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Abstract. This paper presents an authentication protocol for high-
assurance smart card operating systems that support download of mu-
tually suspicious applications. Such a protocol is required to be part of
the operating system, rather than the traditional smart card approach
of allowing applications to do authentication, because strong authentica-
tion is essential for the operating system to protect one application from
another. The protocol itself is based on the existing IKE protocol [13],
used for authentication in IPSEC. What is new is the integration of an
IKE-like protocol with authentication of mandatory secrecy and integrity
access controls, the recognition that a single PKI-hierarchy cannot cer-
tify identity and all possible mandatory access rights, and the use of IKE
to resolve privacy problems found in existing smart card authentication
protocols.

1 Caernarvon – A High-Assurance Smart Card OS

IBM r© has been developing a secure smart card operating system, called Caernar-
von, that is intended to be evaluated at the highest assurance levels of the Com-
mon Criteria [17]. The Caernarvon system is written for, and requires, processors
containing hardware security features that provide separate supervisor and user
modes, and hardware memory protection. The security of the system is then en-
forced by the hardware, rather than being entirely dependent on software. The
initial version is being written for the Philips SmartXA2 processor, which is a
16-bit smart card processor containing the required hardware security features.

The operating system is designed to permit applications developers to solve
security-related problems that could never be addressed before, either in smart
cards or in larger computer systems. In particular, the security model and the
operating system are designed to permit in-the-field downloading of applications

E. Snekkenes and D. Gollmann (Eds.): ESORICS 2003, LNCS 2808, pp. 181–200, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



182 Helmut Scherzer et al.

written either in native languages (such as C or assembler) or in interpreted lan-
guages (such as Java CardTM). These downloaded applications could be mutually
hostile, yet the operating system will prevent unauthorized interference between
the applications, yet still allow controlled sharing of information between se-
lected applications, subject to the constraints of the new security model. The
applications themselves do not need to be evaluated or certified. The only ob-
vious exception to this is the special guard applications that are privileged to
change the security markings of files.

The Caernarvon system contains a Mandatory Security Policy; this consists
of a modified Bell and LaPadula [3] lattice secrecy model, together with a mod-
ified Biba [4] integrity model. Space does not permit discussion of the Caernar-
von Mandatory Security Policy in detail, but policy is described in more detail
in [22,23,24,29]. Girard [12] has also suggested the use of mandatory security
policies in smart cards.

2 High Assurance and Authentication

One of the fundamental requirements for a high assurance operating system is
authentication. This authentication must be performed by the operating system
itself, not by an application, so that the operating system both is guaranteed
and can guarantee to others that the authentication has been completed. The
operating system then knows, with high assurance, the identity of the user, in
this case the outside world, namely the system behind the smart card reader.
The system can use this knowledge to safely grant the user access to files and
other system objects; conversely, it can also use this knowledge to ensure, with
high assurance, that a user is denied access to anything he is not authorized to
see or use.

If the operating system were to follow the current smart card practice of dele-
gating all authentication to the application, then true protection of applications
from one another is impossible. For example, if authentication were delegated to
a poorly written vending machine application, it might claim mistakenly to have
properly authenticated the card issuer’s primary administrator. Without strong
authentication, such as that provided by the Caernarvon operating system, the
vending machine application could mistakenly grant access to the card issuer’s
administrative files stored on the card.

Furthermore, even operating systems that have been successfully evaluated
and certified to the highest levels of the Common Criteria might not be per-
fect. Authentication provides the first line of defense in any operating system,
and should an attacker get past an application-provided authentication scheme,
even if only improperly authenticated as a legitimate user of that application,
then that attacker has gained additional access to software running on the card
that could then be targeted. While a successful high-assurance evaluation gives
a very high level of confidence that attack is not possible, there will always re-
main the small possibility of a vulnerability that escaped detection. The U.S.
National Computer Security Center recognized this possibility in its so-called,
“Yellow Book” [31] that provided guidance on when to use operating systems
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that have been evaluated to different levels. The “Yellow Book” recognized that
even an A1-evaluated operating system, the highest level possible under the “Or-
ange Book” [10], was not sufficiently strong to protect the very highest levels of
compartmented intelligence information against totally uncleared users.

