
International Journal of Artificial Intelligence in Education (1999), 10, 98-129

98

Authoring Intelligent Tutoring Systems: An Analysis of the
State of the Art

Tom Murray Computer Science Dept., University of Massachusetts, Amherst & School of
Cognitive Science, Hampshire College, Amherst, MA
tmurray@cs.umass.edu, www.cs.umass.edu/~tmurray/

Abstract. This paper consists of an in-depth summary and analysis of the research and
development state of the art for intelligent tutoring system (ITS) authoring systems. A seven-
part categorization of two dozen authoring systems is given, followed by a characterization of
the authoring tools and the types of ITSs that are built for each category. An overview of the
knowledge acquisition and authoring techniques used in these systems is given. A
characterization of the design tradeoffs involved in building an ITS authoring system is given.
Next the pragmatic questions of real use, productivity findings, and evaluation are discussed.
Finally, I summarize the major unknowns and bottlenecks to having widespread use of ITS
authoring tools.

INTRODUCTION

Intelligent Tutoring Systems (ITSs) are computer-based instructional systems with models of
instructional content that specify what to teach, and teaching strategies that specify how to
teach (Wenger 1987, Ohlsson 1987). They make inferences about a student’s mastery of topics
or tasks in order to dynamically adapt the content or style of instruction. Content models (or
knowledge bases, or expert systems, or simulations) give ITSs depth so that students can "learn
by doing" in realistic and meaningful contexts. Models allow for content to be generated "on
the fly." ITSs allow "mixed-initiative" tutorial interactions, where students can ask questions
and have more control over their learning. Instructional models allow the computer tutor to
more closely approach the benefits of individualized instruction by a competent pedagogue. In
the last decade ITSs have moved out of the lab and into classrooms and workplaces where some
have been shown to be highly effective [Shute and Regian 1990; Koedinger & Anderson 1995].
While intelligent tutors are becoming more common and proving to be increasingly effective
they are difficult and expensive to build. Authoring systems are commercially available for
traditional computer aided instruction (CAI) and multimedia-based training, but these authoring
systems lack the sophistication required to build intelligent tutors. Commercial multimedia
authoring systems excel in giving the instructional designer tools to produce visually appealing
and interactive screens, but behind the screens is a shallow representation of content and
pedagogy. Researchers have been investigating ITS authoring tools almost since the beginning
of ITS research, and over two dozen very diverse authoring systems have been built. This paper
summarizes the contributions of these systems and describes the state of the art for ITS
authoring tools.

This article is written for two types of readers. First are research and development
personnel who are building ITS and/or ITS authoring tool. They might ask the question "what
methods and designs have been used, and how successful have they been?" in their efforts to
build the next generation of systems. The second type of reader is the developer or purchaser of
instructional software (intelligent or otherwise) who might ask the question: "what is really
available (or soon to be available) to make ITS authoring cost effective?" I hope both readers
will find this article informative. For those needing an "executive level summary": 1) In the
last five years there has been significant progress in the development of ITS authoring tools and
in the understanding of the key issues involved. 2) The development efforts to date represent

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

99

many diverse approaches, and it is still too early to get a sense for which approaches will prove
to be the most useful (or marketable). 3) In general, ITS authoring tools are still research
vehicles which have demonstrated significant success in limited cases, yet have not been made
robust enough to be placed and supported in production contexts or commercial markets.
However, it is encouraging that a few systems have just been released as products or are
approaching productization.

The paper is organized according to four broad questions that readers might have
concerning ITS authoring tools:
• What types of tutors can be built with existing authoring tools?
• What features and methods do the tools use to facilitate authoring?
• Have the tools been used in realistic situations; have they been evaluated; are they
available?
• What have researchers learned about the process of authoring and the tradeoffs involved in
designing an authoring tool?

The sections of this paper are sequenced to answer these questions. I first describe the
types of ITSs that have been built with ITS authoring tools. Next I describe the interface,
knowledge representation, and knowledge acquisition techniques that have been used to allow
non-programmers to build ITSs using authoring tools. Then I report on the pragmatic aspects of
ITS authoring in order to locate current work in the research-to-application spectrum. Finally I
discuss a number of general issues and lessons learned (for example "who should author
ITSs?"), and discuss tradeoffs between power, usability, and fidelity among authoring tools.

A CLASSIFICATION ACCORDING TO TASKS AND TUTORS

Any discussion about authoring tools would be too abstract without some context describing the
tutors that they have been used to build. ITS authoring tools have been used to build tutors in a
wide range of domains, including customer service, mathematics, equipment maintenance, and
public policy. These tutors have been targeted toward a wide range of students, from grade
school children to corporate trainees. However, the key differences among ITS authoring
systems are not related to specific domains or student populations, but to the domain-
independent capabilities that the authored ITSs have. In this section I present a classification of
authoring tools based on these capabilities. But before describing a number of ITS authoring
tools I need to mention a related area of work that will not be directly addressed.

Shells vs. tools.

