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Abstract

We describe a theory of authentication and a system that im-

plements it. Our theory is based on the notion of principal and

a “speaks for” relation between principals. A simple principal

either has a name or is a communication channel; a compound

principal can express an adopted role or delegation of author-

ity. The theory explains how to reason about a principal’s

authority by deducing the other principals that it can speak

fo~ authenticating a channel is one important application, We

use the theory to explain many existing and proposed mecha-

nisms for security. In particular, we describe the system we

have built. It passes principals efficiently as arguments or

results of remote procedure calls, and it handles public and

shared key encryption, name lookup in a large name space,

groups of principals, loading programs, delegation, access

control, and revocation.

1. Introduction

Most computer security is based on the access control model

[16], which provides a foundation for secrecy and integrity

security policies.1 The elements of this model are:

Objects, resources such as files, devices, or processes.

Requests to perform operations on objects.

Sources for requests, which are called principals.

A reference monitor that examines each request and decides

whether to grant it.

The reference monitor bases its decision on the object, the

principal making the request, the operation in the request, and

a rule that says what principals may perform that operation.

To do its work the monitor needs a trustworthy way to

know the access control rule and the source of the request.

Usually the access control rule is attached to the object; such a

rule is called an access control list or ACL. For each operation

it specifies a set of authorized principals, and the monitor

1 The access control model is less useful for availability, which is not

considered in this paper. Information flow [8] is an alternative model

which is also not considered.
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grants a request if its principal is trusted at least as much as

one of the principals in the set for the requested operation.

The immediate source of the request is some channel, for

instance, a wire from a terminal, a network connection, a

pipe, a kernel call made by a user process, or the successful

decryption of an encrypted message. The monitor must

deduce the principal responsible for the request from the

channel it arrives on. This is called authenticating the channel.

It is easy in a centralized system because the operating system

implements all the channels and knows the principal respon-

sible for each process. In a distributed system several things

make it harde~

The path to the object from the principal ultimately responsi-

ble for the request may be long and may involve several

machines that are not equally trusted. We might want the

authentication to take account of this, say by reporting the

principal as “Abadi working through a remote machine”

rather than simply “Abadl”.

The system may be much larger, and there maybe multiple

sources of authority for such tasks as registering users.

The system may have different kinds of channels that are

secured in different ways. Some examples are encrypted

messages, physically secure wires, and inter-process com-

munication done by the operating system.

Some parts of the system maybe broken, offline, or other-

wise inaccessible.

This paper describes a theory of authentication in distributed

systems and a practical system based on the theory. It also

uses the theory to explain several other security mechanisms,

both existing and proposed. What is the theory good for? In

any security system there are assumptions about authority and

trust. The theory tells you precisely how to state them and

what the rules are for working out their consequences. Once

you have done this, you can look at the assumptions, rules,

and consequences and decide whether you like them. If so,

you have a clear record of how you got to where you are. If

not, you can figure out what went wrong and change it.

We use the theory to analyze the security of everything in

our system except the low-level details of encryption and the

hardware and local operating system on each node. Of course

we made many design choices for reasons of performance or

scaling that are outside the scope of the theory; its job is to

help us work out the implications for security.

The example in figure 1 motivates the design. A user logs in

to a workstation and runs a protected subsystem that makes a
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Figure 1: An example

request to an object implemented by a server on a different

machine. The server must decide whether to grant the request.

We can distinguish the user, two machines, two operating

systems, two subsystems, and two channels, one between the

user and the workstation and one between the workstation

and the server machine. We shall see how to take account of

all these components in deciding whether to grant access.

The next section introduces the major concepts behind this

work and gives a number of informal examples. In section 3

we explain the theory that is the basis of our system. Each of

the later sections takes up one of the problems of distributed

system security, presenting a general approach to the prob-

lem, a theoretical analysis, the specific details of the solution

in our system, and comments on the major alternatives that

we know of. Sections 4 and 5 describe two essential building

blocks: secure channels and names for principals. Section 6

deals with roles and program loading, and section 7 with

delegation. Section 8 treats the mechanics of efficient authen-

ticated inter-process communication, and section 9 sketches

how access control uses authentication. A conclusion summa-

rizes the new methods introduced in the paper, the new expla-

nations of old methods, and the current state of our system.

2. Concepts

Both the theory and the system get their power by abstracting

from many special cases to a few basic concepts: principal,

statement, and channel; trusted computing base; and caching.

This section introduces these concepts informally and gives a

number of examples to bring out the generality of the ideas.

Later sections define them precisely and treat them in detail.

Ifs is a statement (request, assertion, etc.), the answer to

the question “Who said s?” is a principal. Thus principals

make statements; this is what they are for. We describe some

different kinds of principals and then explain how they make

statements.

Principals are either simple or compound. The simple ones

in turn are named principals or channels. The most basic

named principals have no structure that we care to analyze:

People Lampson, Abadi

Machines VaxSN 12648, 4thFloorPrinter

Roles Manager, Secretary, NFS-Server

Other principals with names stand for sets of principals:

Services SRC-NFS, X-server

Groups SRC, DEC-Employees

Channels are principals that can say things directly:

Wires or I/O ports Terminal 14

Encrypted channels DES encryption with key #574897

Network addresses IP address 16.4.0.32

Channels are special because in most cases there is no direct

way for a computer to know that a principal made a statement.

There is no direct path, for example, from a person to a pro-

gram; communication must involve keystrokes, wires, I/O

ports, etc. Of course some of these channels, such as the 1P

address, are not very secure.

There are also compound principals, built up out of other

principals by operators with suggestive names (whose exact

meaning we explain later):

Principals in roles Abadi as Manager

Delegations MikesWS for Burrows

Conjunctions Lampson A Wobber

How do we know that a principal has made a statement?

Our theory cannot answer this question for a channel; we

simply take such facts as assumptions, though we discuss the

basis for accepting them in section 4. However, from state-

ments made by channels and facts about the “speaks for”

relation described below, we can use our theory to deduce

that a person, a machine, a delegation, or some other kind of

principal made a statement.

Different kinds of channels make statements in different

ways. A channel’s statement may arrive on a wire from a ter-

minal to serial port 14 of a computer. It may be obtained by

successfully decrypting with DES key #574897, or by verify-

ing a digital signature on a file stored two weeks ago. It may

be delivered by a network with a certain source address, or as

the result of a kernel call to the local operating system. Most

of these channels are real-time, but some are not.

Often several channels are produced by multiplexing a sin-

gle one. For instance, a network channel to the node with 1P

address 16.4.0.32 carries UDP channels to ports 2, 75, and

443, or a channel implemented by a kernel call trap from a

user process carries inter-process communication channels to

several other processes. Different kinds of multiplexing have

much in common, and we handle them all uniformly. The

subchannels are no more trustworthy than the main channel.

Multiplexing can be repeated indefinitely; for instance, an

inter-process channel can carry many subchannels to different

remote procedures.

Path names are closely connected to multiplexed channels: a

single name like / com/dec / src can give rise to many others

(Icom[declsrclburrows, Icomlcleclsrc[abacli, . ..). SeC-

tion 5 explores this connection.

There is a fundamental relation between principals that we

call the “speaks for” relation: A speaks for B if the fact that

principal A says something means we can believe that princi-

pal B says the same thing. Thus the channel from a terminal

speaks for the user at that terminal, and we may want to say

that each member of a group speaks for the group. Since only

a channel can make a statement directly, a principal can only

make a statement by making it on some channel that speaks

for that principal.
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Any problem in computing can be solved by adding another

level of indirection, and there are many examples of this in

our system. We use “speaks for” to formalize indirection.

Often one principal has several others that speak for it: a per-

son or machine and its encryption keys or names (which can

change), a single long-term key and many short-term ones,

the authority of a job position and the various people that may

hold it at different times, an organization or other group of

people and its changing membership. The same idea lets a

short name stand for a long one; this pays if it’s used often.

Another important concept is the “trusted computing base”

or TCB [9], a small amount of software and hardware that se-

curity depends on and that we distinguish from a much larger

amount that can misbehave without affecting security. Gather-

ing information to justify an access control decision may

require searching databases and communicating with far-flung

servers. Once the information is gathered, however, a very

simple algorithm can check that it does justify granting

access. With the right organization only the checking algo-

rithm need be part of the TCB. Similarly, we can fetch a digi-

tally signed message from an untrusted place without any loss

of confidence that the signer actually sent it originally; thus

the storage and the transmission channel for the message are

not part of the TCB. These are examples of an end-to-end ar-

gument [23], which is closely related to the idea of a TCB.

It’s not quite true that components outside the TCB can fail

without affecting security. Rather, the system is “fail-secure”:

if an untrusted component fails the system may deny access it

should have granted, but it will not grant access it should

have denied. Our system uses this idea when it invalidates

caches, stores digitally signed certificates in untrusted places,

or interprets an ACL that denies access to specific principals.

Finally, we use caching to make frequent operations fast, A

cache usually needs a way of removing entries that become

invalid. For example, when caching the fact that key #574897

speaks for Burrows we must know what to do if the key is

compromised. We might remember every cache that may hold

this information and notify them all when we discover the

compromise. This means extra work whenever a cache entry

is made, and it fails if we can’t talk to the cache.

The alternative, which we adopt, is to limit the lifetime of

the cache entry and refresh it from the source when it’s used

after it has expired, or perhaps when it’s about to expire. This

approach requires a tradeoff between the frequency (and

therefore the cost) of refreshing and the time it takes for

cached information to expire.

Like any revocation method, refreshing requires the source

to be available. Unfortunately, it’s very hard to make a source

of information that is both highly secure and highly available.

This conflict can be resolved by using two sources in con-

junction. One is highly secure and uses a long lifetime, the

other is highly available and uses a short lifetime; both must

agree to validate the information. If the available source is

compromised, the worst effect is to delay revocation.

2 Roger Needham attributes this observation to David Wheeler of the

Cambridge Computer Laboratory.

A cache can discard an entry at any time because a miss can

always be handled by reloading the cache from the original

source. This means that we don’t have to worry about dead-

locks caused by a shortage of cache entries or about tying up

too much memory with entries that are not in active use.

3. Theory

Our theory deals with principals and statements; all principals

can do is to say things, and statements are the things they say.

Here we present the essentials of the theory, leaving a fuller

description to another paper [2]. To help readers who don’t

like formulas, we highlight the main results by enclosing

them in boxes. These readers do need to learn the meanings

of two symbols: A =+ B (A speaks for B) and AIB (A quoting

B); both are explained below.

