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Abstract. Authentication and secrecy have been widely investigated
in security protocols. They are closely related to each other and vari-
ants of definitions have been proposed, which focus on the concepts of
corresponding assertion and key distribution. This paper proposes an on-
the-fly model checking method based on the pushdown system to verify
the authentication of recursive protocols with an unbounded number of
principals. By experiments of the Maude implementation, we find the re-
cursive authentication protocol, which was verified in the sense of (weak)
key distribution, has a flaw in the sense of correspondence assertion.

1 Introduction

Security protocols, although each of them only contains several flows, eas-
ily cause attacks even without breaking cryptography algorithms. Design and
analysis of security protocols have been a challenging problem over 30 years.

Woo and Lam proposed two goals for security protocols, authentication and
key distribution [1]. By authentication, we mean that after termination of the
protocol execution, a principal should be assured that it is “talking” to the
intended principal. Key distribution means that if a principal receives a session
key, then only the principal who sent the key (and the server) knew the key.
They also gave the formal definitions: authentication is defined as correspondence
assertion, and key distribution is defined as secrecy. Note that this secrecy is
stronger than the one widely used later [2, 3]. Correspondence assertion is later
widely used to define the authentication [2–4]. The intuitive meaning is, when B
claims the message it accepted from A, then A exactly sent the same message.

These properties has various different points of view. For instance, Bellare et.
al. stated that key distribution is “very different from” authentication [5]. Bella
pointed out that two goals “are strictly related” and “might be equivalent” [4].

Paulson et al. formally defined the key distribution 3, which intuitively means,
if a principal receives a session key, then only the principal who sent the key (and
the server) can know the key [4, 6]. Its difference from the key distribution Woo
and Lam defined is quite subtle, since “can know” implies “may not know”. In
3 This “key distribution” is weaker than what Woo and Lam has defined in [1].
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their sense of key distribution, Paulson proved the correctness of the recursive
authentication protocol (referred to as the RA protocol) [6].

This paper proposes an on-the-fly model checking method [7–9] based on
the pushdown system to verify the authentication property of recursive proto-
cols with an unbounded number of principals. By experiments with the Maude
implementation, we find out that the RA protocol has a flaw in the sense of
correspondence assertion.

The model checking method tackles various sources of infinity in the verifi-
cation of the RA protocol. Our main ideas are summarized as:

– Lazy instantiation on messages, i.e., message contents that do not affect
protocol actions will be left unsubstantiated.

– Lazy instantiation on names, i.e., names, such as encryption keys, are ex-
tended from constants to terms, and left uninstantiated until actual princi-
pals are assigned during communications.

– Identification of fresh messages by contexts, i.e., since the RA protocol does
not repeat the same context (i.e., once pop starts, never push again), each
nonce in a session is identified by the stack content.

The first idea is realized by a parametric semantics and a refinement step. The
second and the third ideas are realized by binders [7]. These ideas supply sound
and compete model checking for verifying authentication of the RA protocol.

Note that this methodology covers only a restricted class of recursive pro-
tocols, which are described by sequential recursive processes. To the best of our
knowledge, this is the first model checking applied to recursive protocols.

This paper is organized as follows. Section 2 presents an environment based
process calculus for security protocol descriptions, and a trace equivalence to
specify the authentication property. Section 3 shows how to describe and analyze
the RA protocol in our setting. The encoding of the pushdown system and
experimental results by Maude are reported in Section 4. Section 5 presents
related work, and Section 6 concludes the paper.

2 A Process Calculus for Security Protocol Descriptions

2.1 The Syntax of the Calculus

Assume three disjoint sets: L for labels, B for binder names and V for
variables. Let a, b, c, . . . denote labels, let m, n, k, . . . for binder names, and let
x, y, z, . . . for variables.

Definition 1 (Messages). Messages M, N, L . . . in a set M are defined itera-
tively as follows:

pr ::= x | m[pr, . . . , pr]
M, N, L ::= pr | (M, N) | {M}L | H(M)

A message is ground, if it does not contain any variables.
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– pr ranges over a set of undecomposable primary messages.
– A binder, m[pr1, . . . , prn] is an atomic message indexed by its parameters,

pr1, . . . , prn. A binder with 0 arity is named a name, which ranges over a set
N (N ⊆ B).

– (M, N) represents a pair of messages.
– {M}L is an encrypted message where M is its plain message and L is its

encryption key.
– H(M) represents a one-way hash function message.

Definition 2 (Processes). Let P be a countable set of processes which is in-
dicated by P, Q, R, . . .. The syntax of processes is defined as follows:

P, Q, R ::= 0 | aM.P | a(x).P | [M = N ]P | (new x : A)P | (ν n)P |
let (x, y) = M in P | case M of {x}L in P |
P‖Q | P + Q | P ;Q | A(p̃r)

Variables x and y are bound in a(x).P , (newx : A)P , let (x, y) = M in P , and
case M of {x}L in P . The sets of free variables and bound variables in P are
denoted by fv(P ) and bv(P ), respectively. A process P is closed if fv(P ) = ∅.
A name is free in a process if it is not restricted by a restriction operator ν.
The sets of free names and local names of P are denoted by fn(P ) and ln(P ),
respectively.

Their intuition is,

– 0 is the Nil process that does nothing.
– aM.P and a(x).P are communication processes. They are used to describe

sending message M , and awaiting an input message via x, respectively.
– (new x : A)P and (ν n)P are binding processes. The former denotes that x

ranges over A (⊆ N ) in P ; The latter denotes that the name n is local in P .
– [M = N ]P , let (x, y) = M in P and case M of {x}L in P are validation

processes. They validate whether the message M is equal to N , whether it
is a pair, and whether it is an encrypted message, respectively.

– P‖Q, P +Q, and P ;Q are structure processes. P‖Q means that two processes
run concurrently; P + Q means nondeterministic choices of a process; P ;Q
means when P terminates, then Q runs.

– For each identifier A(pr1, . . . , prn), there is a unique definition, A(pr1, . . . , prn)
, P , where the pr1, . . . , prn are free names and variables in P .

We assume a set of identifier variables, X will range over identifier variables.
A process expression is like a process, but may contain identifier variables in the
same way as identifers. E, F will range over process expressions.

Definition 3 (Recursive process). A recursive process is defined as an iden-
tifier, with the format, Ai , E(A1, . . . ,Ai, . . . ,An).

If a process is not a recursive process, we name it a flat process.

Definition 4 (Sequential). Let E be any expression. We say that an identifier
variable X is sequential in E, if X does not occur in any arguments of parallel
compositions. An expression E is sequential if all variables in E are sequential.
A sequential process is an identifier defined by an sequential expression.
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2.2 Characterizations and Restrictions on the Process Calculus

We use an environment-based process calculus [3], while traditional process
calculi, such as π-calculus [10], use channel-based communications. There are
several notable differences between two types of calculi.