An ITS "shell" is a generalized framework for building ITSs, while an ITS "authoring system"
(or authoring tool) is an ITS shell along with a user interface that allows non-programmers to
formalize and visualize their knowledge. Inspired by goals of elegance, parsimony, and/or cost
effectiveness, software designers seem naturally driven to write software that is general and
reusable. Thus there have been many papers published describing ITS "shells" that consist of
software architectures, code libraries, or conceptual frameworks that make ITS construction
more efficient for programmers. Though some of these systems include form-based data entry
to support authoring tasks, most of them are either content acquisition shells or instructional
planning shells.1 Over the last two decades relatively fewer papers have been published on
authoring tools compared to shells. This paper focuses on authoring tools only.

1 For examples, see Goodkovsky et al., 1994 (Pop ITS shell), Ikeda & Mizoguchi, 1994 (FITS), McCalla
& Greer, 1988 (SCENT-3), Goodyear & Johnson, 1990 (TOSKA), McMillan et al., 1980 (SIPP), Wasson,
1992 (PEPE), Winne & Kramer, 1989 (DOCENT), Jona & Kass, 1997 (GBS architectures).

Murray

100

A bags of tricks vs. a shelf of tools.

Over two dozen ITS authoring systems have been built.2 They differ by the types of domains
and tasks they are suited for, by the degree to which they make authoring more easy or efficient,
and by the depth and fidelity employed to represent the knowledge or skill being taught. These
systems seem to populate the space of authoring tool features almost uniformly, making it
difficult to cluster them into discrete groups in an effort to summarize the field. In fact, every
system I will describe in one category has important elements from at least one other category.3

Since the field is still in early stages, this paper is intended to help the reader envision the next
generation of authoring tools, more than to select an existing one to use. Therefore its
organization is more like the description of a "bag of tricks" that can be mixed and matched to
create an authoring tool than a description of a shelf of completed authoring tools.

Table 1 enumerates seven categories of ITS authoring systems, grouped according to the
type of ITSs they produce.4 Table 2 summarizes the sections below, which describe the
strengths and limitations of each type of authoring tool, and the differences among authoring
tools within that grouping. Table 2 describes the strengths and limitations of each category,
along with a summary of how systems within the category differ.

Table 1: ITS Authoring Tools by Category

CATEGORY EXAMPLE SYSTEMS
1 Curriculum Sequencing and Planning DOCENT, IDE, ISD Expert, Expert CML
2 Tutoring Strategies Eon, GTE, REDEEM
3 Device Simulation and Equipment

Training
DIAG, RIDES, SIMQUEST, XAIDA

4 Domain Expert System Demonstr8, D3 Trainer, Training Express
5 Multiple Knowledge Types CREAM-Tools, DNA, ID-Expert, IRIS, XAIDA
6 Special Purpose IDLE-Tool/IMap, LAT
7 Intelligent/adaptive Hypermedia CALAT, GETMAS, InterBook, MetaLinks

Early ITS authoring systems fell into two broad categories: those geared toward device
simulation and embodying a "learning environments" instructional metaphor, and those based
on a traditional curriculum (or courseware) metaphor. Even though some recent systems
combine aspects of both perspectives, the majority of authoring tools fall similarly into two
broad categories: pedagogy-oriented and performance-oriented (Murray 1997). Pedagogy-
oriented systems (categories 1, 2, 5, and 7 in Table 1) focus on how to sequence and teach
relatively canned content. Performance-oriented systems (categories 3, 4, and 6 in Table 1)
focus on providing rich learning environments in which students can learn skills by practicing
them and receiving feedback.

2 Not all of the designers of these systems would describe their systems as being "ITS authoring systems."
But I include computer-based instruction authoring systems that use AI representation techniques such as
rules and semantic networks, and those that include models of content and/or teaching strategies.
3 Because my purpose is to characterize the field as a whole, characterizations of systems are approximate
and incomplete. The classification of a system into one category is to illustrate its strengths or
contribution to the field, and is not meant to imply that it does not also contain features from other
categories.
4 The authoring tools also differ according to the types of authoring features that they provide, as
discussed in the next section. XAIDA is purposely in two of the categories. In the case of two relatively
large-scale ITS authoring system projects, MITT-Writer and ICAT, there was insufficient published
material for me to include them in my analysis (these systems are mentioned in an overview of US
government sponsored ITS research (Youngblut 1995)).

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

101

Table 2: ITS Authoring Tool Strengths and Limitations by Category

CATEGORY STRENGTHS LIMITS VARIATIONS
Curriculum
Sequencing and
Planning

Rules, constraints, or
strategies for sequencing
courses, modules,
presentations

Low fidelity from student’s
perspective; shallow skill
representation

Whether sequencing rules
are fixed or authorable;
scaffolding of the
authoring process

Tutoring
Strategies

Micro-level tutoring
strategies; sophisticated set
of instructional primitives;
multiple tutoring strategies

(same as above)
Strategy representation
method; source of
instructional expertise

Device
Simulation and
Equipment
Training

Authoring and tutoring
matched to device
component identification,
operation, and
troubleshooting

Limited instructional
strategies; limited student
modeling; mostly for
procedural skills

Fidelity of the simulation;
ease of authoring

Domain Expert
System

Runnable (deeper) model
of domain expertise; fine
grained student diagnosis
and modeling; buggy and
novice rules included