Statements are defined inductively as follows:

There are some primitive statements (e.g., “read file f oo”).

Ifs and s’ are statements, then so ares A s’ (s and s’ ),

s ~ s‘ (s implies s‘ ), and s =s’ (s is equivalent to s’ ).

IfA is a principal ands is a statement, then so is A sayss .

If A and B are principals, then A * B (A speaks for B) is a

statement.

Throughout the paper we write statements in a form intend-

ed to make their meaning clear. When processed by a pro-

gram or transmitted on a channel they are encoded to save

space or make it easier to manipulate them. It has been cus-

tomary to write them in a style closer to the encoded form

than the meaningful one. For example, a Needham-Schroeder

authentication ticket [19] is usually written { &b, A }K& we

write Kb~ says Kab * A instead, viewing this as the abstract

syntax of the statement and the various encodings as different

concrete syntaxes. The choice of encoding does not affect the

meaning as long as it can be parsed unambiguously.

We write t-s to mean that s is an axiom of the theory

(marked by underlining its number) or is provable from the

axioms. Here are the axioms for statements:

Ifs is an instance of a theorem of propositional logic (S-l.)

then 1-s.

For instance, k s A s’2 s.

If+sand t-s=s’then l--s’. (u)

This is modus ponens, the basic rule for reasoning from

premises to conclusions.

h(Asays sAAsays(s>s’))=A says s’. (S3)

This is modus ponens for says instead of E.

If ks then E A says s for every principal A. (~)

It follows from (S 1)-(S4) that says distributes over A:

I-A says (s A s’)= (A says s) A (A says s’) (s5)

The intuitive meaning of F A sayss is not quite that A has

uttered the statements, since in fact A may not be present and

may never have seens. Rather it means that A is responsible

fors, or that we can proceed as though A has uttered s.

Informally, we write that A makes the statement B sayss

when we mean that A does something to make it possible for
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another principal to infer B sayss. For example, A can make

A says s by uttering s on a channel known to speak for A.

There is a set of principals; we gave many examples in sec-

tion 2. The symbols A and B denote arbitrary principals, and

usually C denotes a channel. In our theory there are two basic

operators on principals, A (and) and I (quoting). The set of

principals is closed under these operators. We can grasp their

meaning from the axioms that relate them to statements:

IR(A AB)sayss=(Asayss)A (Bsayss) (P_l)

(A A B) says something if both A and B say it.

E(A lB)sayss=A says B sayss (P2)

A I B says something ifA quotes B as saying it. This does

not mean B actually said it: A could be mistaken or lying.

We also have equality between principals, with the usual

axioms such as reflexivity. Naturally, equal principals say the

same things:

EA=B>(A says s= Bsayss) (u)

The A and I operators satisfy certain equations:

} A is associative, commutative, and idempotent. (E!4)

h I is associative. (u)

} I distributes over A in both arguments. (M)

Now a, the “speaks for” relation between principals, can be

defined in terms of A and=:

t-(A~B)=(A=AAB) (P7)

and we get some desirable properties as theorems:

I!--(A ~ B)n ((A says s)3 (B sayss) ) (P8)

This is the informal definition of “speaks for” in section 2.

!-(A=B) =((A~B)A(B~A)) (P9)

(P7) is a strong definition of “speaks for”. It’s possible to

have a weaker, ‘qualified’ version in which (P8) holds only

for certain statementss. For instance, we could have “speaks

for reads” which applies only to statements that request read-

ing from a file, or “speaks for file foo” which applies only to

statements about file f 00. Neuman discusses various applica-

tions of this idea [20]. Alternatively, we can use roles (see

section 6) to compensate for the strength of -, for instance

by saying A * (B as reader) instead of A ~ B.

The operators A and * satisfy the usual laws of the propo-

sitional calculus. In particular, A is monotonic with respect to

-. This means that if A s B then A A C * B A C. It is also

easy to show that I is monotonic in both arguments and that

= is transitive. These properties are critical because C ~ A is

what authenticates that a channel C speaks for a principal A or

that C is a member of the group A. If we have requests Kabadt

says “read from f 00” and Kb~~rrOW~says “read from f oo”,

and file foo has the ACL SRC A Manager, we must get from

Kabodi * Abadi * SRC and KbUrrOW~ =+ Burrows ~

Manager to Kabadl A KbUrroWX * SRC A Manager. This lets

us reason from the two requests to SRC A Manager says

“read from foo”, and the ACL obviously grants this. For the

same reason, the as and for

and 7 are also monotonic.

operators de~ined in sections 6

The following kmdofiaxiom makes it possible for a princi-

pal to introduce new facts about ~:

l-( Asays(B+A))n(B~A) (m)

In other words, A has the right to allow any other principal B

to speak for it.j There is a simple rule for applying (P1O):

when you see A says s you can conclude s if it has the form

B * A. The same A must do the saying and appear on the

right of the -, but B can be any principal.

What is the intuitive justification for (P 10)? Since A can

make A says (B - A) whenever it likes, (P 10) gives A the

power to make us conclude that A says s whenever B says

s. But B can just ask A to say s directly, which has the same

effect provided A is competent and accessible.

From (P 10) we can derive a theorem asserting that it is

enough for the principal doing the saying to speak for the one

on the right of the =, rather than being the same:

11--(A’= A) AA’says(B=A)n (B+ A)l (Pll)

It holds because the premise implies A says B ~ A by (P8),

and this implies the conclusion by (P 10). This theorem, called

the handoff rule, is the foundation of our methods for authen-

tication. When we use it we say that A‘ hands off A to B.

A final theorem deals with the exercise of joint authority:

E(BAB’=+ A) A(B=+B’)~(B +A)I(P12)

From this and the handoff axiom we can deduce B * A given

A says (B AB’+A) and B’says B * B’. Thus A can

let B and B’ speak for it jointly, and B‘ can let B exercise this

authority alone. One situation in which we rnight want both B

and B’ is when B‘ is inaccessible most of the time and there-

fore makes its statement with a much longer lifetime than B’s,

(P12) is the basis for revoking authentication certificates

(section 5) and ending a login session (section 7).

The last two theorems illustrate how we can prove B ~ A

from our axioms together with some premises of the form A‘

says (B’ = A‘ ). Such a proof together with the premises is

called B’s credentials for A. Each premise has a ll~etime, and

the lifetime of the credentials is the lifetime of the shortest-

lived premise. We could add lifetimes to our formalism by

introducing a statement form s until t and modifying (S2)-

(S3) to apply the smallest tin the premises to the conclusion,

but here we content ourselves with an informal treatment.

4. Channels and encryption

As we have seen, the essential property of a channel is that its

statements can be taken as assumptions: C says s is the raw

material from which everything else must be derived. On the

other hand, the channel by itself doesn’t usually mean much

— seeing a message from terminal port 14 or key #574897

isn’t very interesting unless we can deduce something about

who must have sent it. If we know-the possible senders on C,

we say that C has integrity. Similarly, if we know the possi-

3 In thl~ paper we take (P]()) as an axiom for simplicity. However, it is

preferable to assume only some instances of (P1 O)—the general axiom is

too powerful, for example when A represents a group. If the conclusion

uses a qualified form of= it may be more acceptable
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ble receivers we say that C has secrecy, though we have little

to say about secrecy in this paper.

Knowing the possible senders on C means finding a mean-

ingful A such that C =+ A; we call this authenticating the

channel. Why should we believe that C * A? Only because

A, or someone who speaks for A, tells us so. Then the hand-

off rule (Pl 1) lets us conclude C + A. In the next section we

study the most common way of authenticating C. Here we

investigate why A might trust C enough to make A says C +

A, or in other words, why A should believe that A is the only

possible source of messages on C.

The first thing to notice is that for A to assert C = A it must

be able to name C. A circumlocution like “the channel carry-

ing this message speaks for A“ won’t do, because it can be

subverted just by copying it to another channel. As we consi-

der various kinds of channels, we discuss how to name them.

A sender on a channel C can always make C says X says

s, where X is any identifier. We take this as the definition of

multiplexing; various values of X establish a number of sub-

channels. By (P2) C says X says s is the same thing as CIX

says s. Thus if C is a name for the channel, CIX is a name

for the subchannel. We will see many examples of this.

Encryption channels

We are mainly interested in channels that depend on cryptog-

raphy for their security; as we shall see, they add less to the

TCB than any others. We begin by summarizing the essential

facts about such channels. An encryption channel is two func-

tions Encrypt and Decrypt and two keys K and K-1. By con-

vention we normally use K to receive (decrypt) and K-1 to

send (encrypt). Another common notation for Encrypt(K-i,

x) is {s}K-1.

An encryption algorithm that is useful for computers pro-

vides a channel: Decrypt(K, Encrypt(K--l, x)) = x for any

message x. It keeps the keys secret: if you know only x and

Encrypt(K-l, x) you can’t compute K or K-l, and likewise

for Decrypt. Of course “can’t compute” really means that the

computation is too hard to be feasible.

In addition, the algorithm should provide one or both OE

Secrecy: If you know Encrypt(K-l, x) but not K, then you

can’t compute x.

Integrity: If you know x but not K-1, then you can’t com-

pute a y such that Decrypt(K, y) = x.

The usual way to get both properties at once is to add a suit-

able checksum to the cleartext and check it in Decrypt [27].

For integrity it is enough to encrypt a digest of the message.

A digest is the result of a one-way function; this means that

you can’t invert the function and compute a message with a

given digest. One practical digest function is MD4 [22].An

algorithm that provides integrity but not necessarily secrecy is

said to implement digital signatures.

The secrecy or integrity of an encryption channel does not

depend on how the encrypted messages are handled, since by

assumption an adversary can’t compromise secrecy by know-

ing the encrypted message or integrity by changing it. Thus

the handling of the encrypted message is not part of the TCB,

since security does not depend on it.

Hardware, Software, Notes

bitslsec bits/see/MIPS

RSA encrypt 220 K [24] .5 K [6] 500 bit modulus

RSA decrypt — 32 K [6] Exponent=3

MD4 — 1300 K [22]

DES 1.2 G[11] 400 K [6] Software uses a 64

KB table per key

Table 1: Speeds of cryptographic operations

There are two kinds of encryption, shared key and public key.

In shared key encryption K = K-l. Since anyone who can

receive can also send under K, this is only useful for pairwise

communication. The most popular shared key encryption

scheme is the Data Encryption Standard or DES [18]. We

denote an encryption channel with DES key K by DES(K); it

speaks for the set of principals that know K.

