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The discussion is focused on derivation of numerical

methods for the model advection equation

›f

›t
þ u

›f

›x
¼ 0; ð1Þ

where f(t, x) is a advected scalar (such as concentration of

admixture in water bodies); u is the advecting velocity; x is

the spatial coordinate; t is the time. In the original

advection-diffusion equation the velocity is assumed to be

uniform and positive, and the diffusion term is ignored as

unimportant to the topic of discussion.

One of the purposes of the research paper (Tkalich

2006) was to offer a uniform procedure to derive a suit of

effective and accurate explicit numerical methods for the

solution of equation (1). An intimate connection between

different well-known schemes, such as first-order upwind,

Lax-Wendroff (Lax & Wendroff 1960, 1964), and QUICK-

EST (Leonard 1979), is demonstrated using Lagrange

polynomials, although one might use Hermite polynomials

or other techniques to obtain similar results. One may agree

that there is no absolute best procedure for numerical

schemes derivation, as well as there is no absolute best all-

purpose numerical scheme. After becoming acquainted with

pioneering work by Holly & Preissmann (1977) years ago,

the excellent method was the first choice of the Author due

to the same arguments as presented by the Discusser.

However, at the later stage the Author became involved

with other types of schemes due to several issues outlined

below. The discussion extends beyond merely a comparison

of two (types of) schemes to move a little further toward

advocating some new trends emerging in computational

methods. Due to the limited scope of the dialog, the paper is

by no means a complete review.

MASS CONSERVANCY

The modern trend is to use schemes which could be

expressed in the conservative form

fkþ1
i ¼ fk

i 2 aððfEÞi 2 ðfW ÞiÞ; ð2Þ

where fk
i is the cell-averaged value of the transported scalar

f at the i-th computational cell at time-level k; (fW)i

and (fE)i are the west- and east-face values of the

transported scalar for i-th computational cell (shaded in

Figure 1); a ¼ uDt=Dx is Courant number; Dx is the grid size;

Dt is the time-step. Conservative form (2) is important

because mass conservation is guaranteed if fW for the cell i

equals fE for the neighbor cell (i-1), or ðfW Þi ¼ ðfEÞi21;

naturally ðfW Þiþ1 ¼ ðfEÞi: Unfortunately this property was

often ignored in many earlier algorithms.

COMPACTNESS

The face values represent integrated over Dx and Dt values

of the transported scalar f at the west and east boundaries
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of a computational cell. It is a convenient quantity to

rewrite high-order schemes utilizing extensive compu-

tational stencils in the short form (2). In fact, this is a

two-step algorithm, where the first step is to compute face

values using one of the formulae given in Appendix A of the

discussed paper, and the second step is to apply expression

(2) for each computational cell using two face values

associated with the cell. If one rewrites (2) in a single-step

updated form by explicitly substituting expressions for face

values, the update reveals real stencil used by the scheme;

i.e. even though the formulation (2) looks like a compact, it

might use more than two (nodal) values. For instance, east-

face value (fE)i for QUICKEST (3UP) algorithm is using a

3-node stencil fk
i21;f

k
i ;f

k
iþ1

n o
; but a single-step update is

based on 4 nodes fk
i22;f

k
i21;f

k
i ;f

k
iþ1

n o
:

Similarly, the Holly-Preissmann method is a two-step

algorithm, where at the first step derivatives ðfxÞ
p
i are

computed for each node utilizing four-component stencil

fk
i21;f

k
i ; ðfxÞ

k
i21; ðfxÞ

k
i

n o
; and the second step provides

sought values fkþ1
i at similar stencil fk

i21;f
k
i ;

n

ðfxÞ
p
i21; ðfxÞ

p
i g: A single-step update obtained by combining

the two steps reveals that the stencil of the Holly-

Preissmann method is stretched over 3 nodes (or two

space intervals) as fk
i22;f

k
i21;f

k
i ; ðfxÞ

k
i22; ðfxÞ

k
i21; ðfxÞ

k
i

n o
:

Strictly speaking, based on a single-step update form,

none of the two schemes discussed above could be qualified

as compact, and both methods are equally “compact” at the

final stage alone.