Building the expert system
is difficult; limited to
procedural and problem
solving expertise; limited
instructional strategies

Cognitive vs. performance
models of expertise

Multiple
Knowledge
Types

Clear representation and
pre-defined instructional
methods for facts,
concepts, and procedures

Limited to relatively
simple fact, concepts, and
procedures; pre-defined
tutoring strategies

Inclusion of intelligent
curriculum sequencing;
types of knowledge/tasks
supported

Special Purpose Template-based systems
provide strong authoring
guidance; particular design
or pedagogical principles
can be enforced

Each tool limited to a
specific type of tutor;
inflexibility of
representation and
pedagogy

Degree of inflexibility

Intelligent/
Adaptive
Hypermedia

WWW has accessibility &
UI uniformity; adaptive
selection and annotation of
hyperlinks

Limited interactivity;
limited student model
bandwidth

Macro vs. micro level
focus; degree of
interactivity

Proponents of constructivist learning theories (Jonassen & Reeves 1996) often criticize
pedagogy-oriented tutors and the instructional design theories behind them as being too
"instructivist." Such critics contend that these systems ignore important aspects of learning such
as intrinsic motivation, context realism, common misconceptions, and social learning contexts.
Actually these factors are acknowledged by most instructional design theorists (Merrill 1983,
Gagne 1985, Reigeluth 1983), but are either seen as not being as important or as being too
complex or incompletely understood to incorporate into instructional systems.5

Below I describe the categories listed in Tables 1 and 2.6

5 Historically, instructional design theories were ignored by most ITS researchers in favor of cognitive
learning theories, but in the realm of ITS authoring tools instructional design was a primary basis for the
early systems. Thus I believe the authoring tools research community was instrumental in promoting the
more balanced merger of instructional design and cognitive theories that we increasing see in recent
years.
6 The references to articles describing these systems are in a non-standard format. At the end of this
paper references for these systems are listed in a table grouped according to the authoring system.
Throughout the paper references to these research projects are given by the name of the system (e.g.
RIDES) rather than the name of a paper (e.g. Munro et al. 1997).

Murray

102

1. Curriculum sequencing and planning

Authoring systems in the Curriculum and Course Sequencing category organize instructional
units (IUs, or "curriculum elements") into a hierarchy of courses, modules, lessons,
presentations, etc., which are related by prerequisite, part, and other relationships. The
instructional units typically have instructional objectives. Some systems include IUs that
address misconceptions or remedial material. The content is stored in canned text and graphics.
These systems are seen as tools to help instructional designers and teachers design courses and
manage computer based learning.

Intelligent sequencing of IUs (or content, or topics) is at the core of these systems. To the
student, tutoring systems built with these tools may seem identical to traditional computer-based
instruction. Screens of canned text and pictures are presented, and interactions tend to be
limited to multiple choice, fill-in, etc. Of course, the difference is that the sequencing of the
content is being determined dynamically based on the student’s performance, the lesson
objectives, and the relationships between course modules. Because domain knowledge is not
represented in a very "deep" fashion, any arbitrary domain can be tutored (just as a textbook can
be about any domain). But the depth of diagnosis and feedback in tutors built with these
authoring tools is limited by the shallowness of their domain knowledge representation. This
makes them more appropriate for building tutors that teach conceptual, declarative, and episodic
types of knowledge, and less pedagogically powerful for building tutors that teach procedural or
problem solving skills.Authoring systems in the Curriculum Sequencing category are, generally
speaking, the most "basic," or minimally functional (though each system in this category has
certain very evolved signature features or capabilities). Several of the other categories
described below contain these minimal capabilities (such as curriculum sequencing or IU
planning) and add additional functionality.

2. Tutoring strategies

Systems in this category excel at representing diverse teaching strategies. They tend to be
similar to the Curriculum Sequencing systems described above, in that content is stored in
canned text and graphics and domain knowledge representation is shallow. However these
systems also encode fine-grained strategies used by teachers and instructional experts. Systems
in the Curriculum Sequencing category above tend to focus on the "macro" level of instruction--
i.e. the sequencing of topics or modules, while systems in this category also address the "micro"
level of instruction. Instructional decisions at the micro level include when and how to give
explanations, summaries, examples, and analogies; what type of hinting and feedback to give;
and what type of questions and exercises to offer the student. Systems in the Tutoring
Strategies category have the most sophisticated set of primitive tutorial actions, compared with
systems in other categories. Also characteristic to systems in this category is the ability to
represent multiple tutoring strategies and "meta-strategies" that select the appropriate tutoring
strategy for a given situation.

As in Curriculum Sequencing systems, students using tutors built with these authoring
tools will see screens of limited interactivity--they will be learning by reading and thinking,
rather than learning by doing. However, the availability and intelligent interjection of small
grain sized components such as explanations, multiple levels of hints, and analogies can make
the tutor appear quite responsive, at times even conversational (as in Socratic strategies),
compared to tutorials built with Curriculum Sequencing systems.