– Communications.
• In channel-based calculi, two processes communicate through a specific

channel. For example, a communication in π-calculus [10] is,

((ν z)x z.P ) | x(y).Q | R −→+ ((ν z)P | Q{z/y}) | R
The first process sends a local name z through the channel x, while the
second process awaits a name via y on the same channel x. Thus the
name z will be communicated between two processes.

• In the environment-based process calculus, all processes communicate
through a public environment, which records all communicated messages.
The calculus is thus natural to describe a hostile network.

– Freshness of names.
• Channel-based calculi adopt scopes of local names for fresh names. In the

example above, the scope of z enlarges after the transition. Although R
is included in the system, it cannot “touch” the z during the transition.
Due to α-conversation, z can be substituted to any fresh name.

• All local names in the environment-based process calculus will be substi-
tuted to fresh public names during transitions. Since when two principals
exchange a message through a hostile network, we assume that all other
principals will know the message. Several techniques will be performed
to guarantee that each public name is fresh to the whole system.

– Infinitely many messages that intruders and dishonest principals generate.
• Channel-based calculi adopt recursive processes to generate these mes-

sages. Thus even describing a simple protocol, the system is complex [11].
• The environment based process calculus adopt deductive systems to gen-

erate the messages generated by intruders and dishonest principals [3,
8]. Security protocols can be described in a straightforward way.

For both types of calculi, there are two representations for infinite processes,
identifiers and replications. Identifiers can represent recursive processes. Repli-
cations take the form !P , which intuitively means an unbounded number of
concurrent copies of P . For fitness to model as a pushdown system, we choose
identifiers with the sequential restriction.

2.3 Trace Semantics and Equivalence

An environmental deductive system (represented as `, see Appendix B) gener-
ates messages that intruders can produce, starting from the the logged messages.
It produces, encrypts/decrypts, composes/splits, and hashes messages.

An action is a term of form aM or a(M). It is ground if its attached message
is ground. A string of ground actions represents a possible run of the protocol,
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if each input message is deduced by messages in its prefix string. We named
such a kind of string (concrete) trace, denoted by s, s′, s′′, . . .. The messages in
a concrete trace s, denoted by msg(s), are those messages in output actions of
the concrete trace s. We use s ` M to abbreviate msg(s) ` M .

Definition 5 (Concrete trace and configuration). A concrete trace s is
a ground action string, satisfying each decomposition s = s′.a(M).s′′ implies
s′ ` M . A concrete configuration is a pair 〈s, P 〉, in which s is a concrete trace
and P is a closed process.

Appendix C presents the trace semantics, and Appendix D presents the para-
metric semantics and a refinement step as the lazy instantiation. We proved the
sound and complete correspondence between two semantics [7, 9].

Abadi and Gordon adopted testing equivalence to define security proper-
ties [2], in which the implementation and the specification of a security protocol
are described by two processes. If they satisfy the equivalence for a security
property, the protocol guarantees the property.

Testing equivalence is defined by quantifying the environment with which the
processes interact. Intuitively, the two processes should exhibit the same traces
under arbitrary observers (as intruders). In our calculus, capabilities of intruders
are captured by the environmental deductive system. Thus, a trace equivalence is
directly applied for the authentication property without quantifying observers.

For simplicity, we say a concrete configuration 〈s, P 〉 generates a concrete
trace s′, if 〈s, P 〉 −→∗ 〈s′, P ′〉 for some P ′.

Definition 6 (Trace equivalence). P and Q are trace equivalent, written
P ∼t Q, if for all trace s, P generates s if and only if Q generates s.

3 Analysis of the Recursive Authentication Protocol

3.1 The Recursive Authentication Protocol

The recursive authentication protocol is proposed in [12]. It operates over an
arbitrarily long chain of principals, terminating with a key-generated server.

Assume an unbounded number of principals intending to generate session
keys between each two adjacent principals by contacting a key-generated server
once. Each principal either contacts the server, or forwards messages and its
own information to the next principal. The protocol has three stages (see Fig.
1): Communication stage. Each principal sends a request to its next principal,
composing its message and the message accepted from the previous one. Submis-
sion stage. One principal submits the whole request to the server. Distribution
stage. The server generates a group of session keys, and sends back to the last
principal. Each principal distributes the session keys to its previous principal.

The RA protocol is given informally as follows. For simplicity, we use a
convenient abbreviation of the hash message,

HK(X) = (H(K,X), X)
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Fig. 1. The Recursive Authentication Protocol

Communication Stage
A0 −→ A1 : HKA0S

(A0, A1, NA0 , Null)
Ai −→ Ai+1 : HKAiS

(Ai, Ai+1, NAi
, Xi)

Submission Stage
An −→ S : HKAnS

(An, S, NAn , Xn)
Distribution Stage

S −→ An : {Kn, S, NAn
}KAnS

, {Kn−1, An−1, NAn
}KAnS

,
{Kn−1, An, NAn−1}KAn−1S

, {Kn−2, An−2, NAn−1}KAn−1S
,

. . .
{K1, A2, NA1}KA1S

, {K0, A0, NA1}KA1S
,

{K0, A1, NA0}KA0S

Ai −→ Ai−1 : {Ki−1, Ai, NAi−1}KAi−1S
, {Ki−2, Ai−2, NAi−1}KAi−1S

, . . .

A1 −→ A0 : {K0, A1, NA0}KA0S

where Null is a special name, and Xi is the message from Ai−1 to Ai.

3.2 Authentication of the RA Protocol

To represent authentication, declaration processes will be inserted into a pro-
tocol description [2, 9]. For instance, the implementation, SY SRA

imp, of the RA
protocol below contains a declaration process acc x.0 for authentication.

Oa(x1, x2) ,a1Hlk[x1,S](x1, x2, N[Null], Null).a2(x).case x of {y1, y2, y3}lk[x1,S].

[y3 = N[Null]]accx.0

Ra(x1, x2) ,(b1(x).let (y1, y2, y3, y4, y5) = x in [y2 = x1]

b2Hlk[x1,S](x1, A[x1], N[y3], x).(R(A[x1], x1)

+ b3Hlk[x1,S](x1, S, N[y3], x).0)); (b4(x).let (z1, z2, z3) = x in

case z1 of {z4, z5, z6}lk[x1,S] in [z5 = A[x1]] [z6 = N[y3]]

case z2 of {z7, z8, z9}lk[x1,S] in [z8 = x2] [z9 = N[y3]] b5z3.0)

S ,s1(x).s2 (F (x)).0

SY SRA
imp ,Oa(A[Null], A[A[Null]])‖Ra(A[A[Null]], A[Null])‖S
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In the description, we use a group of nested binders to describe unbounded
number of fresh names. For instances, by N[Null], N[N[Null]], . . . we describe fresh
nonces NA0 , NA1 , . . ..