In public key encryption K # K-l, and in fact you can’t

compute one from the other. Usually K is made public and

K-l kept private, so that the holder of K-1 can broadcast mes-

sages with integrity; of course they won’t be secret.~ Togeth-

er K and K-1 are called a key pair. The most popular public

key encryption scheme is Rivest-Shamir-Adleman or RSA

[20]. In this scheme (K-l )-l = K, so anyone can send a

secret message to the holder of K-1 by encrypting it with K.

We denote an encryption channel with RSA public key K by

RSA(K); it speaks for the principal that knows K-l.

Table 1 shows that encryption need not slow down a sys-

tem unduly. It also shows that shared key encryption can be

about 1000-5000 times faster than public key. Hence public

key is usually used only to encrypt small messages or to set

up a shared key.

With this background we can discuss how to make a

practical channel from an encryption algorithm. We denote an

encryption channel simply by K when the meaning is obvi-

ous. From the existence of the bits Encrypt(K-l, s) anyone

can infer K says s, so we tend to identify the bits and the

statement; of course for the purposes of reasoning we use

only the latter. Often we call such a statement a cerdjicate, be-

cause it is simply a sequence of bits that can be stored away

and brought out when needed like a paper certificate. We say

that K signs the certificate.

A certificate can name an encryption channel by its key, but

we sometimes want a name that need not be kept secret. This

is straightforward for a public-key channel, since the key is

not secret. For a shared key channel we can use a digest of

the key. It’s possible that the receiver doesn’t actually know

the key, but instead uses a sealed and tamper-proof encryp-

tion box to encrypt or decrypt messages. In this case the box

can generate the digest on demand, or it can be computed by

encrypting a known text (such as O) with the key.

AsometimesK–1 is called the decryption key, but we prefer to associate

encryption with sending and to use the simpler expression K for the
public key.

5 Many vfiables affect performance; consult the references for details, or

believe these numbers only within a factor of two. The software numbers

come from data in the references and assumed speeds of.5 MIPS for an 8

Mhz Intel 286 and 9 MIPS for a 20 MHz Spare.
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The receiver needs to know what key Kit should use to de-

crypt a message. If K is a public key we can send it along

with the encrypted message; all the receiver has to do is check

that K actually decrypts the message correctly. If K is a

shared key we can’ t include it with the message because K

has to remain secret. We can, however, include a key identi-

fier that allows the receiver to know what the key is but

doesn’ t disclose anything about it to others.

We need some notation for keys. Subscripts and primes on

K denote different keys; the choice of subscript may be

suggestive, but it has no formal meaning. A superscripted key

does have a meaning: it denotes a key identifier for that key,

and the superscripts indicate who can extract the key from the

identifier. Thus Kr denotes R’s key identifier for K, and if Ka

and Kb are key identifiers for the two parties to the shared key

K, then Kab denotes the pair (Ka, Kb). The statement Kr

says s denotes the pair (Kr, Encrypt(K-l, s)).

A key identifier Kr for a receiver R might be any one of

an index into a table of keys that R maintains,

Encrypt(Krm, K), with Krm a master key only R knows,

a pair (K’r, Encrypt(K’, K)), where K’r is a key identifier

for another key K’.

In the second case R can extract the key from the identifier

without any state except its master key Krm, and in the third

case without any state except what it needs for K’r. An en-

crypted key may be weaker cryptographically than a table

index, but we believe that it is safe to use it as a key identifier.

We conclude the general treatment of encryption channels

by explaining the special role of public keys. A public key

channel is a broadcast channel: you can send a message with-

out knowing who will receive it. As a result:

You can generate a message before anyone knows who will

receive it. In particular, an authority can make a single cer-

tificate asserting, for instance, that RSA(Ka) = A. This can

be stored in any convenient place (secure or not), and any-

one can receive it later, even if the authority is then off-line.

If you receive a message and forward it to someone else, he

has the same assurance of its source that you have.

By contrast, a shared key message must be directed to its

receiver when it is generated. This tends to mean that it must

be sent and received in real time, because it’s too hard to pre-

dict in advance who the receiver will be. An important excep-

tion is a message sent to yourself, such as the key identifier

encrypted with a master key that we described just above.

For these reasons our system uses public key encryption for

authentication. It can still work, however, even if all public

key algorithms turn out to be insecure or too slow, because

shared key can simulate public key using a relay. This is a

trusted agent R that can translate any message m encrypted

with a key that R knows. If you have a channel to R, you can

ask R to translate m, and it will decrypt m and return the re-

sult to you. Since R simulates public key encryption, we

assume that anyone can get a channel to R. Relays use the key

identifiers introduced above, and the explanation here de-

pends on the notation defined there.

Public key Shared key

with relay

To sends, encrypts with encrypts with

mincipal A Ka- 1to m&e Kaar to m~e
. .

Ka says s. Kar sayss.

To receives, gets Ka says s gets Kar says s,

principal B and decrypts it sends it and Kbbr to R ,

with Ka. gets back KbblKar sayss ,

and decrypts it with Kbb.

A certificate KC. says Kcar says

authenticating Ka * A. KbblKar a A.

Ato Bis

To relay a is not needed. invents a key K and makes

certificate Kbb\KCar says Kab * A

Kcar says where Kab = (Ka, Kb) and
Kaar ~ A Ka = (Kaa,Enc~pt(Ka, K)),

to Kbbr , R Kb = (Kbb,Enc~pt(Kb, K)).

Table 2: Simulating public key with shared key encryption

Given both Kar says s (a message encrypted by a key Ka

together with R’s key identifier for Ka) and Kbbr (a two-way

channel to some B), the relay R will make KbblKar says s.

The relay thus multiplexes all the channels it has onto its

channel to B, using the key identifier to indicate the source of

each message. Note that the relay is not vouching for the

source A ofs but only for the key Ku that was used to encrypt

s. In other words, it is simply identifying the source by la-

belling s with Kar and telling anyone who is interested the

content ofs. This is just what public key encryption can do.

Like public key encryption, the relay provides no secrecy; of

course it could be made fancier, but we don’t need that for

authentication. From B’s point of view the channel KbblKar is

the source of the message.

With public keys a certificate like Kca says Ka ~ A authen-

ticates the key Ka. In the simulation this becomes Kcar says

KaX a A for some X, and relaying this to B is not useful

because B cannot extract Ka from Kax. But given Kcar says

Kaar ~ A and Kbbr as before, R can invent a new key K and

splice the channels Kaar and Kbbr to make a two-way channel

K“b = (Ka, Kb) between A and B. Here K“ and Kb are de-

fined in the lower right corner of table 2; they are the third

kind of key identifier mentioned earlier. Observe that A can

decrypt Ka to get hold of K, and likewise for B and Kb. Now

R can translate the original message into Kbb/Kcar says Kab

=) A, just what B needs for authenticated communication

with A. For two-way authentication R needs Kcar says &br

* B instead of Kbbr; from this it can symmetrically make

KaalKcaI’ says Kab ~ B.

Table 2 summarizes the construction, which uses an essen-

tially stateless relay to give shared key encryption the proper-

ties of public key encryption. The only state the relay needs is

its master key; the client supplies the channels Kar and Kbbr.

Because of their minimal state, it is practical to make such re-

lays highly available as well as highly secure.

Davis and Swick give a more detailed account of the scheme

from a somewhat different point of view [7].
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Figure 2: Fast decryption

Node-to-node secure channels

A node is a machine running an operating system, connected

to other machines by wires that are not physically secure. Our

system uses shared key encryption to implement secure chan-

nels between the nodes of the distributed system and then

multiplexes these channels to obtain all the other channels it

needs. Since the operating system in each node must be

trusted anyway, using encryption at a finer grain than this (for

instance, between processes) can’t reduce the size of the TCB.

Here we explain how our system establishes the node-to-node

shared keys; of course, many other methods could be used.

We have a network interface that can parse an incoming

packet to find the key identifier for the channel, map the iden-

tifier to a DES key, and decrypt the packet on the fly as it

moves from the wire into memory [14]. This makes it practi-

cal to secure all the communication in a distributed system,

since encryption does not reduce the bandwidth or much

increase the latency. Our key identifier is the channel key en-

crypted by a master key that only the receiving node knows.

Figure 2 shows how it works.

We need to be able to change the master key, because this is

the only way a node can lose the ability to decrypt old mes-

sages; we want to limit the length of time after the node sends

or receives a message during which compromising the node

allows an adversary to read the message. We also need a way

to efficiently change the individual node-to-node keys, for

two reasons. One is cryptographic: a key should encrypt only

a limited amount of traffic. The other is to protect higher-level

protocols that reuse sequence numbers and connection identif-

iers. Many existing protocols do this, relying on assumptions

about maximum packet lifetimes. If an adversary can replay

messages these assumptions fail, but changing the key allows

us to enforce them. In effect the integrity checksum becomes

an extension of the sequence number.

However, changes in the master or channel keys should not

force us to reauthenticate a node-to-node channel or anything

multiplexed on it, because this can be quite expensive (see

section 8). Furthermore, we separate setting up the channel

from authenticating it, since these operations are done at very

different levels in the communication protocol stack, setup is

done between the network and transport layers, authentication

in the session layer or above. In this respect our system

differs from the Needham-Schroeder protocol and its descen-

dants [15, 19, 25], which combine key exchange with

authentication, but is similar to the Diffie-Hellman protocol

for key exchange [10],

A knows B to A A knows

before after

Table 3: A‘s view of node-to-nodechannelsetup;B’s is symmetric

We setup a node-to-node channel between nodes A and B

in three phases; see table 3. In the first phase each node sends

its public RSA key to the other node. It knows the corres-

ponding private key, having made its key pair when it was

booted (see section 6). In phase two each node chooses a ran-

dom DES key, encrypts it with the other node’s public key,

and sends the result to the other node which decrypts with its

own private key. For example, B chooses Jb and sends

Encrypt(Ka, Jb) to A, which decrypts with Ka-~ to recover

Jb. In the third phase each node computes K = Hash(J., Jb)

using the same commutative one-way hash function, encrypts

K with its own master key to make a key identifier, and sends

that to the other node. Now each node has Kab (the key iden-

tifiers of A and B for the shared key K); this is just what they

need to commtrnicate.c

A believes that only someone who can decrypt Encrypt(Kb,

Ja) could share its knowledge of K. In other words, A be-

lieves that K * Kb.7 This means that A takes K =$ Kb as an

assumption of the theory; we can’t prove it because it depends

both on the secrecy of RSA encryption and on prudent behav-

ior by A and B, who must keep the J’s and K secret. We have

used the secrecy of an RSA channel to avoid the need for the

Cenificate Kb says Digest(K) 3 Kb.

