
Authentication for Paranoids: Multi-Party
Secret Handshakes

Stanis law Jarecki, Jihye Kim, and Gene Tsudik

Computer Science Department
University of California, Irvine
{stasio, jihyek, gts}@ics.uci.edu

Abstract. In a society increasingly concerned with the steady assault
on electronic privacy, the need for privacy-preserving techniques is both
natural and justified. This need extends to traditional security tools such
as authentication and key distribution protocols. A secret handshake
protocol allow members of the same group to authenticate each other
secretly, meaning that a non-member cannot determine, even by engag-
ing someone in a protocol, whether that party is a member of the group.
Whereas, parties who are members of the same group recognize each
other as members, and can establish authenticated secret keys with each
other. Thus, a secret handshake protocol offers privacy-preserving au-
thentication and can be used whenever group members need to identify
and securely communicate with each other without being observed or
detected.
Most prior work in secret handshake protocols considered 2-party sce-
narios. In this paper we propose formal definitions of multi-party secret
handshakes, and we develop a practical and provably secure multi-party
secret handshake scheme by blending Schnorr-signature based 2-party
secret handshake protocol of Castelluccia et al. [5] with a group key
agreement protocol of Burmester and Desmedt [4].
The resulting scheme achieves very strong privacy properties, is as effi-
cient as the (non-private) authenticated version of the Burmester-Desmedt
protocol [4, 6], but requires a supply of one-time certificates for each
group member.

Keywords: privacy-preserving authentication, secret handshakes, group
key agreement, anonymity, privacy, authentication protocols.

1 Introduction

Consider the following scenario: two undercover Interpol agents, Alice and Bob,
are in a crowded public place, such as an airport or a city square. They are not
aware of each others presence or affiliation. However, each wants to discover,
and communicate with other Interpol agents. Interpol rules prohibit agents from
revealing their affiliation to non-agents. Since the environment is potentially hos-
tile, Alice would thus authenticate to Bob only if he is an agent, and vice versa.
No one who is not an Interpol agent as well should be able to determine whether
Alice (or Bob) is an agent, or even if Alice and Bob are members of any single

organization. Likewise, if only one of the two (Alice or Bob) is a genuine agent,
the other (the impostor) should learn nothing about the counterpart’s affiliation.
Furthermore, should anyone meet either Alice or Bob again, and engage them
in an authentication protocol, they should not be able link the two encounters.

Traditional PKI-based authentication fails in the above scenario. Other intu-
itive approaches, such as key exchange followed by encrypted authentication, fail
as well. Even more exotic cryptographic tools like group signatures and identity
escrow are unsuitable since they protect anonymity of members within the same
group, but are not designed to hide the affiliation of the group members.

1.1 Prior Work on Two-party Secret Handshakes

To satisfy the security requirements for the secret agent example we need au-
thentication schemes which are anonymous in the sense of hiding an affiliation of
the participating parties. Such authentication schemes were named secret hand-
shakes by Balfanz et al. in a paper [2] which introduced the notion of privacy
(a.k.a. anonymity) for public-key two-party authentication schemes.1 A (two-
party) secret handshake (SH) scheme allows two group members (e.g. two enti-
ties certified by the same Certification Authority) to authenticate each other in
an anonymous and unobservable manner in the sense that one party’s member-
ship is not revealed unless the other party’s membership is also ensured. In other
words, if party A who is a member of group G1 engages in a (two-party) secret
handshake protocol with party B who is a member of G2, a secret handshake
scheme guarantees the following [2]:

– A and B authenticate each other if and only if G1 = G2.
– If G1 6= G2, both parties learn only the fact that G1 6= G2.

A two-party secret handshake scheme can possess further desirable anonymity
properties: (1) Unobservability: A non-group member cannot tell not only whether
A or B belong to some given group but also whether A and B belong to any
single group (and hence whether they accept or reject in the handshake proto-
col); (2) Unlinkability: Two occurrences of the same party cannot be linked with
each other by anyone except the group manager; and (3) Privacy against eaves-
dropping insiders: Any passive observers, even including other group members,
cannot learn anything from the protocol as well.

Balfanz, et al. [2] constructed the two-party SH scheme by adapting the key
agreement protocol of Sakai, et al. [10]. Its security rests on the hardness of the
Bilinear Diffie Hellman (BDH) problem. Subsequently, Castelluccia, et al. [5]
developed a more efficient secret 2-party handshake scheme under more stan-
dard cryptographic assumption of Computational Diffie Hellman (CDH) prob-
lem. Both solutions are secure in the Random Oracle Model (ROM) for hash
functions, and both attain properties (1) and (3) above, but attaining property
(2), in both solutions, requires a supply of one-time certificates for each group
member.
1 Privacy for symmetric-key authentication schemes was considered before by

Abadi [1].