3. Device simulation and equipment training

For tutors built by authoring tools in this category, the student is shown a piece of equipment
and is asked to identify its components, perform operating steps, perform maintenance steps, or

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

103

diagnose faulty device behavior and fix or replace the implicated parts.7 These types of skills
are relatively widespread and generic, so authoring tools that specialize in this area should be
widely usable. The expert knowledge for component locations and operational scripts is
straightforward to model. Performance monitoring and instructional feedback is also
straightforward (e.g. "That is not the Termination Switch," and "You should have checked the
safety valve as your next step"). Thus authoring tools can be built which closely match the
needs of the author (and student).8 The most difficult authoring task with these systems is
building the device simulation. But once the simulation is authored, much of the instructional
specification comes "for free." Component location and device behavior "what if" activities can
be generated automatically. However, the device operation procedures must be authored.

In contrast to the previous two categories of authoring tools, students using tutors built with
tools in this category will be "learning by doing." Introductory or conceptual instruction is
absent or limited, and it is assumed that students have a basic familiarity with important
concepts and procedures in the domain before using the tutor. These tutors are learning
environments in which to practice skills. Specific feedback is given for each skill step, and task
difficulty is increased as students progress.

The major differentiating factor among systems in this category is the depth and fidelity of
the device simulation. Authoring tools range from those supporting static expression-based
relationships between device components (XAIDA, which also supports domains other than
device simulation, see the Multiple Knowledge Types category), to those supporting runnable
but shallow simulation models (RIDES), to those supporting deeper, more causative or
cognitive models of how the device works (SIMQUEST). The tools also vary widely in the
types of devices and physical processes that they can model.

4. Expert systems and cognitive tutors

An important class of intelligent tutors are those that include rule-based cognitive models of
domain expertise. Such tutors, often called model tracing tutors (Anderson & Pelletier 1991),
observe student behavior and build a fine-grained cognitive model of the student’s knowledge
that can be compared with the expert model. Authoring tools have been prototyped for such
tutors. I also include in this category authoring tools which use traditional expert systems (built
to solve problems, not to teach) and produce "value added" instruction for the encoded
expertise. These systems are similar to model tracing systems, except the expert system is
based on performance competency, rather than cognitive processes. Some systems include
buggy or novice-level rules that capture common mistakes, allowing the tutorial to give
feedback specific to those errors.

Students using these systems usually solve problems and associated sub-problems within a
goal space, and receive feedback when their behavior diverges from that of the expert model.
Unlike most other systems described above, these systems have a relatively deep model of
expertise, and thus the student, when stuck, can ask the tutor to perform the next step, or to
complete the solution to the entire problem. Authoring an expert system is a particularly
difficult and time-intensive task, and only certain tasks can be modeled in this manner.

5. Multiple knowledge types

Instructional design theories classify knowledge and tasks into discrete categories, and prescribe
instructional methods for each category. They tend to be limited to types of knowledge that can
be easily defined, such as facts, concepts, and procedures.9 Though the knowledge types and
instructional methods vary for different theories, they typically prescribe instruction similar to

7 These authoring tools have been used to build instructional simulations of mechanical, electrical, and
hydraulic systems.
8 Equipment diagnosis tasks ("troubleshooting") are more complicated, less standard among types of
equipment, and thus more difficult task to model and teach than operation and maintenance steps.
9 Here "concepts" usually refers to the meaning of terms or categories of things, not to the broader
meaning in "conceptual understanding" of a domain.

Murray

104

the following. Facts are taught with repetitive practice and mnemonic devices; concepts are
taught using analogies and positive and negative examples progressing from easy prototypical
ones to more difficult borderline cases; procedures are taught one step at a time. Instruction for
these knowledge types includes both expository presentations of the knowledge, and inquisitory
exercises that allow for practice and feedback. Straight-forward instructional strategies for how
to sequence content and exercises, and how to provide feedback, are defined separately for each
knowledge type (for example see Merrill 1983). The pre-defined nature of the knowledge and
the instructional strategies is both the strength and the weakness of these systems. Domain
knowledge for each knowledge type can be easily represented for authors, who fill in templates
for examples, steps, definitions, etc. (depending on the knowledge type). The tools support the
decomposition of complex skills into elementary knowledge components, and links between
knowledge components can be authored and used in instruction (e.g. the concepts or facts that
support a procedure or a concept that helps explain another concept). Since instructional
strategies are fixed and based on knowledge types they do not have to be authored. Of course,
not all instruction fits neatly into this framework, but it has significantly wide applicability.

Authoring systems in the Multiple Knowledge Types category are diverse in many
respects, but they all use a knowledge/skill classification scheme and represent and instruct
differentially based on knowledge type. Also, they all cite classic instructional design literature
as part of the basis for their pedagogical approach. For the student, tutors built with these
systems are similar in character to those in the Multiple Teaching Strategies category. The
main difference is for the authors, whose task is more constrained, and thus both easier and less
flexible.

