
Authoring and Annotation of Web Pages in CREAM

Siegfried Handschuh
�
, Steffen Staab

�✂✁ ✄☎✁ ✆�
Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany✝

sha, sst ✞ @aifb.unikarlsruhe.de
http://www.aifb.unikarlsruhe.de/WBS✄

Learning Lab Lower Saxony, Hannover, Germany
http://www.learninglab.de/✆

Ontoprise GmbH, 76131 Karlsruhe, Germany
http://www.ontoprise.com/

ABSTRACT

Richly interlinked, machine-understandable data constitute the ba-

sis for the Semantic Web. We provide a framework, CREAM,

that allows for creation of metadata. While the annotation mode

of CREAM allows to create metadata for existing web pages, the

authoring mode lets authors create metadata — almost for free —

while putting together the content of a page.

As a particularity of our framework, CREAM allows to create

relational metadata, i.e. metadata that instantiate interrelated defi-

nitions of classes in a domain ontology rather than a comparatively

rigid template-like schema as Dublin Core. We discuss some of the

requirements one has to meet when developing such an ontology-

based framework, e.g. the integration of a metadata crawler, in-

ference services, document management and a meta-ontology, and

describe its implementation, viz. Ont-O-Mat, a component-based,

ontology-driven Web page authoring and annotation tool.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis

and Indexing—Indexing methods; I.2 [Computing Methodologies]:

Artificial Intelligence; I.7.1 [Document and Text Processing]: Doc-

ument and Text Editing

General Terms

Design, Human Factors

Keywords

Annotation, Metadata, SemanticWeb, RDF

1. INTRODUCTION
The Semantic Web builds on metadata describing the contents

of Web pages. In particular, the Semantic Web requires relational

metadata, i.e. metadata that describe how resource descriptions in-

stantiate class definitions and how they are semantically interlinked

by properties. In a previous paper [16], we have described a first

version of CREAM (CREAting Metadata) as an annotation frame-

work suited to allow for the easy and comfortable creation of such

relational metadata and we have provided an annotation tool that

implements this framework, called Ont-O-Mat.1

However, Ont-O-Mat V0.1 — like other annotation environments

— has a major drawback. In order to provide metadata about the

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1581134495/02/0005.

contents of a Web page, the author must first create the content and

second annotate the content in an additional, a-posteriori, annota-

tion step.

As a way out of this problem, we propose that an author needs

the possibility to easily combine authoring of a Web page and the

creation of relational metadata describing its content. Scrutinizing

the difficulties one encounters for such a web page authoring tool,

we found that they are very similar to the ones for annotating web

pages with relational metadata. In fact, we found it preferable to

hide the border between authoring and annotation as far as possi-

ble. Therefore, rather than building a completely new tool, we have

extended the framework CREAM and the tool Ont-O-Mat in order

to reflect the needs for metadata creation that web page authors and

a-posteriori annotators have. This required, in particular, the intro-

duction of

✟
a Meta Ontology that describes how the annotation and au-

thoring modes of Ont-O-Mat interfere with classes and prop-

erties of the ontology proper, and

✟
new Modes of Interaction that allow for switching easily

back-and-forth between authoring and annotation.

In the following we first sketch two usage scenarios (Section 2),

describing some of the requirements we must meet for the creation

of metadata. Then, we explain our terminology in more detail and

give an example of the metadata we want to create. We derive in

Section 4 the design of CREAM from the requirements elaborated

before. In Section 5, we specify how the meta ontology may mod-

ularize the ontology description from the way the ontology is used

in CREAM. In Section 6, we explain the major modes of interac-

tion with Ont-O-Mat, our implementation of CREAM. Before we

conclude, we give a survey of related work in the areas knowledge

markup on the Web, knowledge acquisition, annotation environ-

ments and authoring environments.

2. SCENARIOS AND REQUIREMENTS FOR

CREAM
The origin of our work facing this challenge dates back to the

start of the seminal KA2 intiative [1], i.e. the initiative for provid-

ing semantic markup on HTML pages for the knowledge acquisi-

tion community and its presentation in a Web portal [32]. The KA2

portal provides a view onto knowledge of the knowledge acquisi-

tion community. Besides of semantic retrieval as provided by the

original KA2 initiative, it allows comprehensive means for navigat-

ing and querying the knowledge base and also includes guidelines�
http://annotation.semanticweb.org



for building such a knowledge portal. The potential users provide

knowledge, e.g. by annotating their web pages in a decentralized

manner. The knowledge is collected at the portal by crawling and

presented in a variety of ways.

Similarly, our second scenario here, we have used semantic mark-

up in order to provide knowledge about the TIME (telecommuni-

cation, IT, multimedia, e-business) markets in the TIME2Research

portal [33]. Thus, we have created a knowledge portal for busi-

ness analysts. The principal idea is that business analyst review

news tickers, business plans and business reports. A considerable

part of their work requires the comparison and aggregation of sim-

ilar or related data, which may be done by semantic queries like

“Which companies provide B2B solutions?”, when the knowledge

is semantically available. At the Time2Research portal they handle

different types of documents, annotate them and, thus, feed back

into the portal to which they may ask questions.

At the start of these two case studies, we had the intuition that

these cases may be easily supported by a simple annotation tool.

During the course of the projects, however, we found that we had

to face many principal problems. Also, we found that the two sce-

narios would never succeed in the end if we did not give people

the possibility to easily create documents and their metadata in one

step.

The principal requirements for a-posteriori annotation as well as

for the integration of web page authoring with metadata creation

can be outlined as follows:

✟
Consistency: Semantic structures should adhere to a given

ontology in order to allow for better sharing of knowledge.

For example, it should be avoided that people use an at-

tribute, where the ontology requires a concept instance.

✟
Proper Reference: Identifiers of instances, e.g. of persons,

institutes or companies, should be unique. For instance, in

KA2 metadata there existed three different identifiers of our

colleague Dieter Fensel. Thus, knowledge about him could

not be grasped with a straightforward query.2

✟
Avoid Redundancy: Decentralized knowledge provisioning

should be possible. However, when annotators collaborate, it

should be possible for them to identify (parts of) sources that

have already been annotated and to reuse previously captured

knowledge in order to avoid laborious redundant annotations.

