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ABSTRACT 

We consider a communications scenario i n  which a t ransmit ter  attempts t o  inform 

a remote rece iver  of the  s t a t e  of a source by sending messages through an imperfect  

communications channel .  There are two fundamentally d i f fe ren t  ways i n  which t h e  

receiver  can end up being misinformed. The channel may be  noisy so t h a t  symbols i n  

the  t ransmit ted message can be received in e r r o r ,  or the channel may be under the  

control  of an opponent who can e i t h e r  d e l i b e r a t e l y  modify leg i t imate  messages or 
e l s e  introduce f raudulent  ones t o  deceive the rece iver ,  i . e . ,  what Uyner has  c a l l e d  

an "ac t ive  wiretapper" [l]. 

Of de tec t ing  e r r o r  (decept ion)  is t h e  same i n  e i t h e r  case: the d e l i b e r a t e  i n t r o -  

duction of redundant information i n t o  the t ransmit ted message. The way i n  which 

t h i s  redundant information is introduced and used, though, is d iamet r ica l ly  oppos i te  

i n  t h e  two cases .  

The device by which t h e  receiver  improves h i s  chances 

For a s t a t i s t i c a l l y  descr ibed noisy channel, coding theory is concerned with 
schemes (codes) t h a t  in t roduce  redundancy i n  such a way t h a t  t h e  most l i k e l y  alter- 
a t ions  t o  t h e  encoded messages a r e  i n  some sense c lose  t o  t h e  code they d e r i v e  from. 

The rece iver  can then use a maximum l ikel ihood detector  t o  decide which (acceptab le)  

message he should i n f e r  as having been t ransmit ted from the (possibly a l t e r e d )  code 
t h a t  was received.  

most l i k e l y  a l t e r a t i o n s  of an acceptable  code as closely a s  possible  ( i n  an appro- 
p r i a t e  met r ic )  t o  the code i t s e l f ,  and d i s j o i n t  from t h e  corresponding C l u s t e r s  

about o ther  acceptab le  codes. 

I n  o t h e r  words, t h e  object  i n  coding theory is t o  c l u s t e r  the  

This work performed a t  Sandia National Laboratories supported by the  U .  S. 
Department of Energy under Contract No. DE-ACO4-76DP00789. 

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPT0 '84, LNCS 196, pp. 41 1-431, 1985. 
0 Spnnger-Verlag Berlin Heidelberg 1985 



41 2 

In [1,2] the present author showed that the problem of detecting either the 
deliberate modification of legitimate messages or the introduction of fraudulent 
messages; i.e., of transmitter and digital message authentication, could be modeled 
in complete generality by replacing the classical noisy communications channel of 
coding theory with a game-theoretic noiseless channel in which an intelligent Oppon- 
ent, who knows the system and can observe the channel, plays so as to optimize his 
chances of deceiving the receiver. To provide some degree of immunity to deception 
(of the receiver), the transmitter also introduces redundancy in this case, but does 
so in such a way that, f o r  any message the transmitter may send, the altered mes- 
sages that the opponent would introduce using his optimal strategy are spread ran- 
domly, i.e., as uniformly as possible (again with respect to an appropriate metric) 
over the set of possible messages, k. 

devising and analyzing schemes (codes) to achieve this "spreading." It is in this 
sense that coding theory and authentication theory are dual theories: one is con- 
cerned with clustering the most likely alterations as closely about the original 
code as possible and the other with spreading the optimal (to the opponent) altera- 
tions as uniformly as possibly over k. 

Authentication theory is concerned with 

The probability that the receiver will be deceived by the opponent, Pd, Can be 
bounded below by any of several expressions involving the entropy of the source 
H(S) ,  of the channel H(M), of the encoding rules used by the transmitter to assign 
messages to states of the source H(E), etc. For example: 

(1 1 log Pd 2 H(MES) - H(E) - H(M) 

The authentication system is said to be perfect if equality holds in (11, since 
in this case all of the information capacity of a transmitted message is used to 
either inform the receiver as to the state of the source or else to confound the 
opponent. In a sense, inequality (1) defines an authentication channel bound S i m i -  

lar to the communication channel bounds of coding theory. Constructions fo r  perfect 
authentication systems are consequently of great interest since they fully realize 
the capacity of the authentication channel. In the paper given at Crypt0 84 we 
analyzed several ihpinite families of perfect systems and also extended the channel 
bounds to include cases in which the opponent knew the state of the source. Here we 
have the more modest goal of rigorously deriving the channel bound (1) and then 
using this result to derive a family of related bounds. 