3 Authenticating Multi-organizational
Mandatory Access Controls

Caernarvon is designed to support mandatory access controls in a commercial
setting. This means that the lattice security models must contain entries from
multiple organizations. This is very different from most military applications of
mandatory access controls where the access controls have a common definition.
It is beyond the scope of this paper to discuss the implications of mandatory
access controls from different organizations. An early discussion of some of these
issues can be found in [20], and a preliminary design for multi-organizational
mandatory access controls can be found in [21], although this design has already
undergone a number of changes. For purposes of this paper, it is sufficient to
say that the smart card must be able to handle mandatory access controls from
multiple organizations.

Both the Bell and LaPadula secrecy model [3] and the Biba integrity model [4]
provide a lattice structure of non-hierarchic access classes. Each object in the
system is assigned an access class, and each user is assigned a security clearance
that is also an access class. Access control decisions are made by comparing the
access class of an object with the access class of the referencing user or process.
The details of access classes are unimportant to this paper. What is important
is that both the security and integrity lattices may contain access classes from
different mutually suspicious organizations, and that possession of these access
classes must be authenticated. Note that this type of multi-organizational access
class is much more general than the access classes typically used in the US
Department of Defense, such as those defined in FIPS PUB 188 [30] or the DoD
Common Security Label [8].

Proving that either a server or a card actually holds a particular organi-
zational access class is not easy. The conventional approach of a Public Key
Infrastructure (PKI) with a trusted third-party Certification Authority (CA) is
not likely to be acceptable, because of the extreme sensitivity of mandatory ac-
cess classes in some applications. For example, despite the fact that the NATO
countries are all close allies, there is not likely to be a single CA that all of the
NATO countries would accept to prove that someone holds a particular national
security clearance.

Instead, a organizational Security Authority (SA) is defined, which serves as
the agency to digitally sign certificates that prove that a particular organizational
access class is held. An SA is very similar to a CA, except that there is no
hierarchical tree above the various SAs. Each SA stands alone.

Therefore, both servers and smart cards must hold digital signatures from
multiple organizations’ SAs and must be prepared to verify those digital signa-
tures. Each SA with an access class on the card or on a server must sign a hash
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of that organization’s access class, cryptographically bound to the public key of
the card or server.

IBM has developed a protocol for defining access classes and SAs on a smart
car. However, that protocol is beyond the scope and page limitations of this
paper, and will be the subject of a future paper. This paper will simply assume
that SA public keys for the appropriate organizations are available on the card.

The mandatory security policy requires that an effective authentication of
its users (in this case, the outside world) be performed before allowing access to
objects under the control of the operating system. The security policy in particu-
lar, applies to application download, application selection, and inter-application
information sharing and exchange.

The authentication scheme must be application independent, and enforced by
the Caernarvon kernel. The authentication protocol as described here has been
submitted to the ESIGN-K [2] working group that is designing a specification for
the European signature application on smart cards and to the Global Platform
organization (http://www.globalplatform.org) that is developing standards for
multi-application smart cards based on earlier work by Visa.

The Caernarvon authentication combines four mechanisms:

– a device verifies the existence of a certified secret key on the other party.
– the devices negotiate or exchange information to establish a common session

key for subsequent operations.
– the devices negotiate or exchange information to establish a common access

class for subsequent operations.
– the authentication is mutual, that is it is two-way, and binds all of the above

elements.

The session encryption uses a symmetric algorithm, for performance reasons.
Therefore this document describes the derivation of symmetric keys, and does
not consider an option for asymmetric keys. Once the session key is established,
a trusted channel is available to protect or conceal the information transmitted
over the interface. The application of Secure Messaging (SM) is mandatory for
subsequent operations to ensure the provision of a trusted channel.

There are current smart card standards for digital signature applications [6,7]
that use a two-way authenticated Diffie-Hellman key agreement scheme in order
to create a triple-DES session key for the current session. This key agreement
scheme is described in ISO/IEC 11770-3 [19], section 6.7 “Key agreement mech-
anism 7”; this in turn is based on the three-pass authentication mechanism of
ISO/IEC 9798-3 [18]. However, we show in section 5 below, that these exist-
ing smart card standards have privacy problems. Therefore, Caernarvon uses a
Diffie-Hellman key agreement scheme based on the SIGMA design [25], stan-
dardized by the Internet Key Exchange Protocol (IKE) [13]. This was chosen
so that authentication for Caernarvon could be based on existing standards,
and because the security and privacy properties of SIGMA protocols have been
formally proven in [5].