✟
Relational Metadata: Like HTML information, which is

spread on the Web, but related by HTML links, knowledge

markup may be distributed, but it should be semantically re-

lated. Current annotation tools tend to generate template-like

metadata, which is hardly connected, if at all. For exam-

ple, annotation environments often support Dublin Core [8,

9, 23], providing means to state, e.g., the name of authors,

but not their IDs3.

✟
Maintenance: Knowledge markup needs to be maintained.

An annotation tool should support the maintenance task. This

needs to be explored in future work.

✟
Ease of use: It is obvious that an annotation environment

should be easy to use in order to be really useful. However,

this objective is not easily achieved, because metadata cre-

ation involves intricate navigation of semantic structures.✄
The reader may see similar effects in bibliography databases. E.g.,

query for James (Jim) Hendler at the — otherwise excellent —
DBLP: http://www.informatik.uni-trier.de/˜ley/db/.✆

In the web context one typically uses the term ‘URI’ (uniform
resource identifier) to speak of ‘unique identifier’.

✟
Efficiency: The effort for the production of metadata is a

large restraining threshold. The more efficiently a tool sup-

ports metadata creation, the more metadata users tend to pro-

duce. This requirement is related to the ease of use. It also

depends on the automation of the metadata creation process,

e.g. on the preprocessing of the document.

The new version of CREAM presented here targets at a compre-

hensive solution for metadata creation during web page authoring

and a-posteriori annotation. The objective is pursued by combin-

ing advanced mechanisms for inferencing, fact crawling, document

management, meta ontology definitions, metadata re-recognition,

content generation, and (in the future) information extraction — as

explained in the following sections.

3. RELATIONAL METADATA
We elaborate the terminology we use in our framework, because

many of the terms that are used with regard to metadata creation

tools carry several, ambiguous connotations that imply conceptu-

ally important decisions for the design rationale of CREAM:

✟
Ontology: An ontology is a formal, explicit specification of

a shared conceptualization of a domain of interest [15]. In

our case it is constituted by statements expressing definitions

of DAML+OIL classes and properties [13].

✟
Annotations: An annotation in our context is a set of instan-

tiations attached to an HTML document. We distinguish (i)

instantiations of DAML+OIL classes, (ii) instantiated prop-

erties from one class instance to a datatype instance — hence-

forth called attribute instance (of the class instance), and (iii)

instantiated properties from one class instance to another class

instance — henceforth called relationship instance.

Class instances have unique URIs, e.g. like ’urn:rdf:936694d5-

ca907974ea16565de20c997a-0’.4 They frequently come with

attribute instances, such as a human-readable label like ‘Stef-

fen’.

✟
Metadata: Metadata are data about data. In our context the

annotations are metadata about the HTML documents.

✟
Relational Metadata: We use the term relational metadata

to denote the annotations that contain relationship instances.

Often, the term “annotation” is used to mean something like

“private or shared note”, “comment” or “Dublin Core meta-

data”. This alternative meaning of annotation may be emu-

lated in our approach by modelling these notes with attribute

instances. For instance, a comment note “I like this paper”

would be related to the URL of the paper via an attribute

instance ‘hasComment’.

In contrast, relational metadata also contain statements like

‘Siegfried cooperates with Steffen’, i.e. relational metadata

contain relationships between class instances rather than only

textual notes.

Figure 1 illustrates our use of the terms “ontology”, “annotation”

and “relational metadata”. It depicts some part of the SWRC5 (se-

mantic web research community) ontology. Furthermore it shows

two homepages, viz. pages about Siegfried and Steffen

(http://www.aifb.uni-karlsruhe.de/WBS/sha and✠
In the Ont-O-Mat implementation we create the URIs with the

createUniqueResource method of the RDF-API✡
http://ontobroker.semanticweb.org/ontos/swrc.html



GraduateGraduate

PhDStudentPhDStudent LecturerLecturer

Academic StaffAcademic Staff

PersonPerson

rdfs:subClass rdfs:subClass

rdfs:subClassrdfs:subClass

cooperatesWithcooperatesWith

rdfs:hasRangerdfs:hasDomainOntology

<swrc:Lecturer

rdf:ID="urn:rdf:936694d5ca9079

74ea16565de20c997a-0">

<swrc:name>Steffen Staab

</swrc:name>

...

</swrc:Lecturer>

<swrc:Lecturer

rdf:ID="urn:rdf:936694d5ca9079

74ea16565de20c997a-0">

<swrc:name>Steffen Staab

</swrc:name>

...

</swrc:Lecturer>

http://www.aifb.uni-karlsruhe.de/WBS/ssthttp://www.aifb.uni-karlsruhe.de/WBS/sst

rdf:type rdf:type

Anno-

tation

<swrc:PhDStudent

rdf:ID="urn:rdf:947794d5ca907974ea16565

de21c998a-0">

<swrc:name>Siegfried Handschuh

</swrc:name>

...

</swrc:PhDStudent>

Web

Page

http://www.aifb.uni-karlsruhe.de/WBS/sha
URL

<swrc:cooperatesWith rdf:resource =

"http://www.aifb.uni-karlsruhe.de/

WBS/sst#urn:rdf:936694d5ca907974ea16

565de20c997a-0"/>

swrc:cooperatesWith

Figure 1: Annotation example.

http://www.aifb.uni-karlsruhe.de/WBS/sst, respectively)

with annotations given in an XML serialization of RDF facts. For

the two persons there are instances denoted by corresponding URIs

(urn:rdf:947794d5ca907974ea16565de21c998a-0 and urn:rdf:9366-

94d5ca907974ea16565de20c997a-0). The swrc:name of urn:rdf:94-

7794d5ca907974ea16565de21c998a-0 is “Siegfried Handschuh”.

In addition, there is a relationship instance between the two per-

sons, viz. they cooperate. This cooperation information ‘spans’ the

two pages.

The objective of CREAM is to allow for the easy generation of

such a target representation irrespective of whether the major mode

of interaction is a-posteriori annotation or web page authoring.

