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The human intestinal microbial community contains trillions 
of microorganisms that play an important role in maintaining 
normal gut function and immune homeostasis1. Emerging 

evidence shows that gut microbial composition alterations are asso-
ciated with the pathogenesis of human diseases, including gastroin-
testinal disorders, metabolic syndrome, cardiovascular diseases and 
other conditions2,3.

Many environmental factors influence the gut microbiome, 
including diet, medication usage4,5 and host genetics. Heritability 
studies have estimated that human genetics could explain from 
1.9% to 8.1% of gut microbiome variation6,7. This observation drove 
the first efforts to identify genomic loci that influence gut microbi-
ota through genome-wide association studies (GWASs). These early 
gut microbiome GWASs identified several microbial quantitative 
trait loci (mbQTLs) located in genes related to the intestinal muco-
sal barrier, immune response and drug and food metabolism8–11. 
However, the reproducibility of these findings has been limited by 
differences in data processing methodologies, modest sample sizes 
and strong environmental effects, which, taken together, limit the 
detection of robust host genetic associations12. A recent large-scale 
genome-wide meta-analysis of 24 cohorts replicated the asso-
ciation between Bifidobacterium abundance and the lactase (LCT) 

gene locus13, which had previously been reported in single-cohort 
studies6,14. Other suggestive mbQTLs identified in this broad 
meta-analysis were proportional to heritability estimates from 
independent twin studies, indicating that additional loci found at 
lenient levels of significance are likely to be real but larger sample 
sizes are needed to reach sufficient statistical power13. Nonetheless, 
meta-analyses of mbQTL studies are still underpowered due to the 
high levels of heterogeneity between cohorts. On top of this, many 
existing cohorts rely on 16 S rRNA measurements, which do not 
allow for bacterial identification at species-level resolution or for 
identification of bacterial pathway abundances. Indeed, measur-
ing both species and pathway abundances is essential for a further 
understanding of an individual’s microbiome; pathways may be 
shared across distant microbial species and have the same biologi-
cal effect15. mbQTL studies using shotgun metagenomic sequencing 
in large cohorts are therefore needed to overcome the variability in 
microbiome definition to reveal robust associations.

For a broader and deeper understanding of host‒microbiota 
interactions, here, we use shotgun metagenomic sequencing on 
feces from 7,738 individuals of the Dutch Microbiome Project 
(DMP)16 and match their imputed genotypes to differences in taxa 
and pathway abundances. By comparing our results with summary 
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Host genetics are known to influence the gut microbiome, yet their role remains poorly understood. To robustly characterize 
these effects, we performed a genome-wide association study of 207 taxa and 205 pathways representing microbial composi-
tion and function in 7,738 participants of the Dutch Microbiome Project. Two robust, study-wide significant (P < 1.89 × 10−10) 
signals near the LCT and ABO genes were found to be associated with multiple microbial taxa and pathways and were replicated 
in two independent cohorts. The LCT locus associations seemed modulated by lactose intake, whereas those at ABO could be 
explained by participant secretor status determined by their FUT2 genotype. Twenty-two other loci showed suggestive evi-
dence (P < 5 × 10−8) of association with microbial taxa and pathways. At a more lenient threshold, the number of loci we identi-
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effects of host genetics on the gut microbiome.
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statistics from other independent studies13,17,18, we identify novel 
host‒microbiota interactions. Furthermore, we explore the impact 
of potential confounding factors in modulating these genetic effects 
and identify potential diet-dependent host‒microbiota interactions. 
We further assess the potential causal relationships between the 
gut microbiome and dietary habits, biomarkers and disease using 
Mendelian randomization (MR). Finally, we carry out a power anal-
ysis showing how microbiome studies, even at the current sample 
size, are underpowered to reveal the complex genetic architecture 
by which host genetics regulates the gut microbiome.

Results
Genome-wide associations with bacterial taxa and pathways. 
We investigated 5.5 million common (minor allele frequency 
(MAF) > 0.05) genetic variants on all autosomes and the X chro-
mosome using linear mixed models19 to test their association with 
207 taxa and 205 bacterial pathways in 7,738 individuals from the 
DMP cohort (Methods and Supplementary Table 1)19. There was no 
evidence for test statistic inflation (median genomic lambda 1.002 
(range, 0.75–1.03) for taxa and 1.004 (range, 0.87–1.04) for path-
ways). We identified 37 single nucleotide polymorphism (SNP)‒
trait associations at 24 independent loci at a genome-wide P value 
threshold of 5 × 10−8 (Fig. 1 and Supplementary Table 2). Genetic 
variants at two loci passed the more stringent study-wide threshold 
of 1.89 × 10−10 that accounts for the number of independent tests 
performed (Methods).

The strongest signal was seen for rs182549 located in an intron of 
MCM6, a perfect proxy of rs4988235 (r2 = 1, 1000 Genomes Project 
European populations), one of the variants known to regulate the 
LCT gene and responsible for lactase persistence in adults (ClinVar 
accession RCV000008124). The T allele of rs182549, which confers 
lactase persistence through a dominant model of inheritance, was 
found to be associated with decreased abundances of the species 
Bifidobacterium adolescentis (P = 7.6 × 10−14) and Bifidobacterium 
longum (P = 3.2 × 10−08), as well as decreased abundances of 
higher-level taxa (Supplementary Table 2 (ref. 5)). Associations at 
this locus were also seen for other taxa of the same genus but at lower 
levels of significance (Bifidobacterium catenulatum, P = 3.9 × 10−5) 
and for species of the Collinsella genus (Extended Data Fig. 1). The 
genetic association at the LCT locus has been previously described, 
albeit only at the genus level, in Dutch, UK and US cohorts6,8,14, as 
well as in a recent large-scale meta-analysis13.

The second locus that passed study-wide significance consisted of 
genetic variants near the ABO gene. ABO encodes the BGAT protein, 
a histo-blood group ABO system transferase. Associations found 
at this locus include species Bifidobacterium bifidum (rs8176645, 
p = 5.5 × 10−15) and Collinsella aerofaciens (rs550057, P = 2.0 × 10−8, 
r2 = 0.59 with rs8176645 in 1000 Genomes Project Europeans) 
and higher-order taxa (rs550057, genus Collinsella, P = 9.3 × 10−11; 
family Coriobacteriaceae, P = 3.01 × 10−9; order Coriobacteriales, 
P = 3.03 × 10−9) (Extended Data Fig. 1). Interestingly, the meta-
bolic pathway representing the bacterial degradation of lactose 
and galactose was also associated with the ABO locus (Metacyc 
ID LACTOSECAT-PWY: lactose and galactose degradation I, 
rs507666, P = 5.38 × 10−15). Associations of this locus with the genus 
Collinsella and the metabolic pathway LACTOSECAT-PWY have 
been recently described18,20.

Association at LCT affects multiple taxa and pathways. Given 
that lactose tolerance is inherited in a dominant fashion, we tested 
the associations found in this locus using a dominant model 
for the alternative allele at SNP rs182549 and thereby compared 
lactase-persistent (LP) and lactose-intolerant (LI) individuals. 
Indeed, all seven taxa associated with the LCT locus at genome-wide 
significance showed a stronger association signal when we used 
a dominant model (all associations P < 2 × 10−27), with increased 

taxa abundance in LI individuals (Supplementary Table 3). The 
associations seen at the family level could mostly be accounted for 
by species B. adolescentis (no significant difference in effect size, 
Cochran’s Q P value > 0.05), whereas smaller effects were seen for 
species B. longum and B. bifidum (Cochran’s Q P values when com-
paring effect sizes with those observed for B. adolescentis were 0.018 
and 0.003). Moreover, the association with these species remained 
unchanged when adding B. adolescentis to the association models, 
indicating that the associations are independent and not driven by 
species correlation.