Now whenever A sees K says s itcan immediately con-

clude Kb sayss. This means that when A receives a message

on channel K, which changes whenever there is rekeying, it

receives the same message on channel Kb, which does not

change as long as B is not rebooted. Of course B is in a

symmetric state. Finally, if either node forgets K, executing

the protocol again makes a new DES channel that corresponds

to the same public key on each node. Thus the DES channel,

like a cache entry, can be flushed and re-established without

any external effect. ‘

The only property of the key pair (Ka, Ka-l) that channel

setup cares about is that Ka-l is A‘s secret. Indeed, channel

setup can make up the key pair. But Ka is not useful without

credentials. The node A has a node key Kn and its credentials

K. s A‘ for some more meaningful principal A‘, for instance

6 We useHash to preventa chosen-plaintextattackon a masterkey and
to keep K secret even if one of the J’s is disclosed.The third phasecan
compute lots of keys, for instanceK, K+ 1, .... and exchangelots of key
identifiers. Switching from one of thesekeys to anothermay be useless

cryptographically,but it is quite adequatefor allowing connectionidenti-
fiers to bereused.
7 Acwall~ K sp~atrsfor A or Kb. since A also knows and uses K. To

deal with this we multiplex the encryption channelto makeKM andKB
(a single bit can encodeA or B in this case),and A never makes KIB

sayss. ThenA knows that KIB = Kb. To reduce clutter in the formulas

we ignore this complication. ‘Thereare protocols in usethat encodethis
multiplexing in strangeandwonderful ways.
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VaxSN5437 as VMS5.4 (see section 6). If Ka comes out of

the blue, the node has to sign another certificate Kn says Ka

* Kn to complete Ka’s credentials, and everyone authenticat-

ing the node has to check this added certificate. That is why in

our system the node tells channel setup to use (Kn, Kn–l) as

its key pair, rather than allowing it to choose a key pair.g

5. Principals with names

When users refer to principals they must do so by name,

since users can’t understand alternatives like unique identi-

fiers or keys. Thus an ACL must grant access to named princi-

pals. But a request arrives on a channel, and it is granted only

if the channel speaks for one of the principals on the ACL. In

this section we study how to find a channel C that speaks for

the named principal A.

There are two general methods, push and pull. Both pro-

duce the same credentials for A, a set of certificates and a

proof that they establish C *A, but the two methods collect

the certificates differently.

Push: The sender on the channel collects A’s credentials

and presents them when it needs to authenticate the

channel to the receiver.

PuIL The receiver looks up A in some database to get cre-

dentials for A when it needs to authenticate the

sender; we call this name lookup.

Our system uses the pull method, like DSSA [12] and unlike

most other authentication protocols. However, the credentials

don’ t depend on the method. We describe them for the case

where C is a public key, since this is what we implement.

The basic idea is that there is a certification authority that

speaks for A and so is trusted when it says that C speaks for

A, because of the handoff rule (PI 1). In the simplest system

there is only one such authority CA,

everyone tmsts CA to speak for every named principal, and

everyone knows CA’s public key Kca, that is, KCa ~ CA.

So everyone can deduce KCa * A for every named A. At first

this may seem too strong, but trusting CA to authenticate

channels from A means that CA can speak for A, because it

can authenticate as coming from A some channel CA controls.

For each A that it speaks for, CA issues a certificate of the

form Kca says Ka q A in which A is a name. The certificates

are stored in a database indexed by A, usually called a name

service; the database is not part of the TCB because the certifi-

cates are digitally signed by KCa. To get A’s credentials you

go to the database, look up A, get the certificate KCa says Ka

+ A, verify that it is signed by the KCa that you believe

speaks for CA, and use the handoff rule to conclude Ka a A,

just what you wanted to know. The right side of figure 3

shows what 1?does, the symmetric left side what A does to

establish two-way authentication.

8 An alternative is for the node to directly authenticate the shared key K

by making Kn saysK - Kn. This prevents channel setup from chang-

ing K on its own, which IS a significant loss of functionality. Authenti-

cation can’ t be done without a name for the channel, so the interface to

channel setup must either accept or return some key naming the channel.

“’”O”sK!sa!d
Certificates

&

~~

A B

M-MA knows CA + Anybody

mm

A learns CA says KLI~B /3 learns CA says Ka=)A

Figure 3: Authenticating channelswith one certification authority

The figure shows only the logical flow of secure messages.

An actual implementation has extra insecure messages, and

the bits of the secure ones may travel by circuitous paths. To

push, the sender A calls the database to get Kca says Ka ~ A

and sends it along with a message signed by Ka. To pull, the

receiver B calls the database to get the same certificate when B

gets a message that claims to be from A or finds A on an ACL.

The Needham-Schroeder protocol [ 19] combines push and

pull. When A wants to talk to B it gets tw’o certificates from

CA, the familiar KC. says Ka a A which it pushes along to

B, and KCa says Kb d B for A’s channel from B.

With public key certificates it’s not necessaty to talk to CA

directly; it suffices to talk to a database that stores CA’s cer-

tificates. Thus CA itself can be normally off-line, and hence

much easier to make highly secure. Ce~ificates from an off-

line CA, however, must have fairly long lifetimes. For rapid

revocation you add an on-line agent O and use the joint au-

thority rule (P12). CA makes a weaker certificate Kca says

(OIKa A Ka) * A, and O makes OIKa says K. * OIKa.

From these two, KCa * A, and (P12) you again get K. ~ A,

but now the lifetime is the minimum of those on CA’s certifi-

cate and O’s certificate. Since O is on-line, its certificate can

time out quickly and be refreshed often. The TCB for granting

access is just CA; that for revocation is CA and O.

Our system uses the pull method throughout; we discuss the

implications in sections 8 and 9. Hence we can use a cheap

version of the joint authority scheme for revocation in which a

certificate from CA is believed only if it comes from the serv-

er O that stores the database of certificates. To authenticate A

we first authenticate a channel COfrom O. Then we interpret

the certificate KCa says (OIKa A Ka) ~ A returned on CO as

OIKa says Ka * OIKa. This is the same statement as before,

so we get the same conclusion. Note that O doesn’t sign a

public-key certificate for A, but we must authenticate the

channel from O, presumably using the basic method. Or re-

place O by KO everywhere. Either way, we can’t revoke O’s

authority quickly; it’s not turtles all the way down.

The same formalization also describes the Kerberos proto-

col [15, 25]. Kerberos uses shared rather than public key en-

cryption. Although it wasn’ t designed this way, the protocol

simulates public key certificates with shared keys using the

relay construction of section 4. Here are the steps; they corre-

spond to the union of figure 3 and table 2. First A gets from

CA a certificate KC.’ says Ka”r * A. Kerberos calls CA the
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“authentication server”, the certificate a “ticket granting

ticket”, and the relay R the “ticket granting server”.g The relay

also has a channel to every principal that A might talk to; in

particular R knows Kbbr + B. 10 To authenticate a channel

from A to B, A sends the certificate to R, which splices Kaar

and Kbbr to turn it into Kbb says Kab ~ A. This is called a

“ticket”, 11 and A sends it on to B, which believes Kb ~

Anybody because Kb is B’s channel to CA. As a bonus, R

also sends A a certificate for B: Kaa says Kab ~ B.

In practice, Kerberos is normally used to authenticate net-

work connections, which are then rather unrealistically treated

as secure channels. To accomplish this, A makes Kb says cia

*A, where cia is A’s network address and connection identi-

fier; this is called an “authenticator”. A sends both the ticket

and the authenticator to B, which can then deduce cia ~ A in

the usual way. The ticket has a fairly long lifetime so that A

doesn’t have to talk to R very often; the authenticator has a

very short lifetime in case the connection is closed and Cia

then reused for another connection not controlled by A.

Kerberos has other features that we lack space to describe.

Our channel authentication protocol is a communication pro-

tocol and must address all the issues that such protocols must

address. In particular, it must deal with duplicate messages; in

security jargon, it must prevent replays or establish timeli-

ness. The same techniques are used (or misused) in both

worlds: timestamps, unique identifiers or nonces, and se-

quence numbers. Our system uses timestamps to limit the

lifetimes of certificates and hence relies on loosely synchro-

nized clocks; the details are old [4] and we omit them here.

Path names

In a system of any size there can’t be just one certification au-

thority-it’s administratively impractical, and there may not

be anyone who is trusted by everybody in the system. The

authority to speak for names must be decentralized. The natu-

ral way to do this is to use path names and arrange the certifi-

cation authorities in a corresponding tree. The lack of global

trust means that a parent cannot unconditionally speak for its

children. Instead when you want to authenticate a channel

from A = 1A~/A21...lAn you start from an authority that you

believe has the name B = lB11B2/...lBm and traverse the au-

thority tree from B up to the least common ancestor of B and

A and back down to A. Figure 4 shows the path from / dec

/burrows to /mit / clark; the numbers stand for public keys.

The basic idea is described in Birrell et al. [3] and is also

implemented in SPX [26].

9 Ka IS a login session key. CA invents Ka and tells A about it (that is,

generatesKaa) by encrypting it with A’s permanent key, which in cur-

rent implementations is derived from A‘s password.

1fI The Kerberos relay is asymmetric between A and B, since it knows

Kbbr * B but gets its channel to A out of A’s certificate from CA. This

is justified by the notion that A is a workstation while B is a server that

is friendlier with R, but it’s unfortunate because asymmetry is bad and

because R has to have some state for each B. There is an option (called

ENC-TKT-IN-SKEY in [15]) for A to get K.. mys Kbbr + Q from R and
provide it to R, which now becomes symmetrtc and stateless.

11 The ticket lacks the “Kcar saYs” that a true relay would include

because in Kerberos R handles only statements from CA and therefore

doesn’t need to identify the source of the statement.

‘“/@\mit

~n!

56 37

abadi burrows clark

15 46 4

Figure 4: Authentication with a tree of authorities

We can formalize this with a new kind of compound princi-

pal, written P except M, and some axioms that define its

meaning. Here P is any path name and M or N any simple

name, a component of a path name.

t-P except M * P (N-L)

So P except M is stronger than P; other axioms say how.

klf #Nx (P except M) IN* PIN except ‘..’ (m

P except M can speak for any path name PI N just by quot-

ing N, as long as N isn’t M. This lets us go down the tree

(but not back up, because of the except ‘..’) .12

FM # ‘..’ ~ (PIN except M) I ‘..’ - P except N (M)

PIN except M can speak for the shorter path name P just

by quoting ‘..’, as long as M isn’t ‘..’. This lets us go up

the tree (but not back down the same path, because of the

except N).