4. DESIGN OF CREAM

4.1 CREAM Modules
The requirements and considerations from Sections 1 to 3 feed

into the design rationale of CREAM. The design rationale links the

requirements with the CREAM modules. This results in a N:M

mapping (neither functional nor injective). An overview of the ma-

trix is given in Table 1.

✟
Document Editor/Viewer: The document editor/viewer vi-

sualizes the document contents. The metadata creator may

easily provide new metadata by selecting pieces of text and

aligning it with parts of the ontology. The document viewer

should support various formats (HTML, PDF, XML, etc.).

✟
Content Generation: The editor also allows the conven-

tional authoring of documents. In addition, instances already

available may be dragged from a visualization of the content

of the annotation inference server and dropped into the doc-

ument. Thereby, some piece of text and/or a link is produced

taking into account the information from the meta ontology

(cf. Section 5). The newly generated content is already anno-

tated and the meta ontology guides the construction of further

information, e.g. further XPointers are attached to instances.

✟
Ontology Guidance and Fact Browser: The framework

needs guidance from the ontology. In order to allow for shar-

ing of knowledge, newly created annotations must be con-

sistent with a community’s ontology. If metadata creators

instantiate arbitrary classes and properties the semantics of

these properties remains void. Of course the framework must

be able to adapt to varying ontologies in order to reflect dif-

ferent foci of the metadata creators.

Furthermore, the ontology and the browser for already given

facts are important in order to guide metadata creators to-

wards creating relational metadata. We have done some pre-

liminary experiments and found that subjects have more prob-

lems with creating relationship instances than with creating



attribute instances (cf. [34]). Without the ontology they would

miss even more cues for assigning relationships between class

instances.

Both ontology guidance/fact browser and document editor/-

viewer should be easy to use: Drag’n’drop helps to avoid

syntax errors and typos and a good visualization of the onto-

logy can help to correctly choose the most appropriate class

for instances.

✟
Crawler: The creation of relational metadata must take place

within the Semantic Web. During metadata creation sub-

jects must be aware of which entities exist already in their

part of the Semantic Web. This is only possible if a crawler

makes relevant entities immediately available. So, metadata

creators may look for proper reference, i.e. decide whether

an entity already has a URI (e.g. whether the entity named

“Dieter Fensel” or “D. Fensel” has already been identified

by some other metadata creators) and only by this way meta-

data creators may recognize whether properties have already

been instantiated (e.g. whether “Dieter Fensel” has already

been linked to his publications). As a consequence of meta-

data creators’ awareness relational metadata may be created,

because class instances become related rather than only flat

templates are filled.

We have built a RDF Crawler6, a basic tool that gathers inter-

connected fragments of RDF from the Web and builds a local

knowledge base from this data (cf. [16] for a more detailed

description).

✟
Annotation Inference Server: Relational metadata, proper

reference and avoidance of redundant annotation require que-

rying for instances, i.e. querying whether and which instances

exist. For this purpose as well as for checking of consistency,

we provide an annotation inference server in our framework.

The annotation inference server reasons on crawled and newly

created instances and on the ontology. It also serves the onto-

logical guidance and fact browser, because it allows to query

for existing classes, instances and properties.

We use Ontobroker’s [5] underlying F-Logic [22] based in-

ference engine SilRI [4] as annotation inference server. The

F-Logic inference engine combines ordering-independent rea-

soning in a high-level logical language with a well-founded

semantics.

However, other schemes like the DAML+OIL FACT rea-

soner [19, 3] or a fact serving peer [29] may be exploited,

too.

✟
Document Management: We distinguish two scenarios. First,

when annotating one’s own Web pages, one knows when they

change and one can install organizational routines that keep

track of annotation and changes of annotation (e.g. on the an-

notation inference server). In the second scenario, one may

want to annotate external resources (cf., e.g., [30]). In this

case one must avoid redundancy of annotation efforts, it is

not sufficient to ask whether instances exist at the annota-

tion inference server. When an annotator decides to capture

knowledge from a web page, he does not want to query for all

single instances that he considers relevant on this page, but

he wants information, whether and how this web page has

been annotated before. Considering the dynamics of HTML☛
RDF Crawler is freely available for download at:
http://ontobroker.semanticweb.org/rdfcrawler.

pages on the web, it is desirable to store foreign web pages

one has annotated together with their annotations. When the

foreign web page changes, the old annotations may still be

valid or they may become invalid. The annotator must de-

cide based on the old annotations and based on the changes

of the web page. A future goal of the document management

in our framework will be the semi-automatic maintenance

of annotations on foreign web pages. When only few parts

of a document change, pattern matching may propose revi-

sion of old annotations. In our current implementation we

use a straight forward file-system based document manage-

ment approach. Ont-O-Mat uses the URI to detect the re-

encounter of previously annotated documents and highlights

annotations in the old document for the user. Then the user

may decide to ignore or even delete the old annotations and

create new metadata, he may augment existing data, or he

may just be satisfied with what has been previously anno-

tated. In order to recognize that a document has been anno-

tated before, but now appears under a different URI, Ont-O-

Mat computes similarity with existing documents by simple

information retrieval methods, e.g. comparison of the word

vector of a page. If thereby a similarity is discovered, this is

indicated to the user, so that he can check for congruency.

✟
Metadata Re-recognition & Information Extraction: Even

with sophisticated tools it is laborious to provide semantic

annotations. A major goal thus is semi-automatic metadata

creation taking advantage of information extraction techniques

to propose annotations to metadata creators and, thus, to fa-

cilitate the metadata creation task. Concerning our environ-

ment we envisage three major techniques:

1. First, metadata re-recognition compares existing meta-

data literals with newly typed or existing text. Thus, the

mentioning of the name “Siegfried Handschuh” in the

document triggers the proposal that URI, urn:rdf:94779-

4d5ca907974ea16565de21c998a-0 is co-referenced at

this point.

2. “Wrappers” may be learned from given markup in or-

der to automatically annotate similarly structured pages

(cf., e.g., [25]).

3. Message extraction like systems may be used to recog-

nize named entities, propose co-reference, and extract

some relationship from texts (cf., e.g., [28, 36]).