1.2 Group Secret Handshakes: Prior Work and Our Contribution

Both aforementioned techniques are limited to 2-party settings. A natural next
step is to explore the space of multi-party settings with similar security require-
ments. For example, we can re-consider our initial secret agent scenario but,
this time, with four undercover Interpol agents. They are, as before, in certain
proximity, and would like to discover each other and have a secure “conversa-
tion”. However, each wants to authenticate to others if and only if all of them
are similarly affiliated. The adversarial model is also similar. An adversary may
eavesdrop or take part in the protocol in order to impersonate an agent or to de-
tect others’ affiliations. All properties of 2-party secret handshakes listed above
can be adopted to group authentication and authenticated key agreement pro-
tocols. We will call authenticated group key agreement scheme which satisfies
such privacy properties a Group Secret Handshake (GSH).

In a recent paper, Tsudik and Xu [12] presented the first group secret hand-
shake (GSH) solution, which also supports reusable (sometimes called multi-
show) certificates, instead of one-time certificates as in [2, 5]. However, their
scheme ensures successful authentication between group members only if each
member holds the same most recently distributed group key, which requires a
lot of real-time communication between group manager and the group members.

In this paper we give a more formal definition of the GSH scheme than that
given in [12], and we provide a solution which fits the standard PKI setting, and
in particular avoids having the group manager broadcast key-update messages
to the group members. Our solution is based on commonly taken assumptions
(Computational Diffie Hellman and the Random Oracle Model for hash func-
tions), achieves very strong anonymity properties, and is as efficient as existing
(non-private) two-round group key agreement protocol based on the same as-
sumptions, i.e. the Burmester-Desmedt protocol [4, 6]. On the negative side,
our scheme requires a supply of one-time certificates for each group member,
which implies more storage for group members, more computation for the group
manager, and bigger sizes of the certificate revocation lists. However, such so-
lution can still be practical for groups whose members do not engage in this
authentication protocol all the time, e.g. no more than 100 times a month on
the average.

1.3 Overview of our GSH Construction

The idea of our scheme is to add affiliation-hiding authentication to the Burmester-
Desmedt group key agreement protocol [4] via the signature-based affiliation-
hiding encryption method which was given for the discrete-log setting by Castel-
luccia et al. [5].2 In the signature-based encryption of [5], the certificate for
member of a group G is a Schnorr signature (w, t), where w = gr and t =
r+xGH(w, id) on a random ID strings id, under the public key yG = gxG of this
group. The Schnorr signature can be thought of as a private key t and a public

2 See section 1.4 below for a discussion of related works on signature-based encryption.

key y = gt, which can be computed from the (w, id) pair as y = w(yG)H(e,id).
It was shown in [5] that, under the CDH assumption, if key y is computed from
(w, id) as above then only the owner of a signature (t, w) on id under key yG can
decrypt ElGamal ciphertexts encrypted under y. Here we use the above “public
key” y = gt not as an encryption key but as the contribution of a player to the
Burmester-Desmedt group key agreement protocol, and we show that only the
players who hold valid signatures (w, t) issued on some string id can contribute
their values y = gt by sending (w, id) instead of y in the first round of the BD
group key agreement protocol, and then recover the agreed-on key in the second
round. We show that in this way only the certified group members can get the key
that other certified members output, and moreover, that a non-certified player
cannot tell what public key yG the other players use, and hence that the scheme
hides group membership of the authorized participants from the non-authorized

The reason why this construction requires one-time certificates is that re-
using a Schnorr certificate (w, t, id) in the protocol described above, corresponds
to re-using the same contribution gt in more than one instance of the Burmester-
Desmedt key agreement protocol, which would yield that protocol insecure.

1.4 Other Related Work

In addition to the prior work described above, the work of Xu and Yung [13]
constructed an interesting 2-party secret handshake scheme which achieves un-
linkability with reusable credentials. However, this scheme requires each party
to be aware of other groups (of which one is not a member) and offers weaker
form of anonymity, referred to as k-anonymity.

The previously mentioned GSH scheme by Tsudik and Xu [12] achieves addi-
tional properties like self-distinction between players participating in the proto-
col, and traceability of the participating players by the group manager examining
the transcript of the protocol. In our GSH protocol we achieve a weaker variant
of the self-distinction property, called counting (see section 2.2).

Our GSH construction uses the signature-based encryption scheme based
on the CDH problem given by [5]. Other signature-based encryption schemes,
referred to as “oblivious signature-based envelopes” (OSBE), were developed for
other cryptographic settings in [7] and [8]. We note that to satisfy the needs
of private (group or two-party) authentication, the signature-based encryption
scheme must have additional privacy property of affiliation-hiding3 and it’s an
open problem to ensure this property for many OSBE schemes.