6. Special purpose systems

In this category are authoring tools that specialize in particular tasks or domains. Systems in the
Device Simulation and Multiple Knowledge Types categories are also for particular types of
tasks, but systems in the Special Purpose category focus on more specific, less general tasks.
There is a rough principle that authoring tools tailored for specific tasks or instructional
situations can better support the needs of the student and author for those situations. Systems in
this category were designed by starting with a particular intelligent tutor design, and
generalizing it to create a framework for authoring similar tutors. Authoring is much more
template-like than in other categories of authoring tools. Authors are usually given prototypical
examples that help them fill in the blanks. One potential problem with special purpose
authoring is that once a task and its instructional approach have been codified enough to become
a template, the resulting system reflects a very particular approach to representing and teaching
that task; one that may only appeal to a limited authoring audience. On the other hand,
preferred design and pedagogical principles can be strictly enforced, since the author has no
influence over these aspects.

Since the only thing that systems in this category have in common is that they support
particular types of tasks or domains, we can not say anything in general about the types of tutors
built or about students’ experience using the tutors.

7. Intelligent/adaptive hypermedia

As adaptive hypermedia systems and web-based tutors become more sophisticated, they
increasingly incorporate methods and models from the field of intelligent tutoring. Since these
systems and their authoring tools are becoming more predominant, I have created a separate
category for them. The functions of these systems overlap with those from the Curriculum
Sequencing and Tutoring Strategies categories above (depending on whether the focus is on
instruction at the macro or micro level). As is the case with most web-based systems today, the
level of interactivity and fidelity available to the student is low for tutors built with these
authoring tools. Unlike systems in the other categories, these systems must manage the
hyperlinks between units of content (as well as the form and sequencing of the content itself).
The links available to the student can be intelligently filtered, sorted, and annotated based on a

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

105

student model or profile (Brusilovsky 1998). Link filtering can be based on prerequisites,
cognitive load, topic appropriateness, difficulty, etc.

HOW ARE THE PARTS OF AN ITS AUTHORED?

Having described ITS authoring tools in the concrete terms of what types of tutors they can
build, I will move on to describe features of the authoring tools themselves. ITSs are often
described as having four main components: the student interface, the domain model, the
teaching model, and the student model. Though this categorization is not always sufficient to
describe an ITS, the functionality of ITS authoring tools can best be described in terms of
authoring these four components.

Authoring the interface

Interface design is the one area where traditional multimedia authoring tools excel over ITS
authoring tools. This is probably because building an interface construction kit is quite time
consuming. Since basic graphics authoring is a "solved problem" most ITS authoring
researchers have not prioritized the effort need to build full graphics construction tools.
However, the experience of our research team has indicated that customizing the tutorial’s
interface is a priority for authors (Murray 1998). Also, constraining the student interface to pre-
defined screens and layouts severely constrains the types of tasks and interactions that an ITS
can have with the student.

Three of the authoring systems, RIDES, SIMQUEST, and Eon, allow authors to construct
the tutoring system’s interface completely from scratch, using interface objects such as buttons,
text, sliders, imported graphics, movies, and low level "drawing" objects. The interface objects
in these systems are "live," in that they can be scripted to respond to user and program generated
events, and their properties (color, position, etc.) can be set to depend on other values in the
tutor. With the RIDES system the author can define components, sub-components, and physical
connections such as wires and pipes (described later). In the Eon system authors define
graphical screen ’templates’ and the system automatically creates a database for holding the
template contents. For instance if a screen containing a movie, a question, and an explanation
was authored, the author could use a data entry tool to easily fill in the text and movie names for
dozens of these interactive screens.10

Features that actively assist the author in designing an ITS interface, for example by
analyzing the interface design for clarity and usability, have not yet been included in ITS
authoring systems. The vast majority of authoring systems assure reasonable interface designs
simply by pre-defining the student interface--i.e. by not providing interface design features at
all.

Authoring the interface, though more flexible, has the negative side effects of freeing
authors to design poor interfaces, and adding to the list of skills that an author must have.11 The
MetaLinks system addresses this tradeoff by allowing the author to customize the layout by
selecting from two menus. The first menu lists purposes of the page (e.g. glossary, explanation,
chapter introduction, etc.) and second menu lists layout types (e.g. pictures in upper right; first
picture above the main text with other pictures half size at the bottom, etc.). MetaLinks
combines these two parameters to determine the overall layout and look and feel of the page.

Systems in the Intelligent Hypermedia category offload the job of displaying the interface
to the web browser. Though no interface authoring is allowed (or needed) for these systems, the
layout capabilities of web browsers make it easy to generate web pages with a fair degree of
adaptability with little effort.

10 The Eon system also has a fairly elaborate set of interface widgets, including hot spots, graphs, tables,
clocks, and hierarchical text.
11 Building the interface for "user friendly" software of any type can take from 50% to 90% of the entire
project resources. This is true for projects where interfaces are built using authoring tools as well as with
programmed systems.

Murray

106

Authoring the domain model

ITSs contain representations of curriculum knowledge, simulation models, and problem solving
expertise. Authoring tools have been built for each of these domain model categories, as
described below.

Models of curriculum knowledge and structures.

Several authoring systems include tools for visualizing and authoring content objects networks
(including IDE, Eon, RIDES, and CREAM-Tools). These tools help the author visualize the
relationships between curriculum elements (such as topics, courses, concepts, and procedures)
and allow a bird’s eye view of the subject matter. Some tools are limited to strict hierarchical
representations of courses, modules, lessons, topics, etc., but most allow more free-formed
network representations. The layout of nodes in a hierarchical representation is automatic,
while for network representations authors must position the nodes themselves.