The cryptographic principles behind Caernarvon authentication are not new.
What is new is the application of IKE to smart cards to resolve the privacy
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problems in existing smart card standards and the combination of IKE authen-
tication with multi-organizational mandatory access controls in a high-assurance
operating system. The Caernarvon protocol also solves a potential problem of
a man-in-the-middle modifying the Diffie-Hellman public parameters. In normal
usage, IKE does not suffer from this problem, but it can arise in other contexts.
See section 6 for details.

4 Diffie-Hellman Key Exchange

Diffie-Hellman was the first public-key algorithm openly published in 1976 [9].
The Diffie-Hellman algorithm was first developed by M. J. Williamson at the
Communications-Electronics Security Group (CESG) in the UK and published
internally somewhat later in [33], but that work remained classified until much
later [11]. It gets its security from the difficulty of calculating discrete loga-
rithms in a finite field, as compared with the ease of performing exponentiation
calculations in the same field.

4.1 Simple Diffie-Hellman Key Exchange, No Authentication

The general form of an unauthenticated Diffie-Hellman key exchange is as fol-
lows: in this, A is the card reader and B is the Caernarvon smart card.

Both A (the card reader) and B (Caernarvon) share the public quantities p,
q and g where:

– p is the modulus, a prime number; for security, this number should be of the
order of 1024 bits or more.

– q is a prime number in the range of 159-160 bits
– g is a generator of order q, that is gq = 1 mod p and for all i where i < q,

gi �= 1 mod p

Then the protocol proceeds as follows:

1. A chooses random number a with 1 ≤ a ≤ q − 1, and B chooses random
number b with 1 ≤ b ≤ q − 1

2. A computes KA = ga mod p and sends it to B. B computes KB = gb mod p
and sends it to A

3. A computes KAB = (KB)a mod p. B computes KBA = (KA)b mod p.
4. A deletes the random number a. B deletes the random number b.

A and B have derived the same number (the key) because:

KAB = (KB)a = (gb)a = (ga)b = (KA)b = KBA

4.2 Authenticated Diffie Hellman

The algorithm described above in section 4.1 produces an agreed secret key;
however, because there is no authentication included, it is vulnerable to man-
in-the-middle attacks. ISO/IEC 11770-3 [19] section 6.7 “Key agreement mech-
anism 7” uses a Diffie-Hellman style of key exchange, and also involves mutual
authentication. The following shows the general flow of such a scheme.
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Stage 1. The reader, A, calculates KA as above, and concatenates it with a
certificate containing A’s identity A and public key PKA. A transmits this to B:

Fig. 1. Key Agreement Mechanism 7 of ISO 11770-3, Part 1

Stage 2. The card, B, checks the certificate received from A. B then calculates
KB and KBA as above, and generates a message for A consisting of the following
items concatenated together:

1. KB

2. a certificate containing B’s identity B and public key PKB

3. a signature of the concatenation of A’s identity A, KA and KB , signed using
B’s secret key SKB corresponding to the public key PKB

Note that this signature consists of just the signature value - it is not neces-
sary to include the quantities being signed, since A already has them (they
were sent to B in Stage 1 above), or are included as part of this message.

4. a cryptographic check, using a keyed hash function f as a message authen-
tication code with the key KBA, of A’s identity A, KA and KB .

B then transmits this to A:

Fig. 2. Key Agreement Mechanism 7 of ISO 11770-3, Part 2

Stage 3. A now checks the certificate received from B, verifies the signature
(using B’s public key PKB contained in the certificate), and calculates KAB ,
and uses this to verify the cryptographic check using the function f and the key
KAB .

A then generates a message consisting of the following items concatenated
together:

– a signature of the concatenation of KA, KB and B’s identity B, signed using
A’s secret key SKA corresponding to the public key PKA

Note that this signature consists of just the signature value - it need not
include the quantities being signed, since B already has them.