F : M → M is an iterative procedure that generates an arbitrarily long
message. We name this kind of messages recursive messages.

F is defined as follows:
F (x) = let (y1, y2, y3, y4, y5) = x;

let t = ε;
while (y1 = H(y2, y3, y4, y5, lk[y2, S]) && y5! = Null)

let (z1, z2, z3, z4, z5) = y5;
if (z1 = H(z2, z3, z4, z5, lk[z2, S])&&z3 == y2)
then t = (t, {k[y4], y3, y4}, {k[y3], z2, z4});
else raise error

endif

(y1, y2, y3, y4, y5) := (z1, z2, z3, z4, z5);
endwhile

t := (t, {k[y4], y3, y4});
return t;

The specification for the authentication, SY SRA
spe , is a process that replaces

x in acc x.0 with {k[Null], A[A[Null]], N[Null]}lk[A[Null],S].
Authentication between the originator and its recipient is defined by

SY SRA
imp ∼t SY SRA

spe

The implementation and the specification may fail to generate same traces
after certain message comparisons. The specification will guarantee that the mes-
sage received and validated by one principal should be the same as the message
sent by other principal, while these messages would be different in the imple-
mentation due to the ill-design of a protocol. Hence, we can explicitly check the
equality of the two messages in traces generated by the implementation [7, 9],
which is another way to encode the correspondence assertion.

Definition 7 (Action terms[3]). Let α and β be actions, with fv(α) ⊆ fv(β),
and let s be a trace. We use s |= α ←↩ β to represent that for each ground
substitution ρ, if βρ occurs in s, then there exists one αρ in s before βρ. A
configuration satisfies α ←↩ β, denoted by 〈s, P 〉 |= α ←↩ β, if each trace s′

generated from 〈s, P 〉 satisfies s′ |= α ←↩ β.

Characterization 1 [Authentication for the RA protocol] Given the formal de-
scription of the RA protocol, the recipient is correctly authenticated to the orig-
inator, if 〈ε, SY SRA

imp〉 |= b5 x ←↩ acc x.

4 Model Checking by the Pushdown System

4.1 Encoding as Pushdown Model

To analyze recursive protocols with a pushdown system, the restrictions for
a process are, (i) a system is restricted to contain at most one recursive process;
(ii) the expression that defines the recursive process is sequential.
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When analyzing protocols in bounded sessions, fresh messages that processes
generate are bounded. We can fix a set of distinguished symbols to describe
them [7]. However, for the analysis of recursive protocols, fresh messages can
be unbounded. We represent an unbounded number of fresh messages by nested
binders. With the restrictions of a single recursive process, the same context
(stack content) will not be repeated; thus freshness will be guaranteed.

Definition 8 (Pushdown system). A pushdown system P = (Q,Γ, ∆, c0) is
a quadruple, where Q contains the control locations, and Γ is the stack alphabet.
A configuration of P is a pair (q, ω) where q ∈ Q and ω ∈ Γ ∗. The set of all
configurations is denoted by conf(P). With P we associated the unique transition
system IP = (conf(P),⇒, c0), whose initial configuration is c0.

∆ is a finite subset of (Q × Γ ) × (Q × Γ ∗). If ((q, γ), (q′, ω)) ∈ ∆, we also
write 〈q, γ〉 ↪→ 〈q′, ω〉. For each transition relation, if 〈q, γ〉 ↪→ 〈q′, ω〉, then
〈q, γω′〉 ⇒ 〈q′, ωω′〉 for all ω′ ∈ Γ ∗.

We define a set of messages used for the pushdown system as follows,

Definition 9 (Messages in the pushdown system).

pr ::= x | > | m[ ] | m[pr, . . . , pr]
M, N, L ::= pr | (M, N) | {M}L | H(M)

Two new messages are introduced. > is a special name, substituting a variable
that can be substituted to an unbounded number of names. m[ ] is a binder
marker, representing nested binders, together with the stack depth. For instance,
A[A[Null]] is represented by A[ ], with two stack elements in the stack.

Definition 10 (compaction). Given a parametric trace ŝ, a compaction t̂r of
ŝ is a parametric trace by cutting off redundant actions with the same labels in
ŝ.

We represent the parametric model with at most one sequential recursive
process by the pushdown system as follows,

– control locations are pairs (R, t̂r), where R is a finite set of recursive mes-
sages, and t̂r is a compaction.

– stack alphabet only contains a symbol ?.
– initial configuration is 〈(∅, ε), ε〉, where ε represents an empty parametric

trace, and ε represents an empty stack.
– ∆ is defined by two sets of translations, the translations for the parametric

rules, and the translations for the refinement step.

An occurrence of 0 in the last sequence process of a recursive process means a
return point of the current process. We will replace it to a distinguished marker,
Nil, when encoding a parametric system to the pushdown system.

The key encodings of the parametric transitions are as follows, in which t̂r

and t̂r
′
are compactions of ŝ and ŝ′, respectively.
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1. For parametric transition rules except PIND rules, 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂r
′
), ω〉

if 〈ŝ, P 〉 −→p 〈ŝ′, P ′〉.
2. For PIND rule, when R is firstly met, 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂r

′
), ω〉 if 〈ŝ, P 〉 −→p

〈ŝ′, P ′〉, where R(p̃r) , P ; Otherwise 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂r), ?ω〉.
3. 〈(R, t̂r), γ〉 ↪→ 〈(R, t̂r), ε〉 if 〈ŝ,Nil〉 is met.

In the refinement step, we need to satisfy rigid messages by unifications(see
Definition 16 in Appendix D). A rigid message is the pattern of a requirement of
an input action that can be satisfied by messages generated only by legitimate
principals. For instance, an encrypted message is such an example. We distin-
guish two kinds of rigid messages, context-insensitive, and context-sensitive.

Definition 11 (Context-sensitive/insensitive rigid messages). Context-
sensitive rigid messages are rigid messages that contain binder markers, while
context-insensitive rigid messages do not contain any binder markers.

Intuitively, a context-sensitive rigid message has an bounded number of can-
didate messages within the current context to unify with, while a context-
insensitive one has an unbounded number of candidate messages to unify with.

The transition relations for the refinement step in ∆ are defined as follows.

4. 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂rρ̂), ω〉, if N is context-sensitive and ρ̂-unifiable in R ∪
el(ŝ1).