Curriculum knowledge can include knowledge about the pedagogically relevant properties
of topics, such as their importance and difficulty. Almost all of the authoring tools in the
Curriculum Sequencing, Tutoring strategies, and Multiple Knowledge Types categories include
the ability to author topic properties. Several systems (including IDE, IRIS, and Cream-Tools)
provide tools for authoring instructional objectives separately from topics.

Simulations and models and of the world.

RIDES and SIMQUEST include sophisticated WYSIWYG tools for building models of devices
and other physical phenomena. In RIDES authors create atomic components, such as switches,
levers, pipes, electronic black boxes, etc., each of which have properties (such as color, voltage,
on/off state) and the ability to connect with other components (via input and output
connections). Components are joined to form larger components. Rules and constraints are
authored to specify how each component affects others (e.g. how a pressure meter value effects
a pneumatic valve position).

While simulations in RIDES are based on device components (and properties) and their
connections, simulations in SIMQUEST are based on an authored model, i.e. a set of equations.
Devices and other physical phenomena are constructed in SIMQUEST using simple graphical
objects, and the properties (size, location, color, etc.) of these objects are linked to variables in
the model. While SIMQUEST is more cumbersome that RIDES for authoring devices with
many parts, SIMQUEST can more easily model natural phenomena such as in physics and
meteorology. Also, while RIDES is geared toward training situations, SIMQUEST is geared
toward teaching conceptual understanding. It has features for providing explanations of
phenomena, exploratory and hypothesis generation learning activities, and instructional
sequences based on a "model evolution" paradigm (White & Frederiksen 1995).

Models of domain expertise.

Domain expertise can include several types of knowledge, including problem solving expertise,
procedural skills, concepts, and facts.

Authoring systems in the Curriculum Sequencing, Tutoring Strategies, and Multiple
Knowledge Types categories allow authors to represent simple facts, relationships, and
procedures. Facts and relationships are stored as associations (e.g. the color of X is Y, A is the
capital of B). Simple procedures are stored as a sequence of steps, and some systems have the
ability to author sub-procedures. Most systems that use content networks incorporate domain
information into the model of curriculum structures. For example, a topic network can relate
concepts to sub-concepts (with Is-a links) and procedures to sub-procedures. This type of
information is both content (i.e. the student should learn the sub-steps of a maintenance
procedure, and the fact that a mushroom Is-a type of fungus) and curriculum specification (since

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

107

the teaching strategy may teach about siblings before parents and sub-steps before general
steps).

Procedural expertise for device operation and other procedures is represented using simple
script-like representations with steps, sub-steps, and limited decision branches More
complicated procedural skills and problem solving skills require the production-rule-based
representation used in expert systems (or a similarly complex formalism, such as constraints).
The PUPS and Demonstr8 systems facilitate the authoring of production rules (Demonstr8 uses
an example-based method described later). D3 Trainer re-uses the production system rules
authored using the D3 expert system shell (Training Express uses a similar method). Both of
these systems provide authoring support for associating hints and explanations with each
production rule. LEAP allows users to author dialog grammars, which are similar in complexity
to production rules.

As is the case with other AI systems, the authoring of facts, relationships, and simple
procedures is relatively straightforward. For domain expertise modeled with rules, grammars,
or constraints, the authoring is much more demanding. Authoring tools for these types of
representations have not been shown to be usable for non-programmers.

Domain Knowledge Types

As mentioned above, systems in the Multiple Knowledge Types category distinguish different
knowledge types and have different knowledge representation schemes and different teaching
strategies for each knowledge type. This structure guides and constrains authoring. The DNA
system is used to author symbolic (factual), conceptual, and procedural knowledge. These
knowledge types are related by "what, how, and why" links. For example, an author creating a
curriculum unit for "standard deviation" is prompted to create additional content describing
"how" to calculate it (procedure), "why" it is important (concept), and "what" it is used for
(fact).

XAIDA provides maintenance training in four areas: the physical characteristics of a
device, its theory of operation, operating and maintenance procedures, and troubleshooting.12

Semantic networks are used to represent physical characteristics and operation/maintenance
procedures; causal reasoning schemes are used to represent theory of operation, and fault trees
are used to represent troubleshooting expertise. DNA uses a single representational framework
for its three types (symbolic, procedural, and conceptual): a semantic network that includes
GOMS (goals, operators, methods, and selection rules) inspired link types to represent
procedural and rule-like information as well as more common is-a, part-of, and causal
relationships between knowledge elements. CREAM-Tools and IRIS use more elaborate
systems. CREAM-Tools use different vocabularies for learned capabilities vs. behavioral
objectives. It uses Gagne’s five categories of learned capabilities, Bloom’s six-level
classification of learning objectives (further divided into 31 terms), and a large vocabulary of
relationships between these elements. IRIS uses different vocabularies for the pedagogical
description of domain knowledge vs. the performance specification of domain knowledge. It
also uses both Gagne’s and Bloom’s descriptive vocabularies.