2 Definition of a Group Secret Handshake

In this section we describe the components of a GSH scheme and the security
properties it should achieve.

A GSH scheme operates in an environment consisting of a set of players and a
set of administrators who are responsible for creating groups, admitting chosen
3 The same property was called “sender and receiver obliviousness” in [5].

players as group members, and possibly also revoking their membership. For
simplicity’s sake, we assume that each player is a member of exactly one group
and that each group manager is responsible for a unique group, but our results
can be easily generalized to the case when a player can be a member of many
groups, and a manager can manage many groups as well. A GSH scheme is a
tuple of algorithms (Setup, CreateGroup, AddPlayer, Handshake, RemovePlayer)
described in figure 1.

Communication and Adversarial Model: We assume the existence of anonymous
broadcast channels between all legitimates parties, where “anonymous” means
that an outside attacker cannot determine identities of GA, group members,
as well as the dynamics and size of a group. Also, a malicious insider (group
member) cannot determine identities of other honest group members as well
as the dynamics and size of the group. This assumption is necessary in most
privacy-preserving authentication schemes; otherwise, anonymity could be triv-
ially compromised. However, we note that our requirement that SH protocols
themselves must rely on anonymous channels does not necessarily present a
problem. This is because a typical secret handshake application would be in a
wireless LAN setting where broadcast – a natural source of anonymity – is a
built-in feature. Additionally, we assume that participants’ clocks are loosely
synchronized. They specify when they start the protocol and how long they will
wait for other player’s messages in each protocol round. We stress that we do
not assume any reliability properties of this broadcast medium, i.e. in our ad-
versarial model the adversary can inject any messages into the protocol, delay,
erase, and/or modify the messages sent between honest parties, and in particular
deliver the broadcasted messages to arbitrarily selected players.

2.1 Basic Security Properties of GSH Scheme

A GSH scheme must be correct, authentic, and affiliation-hiding:

Correctness: For any group G managed by an honest GA, and any set ∆ of
honest players who are members of G, if the adversary forwards all messages
between participants in a protocol GSH.Handshake(∆), then all players in ∆
output identical (K, IDSet) pairs, where IDSet has |∆| elements, one per each
player in ∆, uniquely identifying this player to the group manager GA.

Authenticity: The essence of this property is that if any honest player outputs
a key in an instance of the GSH.Handshake scheme, then an attacker who can
be an active participant in this protocol but who does not have a non-revoked
certificate for that group, learns nothing about that key. Formally, we say that
GSH.Handshake guarantees authenticity , if every polynomially-bounded adver-
sary A has only negligible probability of winning of the following game:

1. GSH.Setup and GSH.CreateGroup algorithms are executed and resulting pa-
rameters params and public key PKG are given to A.

GSH.Setup: This algorithm is executed publicly, on input of a sufficient security pa-
rameter k, to generate public parameters params common to all subsequently gen-
erated groups, e.g., k determines the size of the modulus used in cryptographic
operations.

GSH.CreateGroup: This algorithm is executed by a group authority, GA to establish
a group denoted G. It takes as input params, and outputs a the group public key
PKG, the GA’s private key SKG, and a certificate revocation list, CRLG, which
is originally empty.

GSH.AddMember: This algorithm is executed between a player U and a GA who
administers some group G. The input’s are GA’s private input SKG and shared
inputs params and PKG. The output is a membership cert for the player, which
contains in particular a random bitstring id of fixed length, e.g. 160 bits. We say
that a player who receives a cert in this protocol is a member of group G. We assume
that GA admits members according to some admission policies, but specification
and enforcement of such policies are outside the scope of this paper. The AddPlayer
protocol can be executed between same GA and U many times, in which case U
receives a set of certs as a result, each containing a different id string (except for
negligible probability).

GSH.Handshake(∆): This algorithm is executed by a set ∆ of n players purporting
to be members of a group G, where ∆ = {U1, ..., Un} and n ≥ 2. Each player Ui

runs the protocol on inputs a public key PKG, a set of certs received from G’s GA,
and (Ui’s current view of) CRLG. At the end of the protocol, each player outputs
either (K, IDSet), in which case we say that the player accepts, where K is an
authenticated key for use in subsequent secure communication, and IDSet is a set
of id’s, or reject, in which case we say that the player rejects.

GSH.RemoveMember:: This algorithm is executed by GA. On input of some player
identity U , GA looks up the id’s assigned to U in instances of the AddMember
between this GA and U , and inserts them into CRLG. The updated CRLG is
assumed to be publicly available.

Fig. 1. GSH Scheme Components

2. A triggers the GSH.AddMember algorithm under the public key PKG poly-
nomially many times. In each GSH.AddMember instance, A receives a mem-
bership cert from the GA. Before the protocol starts, all certs A received are
added to CRLG, which is sent to all honest players in G.