– a cryptographic check, using the crypto function f with the key KAB , of KA,
KB and B’s identity B.
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A then sends this to B:

Fig. 3. Key Agreement Mechanism 7 of ISO 11770-3, Part 3

Stage 4. Finally, B verifies the signature (using A’s public key PKA transmitted
in the certification in Stage 1), and verifies the cryptographic check using the
function f and the key KBA. If the two verifications succeed, B signifies his
acceptance to A:

Fig. 4. Key Agreement Mechanism 7 of ISO 11770-3, Part 4

5 Privacy-Preserving Protocol

The protocol based on ISO 11770-3, discussed in section 4.2 above, has the disad-
vantage that the card (“B” in the discussion) reveals his identity and certificate
before he has verified the credentials of the reader “A”. This could be viewed as
a violation of the privacy of the card holder - the identity and certificate of the
card B are revealed, not just to the reader A, but also to anyone eavesdropping
on the communications between the reader and the card. The reader A might
not be physically co-located with the card, but actually connected via a network
of some sort. The DIN standards [6,7] for digital signature cards suffer from this
potential privacy problem.

The protocol based on ISO 11770-3, discussed in section 4.2 above, also has
the disadvantage that the number of bits transmitted in all the stages is some-
what larger than necessary. Minimizing the total number of bits transmitted is
important, because some smart card readers will only communicate at 9600bps,
and even ignoring the cost of computing the cryptographic operations, the time
needed to transmit all the bits could become a serious problem in response time
to the card holder.

To resolve both the privacy problems and to reduce the number of bits to
be transmitted, Caernarvon bases its authentication on the SIGMA design [25]
and the Internet Key Exchange (IKE) standard [13]. This protocol offers several
significant advantages:
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1. The session key parameters are exchanged very early in the protocol, even
before the authentication has been completed. In this way, the information
exchanged in the protocol, including the peers’ identities can be protected
from third-party eavesdropping.

2. A discloses its identity and credentials to B first; B reveals its identity and
credentials only after verifying those of A. This prevents revealing the card
holder’s identity to a reader that cannot be authenticated or that cannot
prove that it is authorized for a particular mandatory access classes. There-
fore, the card’s identity is protected not only against eavesdropping, but also
against an active (man-in-the-middle) attacker. The reader’s identity is not
protected against an active attacker, but presumably the reader has fewer
privacy concerns than the card holder. Note that in all authentication pro-
tocols, one party must reveal its identity first, and that party’s privacy will
always be subject to active attacks of this kind.

3. IKE transmits fewer bits in total. This will improve performance on slow
readers.

4. The SIGMA and IKE protocols followed here have been rigorously analyzed
and proven correct [5], which is a major benefit in any system planning to
be evaluated at the highest levels of the Common Criteria. In particular, see
[25] for more details on the cryptographic rationale of these protocols and
the subtle cryptographic attacks they prevent.

This section contains a cryptographic description of the authentication protocol
used by Caernarvon. Note that in contrast to the protocol described in sec-
tion 4.2, the Caernarvon protocol starts as in unauthenticated Diffie-Hellman,
and then authenticates A before B exposes his identity. The crucial technical dif-
ference between these protocols is that in the case of the Caernarvon protocol,
A can authenticate itself to B without having to know B’s identity, while in the
ISO protocol of section 4.2, A authenticates to B by signing B’s identity (thus
requiring the knowledge of B’s identity by A before A can authenticate to B)1.

As discussed in section 4.1, A (the reader) and B (Caernarvon) share the
public quantities p, q, and g. Section 6 will discuss why these public quantities
must themselves be authenticated.

Stage 1. A chooses a random number a with 1 ≤ a ≤ q − 1, computes a key
token KA = ga mod p, and transmits it to B.

Fig. 5. Authentication Stage 1: A sends a key token to B

1 The Caernarvon protocol described here assumes that only one authentication is in
progress between a reader and a smart card at any one time. This follows current
practice in the smart card industry. If support for multiple authentication sessions
were desired, the protocol would have to be modified to include a cryptographically
bound session identifier.
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Stage 2. B chooses a random number b with 1 ≤ b ≤ q − 1, computes a key
token KB = gb mod p, and transmits it to A.

Fig. 6. Authentication Stage 2: B sends a key token to A

At this point, neither A nor B has revealed his identity. However, they now
can compute a mutual key KAB as in section 4.1. Using the mutual key KAB ,
they can derive additional keys KENC , for encrypting messages and KMAC , for
computing message authentication codes (MACs) as specified in section 7.2.