We use the quoting principals on the left side of - to make

sure that something asserted by P except M isn’t automati-

cally taken to be asserted by all the longer path names.

Now we can describe the credentials that establish C a A

in our system. Suppose A is /mit /c lark. To use the (N)

rules we must start with a channel from some principal B that

can authenticate path names; that is, we need to believe Cb =

B except N. This could be anyone, but it’s simplest to let B

be the authenticating party. In figure 4 this is /dec /burrows,

so initially we believe CbUrroW~* / dec /burrows except

n i I (this channel is trusted to authenticate both up and

down). In other words, ButTows knows his name and his

public key. Then each principal on the path from B to A must

provide a certificate for the next one. Thus we need

cburrow~ I ‘.. ‘ SaySCdec =) /dec except burrows

Cdec I ‘..’ says Croot 3 / except dec

Croot I mit says Crnjt * /mit except ‘..’

C~j* 1clark Says Cclark =) /mit/clark eXCept ‘..’

The certificates quoting ‘..’ can be thought of as ‘parent’ cer-

tificates pointing upward in the tree, those quoting mi t and

c I ark as ‘child’ certificates pointing downward. They are

similar to the certificates specified by CCITT X.509 [5].

From this and the assumption CbUrroW~* /ciec /burrows

except ni 1, we deduce in turn the body of each certificate,

because for each A‘ says C’* B’ we have A‘ * B‘ by rea-

soning from the initial belief and the (N2-3) rules, and thus

we can apply (Pl 1) to get C’ * B’ . Hence we derive Cclark

+ (m~t f clar~ by (Nl), ao wc have authentimited the chan-

12 By putting several names after the except rather than one, we could

further constrain the path names that a principal can authenticate.
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nel Cclark from /mlt /c lark. In the most secure implementat-

ion each line represents a certificate signed by the public key

of an off-line certifiers plus a message on some channel from

the on-line agent that can revoke the certificate; we described

this scheme earlier. But any kind of channel will do.

If we start with a different assumption, we may not accept

the bodies of all these certificates. Thus if /mit / clark is au-

thenticating /dec /abadi, we start with Cclark * /mit /clark

except ni I and believe the bodies of the certificates

C&~k I ‘ ..’ says Cm~t =+ /mit @iCept clark

C~i~ I ‘..’ says CrOOt * / except mi t

C,.*[ I dec SaYS Cdec =) /dec except ‘..’

c&c i abadi SZIYS Cabadi 3 /dec/abadi i2XC6!pt ‘..’

Since this path is the reverse of the one we traversed before

except for the last step, each principal that supplies a parent

certificate on one path supplies a child certificate on the other.

Observe that c lark would not accept the bodies of any of the

certificates on the path from burrows. Furthermore, the inter-

mediate results of this authentication are different from those

we saw before. For example, when B was /dec /burrows we

got Cdec * /dec eXC@ burrows, but if B is /mit/clark

we get Cdec =$ / dec except ‘..’. From either we can deduce

Cdec - /dec, but Cdec’s authority to authenticate other path

names is different. This reflects the fact that burrows and

c lark have different ideas about how much to trust dec.

It’s neither necessary nor desirable to include the entire path

name of the principal in each certificate. It’s unnecessary be-

cause everything except the last component is the same as the

name of the certifying authority, and it’s undesirable because

we don’ t want the certificates to change when names change

higher in the tree. So the actual form of a certificate is Cmir I

clark SajtS Cclark - “IIIY name’’ /clark eXCe@ ‘..’.

This method requires trusting each certification authority on

the path from B up to the least common ancestor and back

down to A. To trust fewer authorities we can lower the least

common ancestor in the tree by adding a cross-link named

mit from node 56 to node 37: Cdec says Cmit * /dec/rnit

except ‘..’. Now /dec/mit/clark names A, and node 21 is

no longer involved in the authentication. The price is that the

cross-link has to be installed and changed when mi t‘s key

changes, Note that the least-common-ancestor rule still ap-

plies, so it’s easy to explain who is being trusted.

The implementation obtains all these certificates by talking

in turn to the databases that store certificates from the various

authorities. This requires one RPC to each database in both

pull and push models; the only difference is whether receiver

or sender does the calls. Certificates from several authorities

might be stored in the same database, in which case several

can be retrieved with a single call. Once retrieved, certificates

can be cached; this is especially important for those from the

higher reaches of the name space. The cache hit rate may

differ between push and pull, depending on traffic patterns.

13 A single certifier with a single key K can act for several prrnclpals by
multiplexing its channel, that IS, by assigning a distinct Identifier tdp to

each such principal P and using Klidp as Cp.

A principal doing a lookup might have channels to several

other principals instead of the single one C~ to itself that we

described. Then it could start with the channel to the principal

that is closest to the target A and reduce the number of inter-

mediaries that must be trusted. This is essential if the entire

name space has more than one root, but it obviously compli-

cates managing the system. For this reason our system does

not use such sets of initially trusted principals.

When we use path names, the names of principals are more

likely to change, because they change when the directory tree

is reorganized. This is a familiar phenomenon in file systems,

where it is dealt with by adding either extra links or symbolic

links to the renamed objects (usually directories) that allow

old names to keep working. Our system works the same way;

a link is a certificate asserting that some channel C a P, and a

symbolic link is a certificate asserting P‘ a P. This makes

pulling more attractive, however, because pushing requires

the sender to guess which name the receiver is using for the

principal so that the sender can provide the right certificates.

We can push without guessing if we add a level of indirec-

tion in the form of a unique identifier for the principal. Instead

of C - P we have C * id and id=) P. The sender pushes C

- id and the receiver pulls id - P. In general the receiver

can’t just use id, on an ACL for example, because it has to

have a name so that people can understand the ACL. Of course

it can cache id =+ P; this corresponds to storing both the name

and the id on the ACL. There is one tricky point about this

method: id can’t simply be an integer, because there would be

no way of knowing who can speak for it and therefore no

way to establish C = id. Instead, it must have the form

A/integer for some other principal A, and we need a rule A *

A/integer so that A can speak for id. Now the problem has

been lifted from arbitrary names like P to authorities like A,

and perhaps it’s easier to handle. Our system avoids these

complications by using the pull model throughout.

Groups

A group is a principal that has no public key or other channel

of its own. Instead, other principals speak for the group; they

are the group members. The result of looking up a group

name G is one or more group membership certificates PI +

G, P2 * G, .... just as the result of looking up an ordinary

principal name P is one or more certificates C + P for its

channels. A symbolic link can be viewed as a special case of a

group. This representation makes it impossible to prove that P

is not a member of G.

A quite different way to express group membership when

the channels are public keys is to give G a key K& and a cor-

responding certificate Kg * G, and store Encrypt(Kp, Kg-l)

for each member P in G’s database entry. This means that

each member will be able to get Kg–l and therefore to speak

for the group, while no other principals can do so.

The advantage is that to speak for G, P simply makes Kg

sayss, and to verify this a third party only needs Kg _ G.

In the other scheme P makes Kp says s, and a third party

needs both KP =+ P and P * G. So a certificate and a level of

indirection are saved, One drawback is that to remove anyone

from the group requires choosing a new Kg and encrypting it
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with each remaining member’s KP. Another is that P must

explicitly assert its membership in every group G needed to

satisfy the ACL, either by signing s with every Kg or by

handing off from every Kg to the channel that carries s. Our

system doesn’t use this method.

6. Roles and programs

A principal often wants to limit its authority, in order to ex-

press the fact that it is acting according to a certain set of

rules. For instance, a user may want to distinguish among

playing an untrusted game program, doing normal work, and

acting as system administrator. A node authorized to run sev-

eral programs may want to distinguish running NFS from

running an X server. To express such intentions we introduce

the notion of roles.

If A is a principal and R is a role, we write A as R for A

acting in role R. What does this mean? Since a role is a way

for a principal to limit its authority, A as R should be a

weaker principal than A in some sense, because a principal

should always be free to limit its own authority. We define A

as R to be AIR. This means that A as R sayss is the same as

A says R says s. Since A can make A says s for any s, it

can certainly make A as R says s. Because I is monotonic,

as is also.

We capture the fact that A as R is weaker than A by assum-

ing that A speaks for A as R. Because adopting a role implies

behaving appropriately for that role, A must be careful that

what it says on its own is appropriate for any role it may

adopt. Note that we are not assuming A =+ AIB in general,

but only when B is a role. Formally, we introduce a subset

Roles of the principals and the axioms:

FAas R= AIR for all R ~ Roles (N)

k-A~Aas R for all R e Roles W)

l-- as is commutative and idempotent on roles (M)

The last axiom makes it possible to write clearer and more

concise ACLS; section 9 describes how the access checking

algorithm uses it.

Acting in a certain way is much the same as executing a cer-

tain program. In this sense we can equate a role with a pro-

gram. Here by a program we mean something that obeys a

specification—several different program texts may obey the

same specification and hence be the same program in this

sense. How can a principal know it is obeying a program?

If the principal is a person, it can just decide to do so; in this

case we can’t give any formal rule for when the principal

should be willing to assume the role. Consider the example of

a user acting as system manager for her workstation.

Traditionally (in Unix) she assumes this role by issuing the

su command; this expresses her intention to issue further

commands that are appropriate for the manager. In our system

she assumes the role “user as manager”. There is much more

to be said about roles for users, enough to fill another paper.

If a machine is going to run the program, however, we can

be more precise. One possibility that is instructive, though not

at all practical, is to use the program text or image Z as the

role. So the node N can make N as I sayss for a statement s

made by a process running the program image 1. But of

course 1 is too big. A more practical method compresses 1 to a

digest D small enough that it can be used directly as the role

(see section 4). Such a digest distinguishes one program from

another as well as the entire program text, so N can make N

as D says s instead of N as I says s.

Digests are to roles in general much as encryption keys are

to principals in general: they are unintelligible to people, and

the same program specification may apply to several program

texts (perhaps successive versions) and hence to several

digests. In general we want the role to have a name, and we

say that the digest speaks for the role. This consideration and

the encoding of as by I both motivate us to treat roles as

principals; they are a special kind of principal because a role

never says anything on its own. Now we can express the fact

that digest D speaks for the program named P by writing D +

P. 14There are two ways to use this fact. The receiver of A as

D says s can use D * P to conclude that A as P sayss be-

cause as is monotonic. Alternatively, A can use D * P to

justify making A as P sayss whenever program D assertss.