We further tested the other 200 taxa for this SNP and the 
dominant model. Intriguingly, we observed suggestive association 
(P < 1 × 10−4) at rs182549 with taxa that were associated with the 
ABO locus in our GWAS (Collinsella genus and species B. bifidum 
and C. aerofaciens) and for the species Roseburia inulinivorans of 
the family Lachnospiraceae (Supplementary Table 3). For all but 
Roseburia inulinivorans, there was a consistent direction of effect 
across the associated taxa, with increased abundance in LI com-
pared with LP individuals (Fig. 2 and Extended Data Fig. 2). The 
associations seen with several taxa suggest that this locus has a 
wide-ranging effect on microbiome composition.

Finally, when comparing the abundance of bacterial pathways 
between the LI and LP groups, we observed a higher abundance of 
the LACTOSECAT-PWY in LI individuals (effect = +0.300 in s.d. 
units, s.e. = 0.049, P = 1.02 × 10−9). This is not surprising given that in 
our dataset, this pathway correlates mostly with class Actinobacteria 
and species B. adolescentis (Spearman correlation [rS], 0.73 and 0.69, 
respectively), which are both associated with SNPs at the LCT locus.

Associations at ABO are dependent on secretor status. To further 
understand the mechanisms underlying the association signals at the 
ABO locus, we derived blood-group types based on the genotype sta-
tus of three genetic variants (Methods). The majority of the individu-
als were either type A (40%) or type O (48%), as expected21. Genetic 
associations at this locus could be explained by differences between 
individuals with non-O blood type and O blood type. Individuals 
with blood type O had the highest observed abundance of B. bifi-
dum compared with other blood-type groups (Wilcoxon test blood 
type, A vs. O: P = 2.3 × 10−14, blood type B vs. O: P = 0.007, blood 
type AB vs. O: P = 0.006), whereas higher abundances of Collinsella 
and the pathway LACTOSECAT-PWY were observed in individu-
als with blood type A compared with individuals with blood type O 
(Wilcoxon test for Collinsella, blood type O vs. A: P = 2.8 × 10−9, for 
metabolic pathway, blood type O vs. A: P = 5 × 10−14) (Fig. 3).

Notably, all these associations were present only in individuals 
able to expose A/B antigens to gut bacteria (secretors) and were 
absent in nonsecretors, with secretor status being determined by 
a functional variant in the FUT2 gene (Fig. 3 and Supplementary 
Note). This observation is in line with recent studies showing that 
association at the ABO locus with microbiome depends on FUT2 
genotypes18,22. Associations of functional variants in the FUT2 gene 
with other bacterial taxa were observed in a recent meta-analysis13, 
but none of the bacterial taxa or pathways analyzed showed signifi-
cant association at this locus in our cohort.

The novel associations with species levels at ABO, including 
that with B. bifidum, are intriguing. Early genomic analyses suggest 
that among Bifidobacterium, B. bifidum is particularly adapted to 
the human gastrointestinal mucosa because of a unique set of genes 
encoding for enzymes involved in the degradation and utilization 
of mucin, the main component of gastrointestinal mucosa23,24. The 
degradation activity of the mucosa, where antigens are secreted, 
could explain the association with differences in B. bifidum abun-
dance at ABO modulated by FUT2. This mechanism has been pro-
posed for the association with Collinsella genus18, and it is likely to 
also apply to the novel associations we identified with C. aerofaciens 
and LACTOSECAT-PWY pathway abundances.
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Locus ID Genes (variant function) ID pval Trait

2 ABO (intronic) rs507666 5.38 × 10–15 LACTOSECAT-PWY: lactose and galactose degradation I
7 Intergenic rs7513344 1.79 × 10–9 PWY-6151: S-adenosyl L methionine cycle I
8 AC105942.1 (intronic) rs10159356 7.52 × 10–9 PWY-REDCITCYC: TCA cycle VIII (Helicobacter)
9 WWOX (intron) rs9927590 9.28 × 10–9 PWY-5088: L-glutamate degradation VIII to propanoate

10 SALL4 (intron) rs79676117 1.16 × 10–8 PWY-7234: inosine-5'-phosphate biosynthesis III
11 AC010149.1 (intron) rs11898768 2.00 × 10–8 PWY-6708: ubiquinol-8 biosynthesis
12 INSIG; BLACE (intergenic) rs36182340 2.00 × 10–8 P105-PWY: TCA cycle IV (2-oxoglutarate decarboxylase)
13 LINC02851 (upstream) rs820496 2.43 × 10–8 ASPASN-PWY: superpathway of L-aspartate and L-asparagine biosynthesis
14 SYNE2 (intronic) rs17824268 2.63 × 10–8 PWY-6612: superpathway of tetrahydrofolate biosynthesis
15 NUMB (intronic) rs148280750 2.93 × 10–8 PYRIDNUCSYN-PWY: NAD biosynthesis I from aspartate
16 TSC22D2 (intergenic) rs1584586 3.47 × 10–8 PWY-841: superpathway of purine nucleotides de novo biosynthesis I
17 RCAN2 (intron) rs59657730 3.50 × 10–8 GLYCOCAT.PWY: glycogen degradation I (bacterial)
18 CNN3; ALG14 (intergenic) rs12137024 3.53 × 10–8 HISDEG-PWY: L-histidine degradation I
19 AL451048.1 (intron) rs11795855 3.59 × 10–8 ENTBACSYN-PWY: enterobactin biosynthesis
20 CDK11B (upstream) rs11486024 3.89 × 10–8 TRPSYN PWY: L-tryptophan biosynthesis
21 SLC25A37 (intron) rs2137304 4.26 × 10–8 PWY-6353: purine nucleotides degradation II (aerobic)
22 RPRD2 (intergenic) rs78778914 4.34 × 10–8 HISTSYN PWY: L-histidine biosynthesis
23 GRAMD1B (intronic) rs2714053 4.85 × 10–8 PWY-6147: 6-hydroxymethyl dihydropterin diphosphate biosynthesis I
24 IL4; KIF3A (intergenic) rs11242123 4.89 × 10–8 PWY-7209: superpathway of pyrimidine ribonucleosides degradation

Locus ID Genes (variant function) rs ID P value Trait

1 MCM6 (intronic) rs182549 5.86 × 10–15 f. Bifidobacteriaceae
1 MCM6 (intronic) rs182549 5.91 × 10–15 o. Bifidobacteriales
1 MCM6 (intronic) rs182549 8.59 × 10–15 g. Bifidobacterium
2 ABO (intronic) rs8176645 5.54 × 10–14 s. Bifidobacterium bifidum
1 DARS1 (intronic) rs6754311 7.06 × 10–14 s. Bifidobacterium adolescentis
1 MCM6 (intronic) rs182549 2.32 × 10–13 c. Actinobacteria 
1 MCM6 (intronic) rs182549 2.32 × 10–13 p. Actinobacteria 
2 ABO (intronic) rs550057 9.34 × 10–11 g. Collinsella
2 ABO (intronic) rs550057 3.01 × 10–9 f. Coriobacteriaceae
2 ABO (intronic) rs550057 3.03 × 10–9 o. Coriobacteriales
2 ABO (intronic) rs550057 2.05 × 10–8 s. Collinsella aerofaciens
3 SGCZ (intron) rs28450200 1.37 × 10–8 s. Alistipes sp AP11
4 COL23A1 (intron) rs73344869 2.10 × 10–8 f. Rikenellaceae
4 COL23A1 (intron) rs73344869 2.14 × 10–8 g. Alistipes
1 RH3DM1 (missense) rs1446585 3.18 × 10–8 s. Bifidobacterium longum
5 TNFAIP2 (intronic); LINC0067 (intronic) rs2282037 4.10 × 10–8 c. Negativicutes 
5 TNFAIP2 (intronic); LINC0067 (intronic) rs2282037 4.10 × 10–8 o. Selenomonadales
6 DMD (intron) rs921896 4.15 × 10–8 s. Escherichia unclassified