FUNDAMENTALS 

In authentication, there are three participants: a transmitter who observes an 
information source 8 and wishes to communicate these observations to a remotely 
located receiver over a publicly exposed, noiseless, communications channel and a 
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receiver  who wishes t o  not  only l e a r n  what the t ransmit ter  has observed but also t o  

assure  himself t h a t  the communications (messages) t h a t  he receives  a c t u a l l y  came 

from the  t ransmi t te r  and t h a t  no a l t e r a t i o n s  have been made in t r a n s i t  t o  t h e  

messages s e n t  by the transmitter. The t h i r d  p a r t i c i p a n t ,  the  opponent, wishes t o  

deceive the  rece iver  i n t o  accept ing a message t h a t  will.misinform him a s  t o  t h e  

s t a t e  of t h e  source.  

a t i n g  the t r a n s m i t t e r  and sending a fraudulent  message t o  the receiver  when i n  Pact  

none has been s e n t  by t h e  t r a n s m i t t e r ,  or e l s e  by waiting and in te rcept ing  a message 
sen t  by the t r a n s m i t t e r  and s u b s t i t u t i n g  some other  message. There a!!e two possi- 

b i l i t i e s  t o  be considered;  t h e  opponent may e i t h e r  know or  not know the s ta te  of t h e  

source: he does however know t h e  message sen t  by the t ransmit ter .  Using t h i s  

information, i n  ei ther case, he can choose some o ther  message t o  forward t o  t h e  

rece iver .  The opponent "wins" i f  t h e  receiver  accepts the fraudulent  message i n  any 

of these  s i t u a t i o n s  as being a genuine (au thent ic )  communication from the t r a n s -  

m i t t e r ,  and thereby ends up being misinformed about the s t a t e  of the  source.  We 

have def ined t h e  a u t h e n t i c a t i o n  problem i n  its narrowest sense here;  however, the 

model can be e a s i l y  extended t o  include cases i n  which the source can he inf luenced 

(cont ro l led)  by either t h e  t r a n s m i t t e r  or the  opponent o r  i n  which the  opponent's 

object ives  a r e  more r e s t r i c t e d  -- i . e . ,  he may wish t o  deceive the rece iver  i n t o  

bel ieving the  source  is i n  some p a r t i c u l a r  s t a t e ( s )  not merely an a r b i t r a r y  decep- 

t i o n  of the  r e c e i v e r .  It is beyond the  scope of t h i s  paper t o  t r e a t  these  o ther  

au thent ica t ion  concerns,  however, i t  is e s s e n t i a l  t h a t  the reader apprec ia te  the  

prec ise  c o n s t r a i n t s  on t h e  model of authent icat ion used here. One of the s impli-  

Pying assumptions made is t ha t  t h e  t ransmi t te r  and receiver  a c t  with common purpose, 
i .e . ,  t h a t  t hey  t r u s t  each o ther  completely and t h a t  nei ther  a c t s  ( e i t h e r  a lone Or 
i n  co l labora t ion  wi th  an opponent) t o  deceive t h e  other .  In general ,  e s p e c i a l l y  i n  

commercial a p p l i c a t i o n s ,  t h i s  is an u n r e a l i s t i c  assumption, s ince  i n  p r a c t i c e  t h e  

t ransmi t te r  may wish t o  disavow messages (au thent ic )  t h a t  he or ig ina ted ,  or t h e  

receiver  may wish t o  f a l s e l y  a t t r i b u t e  messages t o  the t ransmit ter  -- or  even dis-  

claim having received an a u t h e n t i c  message a c t u a l l y  sen t  by the  t ransmi t te r  (and 

received by h i m ) .  These quest ions get  in to  areas  of d i g i t a l  s igna tures ,  no tar iza-  

t i o n ,  da t ing ,  c e r t i f i c a t i o n  ( i n  the  sense of c e r t i f i e d  mai l ) ,  e t c . ,  which. while  

c lose ly  r e l a t e d  t o  a u t h e n t i c a t i o n ,  a r e  pr imari ly  questions of systems protocol  i n  

which message a u t h e n t i c a t i o n  p lays  an e s s e n t i a l  par t .  We a l s o  assume ( h e r e )  t h a t  

only t h e  rece iver  need be convinced of the au thent ic i ty  of a message -- as Opposed 
t o  e i t h e r  the  t r a n s m i t t e r  or  r e c e i v e r  having t o  convince a t h i r d  par ty  (a rb i te r ) .  

I n  a d d i t i o n ,  as a l ready  mentioned we assume t h a t  all successful deceptions Of the 

receiver  a r e  of equal  value t o  t h e  opponent, i . e . ,  t h a t  h i s  ob jec t ive  is pure ly  t o  

misinform t h e  r e c e i v e r  about t h e  s t a t e  of the source -- not t o  cause him t o  Conclude 

t h a t  i t  is i n  any p a r t i c u l a r  s t a t e .  
of d i g i t a l  message a u t h e n t i c a t i o n  made t h u s  f a r  C 3 . 4 1  have been i n  s i t u a t i o n s  i n  

which t h e  opponent knew t h e  s t a t e  of the source (message authent icat ion without  

H e  can achieve t h i s  end i n  e i t h e r  of two ways: by imperson- 

Even though the  mcst i n t e r e s t i n g  a p p l i c a t i o n s  
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secrecy)  we s h a l l  mostly be  concerned with message authent icat ion i n  s i t u a t i o n s  i n  

which t h e  opponent Is ignorant  of t h e  information being communicated t o  t h e  r e c e i v e r  
by the  t r a n s m i t t e r .  
au thent ica t ion  system model. 