5. 〈(R, t̂r), ω〉 ↪→ 〈(R ∪N ′, t̂rρ̂′), ω〉, if N is context-insensitive and ρ̂-unifiable
to N ′ in el(ŝ1), and ρ̂′ is the substitution that replaces different messages in
N and N ′ with >.

4.2 Implementing in Maude

We implement the pushdown system above by Maude [13]. Maude describes
model generation rules by rewriting, instead of constructing directly. The reacha-
bility problem can be checked at the same time while a model is being generated.

We tested the RA protocol by our Maude implementation, and a counterex-
ample is automatically detected. The result snapshot is in Fig. 2, in which MA,
MN, and Mk are binder markers. name(1) is the server name S. It describes at-
tacks showed in Fig. 3, which actually represents infinitely many attacks, since
the number of principals can be arbitrarily large. An intruder intercepts the
message sent by S, splits it, and sends the parted message to A0. The minimal
one is,

A0 −→ A1 : HKA0S
(A0, A1, NA0 , Null)

A1 −→ S : HKA1S
(A1, S, NA1 ,HKA0S

(A0, A1, NA0 , Null))
S −→ I(A1) : {K1, S, NA1}KA1S

, {K0, A0, NA1}KA1S
, {K0, A1, NA0}KA0S

I(A1) −→ A0 : {K0, A1, NA0}KA0S

Even security experts may misunderstand that this attack is the same to just
deleting the final flow of any protocol, or simple intercepting the last messages by
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Fig. 2. Snapshot of Maude Result for the Recursive Authentication Protocol
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Fig. 3. The Attack of the RA Protocol

intruders. However, the difference is, when A0 receives K0, it cannot guarantee
that A1 has known K0. Also, there will be no records for A1 of the fact that A0

received K0. This result obstructs that:

– further update of the session key of A0 is disabled, and
– traceability of the session key of A0 is violated.

which are frequently required in the real-world security.
The implementation contains about 400 lines for the general structures and

functions, and 32 lines for the protocol description. The test was performed on
a Pentium M 1.4 GHz, 1.5 G memory PC. The flaw is detected at the last step.

protocols states times(ms) flaws
recursive authentication protocol 416 824 detected

The reason of attacks is that S sends the message without any protections.
One modification is that S protects the message it sends iteratively with long-
term symmetric keys shared with principals. In the two-principal case,

A0 −→ A1 : HKA0S
(A0, A1, NA0 , Null)

A1 −→ S : HKA1S
(A1, S, NA1 ,HKA0S

(A0, A1, NA0 , Null))
S −→ A1 : {{K1, A2, NA1}KA1S

, {K0, A0, NA1}KA1S
,

{K0, A1, NA0}KA0S
}KA1S

A1 −→ A0 : {K0, A1, NA0}KA0S
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The fixed protocol is checked secure by the same Maude implementation.

protocols states times(ms) flaws
fixed recursive authentication protocol 416 1,068 secure

5 Related Work

G. Lowe proposed a taxonomy that elucidates four levels of authentica-
tion [14]. Let us suppose that in a session of a protocol, a sender A communicates
with a receiver B.

– Aliveness of B guarantees that B attended the protocol.
– Weak agreement of B guarantees that B attended the protocol with A.
– Non-injective agreement of B guarantees that B attended the protocol with

A, and two principals agreed on a set of messages H.
– Injective agreement of B guarantees non-injective agreement of B, and that

A corresponds to a unique run of B in the session.

Each level subsumes the previous one. This paper, together with other re-
searches [11, 3], took non-injective agreement as the standard authentication,
which can be specified by the correspondence assertion.

Paulson took a weak form of key distribution property, and used Isabelle/HOL
to prove that the correctness of the RA protocol with bounded number of prin-
cipals [6]. Bella pointed out that non-injective agreement authentication and the
weak form of key distribution “might be equivalent” [4]. However, we showed in
this paper that the weak form of key distribution does not hold non-injective
agreement, specified by the correspondence assertion.

Bryans and Schneider adopted CSP to describe behaviors of the RA protocol
with the same assumption as Paulson’s. They considered the correspondence as-
sertion between the server and the last principal who submitted the request, and
used PVS to prove the correctness of the authentication for the RA protocol [15].

Basin et al. proposed an on-the-fly model checking method (OFMC) [16] for
security protocol analysis. In their work, an intruder’s messages are instantiated
only when necessary, known as lazy intruder. Their research is similar to our
work in analyzing authentication in bounded sessions without binders.

A tree transducer-based model was proposed for recursive protocols by Küsters,
et al. [17]. The rules in this model are assumed to have linear left-hand sides,
so no equality tests can be performed. Truderung generalized the limitation,
and proposed a selecting theory for recursive protocols [18]. Both of the two
works focused on the secrecy property of the RA protocol. Recently, Küsters
and Truderung considered the arithmetic encryption algorithm for the RA pro-
tocol, detected the known attack [19] automatically [20]. Since we assume a
perfect cryptography, this attack is out of our methodology.
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6 Conclusion

This paper presented the pushdown model checking of authentication of the
RA protocol. It extended our previous work [7], allowing to analyze protocols
with at most one recursive procedure. Our Maude implementation successfully
detected a previously unreported attack that violates authentication in the sense
of corresponding assertion of the RA protocol automatically. This result shows
the effect of the subtle difference among security definitions.
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A The Analysis of the NSPK Protocol

A.1 Authentication Discussion of the NSPK Protocol

A well-known example of security protocols with attacks is the Needham-
Schroeder public-key protocol (referred to as the NSPK protocol) [21]. An attack
was found after 17 years it was published [11]. The first three flows of the NSPK
protocol are as follows:

A −→ B : {A,NA}+KB

B −→ A : {NA, NB}+KA

A −→ B : {NB}+KB

Intuitively, principal A and B are intending to generate a fresh session key
for later private communications. A firstly initiates a communication by sending
an encrypted message to B, encrypting its name A and a fresh nonce NA with
B’s public key. Then B responds A by sending back NA it received and a fresh
nonce NB with the protection of A’s public key. After A validates NA in the
received message, it sends back NB , with the protection of B’s public key. B
also validates the message after it received the message. Then, they will use NB

as a session key for confidential communications.
Principals can run several sessions of a protocol concurrently with any pos-

sible principals, in which some are legitimate, while others are hostile. In the
attack [11] below, A communicates with a hostile intruder I. Then I pretends to
be A, initiating another session with B, by sending the message received from
A. B faithfully follows the rules of the protocol, sending back the message to
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I. I forwards the message to A, as a response of the first session. After that, A
sends the last message to I. I still pretends to be A, and sends the message to
B, as a response of the second session.