Fig. 1 | Genome-wide association scan results. Manhattan plot of host genomic associations with bacterial taxa and bacterial pathway abundances 
with at least one genome-wide significant association (P < 5 × 10−8). The y axis shows the −log10 transformation of the association P value observed 
at each tested variant. The x axis shows the genomic position of variants. The thresholds of study-wide (P = 1.89 × 10−10) and genome-wide 
(P = 5 × 10−8) significance are shown with horizontal lines. Independent SNP‒trait associations reaching genome-wide significance are listed in the 
tables and labeled on the Manhattan plot. The colors of associated hits indicate whether they represent an association with taxonomy or a bacterial 
pathway, as indicated in the key within the image. c., class; f., family; g., genus; p., phylum; o., order; s., species.
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Genetic associations may be modulated by diet. Gut microbiome 
composition and function are known to be affected by several fac-
tors, including sex, body mass index (BMI), diet and medication 
usage4. None of our 37 SNP–trait genome-wide significant associa-
tions were attenuated when including BMI, medication usage, stool 
frequency or stool consistency as covariates (Methods; for all com-
parisons, Cochran’s Q for difference in effect size P > 0.05), indicat-
ing that these associations are independent and not confounded by 
these factors (Supplementary Table 4a). Furthermore, none showed 
evidence for being a sex-specific effect, although five did exhibit a 
smaller genetic effect in females compared to males (Supplementary 
Table 4b).

We also investigated the effect of diet at the LCT and ABO 
loci, considering the dominant inheritance model at LCT and 
the observed dependence on secretor status at ABO. We consid-
ered dietary factors previously associated (false discovery rate 
(FDR) < 0.05) with microbial taxa and pathway abundances that 
show genome-wide association signals in the ABO and LCT loci 
(Methods)16. In an analysis that included age, sex and genetic and 
dietary factors, the dietary factors did not significantly attenuate 
the effect of the genetic components, suggesting that diet is not a 
source of bias in these genetic associations (Supplementary Table 5). 
Nonetheless, diet remained an important factor after correction for 
genetic factors. Four taxa and one pathway associated with LCT and 
ABO SNPs were statistically associated with at least one dietary fac-
tor (P < 0.05) (Supplementary Table 5), with a maximum of 16 fac-
tors found for B. longum. We further tested these associated dietary 
(44 diet‒microbiome pairs) factors for interaction with genetics and 
detected evidence for a gene‒diet interaction for only one taxon at 
the LCT locus. Specifically, we observed an increased abundance of 

the Bifidobacteriaceae family in LI individuals who consumed larger 
amounts of lactose or dairy (interaction term P = 0.03) (Fig. 3 and 
Supplementary Table 6), a finding that is consistent with previous 
reports8,18. In contrast, there was no evidence for interaction with 
diet at the ABO locus (interaction term P > 0.05) (Supplementary 
Table 6). This could be attributable to the limited accuracy of our 
diet scores, information that was recorded 4 years prior to micro-
biome collection. Interaction between fiber intake and genetic vari-
ants at this locus, when it is associated with Collinsella genus, have 
been reported in other populations18.

Taxa and pathways genetic signatures are likely polygenic. None 
of the 22 other loci that showed suggestive association at P < 5 × 10−8 
(Supplementary Table 2) were reported previously. The majority (18 
loci) were associated with bacterial pathways that could not have 
been directly quantified in studies using 16 S rRNA data, the meth-
odology predominantly used in microbiome genetic studies to date. 
The associated regions harbor genes and variants associated with 
metabolic and immune phenotypes, thus providing intriguing links 
with microbiome and diseases, as described in Supplementary Note.

We sought to replicate these suggestive signals using summary 
statistics from other independent cohorts in which microbiome data 
was characterized using either 16 S rRNA (the MiBioGen study)13 or 
metagenomic sequencing (the LL-DEEP cohort)17. In the MiBioGen 
study, a meta-analysis of 24 cohorts comprising up to 18,340 indi-
viduals, the 16 S rRNA measurements do not allow for the evalu-
ation of the abundance of bacterial species and pathways, and the 
X chromosome was not analyzed. Consequently, only 10 of our 18 
SNP‒taxa pairs could be tested in MiBioGen, and no pathways were 
testable. In LL-DEEP, a genome-wide microbiome association study 
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Fig. 2 | Association at the LCT locus and interaction with lactose intake. a,b, Comparison of f. Bifidobacteriaceae relative abundance between groups of 
LP (rs182549 C/T or T/T) and LI (rs182549 C/C) participants (a) and stratified among individuals with low or high daily lactose intake levels (b). Lactose 
intake was corrected for daily calorie consumption. The y axis represents the relative abundance of the microbial feature, natural log–transformed and 
adjusted by age and sex. Density distribution is displayed with violin plots, whereas boxplots represent summary statistics; the center line represents the 
median, the box hinges represent the lower and upper quartiles (percentiles 25 and 75) of the distribution, the upper whisker extends to the maximum 
value no further than 1.5× interquartile range (IQR) from the upper hinge, the lower whisker extends to the minimum value no further than 1.5× IQR from 
the lower hinge and data beyond the end of the whiskers are outliers plotted as individual points. Lactose intake levels were defined as low if less than 
the first quartile and high if greater than or equal to the first quartile. Lactose intake was only available for 5,801 of the 6,809 LP participants and 376 of 
the 443 LI participants. P values were obtained with a two-sided Wilcoxon rank test. Species in the same family shared similar distributions, although the 
difference in distribution within the LI group was not significant (Extended Data Fig. 2). n, number of participants.
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on 952 individuals, we extracted information for the majority of 
the SNP‒taxa pairs (14/18) and SNP‒pathway associations (18/19). 
Unfortunately, the power to replicate the associations in LL-DEEP 
was limited due to the small sample size. In both studies, we 
observed significant replication of the study-wide significant loci, 
LCT and ABO, using a Bonferroni threshold of P < 0.0015 (equiv-
alent to 32 SNP–trait pairs tested). All seven taxa associated with 
SNPs near LCT were replicated with consistent allelic effect direc-
tions (all P < 3.7 × 10−6). For the ABO locus, we found significant 
replication for the Collinsella genus (P < 2 × 10−5 in MiBioGen) and 
replication at only nominal significance for the bacterial pathway 
LACTOSECAT-PWY and B. bifidum species (P < 0.05 in LL-DEEP) 
(Supplementary Tables 7 and 8). The association at ABO with B. 
bifidum does not reach the multiple-testing–adjusted threshold for 
replication. Therefore, although the consistent direction of effects 
is encouraging, we cannot exclude the possibility for this signal to 
be a false positive. None of the other SNP‒taxa or pathway pairs 
were replicated in MiBioGen or LL-DEEP. Interestingly, another 
independent SNP in the COL23A1 gene (rs11958296; r2 = 0.1 with 
rs10447306 from our study) shows association in MiBioGen to the 
abundance of the same taxa: family Rikenellaceae (P = 2.4 × 10−5) 
and genus Alistipes (P = 9.3 × 10−6).