So far we have been discussing how a principal can decide

what role to assume. The principal must also be able to con-

vince others. Since we are encoding A as P as AIP, however,

this is easy. To make A as P sayss, A just makes A says P

says s as we saw earlier, and to hand off A as P to some

other channel C it makes A as P says (C= A as P).

Loading programs

With these ideas we can explain exactly how to load a pro-

gram securely. Suppose A is doing the loading. Usually A

will be a node, that is, a machine running an operating sys-

tem. Some principal B tells A to load program P; no special

authority is needed for this except the authority to consume

some of A’s resources. In response, A makes a separate pro-

cess pr to run the program, looks up P in the file system,

copies the resulting program image into pr, and starts it up.

If A trusts the file system to speak for P, ithands off to pr

the right to speak for A as P, using the mechanisms described

in section 8; this is much like running a Unix setuid pro-

gram. Now pr is a protected subsystem; it has an independent

existence and authority consistent with the program it is run-

ning. B might hand off to pr some of the principals it can

speak for. For instance, if B is a shell it might hand off its

right to speak for the user that is logged in to that shell.

Because pr can speak for A as P, itcan issue requests to an

object with A as P on its NCL, and the requests will be grant-

ed. Such an ACL entry should exist only if the owner of the

object trusts A to run P.

If A doesn’t trust the file system, it computes the digest D

of the program text and looks up the name P to get credentials

for D = P. Having checked these credentials it proceeds as

before. A doesn’t need to record the credentials, since no one

else needs to see them; if you trust A to run P, you have to

trust A not to lie to you when it says it is running P.

14 Connoisseurs of program specification will find this formula famil-

iar—it looks like the implication relation between an implementation

and its specification. This is certainly not an accident.
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It is often useful to form a group of programs, for instance,

/tom/dec/src/trustedSW. A principal speaking for this

name canissue certificates p- /tom/dec/src/trustedSW

for trusted programs P. IfA as /tom/dec/src/trustedSW

appears on an ACL, any program P with such a certificate will

get access when it runs on A because as is monotonic. Note

that it’s explicit in the name that / com/dec / src is certifying

this particular set of trusted software. Virus prevention is one

obvious application.

There can also be groups of nodes. An ACL might contain

DBServers as Ingres; then if A ~ DBServers (A is a member

of the group Observers), A as Ingres gets access because as

is monotonic. If we extend these ideas, DBSystems can be a

principal that stands for a group of systems, with membership

certificates DBServers as Ingres a DBS ystems, Mainframes

as DB2 + DBSystems, etc.

Booting

Booting a machine is very much like loading a program. The

result is a node that can speak for M as P, if M is the machine

and P the name or digest of the program image that is booted.

There are two interesting differences.

One is that the machine is the base case for authenticating a

system, and it authenticates its messages by knowing a pri-

vate key Km-l which is stored in non-volatile memory.

Making and authenticating this key is part of the process of

installing M, that is, putting it into service when it arrives. In

this process M constructs a public key pair (Km, Km-l) and

outputs the public key K,n. Then someone who can speak for

the name M, presumably an administrator, makes a certificate

Kms M. It is an interesting problem to devise a practical in-

stallation procedure.

The other difference is that when M (the boot code that gets

control when the machine is reset) gives control to the pro-

gram P that it boots (normally the operating system), M is

handing over all the hardware resources of the machine, for

instance any directly connected disks. This has three effects:

Since M is no longer around, it can’t multiplex messages

from the node on its own channels. Instead, M invents a

new public key pair (K~, K~-1) at boot time, gives K~-l to

P, and makes a certificate Km says K. =$ M as P. The key

K. is the node key described in section 4.

M needs some assurance that P can be trusted with M’s

hardware resources. It’s enough for M to know the digests

of trustworthy programs, or the public key that is trusted to

sign certificates for these digests.

If we want to distinguish M itself from any of the programs

it is willing to boot, then M needs a way to protect Km–l

from these programs. This requires hardware that makes
K,n-l readable when the machine is reset, but can be told to

hide it until the next reset. Otherwise one operating system

that M loads could impersonate any other such system, and

if any of them is compromised then M is compromised too.

You might think that all this is too much to put into a boot

ROM. Fortunately, it’s enough if the boot ROM can compute

the digest function and knows one digest (set at installation

time) that it trusts completely. Then it can just load the pro-

gram l’boo[ with that digest, and l’boo~ can act as part of M. In

this case, of course, M gives Km-l to Pboot.

7. Delegation

We have seen how a principal can hand off all of its authority

to another, and how a principal can limit its authority using

roles. We now consider a combination of these two methods

that allows one principal to delegate some of its authority to

another one. For example, a user on a workstation may wish

to delegate to a compute server, much as she might rlogin to

it in vanilla Unix. The server can then access files on her

behalf as long as their ACLS allow this access. Or a user may

delegate to a database system, which combines its authority

with the delegation to access the files that store the database.

The intuitive idea of delegation is imprecise, but our formal

treatment gives it a precise meaning; we discuss other possi-

ble meanings elsewhere [2]. We express delegation with one

more operator on principals, B for A. 15 Intuitively this prin-

cipal is B acting on behalf of A, who has delegated to B the

right to do so. The basic axioms of for are:

t- AA BIA*Bfor A. (Ill)

k for is monotonic and distributes over A. (D2)

To establish a delegation, A first delegates to B by making

A says BIA + B for A. (1)

We use BIA so that B won’t speak for B for A by mistake.

Then B accepts the delegation by making

BIA says BIA 5 B for A. (2)

To put it another way, for equals delegation (1) plus quoting

(2). We need this explicit action by B because when B for A

says something, the intended meaning is that both A and B

contribute, and hence both must consent. Now we can deduce

(A A BIA) says BIA s B for A using (Pi), (l), (2);

BIA * B for A using (Dl) and (Pll).

In other words, B can speak for B for A just by quoting A.16

We use timeouts to revoke delegations. A gives (1) a fairly

short lifetime, say 30 minutes, and B must ask A to refresh it

whenever it’s about to expire.

15 We introduce for as an independent operator and axiomatize it by

(D 1-2) and some other axioms that make it easier to write ACLS:

k A for (B for C) = (A for B) for C (half of associativity); (lXL)

F (A for B) as R = A for (B as R). (!24)

However, for can be defined in terms of A and I and a principal D whose

purpose is to quote A whenever B does so. You can think of D as a “del-
egation server”: A tells D that A M delegating to 8, and then whenever

BIA says s, DIA says s also. Now B for A is just short for BIA A DIA.

We don’t want to implement D (If we did, It might be compromised). So

A has to be able to do D’s Job; in other words, A =+ DIA. Formally, we

add the axioms:

l- Bfor A= BIAADIA (D5)

I- A+DIA (D6)

Now (D 1)-(D4) become theorems. So do some other statements of more

debatable merit. Our other paper goes into more detail [’2].
16 Using D, A can delegate to B by making A says BIA ~ DIA. when

B wants to speak for B for A itcan quote A and appeal to the joint

authority r-ale (P 12). This is simpler but less explicit.
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Login

A similar scheme handles delegation from the user U to the

workstation IV on which she logs in. The one difference

arises from the assumption that the user’s key K~t is available

only while she is logging in. This seems reasonable, since

getting access to the user’s key will require her to type her

password or insert her smart card and type a PIN; the details

of login protocols are discussed elsewhere [1, 25, 26]. Hence

the user’s delegation to the workstation at login must have a

rather long lifetime, so that it doesn’t need to be refreshed

very often. We therefore use the joint authority rule (Pl 2) to

make this delegation require a countersignature by a tempo-

rary public key K1. This key is made at login time and called

the login session key. When the user logs out, the worksta-

tion forgets K1-l so that it can no longer refresh any creden-

tials that depend on the login delegation, and hence can no

longer act for the user after the 30 minute lifetime has expired.

This protects the user in case the workstation is compromised

after she logs out. If there is a threat that the workstation

might be compromised within 30 minutes after a Iogout, then

it should also discard its master key and node key at logout.

The credentials for Iogin start with a long-term delegation

from the user to KW A K1 (here KW is the workstation’s node

key), using Ku for A and KW for the second B in ( 1):

KU says (KW A K/)lK~, * KW for Ku.

KW accepts the delegation in the usual way, so we know that

(KW A KL)IKU * KW for Ku,

and because I distributes over A we get

KWIKU A KllKu * Kwt for Ku.

Next K1 signs a short-term certificate

Kl says KW * K1.

This lets us conclude that KWIKU - KIIKU by the handoff rule

and the monotonicity of 1.Now we can apply (P12) and reach

the usual conclusion for delegation. but with a short lifetime:

KWIKU =? KW for K~,.

Long-running computations

What about delegation to a process that needs to keep running

after the user has logged out, such as a batch job? We would

still like some control over the duration of the delegated

authority, and some way to revoke it on demand. The basic

idea is to have a single highly available agent for the user that

replaces the login workstation and refreshes the credentials

for long-running jobs. The user can explicitly tell this agent

which credentials should be refreshed. We have not worked

out the details of this scheme; it is a tricky exercise in balanc-

ing the demands of convenience, availability, and security.

Disconnected operation raises similar issues.

8. Authenticating inter-process communication

We have established the foundation for our authentication

system: the theory of principals, encrypted secure channels,

name lookup to find the channels or other principals that

speak for a named principal, and compound principals for

send aid ~ receive aid
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Operating
C&s

Operating

(%%J ) (~y:’!,

*
Csror G

K&

Workstation , Server

network

Sender channel Receiver

Figure 5. Mult]plexmg a node-to-node channel

roles and delegation. This section explains the mechanics of

authenticating messages from one process to another. In other

words, we study how one process can make another accept a

statement A sayss. A single process must be able to speak

for several A‘s; thus, a database server may speak for its

client during normal operation and for itself during recovery.

We describe the mechanism in terms of messages from a

sender to a receiver. It allows a message to be interpreted as

one or more statements A says s. Our system implements

remote procedure call, so it has call and return messages. For

a call, statements are made by the caller (the client) and inter-

preted by the called procedure (the server); for a return, the

reverse is true.

Most messages use a channel between a sending process on

the sending node and a receiving process on the receiving

node. This channel is made by multiplexing a channel CS~be-

tween the two nodes, using the two process identifiers prx

and prr as the multiplexing address, so it is CSrlpr~-prr; see

figure 5. A shared key K$r defines the node-to-node channel

C,, = DES(K~r).