There is a source  ( se t )  S w i t h  a probabi l i ty  d i s t r i b u t i o n  S on its elements for  
which the binary entropy is H(S). 
the  source communicated t o  the rece iver  by t h e  t ransmit ter  i n  each message. 

is also a message space m c o n s i s t i n g  of a l l  of the  possible  messages t ha t  t h e  t rans-  

mitter can send t o  the r e c e i v e r .  

t e r  can communicate t o  t h e  rece iver  any observation he makes of t h e  source. Iml 2 Is1 
where 181 is i n t e r p r e t e d  t o  be t h e  c a r d i n a l i t y  of s t a t e s  of 8 t h a t  have nonzero 

Probabi l i ty  of occurrence. 

s e t  of messages t h a t  the r e c e i v e r  may receive being par t i t ioned  i n t o  two nonempty 

par t s :  

another c o l l e c t i o n  t h a t  he w i l l  r e j e c t  a3 inauthent ic .  

would have t o  be acceptab le  t o  t h e  rece iver ,  hence no authent icat ion would be 

possible  i n  t h i s  case. Therefore ,  Iml > and a s  we s h a l l  s e e  l a t e r  t h e  even 

s t ronger  i n e q u a l i t y  H(M) > H(S) holds a s  well. 
e s s e n t i a l  f e a t u r e s  of what has  been described thus  f a r  

Subjec t  t o  these  cons t ra in ts .  we now describe the  genera l  

H(S) is the  average amount of information about 
There 

Since an unstated assumption is t h a t  t h e  t ransmi t  

It  should be obvious tha t  authent icat ion depends on t h e  

a c o l l e c t i o n  of messages t h a t  the  receiver  w i l l  accept a s  au thent ic  and 

I f  Iml = IS l .  a l l  messages 

Figure 1 schematically shows t h e  

8 

,--, 

Figure 1 

Any message i n  t h e  shaded region of m would be re jec ted  by the rece iver ,  w h i l e  any 

message i n  t h e  set H1 would be accepted a s  authent ic .  
t h a t  it is poss ib le  for  t h e  opponent t o  f a i l  t o  deceive the rece iver ,  even though he 
succeeds i n  g e t t i n g  him t o  accept  a message t h a t  was not sen t  by the t r a n s m i t t e r .  
Assume t h a t  the s t a t e  of t h e  source is s2 and t h a t  the t ransmit ter  chooses t o  encode 

t h i s  information by sending message m2 t o  the  rece iver .  

Figure 1 a l s o  i l l u s t r a t e s  

If the  opponent -- not  
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knowing t h e  information shown i n  Figure 1 of course -- in te rcepts  the  message m2 and 

replaces  it with m 3 ,  t h e  r e c e i v e r  would accept m as being authent ic  s ince  it is one 

of the  messages t h a t  t h e  t r a n s m i t t e r  might have s e n t ,  even though it was not  t h e  

message a c t u a l l y  s e n t  i n  t h i s  case. 
t h a t  t h e  source s ta te  w a s  s2 -- as observed by the t ransmit ter .  

l o s e  i n  t h i s  case ,  i n  s p i t e  of the f a c t  t h a t  he succeeded i n  having the r e c e i v e r  
accept a f raudulent  message, s i n c e  t h e  receiver  is not misinformed as t o  the s t a t e  

of the source.  

3 

However t h e  receiver  would i n t e r p r e t  m3 t o  mean 

The opponent would 

There is a well known precept  i n  cryptography, known as Kerckhoff's p r i n c i p l e ,  

t h a t  the opponent knows the  system, i . e ,  the  information contained i n  Figure 1 .  It 

is equal ly  reasonable  t o  assume the  same for authent icat ion.  

would be no a u t h e n t i c a t i o n  p o s s i b l e  for the  rece iver  using the scheme shown i n  

Figure 1 alone. What is done i n s t e a d  is  t o  have many such encoding rules in an 
authent ica t ion  s y s t e m  -- a l l  of which a r e  known t o  the  opponent -- with t h e  choice  

of the  p a r t i c u l a r  encoding rule i n  use being known only t o  t h e  transmitter and 

rece iver ,  similar i n  many respects t o  t h e  "key" known only t o  the  t ransmi t te r  and 

receiver  i n  a cryptosystem. Figure 2 suggests t h e  general scheme: 

Consequently there 

Each encoding rule ,  e i ,  determines a proper subset  M 

mapping -- perhaps one t o  many -- of 8 onto M i .  

defined func t ion ,  i.e.. for any e E 8 and m E Mi, the  function D(e,m) def ines  a 
unique s t a t e  i n  8 U 4 ,  where 6 is t h e  nul l  s e t .  