Since the computational science has moved toward

high-order algorithms, one has to accept the involvement of

more than two components in a computational stencil,

either in terms of spatial or temporal extensions, or via the

introduction of new variables. The assessment of efficiency

of an algorithm could be a problem-depended, and by no

means a straightforward procedure.

BOUNDARY AND OTHER AUXILIARY CONDITIONS

During the era dominated by first-order schemes, boundary

conditionswere treatedusing valueof the transported scalar at

imaginary node fk
i21 (for the situation shown in Figure 2).

The Dirichlet boundary condition (f ¼ fB) for the first-order

upwind scheme (1UP) could be satisfied assuming fk
i21 ¼ fB

or simply fkþ1
i ¼ fB: The Neumann boundary condition

ð›f=›x ¼ 0Þ could be prescribed as fk
i21 ¼ fk

i : Incidentally,

face values for thefirst-orderupwindschemecoincidewith the

nodal values, i.e. ðfW Þi ¼ fk
i21 and ðfEÞi ¼ fk

i : After the

introduction of high-order methods, similar attempts have

still been occasionally practiced to satisfy auxiliary conditions

in terms of nodal values, leading to unnecessary complexity of

an overall algorithm and error accumulation at areas of

discontinuity. The conservative form (2) offers an easy and

accurate alternative to prescribe discontinuities in terms

of face values (fW)i, (fE)i or fluxes a(fW)i, a(fE)i. For all

schemes mentioned in the paper (Tkalich 2006) the Dirichlet

condition is satisfied when ðfW Þi ¼ fB; and the Neumann

condition is simply ðfW Þi ¼ ðfEÞi:Additionallyone canuse the

cell averaged value fk
i to prescribe more complex cases.

MULTI-DIMENSION EXTENSION

It should be noted that the majority of schemes considered

in the discussed paper have been (or could be) extended to

a ∆x

  u

∆t

 

f k+1
i–1

f k
i–1 f k

i f k
i+1

f k+1
i+1f k+1

i

(fE)i–1 (fE)i(fW)i (fW)i+1

∆x

Figure 1 | Computational grid.
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Figure 2 | Sketch of computational grid near boundary.
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two dimensions (2-D)

›f

›t
þ u

›f

›x
þ v

›f

›y
¼ 0: ð3Þ

One can approximate solution of Equation (3) with the

third-degree piece-wise interpolation polynomial at time

k þ 1 at every computational cell (i,j) as fkþ1
i;j ¼ P (see

Figure 3 for positive u and v). Here,

Pða;bÞ ¼
X3

m¼0

X3

n¼0

ambnfm;n; ð4Þ

a ¼ uDt=Dx ¼ jx2 xij=Dx and b ¼ vDt=Dy ¼ jy2 yjj=Dy are

the Courant numbers in x and y directions; Dx, Dy are

the respective cell dimensions; upper indexes m and n

indicate power function; unknown components of vector

f ¼ {fm;n}m;n¼0;… ;3 have to be identified using some auxiliary

conditions.

At this juncture one can choose the type of the

polynomial approximation (4). As it was explored by

Tkalich & Chan (2003), for maximum accuracy within the

class of third-degree Lagrange polynomials one has to retain

all 16 terms, and respectively, to have stencil consisting of

the same number of nodes (components). Ten is the

minimum number of terms (nodes or components) required

to construct a 2-D third-order scheme having similar

accuracy in x, y and xy (cross) directions; and twelve

terms (nodes or components) were considered as optimal

for the scheme efficiency. Using these findings, several 2-D

extensions of QUICKEST algorithm have been derived and

written in a conservative form (Tkalich & Chan 2003)

fkþ1
i;j ¼ fk

i;j 2 aððfEÞi;j 2 ðfW Þi;jÞ2 bððfNÞi;j 2 ðfSÞi;jÞ: ð5Þ

Here (fW)i, (fE)i, (fS)i, and (fN)i are the west-, east-, south-,

and north-face values of the transported scalar for the i-th

cell. In order to construct Hermite polynomial approxi-

mation followingHolly & Preissmann (1977) ideas, values of

f as well as its derivatives fx, fy and fxy have to be

prescribed at the corners of i,j-th cell as shown in Figure 3.