A −→ I : {A,NA}+KI
(a1)

I(A) −→ B : {A,NA}+KB
(b1)

B −→ I(A) : {NA, NB}+KA
(b2)

I −→ A : {NA, NB}+KA
(a2)

A −→ I : {NB}+KI
(a3)

I(A) −→ B : {NB}+KB
(b3)

After the validation, B thinks it makes an agreement with A, and uses NB

as a session key for later private communications. But I knows NB , and thus it
can get confidential messages sent by B.

In the NSPK protocol, when B received the last message, it “thinks” the
message comes from A, while it does not. Thus the protocol violates the au-
thentication property. Principals A and B leak the session key NB to other
principals. Thus the protocol does not hold the key distribution property. To
illuminate divergences of different views about authentication, we take the fixed
NSPK protocol as the first example [11].

A −→ B : {A,NA}+KB

B −→ A : {B,NA, NB}+KA

A −→ B : {NB}+KB

The fixed NSPK protocol is believed to be secure. However, is the following
interception, which makes B think the {NB}+KB

comes from A though it from
I, an attack?

A −→ B : {A,NA}+KB

B −→ A : {B,NA, NB}+KA

A −→ I(B) : {NB}+KB

I(A) −→ B : {NB}+KB

Of course this ”attack” does not make sense, since any protocol is violated in
the same way.

To exclude such “attacks”, there is a widely used way to specify authenti-
cation property, called correspondence assertion [1]. The intuitive meaning is,
when B claims the message it accepted from A, then A exactly sent the same
message. The correspondence assertion, together with secrecy, can also specify
key distribution property. In this sense, key distribution implies authentication.



Authentication Revisited: Flaw or Not 15

M. Abadi et. al. adopted the correspondence assertion, pointing out a vul-
nerability on the Otway-Rees protocol [22]. The protocol is defined as follows.

A −→ B : M, A,B, {NA,M,A, B}KAS

B −→ S : M, A,B, {NA,M,A, B}KAS
, {NB ,M,A, B}KBS

S −→ B : M, {NA,KAB}KAS
, {NB ,KAB}KBS

B −→ A : M, {NA,KAB}KAS

An intruder I intercepts the message sent by S, splits it, and sends the parted
message to A. Hence when A gets the message, and “thinks” it comes from B,
yet B never sent the message. The attack is described as follows.

A −→ B : M, A,B, {NA,M,A, B}KAS

B −→ S : M, A,B, {NA,M,A, B}KAS
, {NB ,M,A, B}KBS

S −→ I(B) : M, {NA,KAB}KAS
, {NB ,KAB}KBS

I(B) −→ A : M, {NA,KAB}KAS

M. Abadi et. al. thought the attack really causes loss for principals. “It is
interesting to note that this protocol does not make use of KAB as an encryption
key, so neither principal can know whether the key is known to the other.” [23]

G. Bella, however, did not agree the point above. “We refute the claim,
showing that there exists a protocol similar to Otway-Rees that does not use the
session key as an encryption key but informs one agent that his peer does know
the session key.” [4] In his views, the attack of the Otway-Rees protocol causes
the same effect as the “attack” of the fixed NSPK protocol. He adopted a weak
form of key distribution, which means, if a principal receives a session key, then
only the principal who sent the key (and the server) can know the key [4, 6].
Its difference from the key distribution is quite subtle, since “can know” implies
“may not know”. In the sense of this property, Paulson proved the correctness
of the recursive authentication protocol.

A.2 Descriptions of the NSPK Protocol by the Calculus

We use binders to represent messages that related to principals, such as
encryption keys and confidential messages. For instance, in the NSPK protocol,
we adopt a binder +k[xa] to denote public keys, where xa ranges over an infinite
set I for names of principals. (new x : I)a1{A,NA}+k[x] represents that A can
send the message to any principal, including an intruder I. When an actual
action occurs, x will be instantiated. The NSPK protocol is described as,

A ,(new xa : I)(ν NA)a1{A,NA}+k[xa].a2(ya). case ya of {y′a}−k[A] in

let (za, z′a) = y′a in [za = NA] a3{z′a}+k[xa].0

B ,(ν NB) b1(xb).case xb of {x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB}+k[A].b3(zb). case zb of {ub}−k[B] in [ub = NB ]0

SY S ,A‖B
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A.3 Authentication for the NSPK Protocol

To represent authentication, declaration processes will be inserted into a
protocol description [2, 9]. For instance, in the NSPK protocol, we are interested
in the authentication on the third flow. A process, acc zb.0, will be inserted into
B, where zb is from b3(zb). The implementation of the NSPK protocol becomes,

Ba ,(ν NB) b1(xb).case xb of{x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB}+k[A].b3(zb). case zb of {ub}−k[B] in [ub = NB ]acc zb.0

SY Simp ,A‖Ba

Intuitively, acc zb denotes that after validation of the message it received from
b3, B claims that the message comes from A.

Following the approach of Abadi et. al. [2], the specification encodes the cor-
responding assertion. The specification of the NSPK protocol intuitively means
that the message sent by A, and the message received and validated by B in the
third flow should be the same as the expected message {NB}+k[B].

As ,(new xa : I)(ν NA)a1{A,NA}+k[xa].a2(ya). case ya of {y′a}−k[A] in

let (za, z′a) = y′a in [za = NA] a3{NB}+k[B].0

Bs ,(ν NB) b1(xb).case xb of{x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB}+k[A].b3(zb). case zb of {ub}−k[B] in

[ub = NB ]acc {NB}+k[B].0

SY Sspe ,As‖Bs

The authentication for the NSPK protocol is defined as,

SY Simp ∼t SY Sspe

Similarly, the authentication property of the NSPK protocol is transformed
to a reachability problem, characterized formally as,

Characterization 2 (Authentication for the NSPK protocol) Given the
formal process for authentication of NSPK protocol, the sender is correctly au-
thenticated to the receiver, if 〈ε, SY Simp〉 |= a3 x ←↩ acc x.

B Environmental Deductive System

An environmental deductive system generates messages that intruders can
produce. It is started from the current finite messages, denoted by S (⊆M). In
addition, we presuppose a countable set E for public names, such as names of
principals, public keys, intruders’ names. For example, I, k[I, S],+k[A]
. . . ∈ E . Let ` be the least binary relation generated by the environmental
deductive system in Figure 4.
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S ` M
M ∈ E Env

S ` M
M ∈ S Ax

S ` M S ` N

S ` (M, N)
Pair intro

S ` (M, N)

S ` M
Pair elim1

S ` (M, N)

S ` N
Pair elim2

S ` {M}k[A,B] S ` k[A, B]

S ` M
Senc elim

S ` M S ` k[A, B]

S ` {M}k[A,B]
Senc intro

S ` {M}±k[A] S ` ∓k[A]

S ` M
Penc elim

S ` M S ` ±k[A]

S ` {M}±k[A]
Penc intro

S ` M

S ` H(M)
Hash intro

Fig. 4. Environmental Deductive System

C Concrete Trace Semantics

Definition 12 (Structural congruence). Structural congruence, ≡, is the
smallest congruence on closed processes that satisfies the axioms in Fig. 5. Pro-
cesses P and Q are structurally congruent if P ≡ Q can be inferred from the
axioms listed in Fig. 5, together with the rules of equivalence relation, that is,
reflexive, symmetric, and transitive equations.