of h, /Mil t 181, and a i 
The inverse mapping D is a w e l l  

Even t h i s  very i n t u i t i v e  descr ip t ion  of authent icat ion should make clear t h e  
reason for descr ib ing  a u t h e n t i c a t i o n  a s  a problem i n  "spreading" messages in m. 
ml is an acceptable  message only i n  s e t  M1, then t h e  opponent, knowing the system, 
would be  a b l e  t o  conclude that el was the  coding r u l e  being used i f  he saw ml i n  the  

If 
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0 0  

A -  

channel and would then be able to substitute another message with certainty of 
deceiving the receiver. To avoid this it is necessary that each message occur in 
sufficiently many authenticating sets to (ideally) leave the opponent no more able 
to "guess" at an acceptable message after he has observed what the transmitter Sent 
than he could have before the observation. This ideal can be achieved in infinitely 
many perfect authentication systems C5.61. 

1 1 0 0  
1 0 1 0  

0 0 1 1  
x = o l o l  - 

THE "GAME" MODEL OF AUTHENTICATION 

A concise representation of the authentication system depicted in Figure 2 is 
possible in the form of an [ E l  x lh[ matrix, A ,  where e is the set of encoding 
rules. The rows of A are indexed by encoding rules and the columns by messages. 
The entry in a(e ,m ) is the element of 8 encoded by ru l e  ei into message m 
a source mapping exists under ei and 0 otherwise. 
each row of A at least once and perhaps several times. We define an authentication 
system to be the triple ( 8 .  S ,  A ) .  Earlier comments imply that each row and column 
contains at least one 0 entry. 

if such 
i j  

Every element of 8 appears in 

He now define another l E [  I [mi matrix X ,  in which 

I if a(ei,mj) E 8 

0 otherwise 

For example, for IS1 - 2. Iml = 4, the "best" authentication system possible has: 

It is now easy to see the relationship of the impersonation "game" to the matrix X. 

If m is an acceptable (authentic) message to the receiver when encoding rule e has 

been agreed to by the transmitter and receiver then x(e m ) - 1 and the opponent has 
a probability of success of p = 1 if he communicates m to the receiver. Con- 
versely, whenever X(ei,mj) = 0 he is certain the message will be rejected. 
certainly plausible -- and in fact rigorously true -- that the opponents probability 
of success in impersonating the transmitter is the value, vI, of the zero sum game 
whose payoff matrix is X. It is possible to define a companion payoff matrix Y for 
the substitution game, although it is considerably more complex. The value of this 
game, vs, is the probability that the opponent w i l l  be successful in deceiving the 
receiver through intercepting a message sent by the transmitter and substituting one 
of his own devising. Given an authentication system the transmitter/receiver have 

j i 

i j  

j 
It is 
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the freedom to choose among the encoding rules and if some state(s) of the source 
can be encoded into more than one message under some of the encoding rules, a choice 
of which messages to use, i.e., a splitting strategy. The opponent on the other 
hand can choose between impersonation and substitution with whatever probability 
distribution he wishes and then choose according to his optimal strategy which 
fraudulent message he will communicate to the receiver, either with no conditioning 
if he is impersonating the transmitter or else conditioned on the message he 
observed if he is substituting messages. Not surprisingly there exist authenti- 
cation systems in which the optimal strategy for the opponent is either pure imper- 
sonation, pure substitution, immaterial mixes of the two, or most interesting -- 
essential mixing of both as well as examples in which splitting is essential in the 
transmitterheceiver's optimal strategies. The point of these remarks is that we 
have shown in earlier papers that an opponent's overall probability of success in 
deceiving the receiver. Pd, is simply the value of the game whose payoff matrix is 
the concatenation of'X and Y ,  and hence that 

Pd 5 vG 2 max(v v ) I' s 

It is not germane to this paper to develop the payoff matrix Y ,  since (2 )  is the 
only result pertaining to the substitution game that we shall need later. 

With these preliminaries out of the way we survey the essential notation used 
in the authentication model. 

Name Set Element Variable 

=i 
Source 8 

Message Space m m. 
J 
ek Encoding Rules E 

S 
M 
E 

rr(m Iaiek) n 
j 

Splitting Strategies 
Impersonation Strategy Q Q qJ 

P(X = x) probability that the random variable X takes the value X, 
as for example P(M - m), P(S = 3) or P(E = e). 

Name Entropy 
Source Distribution H(S) 
Message Distribution H(M) 
Coding Strategy H(E) 
Joint (message coding strategy source) Distribution H(MES) 
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A encoding matr ix  

X impersonation payoff matrix 

Y s u b s t i t u t i o n  payoff matrix 

XY concatenated a u t h e n t i c a t i o n  payoff matrix 

V value of impersonation game on X ( t o  opponent) 

V value of s u b s t i t u t i o n  game o r  Y ( t o  opponent) 

Pd - vc 

I 

p r o b a b i l i t y  t ha t  opponent deceives the receiver :  

value of game qn XY. 

l e i l  = 1 x(ei ,m) number of nonzero e n t r i e s  in the  e i  row of 

e i t h e r  A or  X .  
m d n  

Im,I = 1 x(e.m.1 number of nonzero en t r ies  i n  the  m .  column of J J e & 
either A or X .  