Stage 3. A now sends its certificate to B by encrypting it with KENC . A now
computes E01 as shown below:

E01 = 3DES EncryptKENC
(Cert(A))

A now transmits E01 together with its MAC to B.

Fig. 7. Authentication Stage 3: A sends certificate to B

Stage 4. B responds with a challenge. From a strictly cryptographic perspective,
stage 4 could be combined with stage 2, reducing the total number of message
flows. However, this is a protocol for smart cards, and it must fit into the existing
standard for smart card commands [15] and use the GET CHALLENGE and
EXTERNAL AUTHENTICATE commands.

Fig. 8. Authentication Stage 4: B sends challenge to A

Stage 5. A now computes E1 as shown below:

E1 = 3DES EncryptKENC
(A‖SigSKA

[KA‖A‖RND.B‖KB‖DH(g‖p‖q)])

A now transmits E1 and a MAC of E1 to B. The signature is a signature with
message recovery, so all parameters in the signature can considered to be recov-
erable. The Diffie-Hellman key parameters are part of the signature in order to
provide authenticity of the parameters. See section 6 for details.
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Fig. 9. Authentication Stage 5: Authenticate A

At the conclusion of stage 5, B has authenticated A. It is at this point that
the Caernarvon authentication protocol mandatory access control checks, as de-
scribed below in section 7.5, steps 11 and 12. The mandatory access checks are
done here, so that B can verify mandatory access rights, before revealing any
privacy-sensitive information to A.

Stage 6: B now verifies the MAC, decrypts E1, and verifies the signature using
A’s public key PKA. B has now authenticated A and knows that KA and KB

are fresh and authentic. However at this point, while B knows there is no man-
in-the-middle because B checked the signature from A, A does not know who he
is talking to, and hence is unsure if there may be a man-in-the-middle attack. B
computes E02 (its encrypted certificate) and sends it to A.

E02 = 3DES EncryptKENC
(Cert(B))

Fig. 10. Authentication Stage 6: B sends certificate to A

Stage 7. A sends a challenge to B. Just as for stage 4, strict cryptographic
requirements could reduce the total number of message flows. However, once
again, it is desirable to use the ISO standard [15] GET CHALLENGE and
EXTERNAL AUTHENTICATE commands.

Fig. 11. Authentication Stage 7: A sends challenge to B

Stage 8. B now computes E2 as shown below:

E2 = 3DES EncryptKENC
(B‖SigSKB

[KB‖B‖RND.A‖KA])

The signature is a signature with message recovery, so all parameters in the
signature can considered to be recoverable.
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B now transmits E2 and a MAC of the value E2 to A.

Fig. 12. Authentication Stage 8: authenticate B

A can now verify the MAC and decrypt E2. Using the chain of certificates
back to the root CA, A can verify the certificate from the IC manufacturer for
B, which contains B’s identify B and public key PKB . Thus A knows, and can
trust, B’s public key PKB . Hence A can now authenticate B by verification of
the signature:

SigSKA
[KA‖A‖RND.B‖KB‖DH(g‖p‖q)]

6 The Authenticity of the Public DH Parameters
The proof given in [5] assumes that the public DH parameters are authentically
known. This assumption does not necessarily hold for signature cards, as the
public DH parameters may be retrieved from a file on the card prior to the
device authentication.

As a consequence, the authenticity of these public key parameters is not given
implicitly. Therefore the public key parameters need to be signed by the reader,
which allows the card to verify that the reader used its correct parameters.

The following scenario demonstrates how this weakness could be used for an
attack, given that the public DH parameters were not signed by the reader.

This attack scenario was contributed to the E-Sign committee by Andreas
Wiemers [32]. Related attacks have been described by Lim and Lee [27] and
Antipa, et. al. [1].

Step READER(A) CARD (B)

1 � p, q, g

2 KA = ga mod p �

3 � KB = gb mod p

4 KAB = KA
b mod p

5 � RND.B

6 K̃AB = KB
a mod p̃

7 SIGA(KA‖RND.B‖KB) �

8 RND.A �

9 � SIGB(KB‖RND.A‖KA)
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As soon as KAB is available it is used to secure the communication between the
reader and the card (after session key generation).