This component has not yet been integrated in our Ont-O-

Mat tool. However, we are near finishing an integration of a

simple wrapper approach [24], and we currently are working

on integrating the Amilcare information extraction system7.

✟
Meta Ontology: The purpose of the meta ontology is the

separation of ontology design and use. It is specifically ex-

plained in Section 5.

Besides the requirements that constitute single modules, one may

identify functions that cross module boundaries:

✟
Storage: CREAM supports two different ways of storage.

The annotations will be stored inside the document that is in

the document management component, but it is also stored

in the annotation inference server.☞
http://www.dcs.shef.ac.uk/˜fabio/Amilcare.html



✟
Replication: We provide a simple replication mechanism

by crawling annotations into our annotation inference server.

Then inferencing can be used to rule out formal inconsisten-

cies.

4.2 Architecture of CREAM
The architecture of CREAM is depicted in Figure 2. The Design

of the CREAM framework pursues the idea to be flexible and open.

Therefore, Ont-O-Mat, the implementation of the framework, com-

prises a plug-in structure, which is flexible with regard to adding or

replacing modules.8 Document viewer/editor and ontology guid-

ance/fact browser together constitute the major part of the graphical

user interface. Because of the plug-in structure they can be replaced

by alternative viewers. For instance, we are currently working on a

PDF viewer plugin capable of writing RDF into PDF documents.

Further capabilities are provided through plugins that establish

connections, e.g. one might provide a plug-in for a connection to a

commercial document management system.

The core Ont-O-Mat already comes with some basic functional-

ities. For instance, one may work without a plug-in for an anno-

tation inference server, because the core Ont-O-Mat provides sim-

ple means to navigate the taxonomy per se. However, one only

gets the full-fledged semantic capabilities (e.g. datalog reasoning

or subsumption reasoning) when one uses a plug-in connection to

a corresponding annotation inference server.

5. META ONTOLOGY
The core idea behind the meta ontology is the modularization

of ontology development and use. It should be possible to define

the ontology — or reuse an existing one — rather independently

of the purpose of creation of metadata by web page authoring and

annotation.

The meta ontology describes how classes, attributes and rela-

tionships from the ontology should be used by the CREAM envi-

ronment. In particular, we have recognized the urgent need for the

meta ontology characterizations elaborated in Sections 5.1 to 5.3.

The reader may note that the descriptions of how the meta onto-

logy influences the interaction with the ontology, which are given

in this section, depend to some extent on the modes of interaction

described in Section 6 — and vice versa.

5.1 Label
The specification of RDFS [2] provides a RDFS:LABEL as a hu-

man-readable version of a resource name. Analogously, one wants

to assign an instance with a human-readable name even if it instan-

tiates a class from a given ontology that does not use the property

RDFS:LABEL per se.

For instance, assume that (part of) the ontology definition is as

follows:

<rdf:Property ID="ssn">

<rdfs:comment> Social Security Number</rdfs:comment>

<rdfs:range rdf:resource=

"http://www.w3.org/2000/03/example/classes#Integer"/>

<rdfs:domain rdf:resource="#Person"/>

</rdf:Property>

<rdf:Property ID="fullname">

<rdfs:comment> Last Name, First Name, Middle Initial

</rdfs:comment>

<rdfs:range rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:domain rdf:resource="#Person"/>

</rdf:Property>✌
The Ont-O-Mat architecture serves also as basis for other applica-

tions, see
http://kaon.aifb.uni-karlsruhe.de

Then, one might want to state that the property FULLNAME rather

than the property SSN takes the role of RDFS:LABEL for class Per-

son. We may link the meta ontology (the relevant piece here is

RDFS:LABEL) with the ontology proper by:

<rdf:Property ID="fullname">

<rdf:subPropertyOf rdf:resource=

"http://www.w3.org/TR/rdf-schema/#rdfs:label"/>

</rdf:Property>

Now, the authoring and annotation environment may exploit this

additional piece of information at (at least) two points of interac-

tion:

1. Instance Generation: When a new instance is about to be

created and some piece of text has been chosen to represent

the name, CREAM uses the RDF-API to create a new URN

and automatically assigns this piece of text to the attribute

recorded as RDFS:LABEL, i.e. here FULLNAME.

2. Content Generation: When an instance is selected for gener-

ating content of a Web page, the generated text is produced

by the RDFS:LABEL attribute. By this way we may produce

text that is meaningful to humans with little interaction, be-

cause the author need not specify the attribute that should be

used but he may just refer to the instance.

One may note that another person, e.g. from administration, could

rather choose:

<rdf:Property ID="ssn">

<rdf:subPropertyOf rdf:resource=

"http://www.w3.org/TR/rdf-schema/#rdfs:label"/>

</rdf:Property>

Thus, this person would create web page content referring to so-

cial security numbers when authoring with existing instances and

she would create new instances of PERSON from given social secu-

rity numbers and not from names.

The reader may note from this scriptsize example that✟
The difference between more or less metadata creation effort

is often just one click.9

✟
The connection between ontology and meta ontology is not

an objective one. Rather their linkage depends on the way an

ontology is used in a particular metadata creation scenario.

Statements equivalent to the last text passage hold for the follow-

ing meta ontology descriptions.

5.2 Default Pointing
For many instances that are to be created it is desirable to point

to the Web page from which they “originated”. Analogously to the

way that RDFS:LABEL is used, we use three types of definitions in

order to specify the default pointing behavior for class instances,

exploiting the XPointer candidate recommendation [7].

Consider the three meta ontology properties CREAM:UNIQUED-

POINTER, CREAM:AUTODPOINTER, and CREAM:AUTOUNIQUE-

DPOINTER. If a property is RDFS:SUBPROPERTYOF one of these

three the following interactions take place during annotation or au-

thoring:

1. Instance Generation: When a new instance is generated and a

property of that instance is of type CREAM:AUTODPOINTER

or CREAM:AUTOUNIQUEDPOINTER, an XPointer to the cur-

rent (part of the) web page will be automatically added into

the corresponding slot of the instance.✍
We conjecture that the one click difference may distinguish be-

tween success and failure of a tool.



Table 1: Design Rationale — Linking Requirements with CREAM Modules.

