks on two network models, representing different scenar-
ios when the authenticated storage server can be used. First, we
ran benchmarks on the client-server network without imposing any
latency or bandwidth limitations. The measured latency and band-
width are 0.2ms round-trip and 986Mbit/s. We refer to this net-
work as the fast network, which models the situation where both
the ABS-client (which can be an application server) and the ABS-
server are inside the data center. In addition to the fast network,
we use tc (traffic control) to impose 30ms round-trip delay and
100Mbit/s bandwidth limitation to the network. The resulted net-
work has measured 30.5ms latency and 92Mbit/s bandwidth, and
it is referred as the slow network. The slow network setting models

Table 8: Hardware requirements

Demand Focused Performance Budget

Connection PCIe x16(P)/USB(S) USB

Hash Engine 8 + 1 (Merkle) 0 + 1 (Merkle)

Tree Cache large none

Response Buffer 2KB 300B

Table 9: Estimated performance

Demand focused Performance Budget

Randomly Write
Throughput 2.4GB/s 377MB/s

Latency 12.3+32ms 2.7+32ms

Randomly Read
Throughput 2.4GB/s

Latency 0.4ms

HDDs supported 24 4

the situation where the ABS-server is in a remote data center, and
the client is connecting over the Internet, from a corporate network
or a fast home network (like Google Fiber).

Figure 12 and Table 7 show how ABS (which is ABS-SOFT) per-
forms compared to a pure block device. To analyze the overhead of
the crash-recovery mechanism, we include 2 ABS configurations:
ABS (no sync, 1MB) buffers responses every 22ms, which is the
modeled S chip write time; ABS (sync, 1MB) forces data synchro-
nization to the disk before it sends the root hash to the S chip. In
Mathematica benchmarks (see Figure 12), benchmark cp-in writes
a large zip file into the filesystem; unzip unzips the file inside the
filesystem; cp-out copies the entire folder to somewhere outside the
filesystem, resulting in pure reads. Compared with the pure block
device, which does not include any security checks, with the same
block size (1MB), ABS has the same read performance. The av-
erage overhead is reduced from 40% to 10% when switching from
the fast network to the slow network, because the overhead intro-
duced in write operations (especially due to data synchronization)
is mostly hidden by the long network latency.

We also ran benchmarks on a pure block device with 4KB block
size to show how the choice of block sizes affects system perfor-
mance. The system with the small block size performs well on the
fast network but has much worse performance on the slow network
when reading files. This is because the performance of reads is di-
rectly affected by the long network latency, and the system with the
large block size takes advantage of spatial locality by caching a few
blocks locally.

In Figure 12 and Table 7, we also compared the ABS perfor-
mance with two NFS configurations: NFS (async) and NFS (sync),
where NFS (sync) forces data synchronization before the server
sends back responses. NFS manages data at the file level; therefore,
it has the best performance when handling few large files (Mathe-
matica benchmarks). When handling many small files (MAB), NFS
performs worse, especially on the slow network, because per file
overheads dominate the execution time.

6.3 Suggestions on Hardware Requirements
Based on the micro-benchmark results of our prototype system,

we provide two different hardware suggestions to cloud storage
providers with different needs. We list the different hardware re-
quirements for performance-focused and budget-focused storage
providers in Table 8, and the estimated performance is listed in
Table 9. The estimated performance is derived from our experi-
ment settings and micro-benchmark results. 32ms additional write
latency is modeled by the combination of disk write time and the

NVRAM

S Chip

I/O Buffer

CPU

RSA Key

GeneratorI/
O

 I
n

te
rf

a
ce

AES

Engine

RSA Engine

AES Engine

I/
O

 I
n

te
rf

a
ce

P Chip

I/O Buffer Control Logic

OTP

Memory

Pipelined

SHA-1

PUF

USB Transceiver

RAM

tree cache

session cache

Response Buffer

Pipelined SHA-1

Control

PCIe

Merkle Engine

Data Hash Engine

Pipelined

SHA-1

Pipelined

SHA-1

Figure 13: Performance-focused (two-chip) solution

NVRAM
I/O Buffer

CPU

RSA Key

GeneratorI/
O

 I
n

te
rf

a
ce

RSA Engine

USB Transceiver

Response Buffer

Un-pipelined SHA-1

Control

Merkle Engine

RAM

session cache

AES Engine

Figure 14: Budget-focused (single-chip) solution

S chip write time, which are introduced by the root hash storage
protocol and the crash-recovery mechanism.