3. A chooses a set of player ∆ = (V1, ..., Vl) in G, triggers the execution of
GSH.Handshake(∆), and participates in this execution, i.e. hears all the mes-
sages, controls their delivery, and can any messages it wants to the partici-
pants.

4. If any honest player in ∆ accepts, and outputs (K, IDSet) pair, A wins if
he has non-negligible advantage in distinguishing between the following two
games: In game [A], A is given a key K output by some (randomly chosen)
accepting player in ∆. In game [B], A is given a random bitstring of the
same length.

Note: The above definition of is a simplified form of the security requirement of
an authenticated group key agreement scheme (AGKA). In particular, it does
not model security under concurrent execution of multiple instances of the GSH
protocol. However, the emphasis of our contribution is on the anonymity prop-
erties of a group key agreement, so we examine the security of the protocol we

propose only under the restricted notion above. The full analysis of the security
of the group key agreement protocol involves modeling it as an ideal functional-
ity, as in the Katz-Yung [6], and is out of the scope of this current paper.
Affiliation-hiding:4 A GSH scheme is affiliation-hiding if all messages from an
honest player in the entire protocol do not leak the identity of the GA which
certified that player, even if this player is engaged in a group handshake proto-
col involving malicious participants. Formally, we call a GSH scheme affiliation
hiding if there exists a probabilistic polynomial-time algorithm SIM , such that
no polynomially-bounded adversary A has a non-negligible advantage in distin-
guishing between the following two games:

1-2. Steps 1-2 are the same as in the authenticity property.
3. A picks any set of players ∆ = (V1, ..., Vl) , not necessarily belonging to one

group, and then:
3.1 In game 1,A interacts with players in ∆ executing protocol GSH.Handshake(∆).
3.2 In game 2, A interacts with SIM which runs only on input l = |∆| and

params.

Note: This definition implies that an adversary A cannot tell not only if the
other participating players are members of some group G (for which A does not
have non-revoked certs), but also if the other players belong to any single group
at all. Thus the above definition implies the property of GSH scheme which
can be called unobservability. This definition also implies the unlinkability
property, which says that even an active adversary cannot link two instances
of the handshake protocol in which the same player participates. These strong
anonymity properties are implied by the above definition because the simulator’s
only input is the size of the set ∆, and not the identities of the individual players,
nor their group membership(s). We remark that our GSH protocol achieves the
unlinkability property in a rather trivial way by using one-time certificates which
are discarded after a single use.

2.2 Other Security Properties of a GSH Scheme

We also specify two less central but potentially useful security properties for
GSH schemes, counting and affiliation-hiding against eavesdropping insiders:
Counting: The counting property says that the set of id’s, IDSet, output by an
honest player that accepts in a handshake protocol, has some correspondence to
the number of players who are group members among the participants. Namely,
as long as no malicious group member participates in the protocol, the size
of the IDSet is no larger than the set of group members participating in this
protocol. (We cannot require |IDSet| is equal to the number of participating
group members, because the adversary controls the communication network, and
hence can always not deliver some players’ messages.) Formally, we say that a

4 The affiliation-hiding property we define here implies what was called detection-
resistance in previous secret-handshake papers [2, 5, 12].

GSH scheme accomplishes the counting property if every polynomially bounded
adversary A has negligible probability of winning in the following game:

1. GSH.Setup and GSH.CreateGroup algorithms are executed and resulting pa-
rameters params and public key PKG are given to A.

2. A triggers the GSH.AddMember algorithm under the public key PKG poly-
nomially many times. In each GSH.AddMember instance, A receives a mem-
bership cert from the GA for this group G. Before the protocol starts, all
secrets A received are added to CRLG, which is sent to all players in G.

3. A runs GSH.Handshake with any group ∆ of honest members in G.
4. A wins if any honest player in ∆ outputs (K, IDSet), where IDSet includes

more id’s than the size of set ∆.

Affiliation-hiding against eavesdropping insiders: Note that the affiliation-
hiding property implies security against both passive (i.e. only eavesdropping)
and active outsiders, i.e. adversaries that have no current non-revoked certificates
for an attacked group. However, a GSH scheme could also offer affiliation-hiding
protection (which, as we pointed out above, implies unobservability and un-
linkability) against an adversary who does have non-revoked certificates (i.e. an
adversary who is a valid member of the attacked group) but who is only eaves-
dropping on the handshake protocol. (Note furthermore that this is the best
we can ask for, because if such adversary is active, he can learn everything by
just participating in the handshake protocol using his non-revoked cert.) We do
not formally define this property, since it is very similar to the security against
active attackers which we already defined for the properties of authenticity and
affiliation-hiding.

3 Construction of a Group Secret Handshake Scheme

We now construct a practical GSH scheme achieving authenticity and affiliation-
hiding under the CDH assumption in ROM. As mentioned in section 1.3, it
is based on the Burmester-Desmedt (unauthenticated) group key agreement
scheme [4] (see figure 4 in the appendix).