Requirement Storage
Replication

Document Ontology Crawler Annotation Document Metadata General Meta Content
General Editor Guidance Inference Management Re-recognition Information Ontology Generation
Problem Server Extraction

Consistency X X X X
Proper Reference X X X X X
Avoid Redundancy X X X X
Relational Metadata X X X X
Maintenance X X X X
Ease of use X X X X X
Efficiency X X X X X X X X X

2. Content Generation: When an instance is used for generat-

ing web page content, the attribute containing the XPointer

is offered for link generation. When the attribute is of type

CREAM:UNIQUEDPOINTER or CREAM:AUTOUNIQUEDPO-

INTER indicating uniqueness, a link with text corresponding

to RDFS:LABEL and HRef corresponding to the XPointer will

be automatically generated .

For instance, one may model in the ontology that a PERSON

comes with properties HASHOMEPAGE and FULLNAME and in the

instantiation of the meta ontology that HASHOMEPAGE is a sub-

property of CREAM:UNIQUEDPOINTER and FULLNAME a subprop-

erty of RDFS:LABEL. During annotation of people homepages,

the label and pointer mechanisms automate, (i), the generation of

unique IDs with reasonable labels, (ii), the creation of pointers to

people’s homepages, and, (iii), the correct linking between people

mentioned on the different homepages. Like with RDFS:LABEL,

the linkage between meta ontology and ontology proper may de-

pend on the current usage scenario.

5.3 Property Mode
The property mode distinguishes between different roles, which

correspond to different ways the property should be treated by the

metadata creation environment:

1. Reference: In order to describe an object, metadata may sim-

ply point to a particular place in a resource, e.g. a piece of

text or a piece of multimedia. For instance, one may point to

a particular place at http://www.whitehouse.gov in order to

refer to the current U.S. president. Even when the presidency

changes the metadata may remain up-to-date.

References are particularly apt to point to parts of multime-

dia, e.g. to a part of a scalable vector graphics.

The reader may note that every default pointer is a reference,

but not vice versa.

2. Quotation: In order to describe an object, metadata may

copy an excerpt out of a resource. In contrast to the mode

“reference”, a quotation does not change when the corre-

sponding resource changes. A copy of the string “Bill Clin-

ton” as president of U.S. in 1999 remains unchanged even if

its original source at http://www.whitehouse.gov changes

or is abandoned.

3. Unlinked Fact: An unlinked fact describes an object, but is

not in any way stemming or depending on a resource. Un-

linked facts are typical for comments. They are also very

apt to be combined with references in order to elucidate the

meaning or name of a graphics or piece of multimedia.

For instance, there may be a reference pointing to the picture

“Guernica” (http://www.grnica.swinternet.co.uk/guerni

ca.jpg) and attributes that are specified to be unlinked facts.

The unlinked fact-attributes may be filled by someone who

knows Picasso’s paintings, e.g. with specifications like “Guer-

nica” or “Spanish Civil War”.

The meaning of the property mode may slightly overlap with the

definition of the range of a property, e.g. a unlinked fact is typically

only used with an attribute that has a literal as it range. The reason

is that a pointer may be used as a URI (e.g. [14]) and a URI should

typically not appear in a literal (though this is not forbidden). We

separate the two aspects, because not every URI is a pointer (e.g.,

a URI may be a URN) and it sometimes makes sense to specify the

value of a literal by a pointer. Thus, the definition of the range of a

property as reference, quotation or unlinked fact may be considered

orthogonal to the range of a property being a literal or a resource.

5.4 Further Meta Ontology Descriptions
Concluding this section, we want the reader to note that the list

of possibly useful meta ontology descriptions sketched here is not

closed by far. Rather, we envision (and partially support) the use of

meta ontology descriptions for purposes such as

✟
Knowledge acquisition from templates: For example we de-

scribe in SWOBIS (http://tools.semanticweb.org/)

software tools with metadata (cf. Figure 3). For each in-

stance, there are a number of attributes required to specify

a software tool. The meta ontology allows the definition of

attribute instances being required attribute instances. This

information is used to automatically generate a template like

interface for Ont-O-Mat — one that is similar in its struc-

ture to a Dublin Core template. This approach is akin to the

way that Protege allows to construct knowledge acquisition

interfaces [31].

✟
Authoring of dynamic ontology and metadata-based Web pa-

ges (also cf. OntoWebber [20]).

✟
Provisioning of metametadata, e.g. author, date, time, and

location of an annotation. Though this may appear trivial

at first sight, this objective easily clashes with several other

requirements, e.g. ease of use of metadata generation and

usage. Eventually, it needs a rather elaborate meta ontology,

containing not only static, but also dynamic definitions, i.e.

rules. For example, to describe that a person A created an

instance X, a second person B created an instance Y and a

third person C created a relationships instance between X

and Y, it is necessary to reify the relationship instance. In



Document

Management

Annotation Environment

Annotated

Web Pages

Web Pages

Domain

Ontologies

copy

WWW

Annotation

Inference

Server

Information

extraction

Component

&

Re-recognition

annotate

crawl

Annotation

Tool GUI

plugin

plugin

plugin

Ontology

Guidance

&

Fact

Browser

Document

Editor /

Viewer query

extract

load

Meta-Ontology

Annotation by Authoring

Annotation by Markup

Annotation

by Typing

Figure 2: Architecture of CREAM.

order to directly use the relationship instance, it should be

translated by a rule into an unreified relationship instance.

6. MODES OF INTERACTION WITH

ONTOMAT
The metadata creation process in Ont-O-Mat is actually sup-

ported by three types of interaction with the tool (also cf. Figure 2):

1. Annotation by Typing Statements: This involves working al-

most exclusively within the ontology guidance/fact browser.

2. Annotation by Markup: This mostly involves the reuse of

data from the document editor/viewer in the ontology guid-

ance/fact browser.

3. Annotation by Authoring Web Pages: This mostly involves

the reuse of data from the fact browser in the document edi-

tor.