Sc-comp-assoc P‖(Q‖R) ≡ (P‖Q)‖R
Sc-comp-comm P‖Q ≡ Q‖P
Sc-comp-inact P‖0 ≡ P
Sc-sum-assoc P + (Q + R) ≡ (P + Q) + R
Sc-sum-comm P + Q ≡ Q + P

Sc-res (νm)(νn)P ≡ (νn)(νm)P
Sc-res-inact (νn)0 ≡ 0
Sc-res-comp (νn)(P‖Q) ≡ P‖(νn)Q if n /∈ fn(P )
Sc-new (new x : A)(new y : B)P ≡ (new y : B)(new x : A)P
Sc-new-inact (new x : A)0 ≡ 0
Sc-new-comp (new x : A)(P‖Q) ≡ P‖(new x : A)Q if x /∈ fv(P )
Sc-seq-inact 0; P ≡ P

Fig. 5. The Axioms of Structural Congruence

The transition relation of concrete configurations is defined by the rules in
Fig. 6. Two symmetric forms, (RSUM) of (LSUM), and (RCOM) of (LCOM)
are elided from the figure. A function Opp is predefined for generating com-
plemental key in decryption and encryption. we have Opp(+k[A]) = −k[A],
Opp(−k[A]) = +k[A] and Opp(k[A,B]) = k[A,B]. Furthermore, V is the set of
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free names in the source configuration. freshN(V ) is a function that generates
a fresh name that does not occur in V .

(INPUT ) 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉 s ` M
(OUTPUT ) 〈s, aM.P 〉 −→ 〈s.aM, P 〉

(DEC) 〈s, case {M}L of {x}L′ in P 〉 −→ 〈s, P{M/x}〉 L′ = Opp(L)
(PAIR) 〈s, let (x, y) = (M, N) in P 〉 −→ 〈s, P{M/x, N/y}〉
(NEW ) 〈s, (new x : A)P 〉 −→ 〈s, P{m/x}〉 m ∈ A

(RESTRICTION) 〈s, (νn)P 〉 −→ 〈s, P{m/n}〉 m = freshN(V )
(MATCH) 〈s, [M = M ]P 〉 −→ 〈s, P 〉

(LSUM) 〈s, P + Q〉 −→ 〈s, P 〉

(LCOM)

〈s, P 〉 −→ 〈s′, P ′〉
〈s, P‖Q〉 −→ 〈s′, P ′‖Q〉

(LSEQ)
〈s, P 〉 −→ 〈s′, P ′〉

〈s, P ; Q〉 −→ 〈s′, P ′; Q〉
(RSEQ)

〈s, Q〉 −→ 〈s′, Q′〉
〈s,0; Q〉 −→ 〈s′,0; Q′〉

(IND)
〈s, P{p̃r′/p̃r}〉 −→ 〈s′, P ′〉
〈s,A(p̃r′)〉 −→ 〈s′, P ′〉 A(p̃r) , P

(STR)

P ≡ P ′ 〈s, P ′〉 −→ 〈s′, Q′〉 Q′ ≡ Q

〈s, P 〉 −→ 〈s′, Q〉

Fig. 6. Concrete Transition Rules

D Parametric Semantics and Refinement Step

Definition 13 (Parametric trace and configuration). A parametric trace
ŝ is a string of actions. A parametric configuration is a pair 〈ŝ, P 〉, in which ŝ
is a parametric trace and P is a process.

The transition relation of parametric configurations is given by the rules in
Figure 7. Two symmetric forms (PRSUM) of (PLSUM), and (PRCOM) of
(PLCOM) are elided from the figure. A function Mgu(M1,M2) returns the most
general unifier of M1 and M2.

Definition 14 (Concretization and abstraction). Given a parametric trace
ŝ, if there exists a substitution ϑ that assigns each variable to a ground message,
and which satisfies s = ŝϑ, where s is a concrete trace, we say that s is a
concretization of ŝ, and ŝ is an abstraction of s. ϑ is named a concretized
substitution.

Definition 15 (Initial configuration). an initial configuration has such a
form, 〈ε, P 〉. It is both a concrete configuration and a parametric configuration.
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(PINPUT ) 〈ŝ, a(x).P 〉 −→p 〈ŝ.a(x), P 〉
(POUTPUT ) 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉

(PDEC) 〈ŝ, case {M}L of {x}L′ in P 〉 −→p 〈ŝθ, Pθ〉
θ = Mgu({M}L, {x}Opp(L′))

(PPAIR) 〈ŝ, let (x, y) = M in P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu((x, y), M)
(PNEW ) 〈ŝ, (new x : A)P 〉 −→p 〈ŝ, P{y/x}〉 y /∈ fv(P ) ∪ bv(P )

(PRESTRICTION) 〈ŝ, (νn)P 〉 −→p 〈ŝ, P{m/n}〉 m = freshN(V )
(PMATCH) 〈ŝ, [M = M ′]P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu(M, M ′)

(PLSUM) 〈ŝ, P + Q〉 −→p 〈ŝ, P 〉
(PLCOM)

〈ŝ, P 〉 −→p 〈ŝ′, P ′〉
〈ŝ, P‖Q〉 −→p 〈ŝ′, P ′‖Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

(PLSEQ)
〈ŝ, P 〉 −→p 〈ŝ′, P ′〉

〈ŝ, P ; Q〉 −→p 〈ŝ′, P ′; Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

(PRSEQ)
〈ŝ, Q〉 −→p 〈ŝ′, Q′〉

〈ŝ,0; Q〉 −→p 〈ŝ′,0; Q′〉
(PIND)

〈ŝ, P{p̃r′/p̃r}〉 −→p 〈ŝ′, P ′〉
〈ŝ,A(p̃r′)〉 −→p 〈ŝ′, P ′〉 A(p̃r) , P

(PSTR)

P ≡ P ′ 〈s, P ′〉 −→p 〈s′, Q′〉 Q′ ≡ Q

〈s, P 〉 −→p 〈s′, Q〉

Fig. 7. Parametric Transition Rules

Theorem 1 (Soundness and completeness). Let 〈ε, P 〉 be an initial con-
figuration, and let s be a concrete trace. 〈ε, P 〉 generates s, if and only if there
exists ŝ, such that 〈ε, P 〉 −→∗

p 〈ŝ, P ′〉 for some P ′, and s is a concretization of
ŝ.