Authoring the tutoring model

Tutoring strategies specify how content is sequenced, what type of feedback to give, when and
how to coach, explain, remediate, summarize, give a problem, etc. A variety of
representational methods are used to model tutoring expertise, including procedures, plans,
constraints, and rules. However, the vast majority of ITS authoring tools include a fixed, i.e.
non-authorable, tutoring model. Eon, COCA, REDEEM, IDE, and GTE allow authoring of the
pedagogical model. COCA uses a rule-based representational method, and the author uses pull-
down menus to specify the right and left-hand components of IF-THEN rules. Eon uses a
flowline-based graphical programming language that allows the user to author arbitrary

12 Tools for the last two categories are only partially complete.

Murray

108

instructional procedures. For both of these systems the flexibility comes at the price of ease of
use, and no guidance is given to help the author create effective tutoring strategies. REDEEM
has a fixed rule set defining the pedagogical behavior, but authors can define their own
"teaching strategies," which are settings for key pedagogical parameters such as "amount of
student choice," "preference for specific (vs. general) information," and "amount of feedback."
For example, a strategy called "Advanced learners " might have high student choice, low
preference for specific information, and medium feedback.

Plan-based systems. Several systems (including IRIS, GTE, IDE, and REDEEM) include
plan-based mechanisms with multi level hierarchical representation of instructional objectives,
strategies, and tasks (various other terms are used such as goals, events, and actions). For
example, the IRIS framework includes three levels: cognitive processes, instructional events,
and instructional actions. IDE is unique in allowing authors to specify rationales for each
planning rule, so that each rule can be justified by a specific pedagogical theory. The plan rules
in some systems are fixed but IDE and GTE allow authors to type in plan rules that define a
hierarchy of sub-tasks. For example: "To Teach Functions => 1: Present Function, 2: Teach
Linked Processes, 3: Teach Sub-Functions, 4. Present Summary." The item "Teach Linked
Processes" may be further defined using another rule. The authoring and visualization tools
provided for such systems are minimal, however, and the authoring task requires significant
programming or knowledge engineering skills. (See Major 1995 and Murray 1998 for
discussions of tradeoffs among tutoring representation methods.)

Multiple strategies. Some systems include multiple teaching strategies and dynamically
choose the appropriate strategy based on content and user characteristics. Systems in the
Multiple Knowledge Types and Simulation categories have a handful of relatively simple
teaching strategies, one for each type of task or knowledge recognized by the system. For
example, a different strategy would be used to teach facts, procedures, and concepts. There is
no strategy authoring for these systems. The REDEEM and Eon systems allow authors to
define multiple strategies and "meta-strategies" for dynamically selecting among multiple
strategies.

Meta-strategies in REDEEM are easily authored. They are defined via a set of sliders that
set key pedagogical parameters (such as the depth of hints, and whether prerequisites are
required). REDEEM steps authors through a set of multiple-choice questions which determine
the conditions under which each defined teaching strategy is used. For example, for the
"Advanced Learner" strategy above the author would select the conditions (or triggers) for using
this strategy, e.g. when the student is doing well, when the material was previously summarized,
and when the content is not very difficult. Eon meta-strategies combine the authoring of meta-
strategy triggers, as in REDEEM’s meta-strategies, with parameterization values, as in
REDEEM’s strategy authoring, with the added flexibility of allowing the author to define which
variables appear in the sliders.

Tutorial action vocabularies. Those developing systems in the Tutoring Strategies
category (and many ITS "shells") have developed elaborate vocabularies for describing
instructional methods. Tutoring strategies or rules are then used to determine the type of action
needed at any given time. Example tutorial actions include hint, explain, remediate, summarize,
practice, select-a-topic, and reflect-on-exercise. Most such systems have a layered vocabulary
in which some actions expand into other actions (e.g. active-prior-knowledge expands into
recall-prior-knowledge and/or use-prior-knowledge). The GTE system, for example, has
several hundred items in its library of instructional tasks and methods. (See Mizoguchi et a.
1996, Van Marcke 1992, and Murray 1996b for example vocabularies.)

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

109

Authoring the student model

Almost all of the systems mentioned in this paper use "overlay" student models; i.e. topics or
procedural steps are assigned a value based on student performance. XAIDA and Eon allow the
author to define misconceptions as well as topics, so that the tutor can evaluate and remediate
common errors. Demonstr8 seems to be the only system using a "runnable" student model (i.e.
one that can be used to predict and simulate student behavior). Various AI modeling techniques
have been incorporated into overlay models, including fuzzy logic (Goodkovsky et al. 1994)
and Bayesian networks (Collins et al. 1996). Eon seems to be the only system that allows the
student model to be authored, i.e. it allows the author to specify how the values of topics are
calculated based on student responses and actions. A "layered overlay" student model is used,
which includes overlay values at several layers: interface events, presentations, topic levels,
topics, and lessons (in contrast to other systems that have only one layer for topics).13 The
author specifies simple expressions at each level that define how the overlay values at one level
are calculated based on the next lower level.

WHAT AUTHORING AND KNOWLEDGE ACQUISITION METHODS HAVE BEEN
USED?