In order to clarify the different role of the three types of interac-

tion, we here describe how they differ for generating three types of

metadata:

1. Generating instances of classes

2. Generating attribute instances

3. Generation relationship instances

6.1 Annotation by Typing
Annotation by typing is almost purely based on the ontology

guidance/fact browser (cf. Section 4) and the generated templates

(cf. Section 5.4). Basically, the more experienced user navigates

the ontology and browses the facts, the less experienced user should

rather use templates. The user generates metadata (class instances,

attribute instances, relationship instances) that are completely inde-

pendent from the Web page currently viewed.

The specification of the RDFS:LABEL property allows to create

(or re-discover) instances by typing where the URI is given as a

new URN and the RDFS:LABEL property is filled with the text. The

specification of a default pointer by the meta ontology may asso-

ciate newly created instances with the currently marked passage in

the text.

In addition, the user may drag-and-drop around instances that are

already in the knowledge base in order to create new relationship

instances (cf. arrow #0 in Figure 4).

6.2 Annotation by Markup
The basic idea of annotation by markup is the usage of marked-

up content in the document editor/viewer for instance generation.

1. Generating class instances: When the user drags a marked

up piece of content onto a particular concept from the onto-

logy, a new class instance is generated. If the class definition

comes with a meta ontology description of a RDFS:LABEL a

new URI is generated as a URN and the corresponding prop-

erty is assigned the marked up text (cf. arrow #1 in Figure 4).

For instance, marking “Siegfried Handschuh” and dropping

this piece of text on the concept PHDSTUDENT creates a new

URN, instantiates this URN as belonging to PHDSTUDENT

and assigns “Siegried Handschuh” to the SWRC:NAME slot of

the new URN. In addition, default pointers may be provided.

2. Generating attribute instance: In order to generate an at-

tribute instance the user simply drops the marked up content



Figure 3: SWOBIS template.

into the corresponding table entry (cf. arrow #2 in Figure 4).

Depending on whether the attribute is specified as reference

or quotation the corresponding XPointer or the content itself

is filled into the attribute.

3. Generating relationship instance: In order to generate a rela-

tionship instance the user simply drops the marked up con-

tent onto the relation of a pre-selected instance (cf. arrow

#3 in Figure 4). Like in “class instance generation” a new

instance is generated and connected with the preselected in-

stance.

6.3 Annotation by Authoring
The third major process is authoring Web pages and metadata

together. There are two modi for authoring: (i), authoring by using

ontology guidance and fact browser for content generation and, (ii),

authoring with the help of metadata re-recognition or — more gen-

eral — information extraction. So far we have only implemented

means for content generation. Concerning the integration of infor-

mation extraction and annotation by markup we refer the reader

to [36]. Hence, we want to point out that already very simple in-

formation extraction mechanisms, i.e. metadata re-recognition (cf.

Section 4) may help the author to produce consistent metadata.

Authoring with Content Generation. By inverting the pro-

cess of markup (cf. Figure 2), we may reuse existing instance de-

scription, like labels or other attributes:

1. Class instances: Dropping class instances from the fact browser

into the document creates text according to their labels and

— if possible — links (cf. arrow #1 in Figure 5).

2. Attribute instances: Dropping attribute instances from the

fact browser in the document (cf. arrow #2 in Figure 5) gener-

ates the corresponding text (for quotations or unlinked facts)

or even linked text (for references).

3. Relationship instances: Dropping relationship instances from

the fact browser in the document generates simple “sentences”.

For instance, the dropping of the relationship COOPERATES-

WITH between the instances corresponding to Rudi and Stef-

fen triggers the creation of a small piece of text (cf. arrow #3

in Figure 5). The text corresponds to the instance labels plus

the label of the relationship (if available), e.g. “Rudi Studer

cooperates with Steffen Staab”. Typically, this piece of text

will require further editing.

Further mechanisms, like the creation of lists or tables from se-

lected concepts (e.g. all PERSONs), still need to be explored.

7. COMPARISON WITH RELATED WORK
CREAM can be compared along four dimensions: First, it is a

framework for markup in the Semantic Web. Second, it may be

considered as a particular knowledge acquisition framework that is

to some extend similar to Protégé-2000 [11]. Third, it is certainly

an annotation framework, though with a different focus than ones

like Annotea [21]. And fourth it is an authoring framework with

emphasis on metadata creation.

7.1 Knowledge Markup in the Semantic Web
We know of three major systems that intensively use knowledge

markup in the Semantic Web, viz. SHOE [17], Ontobroker [5] and

WebKB [27]. All three of them rely on markup in HTML pages.



3

0

1

2

Figure 4: Annotation example.

They all started with providing manual markup by editors. How-

ever, our experiences (cf. [10]) have shown that text-editing know-

ledge markup yields extremely poor results, viz. syntactic mistakes,

improper references, and all the problems sketched in the scenario

section.

The approaches from this line of research that are closest to

CREAM is the SHOE Knowledge Annotator10 and the WebKB an-

notation tool.

The SHOE Knowledge Annotator is a Java program that allows

users to mark-up webpages with the SHOE ontology. The SHOE

system [26] defines additional tags that can be embedded in the

body of HTML pages. The SHOE Knowledge Annotator is rather

a little helper (like our earlier OntoPad [12], [5]) than a full fledged

annotation environment.

WebKB [27] uses conceptual graphs for representing the seman-

tic content of Web documents. It embeds conceptual graph state-

ments into HTML pages. Essentially they offer a Web-based tem-

plate like interface as knowledge acquisition frameworks described

next.

7.2 Comparison with Knowledge Acquisition
Frameworks

The CREAM framework allows for creating class and property

instances and for populating HTML pages with them. Thus, it

targets a roughly similar target like the instance acquisition phase

in the Protégé-2000 framework [11] (the latter needs to be distin-

guished from the ontology editing capabilities of Protégé). The�✏✎
http://www.cs.umd.edu/projects/plus/SHOE/KnowledgeAnnotator.html

obvious difference between CREAM and Protégé is that the latter

does not (and has not intended to) support the particular Web set-

ting, viz. managing and displaying Web pages — not to mention

Web page authoring. From Protégé we have adopted the princi-

ple of a meta ontology that allows to distinguish between different

ways that classes and properties are treated.

7.3 Comparison with Annotation Frameworks
There are a lot of — even commercial — annotation tools like

ThirdVoice11, Yawas [6], CritLink [37] and Annotea (Amaya) [21].