6.3.1 Performance-focused Solution

If a storage provider focuses on performance, our system can
achieve a throughput as high as its RAM throughput, which is
2.4GB/s, using multiple hardware data hash engines and a fast data
bus. The throughput of a pipelined hash engine, 330MB/s, is mea-
sured using a mimic fast data bus which has 4× higher throughput
than the Gigabit Ethernet. The higher throughput is modeled by
only sending a quarter of each 1MB block to the FPGA and ex-
panding it at the FPGA side. To achieve 2.4GB/s throughput of
data hashing, we need 8 pipelined hash engines and a PCI Express
x16 link, which supports up to 4.0GB/s. Figure 13 shows the func-
tional units of a S-P chip pair required by a performance-focused
storage provider. A typical solution is an ASIC paired with a smart
card chip. If the P chip’s computation logic runs at a clock fre-
quency higher than 125MHz, which is easy for an ASIC to achieve,
the system latency and the number of hash engines required can be
further reduced. For example, for an ASIC running at 500MHz,
only 2 data hash engines are required and the system latency can
be lower than 3+32ms. In addition, to maintain high throughput un-
der the root hash storage protocol and crash-recovery mechanism,
the P chip require a larger on-chip buffer to buffer write responses.

6.3.2 Budget-focused Solution

If a storage provider has limited resources, a solution with a soft-
ware hash function and without a tree cache can be chosen to re-
duce the cost while maintaining the system’s throughput around
400MB/s for write requests and 2.4GB/s for read requests (shown
in Table 9). We have simulated ABS-SOFT without a tree cache
and observed that although the latency of tree operations was ten
times larger, there was no significant overhead in the system latency.
This is because the latency of tree operations is much smaller than
that of other components.

In a budget-focused design, many functional units and on-chip
storage are removed. Therefore, we can combine the functionality
of the original two chip solution and build a single chip as shown in
Figure 14. This single chip can be imagined as a typical smart card
chip running at around 125MHz with an additional hardware hash

engine as well as some control logic and a on-chip buffer. In addi-
tion, the on-chip communication is trusted, so the HMACs between
the original two chips are no longer needed, which makes updating
the root hash in the NVRAM easier. Under today’s NVRAM pro-
cess, this single chip design is feasible in terms of chip area and
speed. Therefore, this represents a cheap solution for trusted cloud
storage, and yet is significantly more efficient than, for example,
the solution of [36].

However, the maximum frequency of this single chip is limited
by the NVRAM fabrication process. It is difficult for any logic
on chip to run at a frequency higher than 1GHz under today’s
NVRAM process, and therefore PCI Express cannot be supported.
Given limited frequency, the maximum system system throughput
is limited by the communication throughput. For example, the hard-
ware hash engine with 1Gbps communication throughput limits the
system throughput to 125MB/s, no matter how many hash engines
we have. This is also why we adopt software hashing, which has
a limited throughput as 377MB/s, in the single chip solution. On
the other hand, the two-chip solution can break this frequency limit
and achieve higher throughput as we provide in the performance-
focused solution.

7. CONCLUSION
In this work, we provide a detailed design and implementation

of an authenticated storage system that efficiently ensures data in-
tegrity and freshness by attaching a trusted pair of chips to an un-
trusted server. We propose a write access control scheme to prevent
unauthorized/replayed writes and introduce a crash-recovery mech-
anism to protect our system from crashes. With micro-benchmarks,
we show that even with limited resources the system can achieve
2.4GB/s (as high as the server’s RAM throughput) for handling
reads and 377MB/s for handling writes using a single chip that is
not appreciably more expensive than current smart card chips. If
more hardware resources are available, the throughput for handling
write requests can be increased to 2.4GB/s. Our end-to-end evalu-
ation on file system benchmarks also demonstrates that the proto-
type system introduces little overhead—around 10% when a client
connects to our remote server over the Internet from a corporate
network or a fast home network.

8. ACKNOWLEDGEMENTS
We acknowledge the anonymous reviewers for their feedback

and the support from Quanta Corporation.

9. REFERENCES

[1] Amazon. Amazon simple storage service.
http://aws.amazon.com/s3/.

[2] Apple. iCloud. http://www.apple.com/icloud/.

[3] P. Bulens, F. Standaert, J. Quisquater, P. Pellegrin, and
G. Rouvroy. Implementation of the AES-128 on Virtex-5
FPGAs. Progress in Cryptology–AFRICACRYPT, 2008.

[4] C. Cachin. Integrity and consistency for untrusted services.
SOFSEM 2011: Theory and Practice of Computer Science,
pages 1–14, 2011.

[5] C. Cachin and M. Geisler. Integrity protection for revision
control. In Applied Cryptography and Network Security,
2009.