THE AUTHENTICATION CHANNEL BOUND 

Our objec t  i n  t h i s  paper is t o  der ive channel bounds f o r  the  au thent ica t ion  
channel. Several such bounds a r e  easy. 

Theorem 1. 

( 3 )  

Proof: 
As has a l ready  been noted, t h e  opponent has avai lable  a s  par t  of h i s  s t r a t e g y  

t h e  choice of uhether  t o  impersonate t h e  t ransmi t te r  o r  t o  s u b s t i t u t e  messages, 

hence the  value of t h e  concatenated game is at  l e a s t  a s  la rge  as the  value of either 

game alone.  We a c t u a l l y  prove t h a t  for  t h e  impersonation game: 

t ransmi t te r / rece iver  are 

rule  ei is played  is P(E 
with  an optimal s t r a t e g y  

value t o  t h e  opponent of 

The payoff matrix f o r  A is t h e  l e l  x Iml (0.1) matrix X i n  which x ( i , j )  - 1 i f  some 
s t a t e  of 8 is encoded i n t o  m by t h e  encoding r u l e  e i ,  and 0 otherwise. If t h e  .I 

p l a j i n g  an optimal s t r a t e g y  E (probabi l i ty  t h a t  encoding 
= e,)  and t h e  opponent is impersonating t h e  t r a n s m i t t e r  

Q ( p r o b a b i l i t y  t h a t  he sends m j  is q ) then the  expected 

impersonating with message m is 
j 

j 
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and h i s  expected payoff  from p lay ing  s t r a t e g y  Q is simply t h e  value of the game 

Since vI is t h e  v a l u e  of t h e  game f o r  t h e  opponent,  r e a l i z e d  p l ay ing  an o p t i m a l  

s t r a t e g y  Q. it is a t  leas t  as l a r g e  as t h e  va lue  r e a l i z e d  by h i s  playing any o t h e r  

s t r a t e g y  -- i n  p a r t i c u l a r ,  t h e  uniform p r o b a b i l i t y  d i s t r i b u t i o n  of m. TherePore.  

The i n e q u a l i t y  is o n l y  weakened by r e p l a c i n g  lei by minlel .  The re fo re ,  
t 

minlel  
e 

V G 2 V  2-  
I PI 

as was t o  be shown. I 

Coro l l a ry :  

S ince  minlel  L Is1 
e 

( 5 )  

Theorem 2. 

Given an a u t h e n t i c a t i o n  system (8, S ,  A )  f o r  which 

i n  every op t ima l  s t r a t e g y ,  E ,  for t h e  t r a n s m i t t e r / r e c e i v e r  P ( E  - e )  - 0 f o r  any 

encoding r u l e  fo r  which 1.1 > m i n i e l .  
e 

Proof:  

As i n  t h e  proof  of Theorem 1 w e  u s e  t h e  f a c t  t h a t  vG t v and a c t u a l l y  prove I 
t h e  c o n d i t i o n s  of t h e  theorem fo r  t h e  impersonation game. From ( 4 )  we have 
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Assume t h a t  there is some encoding r u l e ,  e j  , fo r  which 1e I > minlel and for which 

P ( E  = e ) > 0. 
j 

vI is a t  l e a s t  a s  great an expectat ion fo r  him a s  he could achieve using any other 
s t r a t e g y  -- i n  p a r t i c u l a r  t h e  uniform probabi l i ty  d is t r ibu t ion  on m. 

j e  
As noted before  Q is an optimal s t ra tegy  f o r  t h e  opponent and hence 

Corollary: 

If fo r  an a u t h e n t i c a t i o n  s y s t e m  (8, S. A )  

which by Theorem 1 can only happen i f  minlel - I S [ ,  then every optimal s t r a t e g y  for 
the  t r a n s m i t t e r / r e c e i v e r ,  E. has P(E = e )  - 0 for  any encoding r u l e  f o r  which 1.1 > 

Another way of s t a t i n g  t h e  conclusion of the  Corollary is t h a t  i f  vc - Isl/lrnl 

e 

1st. 

no s p l i t t i n g  occurs  i n  any encoding r u l e  occurring i n  an optimal s t ra tegy!  It is 

worth remarking t h a t  

v 5-  

Iml G 

does not i m p l y  t h a t  s p l i t t i n g  does not occur i n  any of the  encoding r u l e s  that  occur 

i n  e. What is t rue,  by Theorem 2 ,  is t h a t  i n  t h i s  case a l l  of t h e  encoding r u l e s  
tha t  occur ( w i t h  p o s i t i v e  p r o b a b i l i t y )  i n  an optimal s t ra tegy use the same number of 
messages. 