We suggest that an attacker changes the transmission such, that he replaces
p by p̃. We obtain:

Step READER(A) CARD (B)

1 � p̃, q, g

2 K̃A = ga mod p̃ �

3 � KB = gb mod p

4 K̃AB = K̃b
A mod p

5 � RND.B

6 K̂AB = KB
a mod p̃

In general K̂AB and K̃AB are different. However, if the attacker chooses p̃ = c ·p
with a small number c (e.g. c = 2), an attacker observes the case KAB = 1 mod c
with an expected probability of approximately 1

c . In this case, it is easy to prove
that the equation K̃AB = K̂AB = KAB is valid exactly if KAB ≡ 1 mod c.

If the reader and the card may communicate with secure messaging without
error indication, the attacker obtains information about the negotiated key. For
example, if c is 2, then the attacker would know that KAB is odd, thus leaking
one bit of the key. Choosing c larger makes it less probable to hit a valid nego-
tiation between the reader and the card. However if this hit occurs, more bits
are leaked from KAB . As KA and KB are computed from a and b, which are
chosen randomly, the attack cannot be used to accumulate information about
the negotiated keys. However in the sense of provable security this is a valid
example to demonstrate the general observation that the authenticity of public
parameters is important for proper security.

Reason: For p̃ = c · p, it is always valid

K̃AB = (ga mod pc)rB mod p = ga·b mod p = KAB

As 0 ≤ KAB ≤ c·p and 0 ≤ KAB < p, then K̂AB = KAB is true if this equality is
mod p and mod c. As the equality mod p is trivial and K̂AB = KB

a mod c ≡ 1,
the assumption is confirmed.

7 Caernarvon Authentication Flow

This section describes the full flow of the authentication protocol used by the
Caernarvon kernel, including implementation details omitted from the crypto-
graphic description above in section 5 and the authentication of mandatory
access controls of section 3. It will also include smart-card specific details. Each
stage from section 5 will be discussed in a separate sub-section. Each stage is
implemented as one or more steps. While the numbering of sub-sections, stages,
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and steps is complex, it helps cross-referencing back to the pure cryptographic
protocol of section 5 and ultimately to the implementation source code (not
included in this paper.)

The reader is authenticated first; this is to provide the highest achievable
protection of the ICC’s (i.e. the card’s) identity and data until the IFD (the
reader) has been authenticated.

7.1 Stage 1 – Reader Sends Key Token to the Card

The five steps that make up stage one are explained below.

Step 1. Power the card
When the smart card is first inserted into the reader, it receives power and
must respond following the Answer to Reset protocol specified in [14].

Step 2. Read Cryptographic Token Information
Prior to authentication the IFD might require parameters on how to proceed
with, and where to find resources relevant for, the authentication. The IFD
may issue commands to retrieve information for the authentication parame-
ters in a format specified by ISO 7816-15 [16]. In particular, it may retrieve
information on the authentication algorithm, the format of certificates, the
presence of specific certificates, and key related information (key ID’s, key
length etc.)

Step 3. Read key exchange parameters
If the reader does not have the required key exchange information available,
it may read them from the card. These may include public algorithm quanti-
ties which depend on the authentication algorithm. For instance, in a Diffie
Hellman Key exchange scheme the public key quantities would be the public
parameters p, q and g. The public key quantities reveal information about
the authentication mechanism. As long as these quantities are used in many
cards, the identity of a card is not revealed by the leakage of this information
prior to authentication of the reader.

Step 4. Reader Computes its Key Token and Sends it to the Card
The reader chooses a random number a, and computes its key token KA =
ga mod p (see section 4). It then sends the key token to the card.

7.2 Stage 2 – Card Sends Key Token to the Reader

The two steps that make up stage two are explained below.

Step 5. Card Computes its Key Token and Sends it to the Reader
Caernarvon chooses a random number b, and computes its key token KB =
gb mod p. It then sends the key token to the reader.

Step 6. Derive Keys for Use During the Remainder of Authentication
At this point, the reader and the card have completed simple unauthen-
ticated Diffie-Hellman key agreement, as described in section 4.1. Neither
side has been authenticated yet, but using the common secret KAB , they
now derive an encryption key KENC and a MACing key KMAC that will
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be used to protect the remainder of the authentication protocol from casual
eavesdroppers. Both keys are 112-bit 3DES keys. Key derivation from the
common secret is according to ANSI X9.63 [28] using HMAC [26] as the
pseudo-random function. Note that there could still be a man-in-the-middle
at this point in the protocol.