We point out from the outset that we modify the Burmester-Desmedt pro-
tocol in the process, by adding an extra layer of hashing into the key derivation
(see the form of our session key shown in Lemma 1). The reason is that our
authentication method is highly non-standard; hence, the security argument for
the resulting authenticated group key agreement (AGKA) scheme becomes eas-
ier once the components of the session key related to each player are put through
a hash function modeled as a random oracle. Our GSH scheme is shown in figure
2.

Lemma 1. Protocol AGKA in figure 2 is a correct group key agreement scheme.
That is, if all parties adhere to the protocol then each will compute the same key:
K = F (gt1t2)F (gt2t3) · · ·F (gtnt1) (mod p)

Setup: This algorithm outputs the standard discrete logarithm parameters (p, q, g)
of security k, i.e., primes p, q of size polynomial in k, s.t. g is a generator of a
subgroup in Z∗

p of order q. GA also defines hash functions H : {0, 1}∗ → Zq,
F : {0, 1}∗ → Zp. The hash functions are modeled as random oracles.

CreateGroup: GA sets the group secret SKG to be a random number x ∈ Zq and the

group public key PKG to be y = gx (mod p).
AddMember: To add a player U to the group G, GA does the following: First, it

generates a list of random “pseudonyms” id1, ..., idf ∈ {0, 1}160, where f is cho-
sen to be larger than the number of handshakes U will execute before receiving
new player secrets. Then, GA computes a corresponding list of Schnorr signatures
(w1, t1),...,(wf , tf) ∈ (Z∗

p , Zq) on all ids picked above under the key y as [11], i.e., a
pair (wk, tk) where wk = grk (mod p), and tk = rk + xH(wk, idk) (mod q), for

random rk ← Zq. A signature pair (wk, tk) on idk satisfies that gtk = wkyH(wk,idk)

(mod p). The player’s outputs are the list of certs ((t1, id1, w1), ..., (tf , idf , wf)).
Sometimes we will refer to a ti value as a “trapdoor” for the (idi, wi) pair.

RemoveMember: To remove a player U from the group G, GA looks up pseudonyms
(id1, ..., idf) it has issued to U , adds the pseudonyms to the current CRL and
outputs an updated CRL.

AGKA(∆): This is a group key agreement algorithm for some set ∆ = {U1, ..., Un} of

the honest players, where each player Ui ∈ ∆ receives a signal to start the protocol.
Each player Ui removes a single cert (ti, idi, wi) from its list of certs. (Note that
this cert will be removed from the list whether the subsequent protocol succeeds
or not.) The protocol consists of two rounds:

[Round 1]: Each player Ui broadcasts (idi, wi).
• If there are collisions between id’s, Ui just abandons the protocol. If Ui

receives any id’s on CRL, he broadcasts a random value as Xi in Round
2 and outputs reject.

• If there are neither id collisions nor revoked id’s, Ui determines the order
between players based on id’s. We assume that the order of players is
determined by their pseudonyms, e.g., increasing order of hash images
of pseudonyms. For simplicity of description, wlog, we assume that the
ordered result is (U1, U2, ..., Un) and the indices are taken in a cycle modulo
n, i.e. Un+1 = U1.
∗ Ui computes zi+1 = wi+1y

H(wi+1,idi+1)(= gti+1) and zi−1 =

wi−1y
H(wi−1,idi−1)(= gti−1).

∗ Ui computes Xi = F (zti
i+1)/F (zti

i−1) (mod p)
[Round 2]: Each player Ui broadcasts Xi.

• Ui computes Ki = F (zti
i−1)

n ·Xn−1
i ·Xn−2

i+1 · · ·Xi−2 (mod p).
• Ui outputs (Ki, IDSeti), where IDSeti = {id1, ..., idn}.

Fig. 2. GSH: A Group Secret Handshake Scheme

Proof. Let
Bi−1 ≡ F (zti

i−1) ≡ F (gti−1ti) (mod p),

Bi ≡ F (zti
i−1) ·Xi ≡ F (gtiti+1) (mod p),

Bi+1 ≡ F (zti
i−1) ·Xi ·Xi+1 ≡ F (gti+1ti+2) (mod p),

· · ·
Bi−2 ≡ F (zti

i−1) ·Xi ·Xi+1 ·Xi+2 · · ·Xi−2 ≡ F (gti−2ti−1) (mod p).

Then Ki ≡ Bi−1BiBi+1 · · ·Bi−2 ≡ F (zti
i−1)n · Xn−1

i · Xn−2
i+1 · · ·Xi−2 (mod p).