Several o ther  channel capac i ty  theorems of s imi la r  f lavor  can be proven. how- 

ever we now t u r n  t o  our primary objec t  i n  t h i s  paper; es tab l i sh ing  bounds on the  

au thent ica t ion  channel i n  terms of t h e  various entropies  on the  primary v a r i a b l e s .  
A t r i v i a l  bound can be given i n  terms of H(E). Since H(E) is t h e  t o t a l  equivocat ion 

that t h e  opponent has as t o  which encoding r u l e  is being used by the  t r a n s m i t t e r /  
r e c e i v e r ,  and s i n c e  he could deceive t h e  rece iver  with cer ta in ty  if he only knew t h e  

r u l e  they had chosen, ne have 
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( 7 )  isn't a particularly usePul result since as we shall see later there is a much 
stronger bound in terms of H(E). 
result on which the theory of authentication is based. 

The bound OP the following theorem is the main 

Theorem 3. (Authentication Channel Capacity) 

Proof: 

Let P(M = m )  be the probability that message m will be observed in the channel 
when states of the source occur according to the probability distribution S and are 
encoded by the transmitter with an encoding rule chosen Prom & with probability 
distribution E, employing splitting strategies II. P(H = m )  is formally 

(9) 

or equivalently by 

1 if some state of the source can be 

0 otherwise 
encoded into m using encoding rule e where x(e,m) = 

The formal sum (10) has the same value as (9) since 

P(M = m, E - e, S = s )  f 0 + x(e,m) = 1 . 

The converse need not be true, i.e., x(e,m) = 1 can hold whfle P(M = m, E = e, 

S = s )  = 0, either because some s ' ,  other than the s in P(M - m, E = e, S = 3) 1s 
encoded into m by e, or  else that the state occurring in P(M = m, E = e, S = 3) 

could be encoded into m and some other message(s) under m ,  but that tne splitting 
rule used by the transmitter never uses m. 

h since the receiver will accept a message m when encoding rule e has been selected 
if and only i f  x(e,m) - 1. 

x(e,m) is the authentication function on 

The joint probability P(M - a ,  E = e, S = s )  can be represented as the product 
of the conditional probability that m w i l l  be sent given that state s occurred and 
that encoding rule e is being used II(mle,s), times the independent probabilities 
that these events occur. 
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We now wish to restrict the domain from the Cartesian product e x 8 to only e by 
using the inverse mapping to e; D(e,m), x(e,m) was introduced in (2) to make this 
possible, 

(12) 

since 

Define a probability distribution W(m) = (we(m)) on e E C for  every m E h: 

(13) 

we(m) is well defined since every m E h is  acceptable to the receiver f o r  at least 
one choice of an encoding rule. Also 1 we(m)x(e,m) = 1. Multiplying the summand 

in (12) by 
e EC 

we obtain 

We now wish to form -P(H 
calculating the entropy H(M) of the messages observed in the channel. Formally, 

m) log P(M = m) on both sides of (14) as a first Step to 

Noting that -x log x is concave downwards, we use Jensen's inequality -- which Says 
that if g(X) is a concave function on (a,b), and if (x.) are arbitrary real 
arguments, a < xi < b, then for any set of positive weights wi where 1 wi = 1; 

1 
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to replace the equality in (15) with an inequality. 
Let x - [ . . . I  i n  (7) :  

(16) 

By canceling the sum 

and by splitting the 
logarithms, we get 

-P(M = m)logP(M = m) 1 - 1 w,(m){ ... )log{.. .] . 
e E& 

1 P(E - e)x(e,m) between the denominator OP we(m) and { . . . I ,  
eE 
logarithm of the product in ( . . . I  into the sum of three 

-P(M - m)logP(M 
(17) 

r 

Now, we make use of the game model for the authentication channel to bound (17) 
below. The value of the impersonation game, vI, is 

where E* is an optimal strategy for the transmitter/receiver and E is an arbitrary 
strategy. Inequality (18) is at worst weakened through replacing 

in [ . . . I  with the maximum value it can have fo r  any choice of m. 
of (18) over all m E m, we get 

Summing both aides 

on the left and the expression in (19) on the right: 

[log vI + logP(s = D(e,m)) + log n(mle, D(e,m))l - 

Since log VI is a constant it can be moved through the double summation to give 
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Using (121, t h e  summand can be replaced by P(M = m) 

I log v 1 P(M = r n )  - log v 
I mch 

so t h a t  (19) becomes 

I t  has a l ready been noted tha t  

unless  D(e,m) = a ,  t h e r e f o r e  (20) can be rewr i t ten  i n  the form 

or  

s ince 

Moving the  summation o v e r 8  through P ( E  - e ) ,  we obtain 

Using the  entropy i d e n t i t y  



(16) becomes 

(25) 

But 

log v 2 H(S) + H(MES) - H(ES) - H(M) . I 

since E and S are independent. Therefore 

log vI 2 H(MES) - H(E) - H(M) . 

The conclusion of the theorem fOllOW3 from the earlier result that 
Pd - vG 2 max(vI.vs). so that 

log Pd = log vG 2 log v 2 H(MES) - H(E) - H(M) I (26) 

as was to be shown. 