Both the reader and the card calculate:

HASH1 = HMAC[KAB ](1)
and
HASH2 = HMAC[KAB ](HASH1‖2)

112 bits are selected from HASH1 to produce KENC , and 112 bits are
selected from HASH2 to produce KMAC .

7.3 Stage 3 – Sending the Reader’s Certificate

The two steps that make up stage three are explained below:

Step 7. Selection of the CA Public Verification Key
This step may be a single stage, or two stages, depending on whether the
CA public key is held in the card. If the key is present in the card, then the
reader need only select the key. If the key is not present in the card then
the reader has to send the CA’s public key with the appropriate certificate
which must be verified by the card before it can be used. Care must be used
in implementing this step, because a malicious reader could attempt a denial
of service or a privacy attack against the card. If the card stores the CA’s
public key and certificate on a long-term basis, the reader could run the card
out of memory, simply by sending lots of public keys and certificates. Since
authentication has not yet been completed, the card cannot use memory
quotas to protect itself, because it does not yet know whose memory quota
to charge. The same approach could be used to violate privacy by using
the public keys and certificates as the equivalent of web browser cookies.
Fortunately, there is an easy fix. The card simply needs to not store these
intermediate keys and certificates after either authentication has completed
or the card has been reset. That simple fix eliminates the possibility of either
denial of service or privacy attacks.

Step 8. Verify Reader’s Certificate
The reader sends a computer verifiable (CV) certificate containing its public
key. The IFD executes the VERIFY CERTIFICATE command, which causes
Caernarvon to verify the certificate using the public key of the certification
authority selected or verified in step 5. The public key of the reader cannot be
trusted until it is confirmed by an appropriate certificate. The signature and
the use of HMAC ensure that the operation is fresh and is cryptographically
tied to the values of KA and KB .
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7.4 Stage 4 – Card Sends a Challenge

Step 9. Get Challenge:
In order to prove its authenticity dynamically, the reader requests a challenge
from the ICC. The challenge consists of a simple random number. Crypto-
logically, KA and KB have sufficient random quality. The additional request
for RND.B is used to initialize certain cryptographic checksum counters
used in the secure messaging protocol of [14].

7.5 Stage 5 – Authenticate the Reader

Step 10. External authentication:
The reader computes a signature on the concatenation of KA, A’s identity,
the challenge, KB , and the public Diffie-Hellman parameters. Including the
public parameters avoids the attack described in section 6.
After Step 10, the reader’s public key can be trusted, and the card knows that
there is no man-in-the-middle.

Step 11. Choose Secrecy Access Class
This step is to verify the secrecy access class to be requested, which may be
less than the maximum secrecy access class of either the reader or the card.
Note that this step is entirely optional; if it is omitted then a secrecy level
of System Low will be used by default. This procedure is performed at this
point in the authentication because:
– the session key has been agreed, so this negotiation can be performed

using encrypted transmissions, to prevent leakage of information as to
what access authorizations permitted to each participant. Thus this step
cannot be performed earlier in the authentication.

– it is completed now rather than later for privacy reasons, that is so
that the card does not reveal any personal information until it has been
verified that the reader is indeed authorized to see such information.
Revealing the card’s identity before authenticating the reader provides
for the possibility of unauthorized tracking the movements of the card
holder.

Initially, the reader (IFD) must prove its secrecy access class to the card.
The data field passed is an access class, signed and cryptographically tied
to the public key of the IFD. Caernarvon verifies the IFD’s access to the
IFD (by verification of the appropriate signatures from the SA and that the
public keys match), and then, in the response message, returns proof that
the card is authorized to use the same access class. This proof consists of the
card’s access class signed by the SA and cryptographically tied to the card’s
public key.
There is no privacy problem revealing this information, because at this point
it has been verified that the IFD holds the proper access classes. The IFD
cannot complete its verification of the card’s access classes until after step
16 below, because the IFD cannot be sure of the card’s public key and the
absence of a man-in-the-middle attack until step 16 has been completed.
However, Caernarvon returns the access classes here because the card does
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know that it is safe to do so, and it avoids the necessity of implementing an
additional step and APDU in the sequence after step 16.
At this point, the card now knows the maximal access class that can be used.
The IFD must next specify exactly what access class (less than or equal to the
maximal) that is to be used for this session. It is possible to reduce this access
class, for example if the access class contains several categories, to select a
subset of these categories, or to select a lower secrecy level than permitted
by the verified access class. (In principle, the IFD could authenticate at
precisely the access class that it wished to use. However, this would require
that the secrecy authority for the access class to have signed all possible
combinations of access classes less than or equal to the maximal access class.
Storing all those signatures would be quite impractical, particularly when
the IFD’s memory capacity may be as limited as the smart card itself.) This
selection of the subset could be done at a later stage in the authentication;
however, it seems sensible to do it at the same time as the verification.