2

Note on Performance: We compare the performance of the GSH scheme in fig-
ure 2 with the original (non-authenticated) Burmester-Desmedt scheme, shown
in figure 4 of the appendix. Communication cost is the same since both schemes
require two communication rounds. When we consider the on-the-fly computa-
tion, BD requires two modular exponentiations and GSH involves two modular
multi-exponentiations, respectively. Thus, the efficiency of the GSH scheme is
comparable to the original BD scheme. Therefore, the GSH scheme not only
provides an authentication to the BD protocol almost for free, but also provides
an authentication with very strong privacy property of affiliation-hiding. On the
other hand, we note that our GSH scheme requires use of one-time certificates,
which compared to standard PKI authentication creates additional storage re-
quirements for the group members, increases the computation cost for the group
manager, who needs to create a list of certificates for each group member, and
increases the size of the CRL list.

Theorem 2. The GSH scheme in figure 2 is affiliation-hiding under the CDH
assumption in the Random Oracle model.

Proof: The simulator required to prove the affiliation-hiding property is very
simple: It sends random values on behalf of all the honest players (V1, ..., Vl)
participating in the protocol: It picks random idi’s, wi’s chosen at random in
the subgroup generated by g, and random values Xi’s in Z∗

p . It is easy to see
that neither idi nor wi values sent by the honest players in the first round of the
protocol reveal any information about the GA in the first round: Since each w is
created as w = gr for random r, it is independent from GA’s public key y, and
id’s are randomly chosen as well.

The only values which can reveal something about the group membership
of the honest players are the Xi values sent in the second round. However,
the only way an adversary can distinguish between a conversation with honest
players and a conversation with the above simulator sending random Xi’s is if
the adversary queries the random oracle F on one of the two inputs, zti

i+1 or zti
i−1,

used to compute the Xi value used by any honest player Vi. We will argue that
if such adversary exists then this adversarial algorithm can be used to break the
Computational Diffie-Hellman assumption, i.e. on input a random pair (y, c) in
the subgroup generated by g in Z∗

p , the simulator will output cx s.t. y = gx with
a non-negligible probability. First, in the initialization procedure the adversary
is given the y part of this CDH challenge as the public key of the GA of the
group it is attacking. The simulator then uses the c value in its simulation, and
extracts the cx from one of the queries the adversary makes to the F oracle, as
follows.

Without loss of generality, we can assume the adversary queries F on one
of the zti

i+1 values, since the argument is the same in the other case. Also, if
the adversary has a non-negligible probability of querying F on any such value,
then there exists an index i ∈ {1, ..., l} s.t. the adversary has a non-negligible
probability of querying F on a value with this particular index i. Moreover, since
the adversary makes polynomial number of queries to F , there is an index j of

his queries to F and a non-negligible probability ε s.t. value zti
i+1 appears as j-th

query to F .
For that index i, the simulator in round one sends (wi, idi) pair chosen in a

special way. Namely, it picks random idi as before, but it picks also a random
value ei in the range of F , computes wi = c ∗ y−ei and sets H(wi, idi) to ei.
In this way, we will have zi = wi ∗ yH(wi,idi) = wi ∗ yei = c. (The distribution
created by the simulator in this way is correct because c is random in the group
generated by g.) Now, note that zti

i+1 = z
ti+1
i , and since zi = c, it follows that

one of the queries the adversary makes to F is equal to cti+1 . Now, without loss
of generality we can assume that index i + 1 corresponds to a corrupt player
Ai+1, and therefore the value ti+1 is defined as a value s.t. gti+1 = wi+1y

ei+1

where ei+1 = H(wi+1, idi+i). If we can rewind the adversary and witness two
of its executions which run on the same random inputs until the adversary
queries H on pair (wi+1, idi+1), but feed the adversary different challenges, e

(1)
i+1

and e
(2)
i+1, as F ’s responses in these two executions, then by the forking lemma

of Pointcheval-Stern [9], it follows that with probability O(qH/ε), where qH is
the number of queries the adversary makes to H, we see two executions, for
r = 1 and r = 2, s.t. the adversary’s j-th query to oracle F is equal to value
α(r) = ct

(r)
i+1 , where gt

(r)
i+1 = wi+1y

e
(r)
i+1 . Since it follows from the last constraint

that t
(r)
i+1 = ki+1 + x ∗ e

(r)
i+1 where gki+1 = wi+1, the simulator can extract

cx from these two values α(1) and α(2), by outputting (α(1)/α(2))1/δe where
δe = e

(1)
i+1 − e

(2)
i+1. 2

Theorem 3. The GSH scheme in figure 2 is authentic under the CDH as-
sumption in the Random Oracle Model.

Proof: The proof is almost identical to the one above. The only way the adversary
can distinguish key Ki output by any honest player Vi is if the adversary queries
oracle F at point zti

i−1. The proof above shows that the adversary who can
compute either zti

i+1 or zti
i−1 for any index i of an honest player, can be reduced

to breaking CDH. Therefore the authenticity of our AGKA holds under the same
assumption.