The hard work is now completed. A variety of useful equivalent expressions can 
be derived from (26) using simple identities from infarmation theory, for the cases 
of authentication either with or without secrecy. We illustrate the technique in 
Theorem ( 4 )  f o r  the case of authentication with secrecy: i.e., the opponent does 
not know the state of the source observed by the transmitter. This, of course, only 
matters when the opponent elects to substitute messages rather than to impersonate 
the transmitter. 

Theorem 4 .  

H(MES) - H(E) - H(M) is equivalent to any of the following eight entropy 
expressions. 

X Equivalent Form 
(27)  ES H(M1ES) + H(S) - H(M) 
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Proof: 

The proof in each case proceeds by splitting the argument in the entropy H(MES) 
through conditioning the joint probability on X and then using simple identities to 
reduce the resulting expressions. The derivation of (27) is typical. 

since E and S are independent random variables. Hence 

as was to be shown, etc. I 

Using the results of Theorem 4 it is possible to derive some (generally) ueaker 
but enlightening channel bounds. We first note that the total effective equivoca- 
tion to the opponent playing the substitution game but uithout knowledge OP the 
source state, l.e., authentiction with secrecy is no greater than H(ElM) and as 
remarked earlier, the opponent's total effective equivocation if he knows the source 
state, i .e., authentication without secrecy, is at most H(E1M.S) .  

Theorem 5. 

For authentication with secrecy 

while for  authentication without secrecy 

log VG ?r - - 1 { H ( E )  - H(MS) + H ( M ) }  - - $ IH(E) - H ( s ~ M ) ~  
2 (36) 

Proof: 
For authentication with secrecy 

(37)  l o g  vG 2 rnin{log V~,-H(E]M)} 

while for authentication without secrecy 

(38) l o g  vG 2 mintlog V~,-H(E~MS)} . 
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In either (37) or (38) the bounds derived in Theorems 3 and 4 on the value of the 
impersonation game can be substituted, since the opponent's impersonation strategy 
is independent of whether he plays substitution with or without secrecy. 
the minimum on the right-hand side of the inequality by the average of the two 

bracketed terms either weakens the inequality if the terms are not identical or 
leaves it unaffected if they are. 
replacing vI with the bound (30) i n  (37)  we get 

Replacing 

Therefore for authentication with secrecy. 

and similarly by replacing v with the bounds (28)  or (29) i n  (38) we get I 

or 

as was to be shown. 1 

Corollary: 

(39) 

Proof: 

1 Pd - vc 2 - m 

with equality if and only if the transmitter/receiver's optimal strategy E is the 
uniform probability distribution on &. 

into (35). 1 

more restrictive conditions and derived directly in the same generality used here by 
Simmons and Brickell in [ 6 ] .  (35) is the bound based on H(E) promised earlier when 
the trivial bound in ( 7 )  was given. 

The conclusion follows by substituting (39) 

Bound (35) was first found by Gilbert, McWilliams and Sloan [7] under slightly 
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s1 s2 0 0 

s1 0 s2 0 

0 s2  
0 s1 

0 0 s2 s1 

A = =  

FOR EXAMPLE 

- 

In this section, in order to show the effects of secrecy on both the strategies 
of the participants and on the game values as well as to illustrate parameters such 
as splitting, etc., we discuss two small examples. Earlier ue described on authen- 
tication system for which 
was : 

= Iml - 4, 131 = 2 and fo r  which the payoff matrix X 

s1 s2 0 0 

3 0 s l o  

s1 0 s 

0 0 s2 3, 

2 A* 

X could also be the payoff matrix for many different authentication systems. one Of 
which was exhibited bePore 

2 -  

One other such system is 

(42) 

In either case vI = 1/2 with an optimal strategy f o r  either player being the uniform 
probability strategy on rows (transmitter) and on columns (opponent). If we con- 
sider only substitution with secrecy, then it makes no difference to the Opponent 
whether the transmitter/receiver are using the authentication system ( 8 ,  S, A) Or 

(s, S, A * ) ,  since in either case when he sees a message he is faced with two pOSSi- 
ble encoding rules and hence with a choice between two equilikely messages to sub- 
stitute -- one of which will be accepted and are rejected. 
cess in either case is 1/2, which is precisely what his chances of success in imper- 
sonating the transmitter would have been had he not waited to observe a message. 
Hence f o r  authentication with secrecy Pd - 1/2. The situation is different however 
for  authentication without secrecy. In this case f o r  the system (8 ,  S, A )  the Same 

S arguments given f o r  the authentication with secrecy case hold and Pd - vG - VI - V - 1/2. For the systea (a, S, A * )  however, if the opponent waits to observe a 
message he w i l l  know with certainty which encoding rule the transmitter/receiver 