To explore whether the association signals at lower levels of sig-
nificance are enriched in heritable bacteria, which would indicate 
if it is possible to detect more genome-wide significant mbQTLs by 
further increasing the sample size, we investigated the correlation of 
taxa and pathway heritability estimations from family-based analy-
sis with the number of suggestively associated loci for each taxon 
and pathway. Here, we observed a positive and significant corre-
lation for both taxonomic (rS = 0.248, P = 3.1 × 10−4) and pathway 
(rS = 0.263, P = 1.3 × 10−4) heritability with the number of suggestive 
(P < 1 × 10−5) loci identified in our GWAS (Fig. 4). The correlation 
for pathways remained significant when increasing the mbQTL 
threshold to P < 5 × 10−4 and removing the LCT and ABO loci from 
the analyses (rS = 0.541, P = 5.3 × 10−17).

We also evaluated whether we could replicate any of the asso-
ciation signals outside the LCT and ABO loci that were reported 
in a recent and similarly sized Finnish population study18. After 
extracting all associations with P < 1 × 10−4 in our dataset, we 
identified 3 out of 451 genome-wide significant SNPs from the 
Finnish study using direct or proxy (r2 > 0.8) information (279 of 
the SNPs reported in this study were not included in our dataset 
because their MAF was <0.05). For one SNP (rs642387), we iden-
tified an association with consistent allelic effect for similar taxa; 
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the minor allele at this variant (through proxy SNP rs632222) was 
associated with a decreased abundance of the Desulfovibrio genus 
(P = 8.7 × 10−5) in our study (Supplementary Table 9). This cor-
roborates the allelic effects seen in the Finnish study for the abun-
dances of phylum Desulfobacterota A, class Desulfovibrionia, 
order Desulfovibrionales and family Desulfovibrionaceae.

Taxa abundances may modulate salt intake and triglycerides. 
To investigate the causal relationships between microbiome com-
position/function and complex traits, and vice versa, we used 
publicly available summary statistics in conjunction with our 
mbQTL results to perform bidirectional two-sample MR analyses 
(Methods). We analyzed 78 phenotypes representing autoimmune 
diseases, cardiometabolic diseases and related risk factors, as well 
as food preferences (Supplementary Table 10) and the 37 microbi-
ome features associated with at least one variant at genome-wide 
significance in our GWAS. None of the causal relationships were 
significant at FDR < 0.05. At FDR < 0.1, we observed three causal 
relationships in the direction from microbiome to phenotypes, 
suggesting that variation in microbiome abundance can influ-
ence salt intake and triglyceride levels (Supplementary Note, 
Supplementary Table 11 and Extended Data Fig. 3). There was 
no evidence for these relationships being affected by pleiotropy, 
and results were very similar when we performed a polygenic risk 
score analysis in the UK Biobank cohort (Supplementary Table 12 
and Supplementary Note).

Very large cohorts are necessary in future studies. Analysis 
of core microbiota in different populations indicates that only 
a few bacteria were present in >95% of studied individuals5,13,16, 
drastically reducing the effective sample sizes for analyses. We 
performed power calculations taking into account the interin-
dividual variations in microbiome composition and concluded 
that a sample size comparable to our study (~8,000 participants) 
is only sufficient to identify associations with taxa present in 
>80% individuals, which comprise only 7% of all identified taxa 
in the cohort (Methods and Supplementary Note). For bacteria  
present in >20% of the samples, >50,000 participants are nec-
essary to identify an effect size similar to that of LCT and  
ABO (Fig. 5).

Discussion
We carried out the largest GWAS of gut microbiome composition 
and function in a single population by analyzing metagenomic 
sequencing data in 7,738 volunteers from the northern Netherlands. 
We recapitulated genetic associations at two known loci, LCT and 
ABO, and the resolution of our metagenomic sequencing allowed 
us to pinpoint associations with species (B. adolescentis at LCT, 
B. bifidum and C. aerofaciens at ABO) and bacterial pathways 
(LACTOSECAT-PWY at ABO) in these loci. Furthermore, we iden-
tified associations (P < 5 × 10−8) at 22 other loci for four taxa and 18 
bacterial pathways. None were affected by major confounders of the 
gut microbiome such as medication usage, diet and BMI. Finally, we 
used an MR approach to pinpoint causal links among gut microbi-
ome composition, complex traits and food intake habits.

The association between the LCT locus and the gut microbi-
ome remains the most robust genetic association identified to 
date. Associations at LCT with Bifidobacterium have been consis-
tently reported in studies of different ethnicities, across a range of 
sample sizes and in studies using different technologies and proto-
cols6,8,13,14,22. We recapitulate that an increase of Bifidobacterium was 
more evident in LI individuals who consume milk or milk-derived 
products13,25. In addition, given that the resolution of metagenomic 
sequencing allows for species-level characterization of microbiome 
profiles, we showed that this effect was mainly attributable to the 
species B. longum, B. adolescentis, B. catenulatum and B. bifidum, 
which was also corroborated by two recent studies in Finnish and 
US Hispanic/Latino populations18,26.

Another study-wide association was at the ABO locus. 
Associations with microbiome composition and blood types were 
observed in previous experimental studies27,28. Genetic associa-
tions at ABO have been reported previously in populations of dif-
ferent ethnicities22,29 and in nonhuman species, including pigs30. 
A deletion at this locus that inactivates the ABO acetylgalactos-
aminyltransferase has been shown to change porcine microbi-
ome composition by altering intestinal N-acetylgalactosamine 
concentrations and consequently reducing the abundance of 
Erysipelotrichaceae strains, which have the capacity to import and 
catabolize N-acetylgalactosamine31. We did not detect any evidence 
of interaction with diet at the ABO locus, although this could be due 
to limitations in available information, as the recording of dietary 
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information and stool collection were done at different times. We 
did, however, find that associations at this locus depend on secre-
tor status that is determined by a nonsense mutation at the FUT2 
gene22 and thus on the host’s ability to incorporate antigens into 
bodily fluids that are released in the gut. Intriguingly, we observed 
that taxa associated with ABO also showed evidence of association 
at LCT independently of blood type (interaction P > 0.05 for all 
taxa), indicating a common, independent action of these two loci 
in contributing to the growth of the associated bacteria. The most 
compelling hypothesis is that the availability of sugars in the gut, 
via undigested lactose in LI individuals or secretion of antigens 
with accessible glycans in non–O blood-type secretors, provides 
direct energy sources for these bacteria. This is further supported 
by the observation that LI individuals and non–O blood-type 
secretors were both associated with the increased abundance of a 
bacterial pathway for lactose and galactose degradation. However, 
this mechanism would not fully explain the opposite direction 
of the association at ABO seen for B. bifidum, which, under this 
hypothesis and considering its adaptation to normal gastrointes-
tinal mucosa (apparently independent of H-antigen secretion, 
as shown in Fig. 4), would be subjected to competition in the 
environment, as is the case of non–O blood secretors. Of note, a 
similar pattern of association at this locus was found in a recent 
study22, where a branch of the Bacteroides genus represented by 
OTU97_12, OTU99_12, and TestASV_13, showed association with 
an inverse relationship between their prevalence and the non–O 
blood-type group and instead a positive relationship with preva-
lence of OTU97_27. Although these opposite associations could 
be explained by antigen degradation activity of certain species and 
consequent environment competition for others, more studies are 
needed to clarify the complex mechanisms involved.