4 Group Secret Handshake Scheme with Counting

In this section we add explicit mutual authentication to the GSH scheme from
the previous section, which allows us to support the counting property.

Bresson et al. [3] show how to accomplish explicit authentication for any
group key agreement protocol with minimal extra computation. We adopt their
method, which consists of MAC-ing the transcript using the agreed-upon key,
and we show that this simple mechanism enables the counting property, and that
the resulting protocol still maintains the properties of authenticity or affiliation-
hiding. Note that the extra cost due to generation and verification of hash-based
MACs is negligible.

Given a hash function H3 : {0, 1}∗ → {0, 1}k modeled as a random oracle,
we modify the Handshake protocol in our GSH scheme, as shown in figure 3.
We denote the GSH scheme resulting from this modification of the Handshake
protocol GSH+MAC.

GSH+MAC.Handshake(∆): The protocol proceeds as the GSH.Handshake(∆) protocol
(see figure 2 on page 9), with the following modification:

[Run GSH.Handshake(∆)]
– If Ui computes (Ki, IDSeti) in round 2 of the GSH.Handshake protocol, it

does not output it, but computes Mi = H3(Ki, idi). If Ui was to reject in
the GSH.Handshake protocol, it picks Mi as a random bitstring of appropriate
length.

[Round 3]: Each player Ui broadcasts Mi.
– Ui computes M ′

j = H(Ki, idj) and checks if Mj = M ′
j for 1 ≤ j ≤ n. If Ui

verifies all Mj ’s, then Ui outputs (Ki, IDSeti = {id1, ..., idn}), in which case
we say that Ui accepts. Otherwise it rejects and outputs reject.

Fig. 3. GSH+MAC: a GSH Scheme with MAC-based Authentication

Theorem 4. The GSH+MAC construction in figure 3 is an authentic and affil-
iation hiding GSH scheme, which additionally provides the counting property.

Proof of Authenticity (sketch). The authenticity property is very clear since the
GSH scheme provides authenticity by theorem 3 and the message in Round 3
does not reveal any information of the agreed key the Random Oracle Model.

Proof of Affiliation-hiding (sketch). We will show a simulator SIM s.t. if A
distinguishes between interactions with SIM and interactions with a group
member, we can break the authenticity property. Since the underlying AGKA
achieves affiliation-hiding property there exist simulators SIM(AGKA) which
satisfy the affiliation-hiding criteria. We define a simulator SIM , running on
inputs (params), as follows: (1) To simulate Ui’s messages in AGKA, we use
SIM(AGKA). (2) To simulate Ui’s message in the third round, SIM sends ran-
dom Mi ← {0, 1}k. If A can distinguish a conversation with such SIM from
a conversation with a true group member Ui, since the SIM(AGKA) simulator
produces messages which are indistinguishable from the message of an honest Ui,
it must be that A distinguishes random values Mi chosen by SIM from values
Mi = H(Ki, idi), In ROM, it can happen only if A makes an oracle query on the
input (Ki, idi). In this case, since A can make only polynomially-many queries
to H, we pick one such query at random. And we will have a non-negligible
chance of outputting Ki. This contradicts to authenticity property in AGKA.
Therefore A can distinguish a conversation with SIM from a conversation with

a group group member with only negligible probability.

Proof of Counting (sketch). The counting property follows immediately from
the authenticity property: Since by the latter property, the adversary cannot
distinguish a key Ki, for any player Ui in ∆, from a random string. Therefore
the adversary also cannot forge a proper MAC Mi on any string, and hence the
size of the set IDSeti output by any honest accepting player Ui in ∆, is at most
equal to the size of set ∆.

5 Privacy Issues Involved in Revocation

Every GA that issues certificates will also need to revoke them. There can be
many reasons for this. One reason is that the private keys corresponding to the
certificate have been lost or compromised. Then the certificate holder contacts
the GA and asks that the certificate be revoked. A GA may also decide to
revoke a certificate. For example, the certificate holder may violate the issuing
agreement, or there can be promotions or retirement. Whatever the reason, the
revoked group member’s pseudonyms appears on the CRL of the issuing GA, and
anyone who receives the CRL knows which pseudonyms are revoked from the
particular GA. Since the CRL is generally public, we should examine whether
there is any loss of privacy in the context of secret handshakes. Especially, we
recognized that forward secrecy can be subverted if we depend on the normal
revocation method, the CRL.

The CRL destroys the forward secrecy property against affiliation hiding and
unlinkability. When non-group members receives the CRL, they may detect some
group members by comparing pseudonyms on the CRL and pseudonyms they
have seen in other protocol executions. In the case that the same group members
get the CRL, they may link the same party from the previous protocol runs by
looking at the difference in the update CRL. This is because all pseudonyms
assigned to one group member are treated atomically in the revocation process.