Proof. “⇒”: By an induction on the number of transitions −→ and −→p, the
proof is trivial in the zero-step. We assume in the n-th step the property holds.
That is, for each trace s gained in the n-th −→ step, there exists an ŝ obtained
by the n-th −→p step, and ŝϑ = s holds for a substitution ϑ from variables to
ground messages. Now, we perform a case analysis on the n + 1 step:

1. Case 〈s, 0〉: Obviously.
2. Case 〈s, a(x).P 〉: If 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉, where M is a ground

message, then we have 〈ŝ, a(x).P ′〉 −→p 〈ŝ.a(x), P ′〉 and s.a(M) = ŝ.a(x)(ϑ∪
{M/x}), where P ′ϑ = P . Thus s.a(M) is a concretization of ŝ.a(x), and
s.a(M) = (ŝ.a(x))(ϑ ∪ {M/x}).

3. Case 〈s, aM.P 〉: If 〈s, aM.P 〉 −→ 〈s.aM, P 〉, then we have 〈ŝ, aM ′.P ′〉 −→p

〈ŝ.aM ′, P ′〉, where M ′ϑ = M and P ′ϑ = P . Since each variable in M ′

is already in the domain of ϑ, (ŝ.aM ′)ϑ = s.aM , and thus s.aM is a
concretization of ŝ.aM ′.

4. Case 〈s, let (x, y) = (M, N) in P 〉: We have 〈s, let (x, y) = (M, N) in P 〉 −→
〈s, P{M/x, N/y}〉, and (M, N) is a ground message. The counterpart con-
figuration is 〈ŝ, let (x, y) = M ′ in P ′〉, where M ′ϑ = (M, N) and P ′ϑ = P .
Thus Mgu((x, y),M ′) will succeed and return a substitution θ, which satisfies
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(x, y)θ = M ′θ. So 〈ŝ, let (x, y) = M ′ in P ′〉 −→p 〈ŝθ, P ′θ〉. For each variable
x1, . . . , xn both in domain θ and ϑ, we apply Mgu(θ(xi), ϑ(xi)), which will re-
turn ground substitutions θ1, . . . , θn. Thus we have s = (ŝθ)(ϑ\{x1, . . . xn}∪
θ1,∪ . . . ∪ θn).

5. Case 〈s, case {M}L of {x}L′ in P 〉: We have 〈s, case {M}L of {x}L′ in P 〉 −→
〈s, P{M/x}〉, and M is a ground message. The counterpart configuration is
〈ŝ, case M ′ of {x}L′ in P ′〉, where M ′ϑ = {M}Opp(L), and P ′ϑ = P . Thus
Mgu({x}Opp(L),M

′) will succeed and return a substitution θ, which satisfies
{x}Opp(L)θ
= M ′θ. So 〈ŝ, case M ′ of {x}L′ in P ′〉 −→p 〈ŝθ, P ′θ〉. For each variable
x1, . . . , xn both in domain θ and ϑ, we apply Mgu(θ(xi), ϑ(xi)), which will re-
turn ground substitutions θ1, . . . , θn. Thus we have s = (ŝθ)(ϑ\{x1, . . . xn}∪
θ1,∪ . . . ∪ θn).

6. Case 〈s, [M = M ]P 〉: If 〈s, [M = M ]P 〉 −→ 〈s, P 〉 and its counterpart
configuration is 〈ŝ, [M ′ = M ′′]P ′〉, where P ′ϑ = P , then M ′ϑ = M ′′ϑ = M .
Thus if θ = Mgu(M ′,M ′′), then θ ⊆ ϑ since the θ is the most general unifier
of M ′ and M ′′ and ϑ is a unifier of them. So we have sϑ = (ŝθ)ϑ.

7. Case 〈s, (new x : A)P 〉: Then we have 〈s, (new x : A)P 〉 −→ 〈s, P{m/x}〉
while m ∈ A. Its counterpart configuration is 〈ŝ, (new x)P ′〉 where P ′ϑ = P
and s = ŝ(ϑ ∪ {m/x}).

8. Other cases are obvious.

“⇐”: By an induction on the number of transitions −→p and −→, the proof
is trivial in the zero-step. We assume in the n-th step the property holds. That
is, for each parametric trace ŝ gained by the n-th −→p step, if there exists a
substitution ϑ from variables to ground messages, and a trace s that satisfies
s = ŝϑ, then s can be obtained by the n-th step of −→. Now, we perform a case
analysis on the n + 1 step:

1. Case 〈ŝ, 0〉: obviously.
2. Case 〈ŝ, a(x).P 〉: If there exists a step in which 〈ŝ, a(x).P 〉 −→p 〈ŝ.a(x), P 〉,

and a ground substitution ϑ where ŝϑ is a trace, then xϑ is a ground mes-
sage which can be deduced by sϑ. So 〈s, a(x).P ′〉 −→ 〈s.a(xϑ), P ′{ϑ(x)/x}〉,
where P ′ = Pϑ.

3. Case 〈ŝ, aM.P 〉: If there exists a step in which 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉, and
a ground substitution ϑ where ŝϑ is a concrete trace. So 〈ŝϑ, aMϑ.Pϑ〉 −→
〈(ŝ.aM)ϑ, Pϑ〉.

4. Case 〈ŝ, let (x, y) = M in P 〉: We have 〈ŝ, let (x, y) = M in P 〉 −→p 〈ŝθ, Pθ〉
where θ = Mgu((x, y),M), and a ground substitution ϑ where ŝθϑ is a con-
crete trace. Thus Mθϑ is a ground pair message. Suppose it is described by
(M ′, N ′). So 〈ŝθϑ, let (x, y) = (M ′, N ′) in (Pθϑ)〉 −→ 〈ŝθϑ, (Pθϑ){M ′/x,N ′/y}〉.

5. Case 〈ŝ, case {x}L of M in P 〉: We have 〈ŝ, case {x}L of M in P 〉 −→p

〈ŝθ, Pθ〉 where θ = Mgu({x}Opp(L),M), and a ground substitution ϑ where
ŝθϑ is a concrete trace. Thus Mθϑ is a ground encrypted message. Suppose it
is described by {M ′}Opp(L). So 〈ŝθϑ, case {x}L of {M ′}Opp(L) in (Pθϑ)〉 −→
〈ŝθϑ, (Pθϑ){M ′/x}〉.
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6. Case 〈ŝ, [M = M ′]P 〉: We have 〈ŝ, [M = M ′]P 〉 −→p 〈ŝθ, Pθ〉 where θ =
Mgu(M, M ′), and a ground substitution ϑ where ŝθϑ is a trace. Thus Mθϑ =
M ′θϑ, and both are ground messages. So we have 〈ŝθϑ, [M = M ′]Pθϑ〉 −→
〈ŝθϑ, Pθϑ〉.