These tools all share the idea of creating a kind of user comment

about Web pages. The term “annotation” in these frameworks is

understood as a remark to an existing document. For instance, a

user of these tools might attach a note like ”A really nice profes-

sor!” to the name “Studer” on a Web page. In CREAM we would

design a corresponding ontology that would allow to type the com-

ment (an unlinked fact) “A really nice professor” into an attribute

instance belonging to an instance of the class COMMENT with a

unique XPointer at “Studer”.

Annotea actually goes one step further. It allows to rely on an

RDF schema as a kind of template that is filled by the annotator.

For instance, Annotea users may use a schema for Dublin Core

and fill the author-slot of a particular document with a name. This

annotation, however, is again restricted to attribute instances. The

user may also decide to use complex RDF descriptions instead of

simple strings for filling such a template. However, he then has no

further support from Amaya that helps him providing syntactically�✂�
http://www.thirdvoice.com



3

2

1

Figure 5: Annotation by Authoring example.

correct statements with proper references.

One of the systems most similar to CREAM is the annotation

tool cited in [36]. It uses information extraction components (Mar-

mot, Badger and Crystal) from the University of Massachusetts at

Amherst (UMass). It allows the semi-automatic population of an

ontology with metadata. So far, they have not dealt with relational

metadata or authoring concerns.

7.4 Comparison with Authoring Frameworks
An approach related to the CREAM authoring is the Briefing As-

sociate of Teknowledge [35]. The tool is an extension of Microsoft

PowerPoint. It pursues the idea to produce PowerPoint documents

with the metadata coding as a by-product of the document compo-

sition. For each concept and relation in the ontology, an instanti-

ation button is added to the PowerPoint toolbar. Clicking on one

of these buttons allows the author to insert an annotated graphical

element into his briefing. Thus, a graphic element in the briefing

corresponds to an instance of a concept and arrows between the

elements correspond to relationship instances. In order to be able

to use an ontology in PowerPoint one must have assigned graphic

symbols to the concepts and relations, which is done in the begin-

ning by the visual-annotation ontology editor (again a kind of meta

ontology assignment). The Briefing Associate is available for Pow-

erPoint documents. In contrast, CREAM does not provide graphic

support like the Briefing Associate, but it supports both parts of

the annotation process, i.e. it permits the simultaneous creation of

documents and metadata and, in addition, the annotation of already

existing documents. However, the Briefing Associate has shown

very interesting ideas that may be of future value to CREAM.

The authoring of hypertexts and the authoring with concepts are

topics in the COHSE project [14]. They allow for the automatic

generation of metadata descriptions by analysing the content of a

Web page and comparing the tokens with concept names described

in a lexicon. They support ontology reasoning, but they do not

support the creation of relational metadata. It is unclear to what

extent COHSE considers the synchronous production of document

and metadata by the author.

Somewhat similar to COHSE concerning the metadata genera-

tion, Klarity [23] automatically fills Dublin Core fields taking ad-

vantage of statistic methods to allocate values based on the current

document.

In [18] Jim Hendler states that “semantic markup should be a

by-product of normal computer use”. He requires that “In an easy,

interactive way a user would be assisted in creating a page and get

the markup created for free”. We think that the CREAM framework

can offer a solid start for this vision to become true.

8. CONCLUSION
CREAM is a comprehensive framework for creating annotations,

relational metadata in particular — the foundation of the future

Semantic Web. The new version of CREAM presented here sup-

ports metadata creation during Web page authoring as well as by a-

posteriori annotation. CREAM comprises inference services, crawl-

er, document management system, ontology guidance/fact browser,

document editors/viewers, and a meta ontology.

Ont-O-Mat is the reference implementation of the CREAM frame-



work. It is Java-based and provides a plugin interface for extensions

for further advancements, e.g. information extraction, collaborative

metadata creation, or integrated ontology editing and evolution.

We are already dealing with many different issues and through

our practical experiences we could identify problems that are most

relevant in several settings, KA2 [1] and Time2Research [33]. Nev-

ertheless our analysis of the general problem is far from being com-

plete. In particular, we are now investigating how different tools

may be brought together, e.g. to allow for the creation of relational

metadata in PDF, SVG, or SMIL with Ont-O-Mat.

9. ACKNOWLEDGEMENTS
The research presented in this paper was profited from discus-

sion with our colleagues at AIFB and Ontoprise. In particular, we

want to thank Stefan Decker (now: Stanford University), Alexander

Maedche (now: FZI Research Center for Information Technolo-

gies), Mika Maier-Collin, Tanja Sollazzo and Sichun Xu (Stanford

University).

Research for this paper was partially financed by US Air Force

in the DARPA DAML project “OntoAgents” (01IN901C0) and in

the BMBF founded project PADLR (Personalized Access to Dis-

tributed Learning Resources).

10. REFERENCES
[1] R. Benjamins, D. Fensel, and S. Decker. KA2: Building

Ontologies for the Internet: A Midterm Report. International

Journal of Human Computer Studies, 51(3):687, 1999.

[2] D. Brickley and R.V. Guha. Resource description framework

(RDF) schema specification. Technical report, W3C, 1999.

W3C Proposed Recommendation.

http://www.w3.org/TR/PR-rdf-schema/.

[3] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van

Harmelen, and I. Horrocks. Enabling knowledge

representation on the Web by extending RDF schema. In

Proceedings of WWW 2001, pages 467–478. ACM Press,

2001.

[4] S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query

and Inference Service for RDF. In Proceedings of the W3C

Query Language Workshop (QL-98), Boston, MA, December

3-4, 1998. http://www.w3.org/TandS/QL/QL98/.

[5] S. Decker, M. Erdmann, D. Fensel, and R. Studer.

Ontobroker: Ontology Based Access to Distributed and

Semi-Structured Information. In R. Meersman et al., editors,

Database Semantics: Semantic Issues in Multimedia

Systems, pages 351–369. Kluwer Academic Publisher, 1999.

[6] L. Denoue and L. Vignollet. An annotation tool for Web

browsers and its applications to information retrieval. In

Proceedings of RIAO2000, Paris, April 2000. http://www.

univ-savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

[7] S. DeRose, E. Maler, and R. Daniel. XML Pointer Language

(XPointer) Version 1.0. Technical report, W3C, 2001.