We acknowledge that anachronistic diet information is a limi-
tation of our study. Although we have shown that in general the 
microbiome remains fairly stable in an individual after 4 years, with 
interindividual differences being larger than interindividual differ-
ences32, short-term changes in diet, especially those introducing 
drastic shifts, can perturbate microbiome composition and func-
tion. These cannot be taken in account by our analyses. Capturing 
these shifts would not be easy even with frequency food question-
naires recorded at time of sample collection; ideally, real-time exten-
sive recording in weeks preceding microbiome collection should be 
implemented in future biobanks.

The strongest mbQTLs we identified reside in genes under selec-
tive pressure. The LCT gene is highly differentiated among human 
populations due to positive selection of the lactase-persistence phe-
notype. It has been estimated that strong selection occurred within 
the past 5,000–10,000 years, consistent with an advantage of lactase 
persistence and the ability to digest milk in the setting of dairy farm-
ing33. Variants at this locus have been linked, through GWASs, to not 
only food habits and metabolic phenotypes but also immune cell 
populations34. The ABO locus is evolutionarily highly differentiated; 
it has been shown to have experienced balancing selection in the last 
three million years in many primate species35. Several evolutionary 
sources of selective pressure have been proposed, including via infec-
tions by pathogens such as malaria36 and cholera37. ABO variants have 
also been linked to cardiometabolic traits, cytokine levels and white 
and red blood cell levels38,39. Therefore, host‒microbiome interactions 
are likely shaped by human‒microbe coevolution and survival, prob-
ably through a balance between food availability for gut bacteria and 
enhanced immune response of the host. Better understanding of these 
interactions will expand our current knowledge of human evolution40. 
From this perspective, it will be crucial to compare genetic studies 
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of the gut microbiome in diverse populations with different genetic 
backgrounds. This requires community efforts to standardize the defi-
nition of taxonomies and to standardize measurement methodologies 
in order to facilitate comparison between cohorts. For example, in our 
attempt to replicate the findings from the Finnish population cohort, 
only a limited number of taxa could be directly matched or connected 
through the Genome Taxonomy Database41.

To explore the causality of the relations of the microbiome with 
complex traits and food preferences, we performed bidirectional 
MR analysis using 56 dietary traits, 16 diseases and 5 biomarkers. 
At FDR < 0.1, we observed that a genetically determined increase 
in the abundance of genus Alistipes and its family Rikenellaceae 
led to decreased consumption of salt, although the limited impact 
of genetic variants on both microbiome composition and dietary 
preferences requires caution when interpreting causality estimation 
by MR42,43. Although it is known that dietary changes have a strong 
effect on microbiome composition44, it is intriguing to suggest that 
genetically determined variation of the microbiome might affect 
food preferences. This is supported by bacterial genetic variations in 
salt tolerance45 and the established knowledge that the composition 
of gut microbiome can predict the effect of food items on host metab-
olism46. There is additional evidence supporting a role for the micro-
biome in influencing food preferences. A perfect proxy of rs642387 
(rs503397, r2 = 0.99 in 1000 Genomes Project Europeans) was recently 
reported to be associated with the family Desulfovibrionaceae and 
related taxa in a Finnish population and replicated in our study and 
has been associated with bitter alcoholic beverage consumption in 
an independent cohort47. Another study found an increase in family 
Desulfovibrionaceae in individuals with high alcohol consumption48, 
and family Desulfovibrionaceae, genus Desulfovibrio and other 
related taxa were also associated with increased consumption of alco-
hol in our DMP cohort16, supporting a pleiotropic effect of this locus 
on both microbiome composition and alcohol intake. Combined 
with our findings, this suggests that gut microbiota could influence 
an individual’s food preferences by mediating the downstream effect 
of the consumption of different products.

In addition to the two study-wide significant loci, we also 
observed 22 loci at genome-wide significance and many more at 
more lenient thresholds. The observed correlation between the 
heritability of microbial taxa and pathways and the number of sug-
gestively associated loci indicates that mbQTLs with smaller effects 
are likely to exist. These loci remain under the detection limit in 
this study. According to our power estimates, sample sizes would 
need to be increased by orders of magnitude to elucidate the genetic 
architecture of microbiome traits, especially of rarer bacteria. Joint 
efforts that combine tens of thousands of individuals, combined 
with harmonized methodology to reduce technical bias, will be 
needed to characterize more than a few major loci, as has also been 
the case for genetic studies of much more heritable quantitative 
traits such as BMI (heritability ~40%), height (heritability ~80%) 
and other human phenotypes49–51.
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Methods
Cohort description. LifeLines is a multidisciplinary prospective population-based 
cohort study with a unique three-generation design that is examining the 
health and health-related behaviors of 167,729 people living in the north of the 
Netherlands. LifeLines employs a broad range of investigative procedures to assess 
the biomedical, sociodemographic, behavioral, physical and psychological factors 
that contribute to the health and disease of the general population, with a special 
focus on multimorbidity and complex genetics52,53. During the first follow-up 
visit, all participants were invited to participate in a parallel project, the DMP, 
on a voluntary basis. The goal of this project is to evaluate the impact of different 
exposures and lifestyles on gut microbiota composition16. A subset of 10,000 
LifeLines participants were included; for 8,719 of these participants, both feces and 
phenotype information were collected. Of these, samples from 8,208 participants 
were retained for downstream analysis after stringent quality control16. Distribution 
of age, gender and location within the three north provinces was similar to that 
observed in the total LifeLines cohort53.

The LifeLines study was approved by the medical ethical committee from the 
University Medical Center Groningen (METc number 2017/152). All LifeLines 
participants signed a written consent prior participation. Additional written 
consents were signed by the DMP participants or legal representatives for children 
aged under 18 years. This study complies with all relevant ethical regulations.

Genome characterization. Genotyping of 38,030 LifeLines participants was 
carried out using the Infinium Global Screening Array MultiEthnic Diseases 
version, following the manufacturer’s protocols, at the Rotterdam Genotyping 
Center and the Department of Genetics of the University Medical Center 
Groningen. Here, we used available quality-controlled genotyping data imputed 
with Haplotype Reference Consortium panel v.1.154, as described elsewhere55. To 
avoid population stratification, we analyzed only European samples. We selected 
43,587 genetic markers by applying LD pruning on the genotyped data (sliding 
window of 1 Mb, LD r2 < 0.2, step = 5) and used them for a principal-component 
analysis projecting the 1000 Genomes Project (all populations) and GoNL 
cohorts a population references56,57. Europeans were then identified as samples 
clustering together with European populations according to the first two principal 
components or <3 s.d. away from the most distant European samples in the 
reference. In total, 35 non-European participants were removed. Quality-controlled 
genotype information was obtained for 7,738 of the DMP participants for whom 
quality-controlled microbiome data and BMI were also available. Of these, 58.1% 
were females, and ages ranged from 8 to 84 years (mean, 48.5 years). The mean 
BMI value was 25.58 (range, 13.10 to 63.70).