His probability Of SUC- 
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have chosen and hence can s u b s t i t u t e  another message with c e r t a i n t y  t h a t  no t  only 
w i l l  i t  be accepted as a u t h e n t i c  by the  receiver  b u t  t h a t  the rece iver  W i l l  be 

misinformed a s  a r e s u l t .  Therefore i n  t h i s  case 

1 Pd = VG = vs - 1 > VI = - 2 

Inc identa l ly  t h e  system (S, S. A )  is perPect and is a lso  an instance i n  which 

equal i ty  holds i n  (39): 

We conclude by showing another  example i n  which equal i ty  holds i n  ( 3 9 )  and i n  
which, i n  addi t ion ,  s p l i t t i n g  is e s s e n t i a l  

the  opponent t o  t h e  game value Pd = l/m 
of ( 8 ,  S ,  A )  w e  in t roduce  a n o t a t i o n  Por A .  

three in t h e  example -- and the  elements in 

for the t ransmi t te r / rece iver )  t o  hold 

In order t o  have a concise d e s c r i p t i o n  

m is par t i t ioned i n t o  d i s j o i n t  p a r t s  -- 
each par t  indexed. The encoding r u l e s  

will be of a s p e c i a l  type  (Car tes ian)  t h a t  encode a s t a t e  of the  source only  i n t o  

the  messages i n  a p a r t i c u l a r  p a r t .  In the  example IS1 = 3 ,  Im/ = 12 and lel = 1 6 .  
The p a r t i t i o n  of is i n t o  4. 4 and 8 elements, indexed 1, 2 ,  3 ,  4; 1, 2 ,  3.  4 and 

1, 2, 3,  4, 5. 6,  7 ,  8,  r e s p e c t i v e l y .  The s t a t e s  of the source are assumed t o  be 

equiprobable. 

Encoding r u l e  el says  that  source s t a t e  s1 w i l l  be encoded i n t o  message 1 of p a r t  1, 

S t a t e  S2 i n t o  message 1 oP p a r t  2 and s t a t e  s3 i n t o  e i ther  message 1 or message 2 Of 

par t  3, e t c .  The unique opt imal  s t r a t e g y ,  E ,  for the  t ransmit ter / receiver  i s  t h e  

uniform p r o b a b i l i t y  d i s t r i b u t f o n  p ( E  = e i )  = 1 / 1 6  wlth uniform s p l i t t i n g ;  f - e . ,  if 
el is being used and s ta te  s occurs ,  then a Pair  coin would be tossed t o  decide 
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whether message 1 or 2 of p a r t  3 was t o  be s e n t ,  e t c .  Against s t r a t e g i e s  S and 11, 

the  value of the  game is 

1 Is1 3 1 - 
nl 

= - - Pd = VG = 12 T .  

and the game is perfect. Although it  i s n ' t  q u i t e  obvious, i t  is easy t o  show t h a t  
i t  doesn ' t  matter t o  the  opponent whether he  chooses t o  impersonate t h e  t r a n s m i t t e r  
or t o  wait and observe a message and then s u b s t i t u t e  another message; i n  e i t h e r  case 
if he plays optimally h i s  chance of success w i l l  be 1/4. 
while the opponent is faced wi th  two b i t s  of equivocation i r respec t ive  of whether he 
impersonates or s u b s t i t u t e s .  i . e . ,  vI - vs = 1/9, t h a t  the equivocation about t h e  

source s t a t e  is only logz 3 
while t h e  Opponent could guess the s t a t e  of t h e  source with a probabi l i ty  of success  

of 1/3 he could only guess  a t  a message t o  communicate a s t a t e  wi th  p r o b a b i l i t y  1/4.  
I f  one considers  what the channel bound theorem says,  t h i s  is no paradox and Pd Can 
b e  made a s  small as desired,  even f o r  a one-bit source i n  which P(S  = s) = 112. 

This example, i n c i d e n t a l l y ,  is one of t h e  smallest  i l l u s t r a t i n g  an i n f i n i t e  class of 

per fec t  au thent ica t ion  systems [5 ]  w i t h  e s s e n t i a l  s p l i t t i n g .  

Note t h a t  i n  t h i s  example 

1.585 b i t s ,  or P(S - s )  = l/3 for  any s E 8. Thus 

CONCLUSION 

I n  t h i s  paper w e  have proven t h a t  t h e  bounds on the authent icat ion channel  are 
prec ise ly  what one would i n t u i t i v e l y  expect (and hope f o r ) ,  namely t h a t  the d i f -  

ference between the amount of information t ransmit ted through t h e  channel and tha t  

needed by t h e  r e c e i v e r  t o  r e s o l v e  h i s  equivocation about the source state can be 

used t o  au thent ica te  t he  message, and conversely t h a t  no b e t t e r  r e s u l t  can be 

achieved. We a l s o  e x h i b i t e d  small examples demonstrating tha t  i t  is p o s s i b l e  t o  U s e  

a l l  of t h i s  r e s i d u a l  information t o  confound the  opponent, i . e . ,  t h a t  t h e  channel 
bounds a r e  sharp. 
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