Henceforth we concentrate on the integrity of the channels,

so we care only that the message comes from the sender, not

that it goes to the receiver. Section 4 explains how to establish

DES(Ks~) ~ RSA(KJ. where K$ is the sending node’s public

key. So we can say that the message goes over CJprs from

the sending process, where CS = RSA(Ks). Some messages

are certificates encrypted with KS because they must be

passed onto a third party that doesn’t know Kst.; we indicate

this informally by writing K$ sayss instead of C$ says s.

Itis obvious that we also get secrecy, as a byproduct of

using shared keys. We could show this by the dual of the

arguments we make for integrity, paying attention to the re-

ceiver rather than the sender.

The sender wants to communicate one or more statements A

says s to the receiver, where A is some principal that the

sender can speak for. Our strategy for doing this is to encode

A as a number called an authentication identl~er or aid, and to

pass the aid as an ordinary integer. By convention, the re-

ceiver interprets a call like Read ( aid, f i le, . . . ) as one or

more statements ca~d says s, where Caid = CJpr$laid. The

receiving node supplies Cslprs to the receiver on demand.

Recall that C~ is obtained directly from the key used to de-

crypt the message and prs is supplied by the sending node.

The aid ts supplied by the sending process. An aid is chosen

from a large enough space that it is never reused during the
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lifetime of the sending node (until the node is rebooted and its

CJ changes); this ensures that a channel cold is never reused.

The motivation for this design is that the sending process

doesn’t need to involve the operating system in order to send

caid sayss to the receiver, because aid is just an integer. The

only role of the operating system is to implement the channel

C$lpr~ securely by labelling the message with the process prs

that sends it. Thus a principal is passed as cheaply as an inte-

ger. There is also a one-time cost that we now consider.

The receiver doesn’ t actually care much about Catd; it wants

to interpret the message as A sayss for some more meaning-

ful principal A such as a user’s public key. To do this it needs

to know Cald *A; we will call A the meaning of Caid. There

are two parts to this: finding out what A is, and getting a

proof that Caid =$ A (that is, credentials for A). The receiver

gets A and the credentials from the sender. Recall that the cre-

dentials consist of some premises C says A‘ * B’ plus the

reasoning that derives ea~d a A from the premises and the

axioms. For the sender to transmit a premise to the receiver,

either the sender must speak for C, or C must be a channel to

the receiver. If C is a channel, it could be a public key chan-

nel, or a shared key channel with the receiver as one party, as

in the Needham-Sckoeder protocol [19]. We treat the former

case here; section 4 explains how to use shared keys to simu-

late public keys.

The meaning A of C.ld is an expression whose operands are

names or channels; in either case the credentials must prove

that the sending system can speak for A. In our system all the

operands of A are either roles or the public keys of nodes or

of users. We saw in sections 6 and 7 how the sending system

gets credentials for these keys as a result of booting or login.

In figure 1, suppose the request has a as its aid and the user,

workstation node, and workstation machine are U, W, and

M. Then Ca is the principal making the request, and its

meaning is ((Km as OS) as AccountingApplication) for Ku.

The credentials are:

Km says K,v - Km as OS From booting M.

Ku says (K), A Kl)lKU =$ K,v for K,l From U’s login.

Kl says KW _ K[ Also from login.

KWIK,, says C. = ((Kn as OS)

as AccountingApplication) for Ku

The server gets certificates for the first three premises in the

credentials. The last premise does not have a certificate but

follows directly from a message on the shared key channel

between W and the server, because this channel speaks for

KW. A system using the push model would replace some or

all of the keys in the meaning with names and add additional

certificates of the form Kca says Kp = P to the credentials.

The authentication agent

As we have seen. the credentials area collection of certificates

and statements from the sender, together with the connective

tissue that assembles them into a proof of e~lds A. The re-

ceiver gets them from the sender and caches them. In our sys-

tem a component of the receiver’s operating system called the

pr$

agent
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Figure 6. Messages to the agents for authenticating a channel

authentication agent does this work for the receiver. We can

describe the agent’s work under three headings.

The receiving process:

gets a message containing aid, interpreted as aid sayss;

learns from its operating system that the message came on

channel CJpr~ (this is exactly like learning the source ad-

dress of a message), so it believes CJpr~ says aid says s

which is the same as C~lprJaid sayss;

calls on its local agent to learn the principal A that Caid =

CJprJaid speaks for, so it believes A sayss;

and perhaps caches the fact that ca~d * A to avoid calling

the agent again if it gets another message from Ca~d.

The process doesn’t need to see the credentials, since it trusts

its agent to check them just as it trusts its operating system for

virtual memory and the other necessities of life. The process

does need to know their lifetime, since the information Caid

= A that it may want to cache may be invalid after that time.

Figure 6 shows communication through the agent.

The first job of the agent, acting for the receiver, is to

maintain a cache of Caid a A facts and lifetimes like the cache

maintained by its client processes. The agent answers queries

out of the cache if it can. Because this is a cache, the agent

can discard entries whenever it likes. If the information it

needs isn’t in the cache, it asks its partner on the sending

node for the meaning and credentials of Caid, checks the cre-

dentials it gets back, and caches the meaning.

The agent’s second job, acting now for the sender, is to re-

spond to these requests. To do this it keeps track of

the meaning A of each aid a that it is responsible for (note

that a is local to the node, not a channel),

the certificates that it needs to make a’s credentials, that is,

to prove CJa + A, and

the processes that are allowed to speak for a (that is, the

processes pr such that the agent believes prla a a and hence

is willing to authenticate C~lpr4a).

An authority is an aid that a process speaks for. For a pro-

cess to have an authority, its agent must have credentials to

prove that some channel controlled by the agent speaks for the

authority’s meaning, and the agent must agree that the process

speaks for the authority. Each process pr starts out with one

authority, which it obtains by virtue of a user login or of the

program P running in pr. In the latter case, for example, the
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node N loading P makes a new authority a, tells pr what it is,

and records a * N as P and prla * a.

The process can get its initial authority by calling self ( ). If

it has authorities a and b, itcan get the authorities a A b by

calling And (a, b) anda as rby calling As (a, r). It can

give up a by calling Discard(a) . What the agent knows

about an authority is original information, unlike the cached

facts Cai~ -A. Hence the agent must keep it until all the pro-

cesses that speak for the authority discard it or disappear.

The agent’s third job is to hand off authority from one pro-

cess to another. A sending process can hand off the authority

a to another principal b by caIling Handoff (a, Cb ) ; see fig-

ure 7. This is a statement to its local agent: a says cb =) a,

where Cb = Crlprrlb. The agent believes it because of (P1O).

The process can then pass a to the receiving process by

sending it a message in the usual way, say by calling

Take ( a). If prr has the authority b, itcan obtain the authority

a by calling claim ( c., b). This causes the receiving agent to

call the sending agent requesting its credentials for the

meaning A of a (proof that KJu + A) plus the certificate KJa

says Krla + A. These are credentials that allow the receiving

agent to speak for A. The certificate lets Krla speak for A

rather than a because the receiver needs to be able to prove its

right to speak for the meaningful principal A, not the authenti-

cation identifier a. The certificate is directly signed by KS (the

sender’s public key), rather than simply sent on DES(K$r) (the

shared key channel between sender and receiver) because the

receiver needs something that it can pass on to a third party.

Claiming an authority has no effect unless you use it by

passing it on to another process. So the claiming can be auto-

matic: if a process pr passes on an authority a, the recipient

asks for a’s credentials, and pr hasn’t claimed a, then pr’s

agent can claim it automatically if pr has the authority for b.

When is it appropriate to hand off an authority a? Doing this

allows the recipient to speak for a as freely as you can, so you

should do it only if you trust the recipient with a as much as

you trust yourself. If you don’t, you should hand off only a

weaker authority like the delegation described in section 7.

Our system has two procedures for dealing with delegation,

one for each of the certificates (1) and (2) in section 7. A pro-

cess calls For ( a, CD) to delegate the meaning A of a to the

meaning B of the principal Cb; this corresponds to making

(l), which in this context is a says Cbk ~ B for A. Before

calling For the process normally checks C~ against some ACL

that expresses the principals to which it is willing to delegate.

Now the process can pass a to a receiver that has an author-

ity b corresponding to Cb, and the receiver calls Accept (a,

b) to obtain an authority that speaks for B for A. This call

corresponds to claiming B for A, making (2), which in this

context is Cbla says bla - B for A, and making bla says r

- B for A, where r is the result of the Accept. The sending

agent supplies a certificate signed by its public key, K$la says

&la - B for A, along with a‘s credentials that prove KJa -

A, just as in an ordinary handoff. The receiving agent can

construct credentials for B for A based on the credentials it

has for B, the claimed certificate and credentials, and the rea-

soning in section 7. So itcan prove to others its right to speak

for B for A.

You might feel that it’s clumsy to require explicit action at

both ends. After all, the ordinary handoff can be claimed au-

tomatically. But the two cases are not the same: in accepting

the for and using the resulting authority, the receiver adds the

weight of authority b to the authority from the sender. It

should not do this accidentally.

What about revocation? The sending agent signs a handoff

(or delegation) certificate that expires fairly soon, typically in

about 30 minutes. This means that the handoff must be re-

freshed every 30 minutes by asking the sender for credentials
again, If the sender’s credentials in turn depend on a handoff

from some other sender, the refresh will work its way up the

chain of senders and back down. To keep the cost linear in

the depth of handoff, we check all the certificates in a set of

credentials whenever any one expires, and refresh those that

are about to expire. This tends to synchronize the lifetimes.

Table 4 summarizes the state of the agent. Table 5 summa-

rizes the interface from a process to its local agent.

There are many possible variations on the basic scheme de-

scribed above. Here are some interesting ones:

Each thread can have an authority that is passed automati-

cally in every call that the thread makes. This gets rid of

most authority arguments, but is less flexible and explicit.

In the basic scheme authentication is symmetric between call

and return; this means that each call can return the principal

responsible for the result or hand off an authority. Often,

however, the caller wants to authenticate the channel from

the server only once. It can do this when it establishes the

RPC binding if this operation returns an aid for the server’s

authority. This is called ‘mutual authentication’.

Instead of passing certificates for all the premises of the cre-

dentials, the sending agent can pass the name of a place to

find the certificates. This is especially interesting if that

place is a trusted on-line server which can authenticate a

channel from itself, because that server can then just assert

the premise rather than signing a certificate for it. For ex-

ample, in a system with centralized management there might

be a trusted database server that stores group memberships.