Microbiome characterization. The gut microbiome was characterized from stool 
samples as described in Gacesa et al16. In brief, stool samples were collected by 
participants, frozen within 15 min after production and transported on dry ice to 
the LifeLines facility to be stored at −80 °C. Microbial DNA was extracted using 
the QIAamp Fast DNA Stool Mini Kit (Qiagen) following the manufacturer’s 
instructions. Samples with a total DNA yield lower than 200 ng (as determined 
by Qubit 4 Fluorometer) were prepared using NEBNext Ultra DNA Library Prep 
Kit (Illumina), and samples with higher DNA yield were prepared using NEBNext 
Ultra II DNA Library Prep Kit (Illumina). Shotgun metagenomic sequencing was 
carried out using the Illumina HiSeq 2000 platform at Novogene. Metagenomic 
sequencing data was profiled following methods used in other cohorts, as 
described previously16,52. Low-quality reads (PHRED quality ≤30), adapters 
and host sequences were removed using KneadData tools v.0.5.1. Taxonomic 
composition was determined with MetaPhlAn2 v.2.7.2 (ref. 58). Characterization 
of biochemical pathways was performed with the HUMAnN2 pipeline v.0.11.1 
(ref. 59), integrated with the UniRef90 v.0.1.1 protein database60, the ChocoPhlAn 
pangenome database and the DIAMOND alignment tool v.0.8.22 (ref. 61). After 
quality control (where samples with eukaryotic or viral abundance ≤25% and total 
read depth ≥10 million were retained), we had information on 950 microbial taxa 
and 559 functional pathways. For this study, we focused only on bacterial taxa and 
functional pathways with mean relative abundance >0.001% across all samples 
and present in at least 1,000 of the 7,738 participants, which resulted in a list of 207 
taxonomies (5 phyla, 10 classes, 13 orders, 26 families, 48 genera and 105 species) 
and 328 bacterial pathways. Furthermore, we removed redundant pathways by 
discarding one pathway among pairs that were highly correlated (rS > 0.95), as well 
as pathways not previously described in bacteria that could thus be coming from 
sources other than bacteria, resulting in 205 pathways for genetic analyses.

Diet phenotypes definition. Dietary habits were assessed using a semiquantitative 
Food Frequency Questionnaire designed and validated by the division of Human 
Nutrition of Wageningen University as described before in Siebelink et al. and 
Gacesa et al.16,62. The Food Frequency Questionnaire data were collected 4 
years prior to fecal sampling, and supplementary questionnaires were collected 
concurrent with fecal sampling, with the stability of long-term dietary habits 
between time points assessed as described in Gacesa et al.16. We analyzed the 
dietary factors that were previously found to be associated (FDR < 0.05) with the 
microbiome features in our study that had a genome-wide significant signal in the 
ABO and LCT loci. We also analyzed lactose intake for the species B. longum and  

B. adolescentis, given their association with the LCT region in our study. 
Participants with an implausible caloric intake (<800 or >3,934 kcal/d for males 
and <500 or >2,906 kcal/d for females)63 were not included in these analyses.

GWAS analysis method. Genome-wide association analysis was performed 
in 7,738 European samples for 412 features (205 functional pathways and 207 
microbial taxa), investigating genetic additive effects using allele dosages for 
5,584,686 genetic variants with MAF > 0.05 and information score >0.4 on the 
autosomes (chromosomes 1–22) and the X chromosome. We focused on the 
quantitative dimensions of relative bacterial and pathway abundances, treating all 
zero values as missing data. We used natural log–transformed abundances and 
regressed these in a linear mixed model using SAIGE v.0.38 (ref. 19), with age, sex 
and the genetic relationship matrix among participants as covariates. We used the 
standard settings of SAIGE, which applies inverse-rank normalization to the traits 
prior to the association analyses. The genetic relationship matrix was built with 
SAIGE using a set of 54,565 SNPs selected from the total set of quality-controlled 
SNPs directly genotyped and filtered for allele frequency and redundancy 
(MAF ≥ 0.05, r2 < 0.2, sliding window = 500 kb).

Definition of the study-wide significant threshold. To estimate the number 
of independent phenotypes assessed, we used principal-component analysis 
on the matrix of 412 microbiome features (207 taxonomies and 205 pathways) 
available for GWAS analysis to decompose variability in independent components 
(axes). We estimated that 264 components are needed to explain 90% of the 
microbiome variance. We then defined our study-wide significant P value 
threshold by correcting the genome-wide significance threshold for this factor 
(5 × 10−8/264 = 1.89 × 10−10).

Association using a dominant model. To evaluate association using a dominant 
model on SNP rs182549 at the LCT locus, we used best-guess genotypes and 
converted T/C to T/T. Association analysis was then run for all taxa as well as the 
LACTOSECAT-PWY pathway using SAIGEgds64 and the same covariates and 
transformation used for the GWAS analysis.

Inference of blood groups. We estimated blood groups from genotyped and 
imputed data following the scheme of Ellinghaus et al.65. Specifically, we used the 
absence of the rs8176719 insertion to define blood-type allele O1, the T allele of 
rs41302905 to define blood-type allele O2 and the T allele of rs8176746 to define 
the blood-type allele B (instead of rs8176747). Diploid individuals O1O1, O2O2 
and O1O2 were considered blood type O. Diploid individuals O1B, O2B and BB 
were considered blood type B. Absence of the alleles mentioned above was used to 
define blood-type allele A. To evaluate differences across blood types, we compared 
the mean relative abundance of microbiome features in individuals with A, B 
and AB blood type to that in individuals with the O blood type using a two-sided 
Wilcoxon test. To evaluate the interaction with the rs601338 FUT2 (secretor/
nonsecretor) locus, we grouped individuals into two groups (non-O blood type 
and blood type O) to distinguish production or nonproduction of antigens and 
compared pairs using a two-sided Wilcoxon test. All analyses were done using base 
R v.3.6.1 (https://www.R-project.org/).

Effects of potential confounders. We evaluated the robustness of genome-wide–
associated signals by incorporating the following potential confounders into our 
statistical model: medication usage, anthropometric data and stool frequency and 
consistency data (collection and processing was described in Gacesa et al.16). We 
analyzed the effects of the following medication groups: proton pump inhibitors 
(ATC A02BC, N = 130), laxatives (osmotic ATC A06AD, N = 44; volume increasing 
ATC A06AC, N = 77), one group of antibacterials (ATC J01, N = 24) and other 
group of anti-infectives (ATC J, N = 39). The other group of medication considered 
was antibiotic use in the 3 months prior to stool collection (N = 450). For each of 
these medications, we created dichotomous variables for all participants coded as 
0 (nonuser) or 1 (user). The other factors included were BMI, stool frequency and 
stool consistency (mean Bristol stool scale). All models also incorporated age and 
sex as covariates and were run only for the genome-wide‒significant SNP‒trait 
pairs (Supplementary Table 1) using the same software used for GWAS (SAIGE; 
Zhou et al.19). To evaluate the impact of these covariates on the genetic signals, 
we used Cochran’s Q heterogeneity test to compare the effect size obtained by the 
covariate-inclusive model and the basic model (that only includes age, sex and the 
genetic variant). To evaluate the impact of sex, we ran the SNP‒association analysis 
in SAIGE separately for males and females using only age as a covariate. For each 
genetic variant, differences in effect size in males and females were tested using 
Cochran’s Q heterogeneity test.