Candidate Recommendation 11 September 2001.

[8] Dublin core metadata initiative, April 2001.

http://purl.oclc.org/dc/.

[9] Dublin Core Metadata Template, 2001.

http://www.ub2.lu.se/metadata/DC creator.html.

[10] M. Erdmann, A. Maedche, H.-P. Schnurr, and Steffen Staab.

From Manual to Semi-automatic Semantic Annotation:

About Ontology-based Text Annotation Tools. In P.

Buitelaar & K. Hasida (eds). Proceedings of the COLING

2000 Workshop on Semantic Annotation and Intelligent

Content, Luxembourg, August 2000.

[11] H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen.

Automatic Generation of Ontology Editors. In Proceedings

of the 12th International Workshop on Knowledge

Acquisition, Modelling and Mangement (KAW’99), Banff,

Canada, October, 1999.

[12] D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr,

S. Staab, R. Studer, and Andreas Witt. On2broker:

Semantic-based access to information sources at the WWW.

In Proceedings of the World Conference on the WWW and

Internet (WebNet 99), Honolulu, Hawaii, USA, 1999.

[13] Reference description of the DAML+OIL (March 2001)

ontology markup language, March 2001.

http://www.daml.org/2001/03/reference.html.

[14] C. Goble, S. Bechhofer, L. Carr, D. De Roure, and W. Hall.

Conceptual Open Hypermedia = The Semantic Web? In The

Second International Workshop on the Semantic Web, pages

44–50, Hong Kong, May 2001.

[15] T. R. Gruber. A Translation Approach to Portable Ontology

Specifications. Knowledge Acquisition, 6(2):199–221, 1993.

[16] S. Handschuh, S. Staab, and A. Maedche. CREAM —

Creating relational metadata with a component-based,

ontology driven framework. In Proceedings of K-Cap 2001,

Victoria, BC, Canada, October 2001.

[17] J. Heflin and J. Hendler. Searching the Web with SHOE. In

Artificial Intelligence for Web Search. Papers from the AAAI

Workshop. WS-00-01, pages 35–40. AAAI Press, 2000.

[18] James Hendler. Agents and the Semantic Web. IEEE

Intelligent Systems Journal, 16(2):30–37, 2001.

[19] I. Horrocks. Using an Expressive Description Logic: FaCT

or Fiction? In Proceedings of the Sixth International

Conference on Principles of Knowledge Representation and

Reasoning (KR’98), Trento, Italy, June 2-5, 1998, pages

636–649. Morgan Kaufmann, 1998.

[20] Y. Jin, S. Decker, and G. Wiederhold. OntoWebber:

Model-Driven Ontology-Based Web Site Management. In

Semantic Web Working Symposium (SWWS), Stanford,

California, USA, August 2001.

[21] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick.

Annotea: An Open RDF Infrastructure for Shared Web

Annotations. In Proceedings of the WWW10 International

Conference. Hong Kong, 2001.

[22] M. Kifer, G. Lausen, and J. Wu. Logical foundations of

object-oriented and frame-based languages. Journal of the

ACM, 42:741–843, 1995.

[23] Klarity – automatic generation of metadata based on

concepts within the document, 2001. Klarity white paper.

http://www.klarity.com.au.

[24] J. Klotzbuecher. Ontowrapper. Master’s thesis, University of

Karlsruhe, September 2001.

[25] N. Kushmerick. Wrapper Induction: Efficiency and

Expressiveness. Artificial Intelligence, 118(1), 2000.

[26] S. Luke, L. Spector, D. Rager, and J. Hendler.

Ontology-based Web Agents. In Proceedings of First

International Conference on Autonomous Agents, 1997.

[27] P. Martin and P. Eklund. Embedding Knowledge in Web

Documents. In Proceedings of the 8th Int. World Wide Web

Conf. (WWW‘8), Toronto, May 1999, pages 1403–1419.

Elsevier Science B.V., 1999.

[28] MUC-7 — Proceedings of the 7th Message Understanding

Conference, 1998. http://www.muc.saic.com/.

[29] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,



M. Nilsson, M. Palmer, and T. Risch. EDUTELLA: A P2P

Networking Infrastructure Based on RDF. In Proceedings of

WWW 2002. ACM Press, 2002.

[30] W. Nejdl, B. Wolf, S. Staab, and J. Tane. EDUTELLA:

Searching and Annotating Resources within an RDF-based

P2P Network. Technical report, Learning Lab Lower Saxony

/ Institute AIFB, 2001.

[31] N. Fridman Noy, W. E. Grosso, and M. A. Musen.

Knowledge-Acquisition Interfaces for Domain Experts: An

Empirical Evaluation of Protege-2000. In Proceedings of the

12th Internal Conference on Software and Knowledge

Engineering. Chicago, USA, July, 5-7, 2000, 2000.

[32] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho,

A. Maedche, H.-P. Schnurr, R. Studer, and Y. Sure. Semantic

Community Web Portals. Proceedings of WWW9 / Computer

Networks, 33(1-6):473–491, 2000.

[33] S. Staab and A. Maedche. Knowledge Portals — Ontologies

at work. AI Magazine, 21(2), Summer 2001.

[34] S. Staab, A. Maedche, and S. Handschuh. Creating Metadata

for the Semantic Web: An Annotation Framework and the

Human Factor. Technical Report 412, Institute AIFB,

University of Karlsruhe, 2001.

[35] M. Tallis, N. Goldman, and R. Balzer. The Briefing

Associate: A Role for COTS applications in the Semantic

Web. In Semantic Web Working Symposium (SWWS),

Stanford, California, USA, August 2001.

[36] M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham

Shum, and M. Lanzoni. Knowledge Extraction by using an

Ontology-based Annotation Tool. In K-CAP 2001 workshop

on Knowledge Markup and Semantic Annotation, Victoria,

BC, Canada, October 2001.

[37] Ka-Ping Yee. CritLink: Better Hyperlinks for the WWW,

1998. http://crit.org/˜ping/ht98.html.