One solution to mitigate the CRL problem is to issue time-based certifi-
cates, which are used only at a specified time and automatically expires after
the time. When a group member needs to be revoked, the GA places only un-
expired pseudonyms to the CRL. Since the used pseudonyms expire implicitly,
this method is free from leaking any information regarding to the earlier protocol
runs. The main disadvantage of this approach is that each group member needs
to have lots of pseudonyms more than they use. For example, if a player partic-
ipates a protocol at least once a week and each certificate expires every day, the
player will be given seven certificates only for the one protocol execution. If the
certificate expires every minute, the problem will be even worse. This approach
may be practical in a very limited setting where players know when and how
many times they will execute the protocol.

Another solution is to distribute the CRL only to the non-revoked group
members. This can be done, for example, by keeping a group key among the
current group members and publish the encrypted CRL using the group key. In
this case, the issue will be how to update the group key efficiently. We may need

a cryptographic tool such as broadcast encryption. However, security properties
should be considered again, while we integrate other cryptographic tools. For
example, we should check if updating messages in broadcast encryption reveal
affiliation information of the group.

Instead of using the CRL, the GA can invalidate all the issued certificates
by changing its public key. Whenever the public key is updated, non-revoked
members synchronize their new pseudonyms lists with their GA. This approach
easily solves the revocation problem without revealing any further information.
However, each player’s burden will not be negligible if the revocation happens
frequently.

We briefly mentioned three possible approaches for the private-preserving
revocation technique. It is our future work to efficiently implement the proposed
methods.

References

1. M. Abadi. Private authentication. In Workshop on Privacy-Enhancing Technolo-
gies (PET), 2002.

2. D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Se-
cret handshakes from pairing-based key agreements. In 24th IEEE Symposium on
Security and Privacy, Oakland, CA, May 2003.

3. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authen-
ticated Group Diffie-Hellman Key Exchange. In ACM CCS, 2001.

4. M. Burmester and Y. Desmedt. A secure and efficient conference key distribution
system. In A. D. Santis, editor, Proc. EUROCRYPT 94, pages 275–286. Springer,
1994. Lecture Notes in Computer Science No. 950.

5. C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious
encryption. In Advances in Cryptology - ASIACRYPT 2004, volume 3329 of Lec-
ture Notes in Computer Science, pages 293–307. Springer, 2004.

6. J. Katz and M. Yung, Scalable Protocols for Authenticated Group Key Exchange.
In Proceedings of CRYPTO 2003, LNCS 2729, pp. 110–125. Springer-Verlag, 2002.

7. N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In Proceedings
of 22nd ACM Symposium on Principles of Distributed Computing (PODC 2003),
Boston, Massachusetts, July 13-16 2003.

8. S. Nasserian and G. Tsudik, Revisiting Oblivious Signature-Based Envelopes. In
Proceedings of Financial Cryptography 2006 (FC’06), February 2006.

9. D. Pointcheval and J. Stern. Security proofs for signatures. Advances in Cryptol-
ogy - EUROCRYPT 1996, pages 387–398, Springer, 1996.

10. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
Proceedings of the Symposium on Cryptography and Information Security (SCIS),
2002.

11. C. Schnorr. Efficient identification and signatures for smart cards. In Advances in
Cryptology - CRYPTO 1989, Santa Barbara, CA, August 1989.

12. G. Tsudik and S. Xu. A Flexible Framework for Secret Handshakes. In ACM
Conference on Principles of Distributed Computing (PODC’05), August 2005.

13. S. Xu and M. Yung. k-anonymous secret handshakes with reusable credentials. In
Proceedings of the 11th ACM conference on Computer and communications security
(CCS’04), pages 158–167. ACM Press, 2004.

Appendix A: Burmester-Desmedt Group Key Agreement

Figure 4 shows the Burmester-Desmedt group key agreement protocol. Note that
this protocol is not an authenticated group key agreement.

GKA(∆): This is a group key agreement algorithm for ∆ = {U1, ..., Un}, where Ui’s
are members of a group G that want to generate a group key. g is a generator in
Z∗

p .

[Round 1]: Each player Ui picks a random ti ∈ Zq and broadcasts zi = gti .
Ui computes Xi = (zi+1/zi−1)

ti (mod p), where the indices are taken in
a cycle.

[Round 2]: Each player Ui broadcasts Xi

Ui computes the key: Ki = (zi−1)
nti ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2 (mod p)

(It may be easily verified that all players compute that same key K =
gt1t2+t2t3+...+tnt1 .)

Fig. 4. Burmester-Desmedt’s Group Key Agreement Protocol

This article was processed using the LATEX macro package with LLNCS style