Step 12. Choose Integrity Access Class
This step is to verify the integrity access class to be requested. This procedure
is performed at this point in the authentication for the same reasons as for
the secrecy access class. Note that this step is entirely optional; if it is omitted
then an integrity level of System Low will be used by default. Initially, the
reader (IFD) must now prove its integrity access class to the card. The data
field passed is signed and cryptographically tied to the public key of the IFD.
This has now set a maximal access class (i.e. integrity level) that can be
used. It is possible to reduce this access class, to select a lower integrity level
than permitted by the verified access class. This selection of the subset could
be done at a later stage in the authentication; however, it seems sensible to
do it at the same time as the verification.

7.6 Stage 6 – Sending the Certificate to the Reader

Step 13. Read Card’s Certificate
The reader now needs to read the certificate of the card. In the E-Sign
protocol, this certificate may be signed by an external CA and there may be
a need to chain back through one or more certificates. However, for a high-
assurance system, simply chaining back through certificates to some public
CA does not give the reader any assurance that the smart card is actually
running the genuine high-assurance Caernarvon operating system. Instead,
the public keys of each Caernarvon card are signed by the card manufacturer
who is responsible for ensuring that the correct high-assurance ROM image
has been burned into the card and that the card has been properly and
securely initialized. No other authority can provide better assurance, because
ultimately it is the card manufacturer who controls the ROM image.

Step 14. Read Card Manufacturer’s Certificate
If the reader does not already have the card manufacturer’s certificate, it
reads in from the card.
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Step 15. Key selection
Before the reader can process the INTERNAL AUTHENTICATE command,
the card’s private authentication key must be selected, using a Manage Se-
curity Environment command.

7.7 Stage 7 – Reader Requests Card to Send Challenge to Reader

Step 16. Internal Authentication
The reader issues an INTERNAL AUTHENTICATE command. The causes
the card to send its challenge to the reader. The card then computes the
signature over the challenge and the key token KA, KB and returns it to the
reader encrypted with secure messaging.

7.8 Stage 8 – Reader Authenticates Card

Step 17. Verifying the signatures
The reader now verifies the response with the trusted key from the card’s
certificate and gets evidence that the signer (holder of the certificate) is
identical with the entity that made the key negotiation.
After Step 17, both sides are authenticated and mandatory access classes
have been selected and verified.

7.9 Post-authentication Phase

A successful authentication selects the desired access class, negotiated from that
provided in the certificate of the IFD, for the current session. The session keys
for the session are available to both parties, as described in section 7.2. All
further communication is done under Secure Messaging either through protection
(MAC) or encryption of the data being transmitted at the interface. The decision
to send subsequent blocks in encrypted form depends on the selected secrecy
access class. In general, secrecy access classes higher than certain specified values
will require session encryption. The session ends when the card is RESET or
powered off. There is no way to start a fresh authentication without RESETting
the card.

8 Conclusion

We have shown how a high-assurance smart card operating system that supports
download of mutually suspicious applications must enforce its own high security
authentication protocol, rather than allowing the traditional smart card ap-
proach of allowing individual applications do perform their own authentication.
Strong operating system-based authentication is essential so that the operating
system can reliably protect one application from another, yet still permit con-
trolled sharing of information. The protocol is designed to support mandatory
access controls for both secrecy and for integrity. We have also shown potential
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privacy problems with existing smart card authentication protocols and how our
new protocol helps to preserve the privacy of the smart card holder. However, the
protocol is based on existing authentication standards that have been formally
proven, and is being submitted for possible standardization.
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