Here ‘trusted’ means that it speaks for these groups. This

method can avoid a lot of public key encryption.
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Key (Kn, K,I-l), the public key pair of this node

Principal A table mapping a channel C.= CslprJa to A.

cache An entry means the agent has seen credential

proving Ca -A; the entry also has a lifetime.

Author- A table mapping an aid a to

i ties A, the principal that a speaks for.

Credentials to prove this agent can speak for A.

A set of local processes that can speak for a.

A set of cb that can speak for a. -

Table 4: The state of an agent

Procedure Meaning

Selfo : A

[)iscard(a: A)

And(a:A, b:A) : A a A b says result =$ a A b

As(a:A, r: Role) : A alr says result =+ a as r

Handoff (a:A, b:C) asaysb+a

Claim (a:C, b: A): A Retrieve asaysb~a;

b says result* a

170r(a:A, b:C) asaysbla~b fora

Accept(a:C,b:A) : A Retrieveasaysbla -bfora;

bla says blaab fora

A resuh * bla

(2heckAccess ( Does aclgrantbthe right todoop?

acl: ACL, b: C,

OD: 0r3eration ) : Boolean

Types: Aforauthority, represented asaid.

C for channel principal, which is Ca~d= CslprJaid.

Table 5: Programming interface from a process to its local agent

It’s possible to send the credentials with the first use of a;

this saves around trip. However, recognizing the first use

of a may be difficult. The callback mechanism is still needed

for refreshing the credentials.

Granting access

‘Even a seemingly endless chain of remote calls will eventually

result in an attempt to actually access an object. For instance,

acall Read(file f, authority a) will be interpreted by

the receiver as Ca says “read file j“. The receiver obtains the

ACLfortand wants to know whether Caspeaks foraprinci-

pal that canhave read access. To find this out the receiver

calls CheckAccess(f ’s acl, Ca, read), Which returns

true or false. Section 9 explains briefly how this works.

Pragmatic

The performance of our scheme depends on the cache hit rates

and the cost of loading the caches. Each time a receiving node

sees Ca for the first time, there is a miss in its cache and a

fairly expensive call to the sender for the meaning and cre-

dentials. This call takes one RPC time (2.5 ms on our 2 MIPS

processors) plus the time to check any certificates the receiver

hasn’t seen before (15 ms per certificate with 512 bit RSA

keys), Each time a receiving process sees Cc{ for the first time,

there is one operating system call time and a fast lookup in the

agent’s cache. Subsequently the process finds Ca in its own

cache, which it can access in a few dozen instructions.

When lifetimes expire it’s as though the cache was flushed.

We typically use 30 minute lifetimes, so we pay less than

0.001 Y. to refresh one certificate. If a node has 50 Ca’s in

constant use with two different certificates each, this is 0.1 Yo.

With the faster processors coming it will soon be much less.

The authentication agent could be local to a receiving pro-

cess. Then the operating system wouldn’ t be involved and the

process identifiers wouldn’t be needed. We chose to put the

agent in the operating system for a number of reasons:

When acting for a sender, the agent has to respond to asyn-

chronous calls from receivers. Although the sending pro-

cess could export the agent interface, we thought this would

be too much machinery to have in every process.

An agent in the operating system can optimize the common

case of authentication between two processes on the same

node. This is especially important for handing off an au-

thority a from a parent to a child process, which is very

common in Unix. All the agent has to do is check that the

parent speaks for a and add the child to the set of processes

that speak for a. This can be implemented almost exactly

like the standard Unix mechanism for handing off a file de-

scriptor from a parent to a child.

The agent must deal with encryption keys, and cryptograph-

ic religion says that key handling should be localized as

much as possible. Of course we could have put just this

service in the operating system, at some cost in complexity.

Process-to-process encryption channels mean many more

keys to establish and keep track of.

The operating system must be trusted anyway, so we are

not missing a chance to reduce the size of the TCB.

9. Access control

Finally we have reached our goal: deciding whether to grant a

request to access an object. We follow the conventional model

of controlling access by means of an access control list or

ACL which is attached to the object; see section 1.

We take an ACL to be a set of principals, each with some

rights to the ACL’s object. 17 The ACL grants a request A says

s if A speaks for B and B is a,principal on the ACL that has all

the rights the request needs. So the reference monitor needs

an algorithm that will generate a proof of A - B (then it

grants access), or determine that no such proof exists (then it

denies access). This is harder than the task of constructing the

credentials for a request, because there we are building up a

principal one step at a time and building the proof at the same

time. And it is much harder than checking credentials, be-

cause theorem proving is much harder than proof checking.

17 A capability for an object can be viewed as a principal that is automa-

tically on the ACL.
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So it’s not surprising that we have to restrict the form of ACLS

to get an algorithm that is complete and runs reasonably fast.

There are doubtless many ways to do this. The one we have

chosen is described by the following syntax for the principal

in an ACL entry or a reqtteSt: 18

principal ::= forList I principal A forList

forList ::= asList I forList for asList

asList ::= properPnncipal I asList as role

role ::= pathName

properPrincipal ::= pathName I channel

The roles and the properPrincipals must be disjoint. In ad-

dition to A and a set of B’s we also have as input a set of

premises P ~ Q, where P and Q are properPrincipals or

roles. The premises arise from group membership certificates

or from path name lookup; they are just like the premises in

credentials. Now there is an efficient algorithm to test A - B:

Each forList in B must have one in A that speaks for it.

One forList speaks for another if they have the same length

and each asList in the first forList speaks for the corre-

sponding asList in the second forList.

Aas R1 as ... as Rn+Bas RI’as... asRm’ ifA+B

and for each Rj there is an Rk’ such that Rj =$ Rk’.

One role or properPrincipal A speaks for another B if there

is a chain of premises A = P. + ... a Pn = B.

Another paper discusses algorithms for access checking in

more detail [2]. Our theory of authentication is compatible

with other theories of access control, such as one in which the

order of delegation hops (operands of for) is less important.

The inputs to the algorithm are the ACL, the requesting

principal, and the premises. We know how to get the ACL

(attached to the object) and the principal (section 8). Recall

that because we use the pull model, the requesting principal is

an expression in which every operand is either a role or a

public key that is expected to speak for some named principal;

section 8 gives an example. What about the premises? As we

have seen, they can either be pushed by the sender or pulled

from a database by the receiver. Our system pulls all the

premises needed to authenticate a channel from a name, by

looking up the name as described in section 5.

If there are many principals on the ACL or many members

of a group, it will take too long to look up all their names. We

deal with this by

attaching an integer hint called a tag to every named princi-

pal on an ACL or in a group membership certificate,

sending with the credentials a tag for each principal in-

volved in the request, and

looking up only names whose tags appear in the request or

which are specially marked to be looked up unconditionally

(for instance, names of groups that are local to the receiver).

—

18 We can ~eIax this syntax somewhat. Since for and as distribute over

A we can push any nested A operators outward. Since (A for ~) as C =
A for (B as C) we can push any as operators inward into the second

operands of for.

The tags don’t have to be unique, just different enough to

make it unlikely that two distinct named principals have the

same tag. For instance, if the chance of this is less than .001

we will seldom do any extra lookups in a set of 500 names.

Note that if the tags are wrong, the effect is to deny access.

Hence a request must claim membership in all groups that

aren’t looked up unconditionally, by including their tags. In

particular, it must claim any large groups; they are too expen-

sive to look up unconditionally. This is a small step toward

the push model, in which a request must claim all the names

that it speaks for and present the proof of its claims as well.

Reliably denying access to a principal is tricky in our sys-

tem for two reasons:

Principals can have more than one name or key.

Certificates are stored insecurely, so we can’ t securely

determine that a principal is not in a group because we can’t

count on finding the membership certificate.

The natural form of denial for us is an ACL modifier which

means that the access checker should disbelieve a certificate

for any principal that satisfies some property. For example,

we can disbelieve certificates for a. principal with a given

name, or one with a given key, or dne whose name starts

with ‘A’, or one with a given tag (in which case the tags

should be unique or we will sometimes deny access improp-

erly). The idea behind this approach is that the system should

be fail-secure: in case of doubt it should deny access. This

means that it views positive premises like A - B skeptically,

negative ones like “deny Jim access” trustingly.

Of course we can also represent the entire membership of a

group securely, either by entrusting it to a secure on-line

server or by using a single certificate that lists all the mem-

bers. But these methods sacrifice availability or performance,

so it is best to use them only when the extra information is

really needed.

Auditing

Our theory yields a formal proof for every access control

decision. The premises in the proof are statements made on

channels or assumptions made by the reference monitor (for

instance the premise that starts off a name lookup). Every step

in the proof is justified by one of a small number of rules.

The proof can be written into the audit trail, and it gives a

complete account of what access was granted and why. The

theory thus provides a formal basis for auditing. Further-

more, we can treat intermediate results of the form A + B as

lemmas to be proved once and then referenced in other

proofs. Thus the audit trail can use storage efficiently.

10. Conclusion

We have presented a theory that explains many known meth-

ods for authentication in distributed systems:

the secure flow of information in the Needham-Schroeder

and Kerberos protocols;

authentication in a hierarchical name space;
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many variations in the paths along which bits are transmit-

ted: from certification authority to sender to receiver, from

certification authority directly to receiver, etc.;

lifetimes and refreshing for revoking grants of authority;

unique identifiers as partial substitutes for principal names.

It also explains a number of new methods used in our system:

secure loading of programs and booting of machines;

delegating authority in a way that combines and limits the

power of both parties;

treating uniformly both certificates and on-line communica-

tion with authorities;

passing RPC arguments or results that are principals as effi-

ciently as passing integers (after an initial startup cost) and

refreshing their authority automatically;

taking account of roles and delegations in granting access;

countersigning a secure long-lived certificate with a refresh-

able short-lived one for rapid revocation.

The system is currently being implemented. The basic struc-

ture of agents, authentication identifiers, authorities, and

ACLS is in place. Our operating system and distributed file

system are both clients of our authentication and access con-

trol. This means that our ACLS appear on files, processes, and

other operating system objects, not just on new objects like

name service entries. Roles, node-to-node channel setup,

process-to-process authentication, and delegation have all

been demonstrated, and our implementation will soon be re-

leased as the default authentication system for the 50

researchers at SRC.

Work is in progress on secure loading and software support

of network-controller based DES encryption. Although our

current implementation does not make use of either composite

or hierarchical principal names in ACLS, we expect to do

future experiments in these areas.
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