Interaction analyses. We used a three-step procedure to evaluate gene‒diet 
interactions for all the taxa and pathways associated with SNPs at the LCT and 
ABO loci. First, we extracted the variables representing dietary habits that had 
previously shown significant association with these microbial traits at FDR < 0.0516. 
For the genus Collinsella and pathway LACTOSECAT-PWY, no dietary factors 
were found at this FDR threshold. We therefore considered the same dietary factors 
associated with B. bifidum in the analyses, given that they showed similar patterns 
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of genetic association. Next, we added these variables to the basic genetic model 
(feature = age + sex + genetic variant) to confirm their association at (at least) 
nominal significance level (P < 0.05) while accounting for the associated genetic 
variant(s). Finally, for the dietary variables showing nominal significance, we 
evaluated the interaction with the genetic variant(s) by including an interaction 
term into the association model. For the LCT locus, we considered a binary 
variable to distinguish two groups of genotypes at SNP rs182549 (C/C vs. C/T 
and T/T) according to the dominant inheritance model at this locus. For the ABO 
locus, we used a binary definition of blood type (blood type O vs. A/B/AB) and 
also considered the effect of the rs601338 genotype in the FUT2 gene (defining 
secretor/nonsecretor individuals). All microbiome features were inverse-rank 
normalized before analyses, and age and sex were added as covariates as in the 
main GWAS analysis. All models were fit using the lm() function from base 
R v.3.6.1, other statistical tests were as implemented in packages rstatix v.0.5.0 
and ggpubr v.0.3.0 and package RNOmni v.0.7.1 was used for the inverse-rank 
normalization.

Replication in other cohorts and data sets. We looked for replication of our 
results using summary statistics from two independent studies: a genome-wide 
meta-analysis of 16 S rRNA data from 24 cohorts (the MiBioGen consortium) 
and a genome-wide study on metagenomics data in the LL-DEEP cohort, another 
subset of the LifeLines cohort with data generated 4 years before the DMP and in 
which 255 participants were also later enrolled in DMP (refs. 13,17). In this study, 
a different DNA isolation procedure (AllPrep Kit) was used, and taxonomies 
were defined using the Bracken pipeline, which may explain why C. aerofaciens 
was not identified. In the MiBioGen study, we could not look at SNPs associated 
with species or pathways, as these microbiome features cannot be defined using 
16 S data, or at SNPs on the X chromosome, as they were not analyzed in this 
study. In the second study, we searched for the exact same taxonomy or pathway, 
but similarly to MiBioGen, X chromosomal variants were not tested, and some 
taxonomies were not defined due to the differences in metagenomic data 
processing pipelines.

Next to the replication of our findings, we also evaluated whether the 
genome-wide signals reported in a recent genome-wide study of microbiome 
taxa from a Finnish cohort were replicable in our data18. We searched for all SNPs 
outside the LCT and ABO loci or any proxy (r2 > 0.8) in our dataset and selected 
all SNP‒taxonomy pairs that showed a P < 1 × 10−4 with at least one taxonomy in 
our cohort (Supplementary Table 9). We then looked at these associated taxa in the 
respective cohorts and compared them visually and with the aid of the Genome 
Taxonomy Database (https://gtdb.ecogenomic.org/) to determine if they were the 
same bacterial taxa or taxa from the same taxonomic branch.

Heritability estimates and number of associated loci. To analyze the correlation 
between family-based heritability and the number of suggestive mbQTLs, we 
used narrow-sense heritability estimates for taxa and pathways that accounted for 
household environment sharing and previously derived for this cohort16. We then 
calculated the number of independent mbQTLs per microbial trait by performing 
LD pruning (r2 < 0.1 in our data set, window size 1 Mb using Plink v.1.966) for all 
SNPs at the three different thresholds: P < 5 × 10−4, P < 1 × 10−4 and P < 5 × 10−5. 
The association of heritability and the number of mbQTLs was calculated in R 
v.4.0.3 using a weighted Spearman correlation from the wCorr v.1.9.1 package, with 
each taxon or pathway treated as a data point. The weights used in calculating the 
correlation were inversely proportional to the Z scores calculated from heritability 
P value estimates. The regression lines in Fig. 4 were fit using the LOESS (locally 
estimated scatterplot smoothing) function (base R package v.4.0.3) with span and 
degree parameters set to 1.

MR analysis. To evaluate potential causal relationships between the gut 
microbiome and other common traits, we performed MR analyses that combined 
the summary statistics of the microbiome with publicly available summary 
statistics on food preferences, autoimmune and cardiovascular diseases and other 
cardiometabolic traits. We analyzed the 37 microbiome features (pathways and 
taxa) with at least one variant passing the P < 5 × 10−8 threshold (Supplementary 
Table 2) and combined these with 78 publicly available summary statistic datasets 
retrieved using the IEU GWAS database67.

We performed a bidirectional MR analysis, first testing if microbiome traits 
causally affect a phenotype and then testing if phenotypes can causally affect the 
microbiome traits. For each comparison, we intersected the microbiome variants 
(MAF > 0.05) by rs ID, position and alleles with the publicly available summary 
statistic variants. We then selected instruments using the clump_data() function 
of the TwoSampleMR package v.0.5.5 (ref.68). The publicly available summary 
statistics were clumped using a P-value threshold of < 5 × 10−8 and otherwise 
standard settings (r2 < 0.001, 10-Mb window size). Due to the limited statistical 
significance of the microbiome traits, we performed P value clumping at a less 
stringent P < 5 × 10−6 threshold. If fewer than three variants were clumped, then we 
removed the trait combination from analysis.

The MR analysis was done using the TwoSampleMR v.0.5.5 package. We first 
selected trait combinations that passed the Benjamini–Hochberg FDR threshold 
of 0.1 (corresponding to P = 2.805 × 10−5) in the inverse-variance weighting test, 

resulting in one suggestively causal trait combination. We further checked that 
the trait combinations were unlikely to be driven by pleiotropy based on two 
criteria: (1) the Egger regression intercept was nominally significant (indicating the 
presence of horizontal pleiotropy), and (2) the weighted median results were not 
nominally significant (indicating that no single variant influences the result)69,70.