[6] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted
storage. In IEEE/IFIP International Conference on

Dependable Systems & Networks (DSN), 2009.

[7] C. Cachin, A. Shelat, and A. Shraer. Efficient
fork-linearizable access to untrusted shared memory. In
Proceedings of the 26th Annual ACM Symposium on

Principles of Distributed Computing, 2007.

[8] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: making adversaries stick to
their word. In Proceedings of 21st ACM SIGOPS Symposium

on Operating Systems Principles, 2007.

[9] V. Costan and S. Devadas. Security challenges and
opportunities in adaptive and reconfigurable hardware. In
IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), 2011.

[10] Dropbox. Dropbox. https://www.dropbox.com/.

[11] R. Elbaz, D. Champagne, R. Lee, L. Torres, G. Sassatelli,
and P. Guillemin. Tec-tree: A low-cost, parallelizable tree for
efficient defense against memory replay attacks.
Cryptographic Hardware and Embedded Systems-CHES,
2007.

[12] A. Feldman, W. Zeller, M. Freedman, and E. Felten. SPORC:
Group collaboration using untrusted cloud resources. In
Proceedings of the OSDI, 2010.

[13] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. Devadas.
Caches and Merkle trees for efficient memory authentication.
In Proceedings of 9th International Symposium on High

Performance Computer Architecture, 2003.

[14] S. Ghemawat, H. Gobioff, and S. Leung. The Google file
system. In ACM SIGOPS Operating Systems Review, 2003.

[15] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS:
Securing remote untrusted storage. In Proceedings of NDSS,
2003.

[16] M. Goodrich, C. Papamanthou, R. Tamassia, and
N. Triandopoulos. Athos: Efficient authentication of
outsourced file systems. Information Security, pages 80–96,
2008.

[17] Google. Google cloud storage.
https://developers.google.com/storage/.

[18] Google. Google drive. https://drive.google.com/.

[19] W. Hall and C. Jutla. Parallelizable authentication trees. In
Selected Areas in Cryptography, 2006.

[20] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamassia.
Efficient integrity checking of untrusted network storage. In
Proceedings of the 4th ACM International Workshop on

Storage Security and Survivability, 2008.

[21] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. In Proceedings of the 2nd USENIX Conference on

File and Storage Technologies, 2003.

[22] D. Levin, J. Douceur, J. Lorch, and T. Moscibroda. TrInc:
small trusted hardware for large distributed systems. In
Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation, 2009.

[23] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of the

6th Conference on Symposium on Operating Systems Design

& Implementation, 2004.

[24] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. In OSDI, Oct, 2010.

[25] D. Mazières and D. Shasha. Don’t trust your file server. In
Hot Topics in Operating Systems, 2001.

[26] D. Mazières and D. Shasha. Building secure file systems out
of Byzantine storage. In Proceedings of the 21st Annual

ACM Symposium on Principles of Distributed Computing,
2002.

[27] R. Merkle. Protocols for public key cryptosystems. In IEEE

Symposium on Security and Privacy, 1980.

[28] J. Ousterhout. Why aren’t operating systems getting faster as
fast as hardware? Technical report, Digital Equipment
Corporation Westem Research Laboratory, Oct. 1989.

[29] R. Popa, J. Lorch, D. Molnar, H. Wang, and L. Zhuang.
Enabling security in cloud storage SLAs with CloudProof.
Technical report, Microsoft, 2010.

[30] W. Rankl and W. Effing. Smart card handbook. Wiley, 2010.

[31] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
filesystem. In Proceedings of the Summer USENIX

conference, 1985.

[32] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. Network file system
(NFS) version 4 protocol. RFC 3530, Network Working
Group, Apr. 2003.

[33] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky,
and D. Shaket. Venus: Verification for untrusted cloud
storage. In Proceedings of the 2010 ACM Workshop on

Cloud Computing Security, 2010.

[34] N. Sklavos, E. Alexopoulos, and O. Koufopavlou.
Networking data integrity: High speed architectures and
hardware implementations. Int. Arab J. Inf. Technol, 1:54–59,
2003.

[35] Trusted Computing Group. Trusted Platform Module (TPM)
Specifications.
https://www.trustedcomputinggroup.org/specs/TPM/.

[36] M. van Dijk, J. Rhodes, L. Sarmenta, and S. Devadas. Offline
untrusted storage with immediate detection of forking and
replay attacks. In Proceedings of the 2007 ACM Workshop

on Scalable Trusted Computing, 2007.

[37] H.-J. Yang. Efficient trusted cloud storage using parallel,
pipelined hardware. Master’s thesis, Massachusetts Institute
of Technology, 2012.