Newly introduced state variables fx, fy and fxy are

governed by equation (3) differentiated with respect to x,

y, and xy as

›fx

›t
þ u

›fx

›x
þ v

›fx

›y
¼ 0; ð6aÞ

›fy

›t
þ u

›fy

›x
þ v

›fy

›y
¼ 0; ð6bÞ

›fxy

›t
þ u

›fxy

›x
þ v

›fxy

›y
¼ 0: ð6cÞ

Expression (4) suggests solution of equations (6) as second-

degree polynomials

Pxða;bÞ ¼ ax

X3

m¼1

X3

n¼0

mam21bnfm;n; ð7aÞ

Pyða;bÞ ¼ by

X3

m¼0

X3

n¼1

nambn21fm;n; ð7bÞ

Pxyða;bÞ ¼ axby

X3

m¼1

X3

n¼1

mnam21bn21fm;n: ð7cÞ

Dougherty et al. (1989) iterated that the cubic Hermite

interpolant is fourth-order accurate if the derivatives (Px, Py,

and Pxy) are third-order, third-order if the derivatives are

secondorder, etc.Hence, an algorithmof numerical treatment

of derivatives (7)might improveor reduce theoverall accuracy

of the Holly-Preissmann method within the specified range.

To identify 16 components of vector f one has to assume

that the polynomial P and its derivatives Px , Py, and Pxy

satisfy transportivity properties (equations 3,6) at the

computational stencil shown in Figure 3, leading to a

b Dy

a Dx

   

P,Px,Py,Pxy

x

y

  

v 

u

fk
i–1,j,(fx) k

i–1,j,
(fy)k

i–1,j, (fxy)k
i–1,j

fk
i,j,(fx)k

i,j,
(fy)k

i,j,(fxy)k
i,j

fk
i–1,j–1,(fx)k

i–1,j–1,
(fy)k

i–1,j–1,(fxy)k
i–1,j–1

fk
i,j–1,(fx)k

i,j–1,
(fy)k
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Figure 3 | Computational stencil.
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system of 16 linear equations

fk
i;j ¼ Pð0;0Þ;fk

i21;j ¼ Pð1;0Þ;fk
i;j21

¼ Pð0;1Þ;fk
i21;j21 ¼ Pð1;1Þ

ðfxÞ
k
i;j ¼ Pxð0;0Þ; ðfxÞ

k
i21;j ¼ Pxð1;0Þ; ðfxÞ

k
i;j21

¼ Pxð0;1Þ; ðfxÞ
k
i21;j21 ¼ Pxð1;1Þ

ðfyÞ
k
i;j ¼ Pyð0;0Þ; ðfyÞ

k
i21;j ¼ Pyð1;0Þ; ðfyÞ

k
i;j21

¼ Pyð0;1Þ; ðfyÞ
k
i21;j21 ¼ Pyð1;1Þ

ðfxyÞ
k
i;j ¼ Pxyð0;0Þ; ðfxyÞ

k
i21;j ¼ Pxyð1;0Þ; ðfxyÞ

k
i;j21

¼ Pxyð0;1Þ; ðfxyÞ
k
i21;j21 ¼ Pxyð1;1Þ

ð8Þ

System (8) can be solved with respect to vector components

f which consequently need to be substituted into equations

(4) and (7) to define single-step solutions of equations (3)

and (6).

Due to a necessity to carry not only the transported

scalar values, but also its spatial derivatives as depended

variables in the Holly-Preissmann method, Komatsu et al.

(1985) quoted it as “complicated and expensive” for 2-D

applications. Indeed, utilizing ideas of Holly & Preissmann

(1977) the 2-D algorithm has been obtained, where instead

of solving single equation (3) one has to solve four

equations (3), (6). To make it even more difficult, some

environmental processes, such as eutrophication (Di Toro

et al. 1983; Tkalich & Sundarambal 2003), might require 10

to 20 state variables with complex nonlinear right-hand-

side functions describing mass exchange kinetics. The

luxury of solving 40–80 equations for such environmental

problems is seldom affordable. The Author still considers

the Holly-Preissmann method to be very promising and

important, but it needs to be reformulated in modern terms

to be even more useful in many practical applications.
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