Power analysis. We calculated the variance explained at our loci using the formula 
described in Teslovich et al.71, which takes into account MAF, effect size, s.e. 
and sample size. We then performed a power analysis based on a linear model 
of association, considering different genetic effect sizes (variance explained) 
and sample sizes (https://genome.sph.umich.edu/wiki/Power_Calculations:_
Quantitative_Traits). We performed a sample size calculation by doing a grid 
search in the sample size sequence (1,000, 1,050, …, 50,000) and kept the lowest 
sample size that had power >80%.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing microbiome data are available at European Genome-Phenome 
archive (accession number EGAS00001005027). Genotyping data and participant 
metadata are not publicly available to protect participants’ privacy, and neither 
can be deposited in public repositories to respect the research agreements in the 
informed consent. The data can be accessed by all bona-fide researchers with a 
scientific proposal by contacting the LifeLines Biobank (instructions at https://
www.lifelines.nl/researcher/how-to-apply). Researchers will need to fill in an 
application form that will be reviewed within 2 weeks. If the proposed research 
complies with LifeLines regulations, such as noncommercial use and warranty 
of participants’ privacy, then researchers will receive a financial offer and a data 
and material transfer agreement to sign. In general, data will be released within 
2 weeks after signing the offer and data and material transfer agreement. The 
data will be released in a remote system (the LifeLines workspace) running on a 
high-performance computer cluster to ensure data quality and security. The full 
GWAS summary statistical data for all 207 taxa and 205 pathways are instead 
available for direct download at NHGRI-EBI GWAS Catalog (https://www.ebi.
ac.uk/gwas/) under the study accession numbers GCST90027446-GCST90027857 
(accession numbers for each specific taxa and pathways can be found in 
Supplementary Table 13) or at https://dutchmicrobiomeproject.molgeniscloud.
org. The processed microbiome data (taxonomy and pathway abundance per 
individual) can also be downloaded after filling in a request form available at 
the same website and after signing a data access agreement. This study also used 
the following databases: UniRef90 v.0.1.1 protein database and the ChocoPhlAn 
pangenome databases available within the Humann2 pipeline (https://huttenhower.
sph.harvard.edu/humann2/), the Genome Taxonomy Database (https://gtdb.
ecogenomic.org/) and the IEU GWAS database (https://gwas.mrcieu.ac.uk/). All 
other data supporting the findings of this study are available within the paper and 
Supplementary Note.
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Extended Data Fig. 1 | Cladogram plot tree of taxonomic relations between bacteria of the class Actinobacteria and their associations with host 
genetics. Each node shows a taxonomic level (from outside to inside: phylogenetic group, phylum, class, order, family, genus and species). Note that 
branch lengths do not represent phylogenetic distance. Inner labels represent genetic locus. External labels represent the clade. Nodes with dotted lines 
indicate that the GWAS was not performed for that taxa. Node color corresponds to different levels of significance as described in the legend. a, Depicts 
associations detected at the MCM6/LCT locus with each taxa, using the most significant p-value observed between rs4988235 and rs182549. b, Depicts 
associations at the ABO locus with each taxa, using the most significant p-value observed between rs8176645 and rs550057.
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Extended Data Fig. 2 | Association at the LCT locus and interaction with lactose intake in other members of family Bifidobacteriaceae. Relative 
abundances of taxa, natural log–transformed and adjusted by age and sex, compared between LP (rs182549 C/T or T/T) and LI (rs182549 C/C) 
participants and among individuals with low or high daily lactose intake levels. The y axis represents the relative abundance of the microbial feature, 
natural log–transformed and adjusted by age and sex. Density distribution is displayed with violin plots, while boxplots represent summary statistics: the 
center line represents the median, the box hinges represent the lower and upper quartiles (percentiles 25 and 75) of the distribution, the upper whisker 
extends to the maximum value no further than 1.5*IQR (where IQR is the interquartile range) from the upper hinge, the lower whisker extends to the 
minimum value no further than 1.5*IQR from the lower hinge, and data beyond the end of the whiskers are outliers plotted as individual points. a and c, 
Relative abundances for the taxa between LP and LI participants. b and d, Comparisons of abundance between lactose intake levels, low (<first quartile) 
and high (≥ first quartile), stratified by lactose persistence status. The distributions are shown for s. Bifidobacterium adolescentis (top) and s. Bifidobacterium 
longum (bottom). P-values were obtained with a two-sided Wilcoxon rank test. n: number of participants.
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Extended Data Fig. 3 | Graphical representation of MR results with a Benjamini–Hochberg FDR q value < 0.1. a, Effect size in standard deviation units 
of 3 variants associated with Alistipes abundance changes that were used as instrumental variables (effects estimated on 7,728 independent samples) 
(x-axis) versus effect size in standard deviation units of the same variants for salt intake (estimated effects estimated on 462,630 independent samples) 
(y-axis). Error bars represent standard errors (SE) of each effect size (beta + SE and beta-SE). The orange and blue lines represent lines whose slope is 
the causal estimate from MR methods IVW and Egger, respectively. b, A plot similar to a, but the x axis is the effect size in standard deviation units for 
instrumental variants selected for Collinsella (effects estimated on 7,210 independent samples) abundance and on the y-axis for Triglyceride levels (effects 
estimated on 343,992 independent individuals).
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.  

Data analysis We used genetic and microbiome data for which data processing and QC was already performed in other studies.  
For analysing microbiome sequencing data we used KneadData tools v0.5.1.  
For defining taxonomic composition we used MetaPhlAn2 v2.7.2.  
For the characterization of biochemical pathways was performed with the HUMAnN2 pipeline v0.11.1, integrated with the UniRef90 
v0.1.1 protein databas, the ChocoPhlAn pangenome database and the DIAMOND alignment tool v0.8.22 
For genome-wide association analyses, we used the software SAIGE v.0.38 .   
For association models with confounders, and for analyses of blood groups we used the linear function lm() in R (v3.6.1) and packages 
rstatix v0.5.0 and ggpubr v0.3.0 and package RNOmni v0.7.1  
For identifying independent variants and for polygenic risk score calculations we used the software PLINK 1.9. 
For causal inferences analyses, we used the "two-sample MR" R package (v0.5.5).  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw sequencing microbiome data is available at EGA (accession number EGAS00001005027). Genotyping data and participant metadata are not publicly available to 
protect participants’ privacy, neither can be deposited in public repositories to respect the research agreements in the informed consent. The data can be accessed 
by all bona-fide researchers with a scientific proposal by contacting the Lifelines Biobank (instructions at: https://www.lifelines.nl/researcher/ how-to-apply). 
Researchers will need to fill in an application form that will be reviewed within two weeks. If the proposed research complies with Lifelines regulations, such as non-
commercial use and warranty of participants’ privacy, researchers will receive a financial offer and a Data and Material transfer agreement (DMTA) to sign. In 
general, data will be released within two weeks after signing the offer and DMTA. The data will be released in a remote system (the Lifelines workspace) running on 
a high-performance computer cluster to ensure data quality and security. The full GWAS summary statistics for all 207 taxa and 205 pathways are instead available 
for direct download at GWAS Catalogue Globus ((http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90027001-GCST90028000/; accession numbers 
for each specific taxa and pathways can be found in Supplementary Table 13) or at https://dutchmicrobiomeproject.molgeniscloud.org. The processed microbiome 
data (taxonomy and pathway abundance per individual) can also be downloaded after filling in a request form available at the same website and after signing a data 
access agreement. This study also used the following databases: UniRef90 v0.1.1 protein database and the ChocoPhlAn pangenome databases available within the 
Humann2 pipeline (https://huttenhower.sph.harvard.edu/humann2/), the Genome Taxonomy Database (https://gtdb.ecogenomic.org/) and the IEU GWAS 
DATABASE (https://gwas.mrcieu.ac.uk/). All other data supporting the findings of this study are available within the paper and its Supplementary Information files.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size  for this study was no predetermined; we used all available samples with genetic and gut microbiome information

Data exclusions We used preQCed genotyping and gut microbiome data. For this study, we further excluded non European samples and samples for which 
BMI was not available. On the microbiome data we excluded very rare (present in <1000 samples) microbiomal taxa or pathways on this set of 
samples, as well as highly redundant pathways (Spearman correlation >0.95). We  also excluded genetic variants with minor allele frequency 
<0.05. 

Replication we  looked for replication of our estimates in two independent cohorts previously published (the MiBIOGEN and LL-DEEP cohorts)

Randomization this is a population-cohort study and not an intervention study. Thus randomization is not applicable

Blinding this is a population-cohort study and not an intervention study. Thus blinding is not applicable 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Human research participants
Policy information about studies involving human research participants

Population characteristics This study used a subset of 8,208 volunteers from the Lifelines population cohort,  enrolled in a parallel project: The Dutch 
Microbiome Project (DMP). QCed genotype and microbiome information was obtained for 7,738 of DMP participants. Of these, 
58.1% were females, and with ages ranging from 8 to 84 years ( mean 48.5 years)  

Recruitment Volunteers of the Dutch Microbiome Project were recruited independently of this study on voluntary participation after an 
invitation letter and who were willing to collect stool samples. We acknowledge that this form of recruitment may discourage 
volunteers that suffer from chronic or debilitating diseases at advanced stage. This bias is unlikely to affect our results who are 
reflecting an association present at the general population and not specifically correlated to a disease.

Ethics oversight We did no collected new data for this study. We used available data from the Lifelines cohort which was approved by the 
medical ethical committee from the University Medical Center Groningen (METc number: 2017/152).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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