7. Case 〈ŝ, (new x : A)P 〉: If there exists a step in which 〈ŝ, (new x : A)P 〉 −→p

〈ŝ, P 〉, and a ground substitution ϑ where ŝϑ is a concrete trace, then xϑ ∈ A.
So 〈s, (new x : A)P 〉 −→ 〈s, P{ϑ(x)/x}〉, where P ′ = Pϑ.

8. Other cases are obvious.

Definition 16 (Rigid message). Given a parametric trace ŝ = ŝ′.a(M).ŝ′′,
{N}L ∈ M is a rigid message if the following conditions are satisfied,

– L is a ground binder, and there exists a binder, or a rigid message in N ;
– If L is a symmetric key, then ŝ′ 6` L and ŝ′ 6` {N}L;
– If L is a private key, then there exists some rigid message, or at least one

binder in N cannot be deduced by the ŝ′, and ŝ′ 6` {N}Opp(L);
– If L is a public key, then ŝ′ 6` Opp(L) and ŝ′ 6` {L}Opp(L).

A parametric trace with a rigid message needs to be further substituted by
trying to unify the rigid message to the atomic messages in output actions of its
prefix parametric trace. Such unification procedures will terminate because the
number of atomic messages in the output actions of its prefix parametric trace is
finite. We name these messages elementary messages, and use el(ŝ) to represent
the set of elementary messages in ŝ.

Given a parametric trace ŝ and a message N , we say N is ρ̂-unifiable in ŝ, if
there exists N ′ ∈ el(ŝ) such that ρ̂ = Mgu(N, N ′).

Definition 17 (Refinement step). Let ŝ be a parametric trace, satisfying ŝ =
ŝ1.a(M).ŝ2, if there exists a rigid message N in M such that N 6∈ el(ŝ1), and N
is ρ̂-unifiable in ŝ1, then ŝ Ã ŝρ̂.

For two parametric traces ŝ and ŝ′, if ŝ Ã∗ ŝ′ and there is no ŝ′′ that satisfies
ŝ′ Ã ŝ′′, we name ŝ′ the normal form of ŝ. The set of normal forms of ŝ is
denoted by nfÃ(ŝ).

Lemma 1. If ŝ is a parametric trace, and s is a concretization satisfying s = ŝϑ
where ϑ is a concretized substitution, then ŝ is either a normal form, or there
exists ŝ′ such that ŝ Ã ŝ′ with ŝϑ = ŝ′ϑ.

Proof. Let ŝ = ŝ′.a(M).ŝ′′. If ŝ is not a normal form, there exists some rigid
message {N}L in M , such that {N}L 6∈ el(ŝ′). Since s = ŝϑ and s is a trace,
and thus ŝ′ϑ ` Mϑ, then {N}Lϑ ∈ el(ŝ′ϑ). By the definition of a rigid message,
L 6∈ el(ŝ′), and thus Lϑ 6∈ el(ŝ′)ϑ. Since {N}Lϑ ∈ el(ŝ′ϑ) = el(ŝ′)ϑ, there
exists {N ′}L ∈ el(ŝ′) such that {N}Lϑ = {N ′}Lϑ. Thus {N}L and {N ′}L

are unifiable. Let ρ̂ = Uni({N}L, {N ′}L), then ŝ Ã ŝρ̂. Since {N}Lϑ = {N ′}Lϑ,
each corresponding variable in two messages will be assigned to the same ground
message. Thus, ŝϑ = ŝρ̂ϑ.
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Lemma 2. Let ŝ be a parametric trace, and ŝ′ be a normal form in nfÃ(ŝ).
ŝ′ has a concretization, if and only if, for each decomposition ŝ′ = ŝ′1.a(M).ŝ′2,
each rigid message in M satisfies N ∈ el(ŝ′1).

Proof. “⇒”: Prove by contradiction. Assume a normal form ŝ′ has concretiza-
tions s such that s = ŝ′ϑ. If ŝ′ does not satisfy the requirement, then there exists
at least one rigid message {N}L in ŝ′ that {N}L 6∈ el(ŝ′1). Thus {N}Lϑ 6∈ el(ŝ′1)ϑ.
By definition of a rigid message, ŝ′1ϑ 6` L, then ŝ′1ϑ 6` {N}Lϑ. This contradicts
the definition of a trace.

“⇐”: Since the first occurrence of a variable is in an input action, let ϑ be
an arbitrary concretized ground substitution that assigns each variable in ŝ′ to
a name in E , then for each decomposition ŝ′ϑ = ŝ′1ϑ.a(Mϑ).ŝ′2ϑ, ŝ′1ϑ ` Mϑ is
satisfiable. Thus ŝ′ϑ is a trace, and also a concretization of ŝ′.

A satisfiable normal form is a normal form of ŝ that satisfies the requirements
in Lemma 2. Let snfÃ(ŝ) to denote the set of satisfiable normal form of (̂s).

Thus, a parametric trace has a concretization if and only if snfÃ(ŝ) 6= ∅.
Lemma 3. Let ŝ be a parametric trace, and let s be a trace. s is a concretization
of ŝ if and only if s is a concretization of some ŝ′ with ŝ′ ∈ snfÃ(ŝ).

Proof. “⇒” If s is a concretization of ŝ, then there exists a concretized substi-
tution ϑ with s = ŝϑ. By Lemma 1 we can get either ŝ is a normal form or ŝ can
be deduce to a parametric trace ŝ′ by Ã such that s = ŝ′ϑ. If ŝ is a normal form
and it has a concretization s, so ŝ is also a satisfiable normal form according to
Lemma 2 . If ŝ is not a normal form, the number of rigid messages in ŝ is finite,
so ŝϑ = ŝ′ϑ, where ŝ′ is a normal form, by repeatedly applying lemma 1. Since
ŝ′ has the concretization s, ŝ′ ∈ snfÃ(ŝ).

“⇐” If s is a concretization of the satisfiable normal form ŝ′ such that ŝ′ ∈
snfÃ(ŝ), we have s = ŝ′ϑ for some concretized substitution ϑ. ŝ′ is a normal form
of ŝ, so ŝ′ = ŝρ̂ for some ρ̂, in which s = ŝ′ϑ = ŝρ̂ϑ. Thus s is a concretization
of ŝ.

Theorem 2. A parametric trace ŝ has a concretization if and only if snfÃ(ŝ) 6=
∅.

The theorem is a corollary of Lemma 3.
All the detailed discussions above can be found in [7, 9].