Next I will discuss general methods used by authoring systems to simplify and automate
authoring and knowledge acquisition. These methods are general, in that they could be used to
improve authoring for any of the four main parts of an ITS described above, and could be used
in an authoring tool for any of the seven categories of authoring tools described earlier.

Authoring tool goals.

Before enumerating the authoring methods used, I will summarize the overall goals that
motivate these methods. Generally speaking, authoring tools have these goals, in rough order of
importance or predominance:

1. Decrease the effort (time, cost, and/or other resources) for making intelligent tutors;
2. Decrease the skill threshold for building intelligent tutors (i.e. allow more people to take

part in the design process);
3. Help the designer/author articulate or organize her domain or pedagogical knowledge;
4. Support (i.e. structure, recommend, or enforce) good design principles (in pedagogy, user

interface, etc.);
5. Enable rapid prototyping of intelligent tutor designs (i.e. allow quick design/evaluation

cycles of prototype software).14

Authoring tools achieve these goals using a number of methods or features. Most of the
methods address several of the above goals (for example, a feature that helps the designer
articulate a teaching strategy will also decrease the effort and skill threshold of building a tutor).
I describe eight methods in detail, listed in the box below, and then briefly mention several other
methods or capabilities seen in authoring tools.

13 Eon’s Student Model Editor, while fully implemented, has been only minimally tested.
14 Another goal sometimes cited but yet to be achieved is to use the rapid prototyping capability of
authoring tools to evaluate alternate instructional methods and add to our inadequate body of
understanding of how to match instructional methods with learning scenarios. Yet another possible goal
is helping the author learn something about pedagogy, instructional design, or knowledge representation,
and thus become a better author as they use the system.

Murray

110

1) Scaffolding knowledge articulation with models
2) Embedded knowledge and default knowledge
3) Knowledge management
4) Knowledge visualization
5) Knowledge elicitation and work flow management
6) Knowledge and design validation
7) Knowledge re-use
8) Automated knowledge creation

1. Scaffolding knowledge articulation with models

ITS Authoring is both a design process and a process of knowledge articulation. The most
significant method that authoring tools employ to allow non-programmers to build tutors is to
scaffold the task by incorporating a particular model or framework. Simplification by
restricting the universe of what can be built is a somewhat obvious method since that is what all
software applications do (e.g. an electronic address book is easier to use than a data base
application, which in turn is easier than programming from scratch). Providing authors with
clear frameworks or templates helps them organize and structure the authored information.
Though obvious, it is worth highlighting because one of the major differences between
authoring tools is the degree to which their models constrain the product (see the later section on
design tradeoffs). Systems in the Special Purpose category are the most constraining. IDLE, for
example, presents users with a fixed template within which to fill in the blanks.

A significant part of authoring an ITS (or any instructional system) is the systematic
decomposition of the subject matter into a set of related elements (usually a hierarchy). Each
authoring system provides tools or cues which assist the author in this (usually top-down)
process of breaking down and elaborating the content to the necessary level of detail according
to a particular model of instructional elements and their relationships.

2. Embedded knowledge and default knowledge

One way to make authoring easier and more powerful is to embed knowledge right into the
system. "Embedded knowledge" means knowledge that is pre-wired and non-authorable. This
knowledge can be passive or active. Passive knowledge is knowledge that is implied as part of
the structure or constraints imposed by an authoring system. For instance the systems in the
Multiple Knowledge Types category have instructional design principles embedded into their
structure (e.g. that concepts have necessary and sufficient attributes). Authoring systems that
highly constrain ITS design, such as those in the Special Purpose category, contain substantial
passive embedded knowledge.

Active embedded knowledge is runnable and produces some result. For example,
REDEEM contains a sophisticated rule-based instructional strategy that the author can effect
through the use of strategy parameters, but otherwise can not alter. XAIDA uses embedded
expertise to generate 19 different types of practice questions for procedural knowledge. The
author can specify when to use each type for a particular instructional module.

Special Purpose systems and several others (including XAIDA and REDEEM) make use of
reasonable default values that allow the author to postpone entering some information but still
be able to test-run the tutor. Default values in templates can also provide examples of the type
of information to be entered, and thus be informative as well as functional. In REDEEM even
though the author can modify the teaching strategy, the system has a robust default tutoring
method so that a tutor can be authored and run without ever defining teaching strategies. IDLE-
Tool scaffolds authoring using a "guided case adaptation" method. Associated with every data-
entry template screen is sample input from a prototypical IDLE tutor. Thus authoring is then
more like adapting a similar case to fit the needs of a new tutor than starting from scratch.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

111

3. Knowledge management

ITSs are elaborate systems and authoring them involves managing a large amount of complex
information. A number of common user interface techniques are used by various authoring
systems to assist with knowledge management and organization. Simplifying input through the
use of templates, data entry forms, and pop-up menus is quite common. Whenever the range of
possible input values can be limited to a finite set, tools should be provided to allow authors to
choose rather than type.

ITSs are particularly difficult to author because of the many diverse and interconnected
types of information they contain. A primary tenet of ITS design is to have separate
representations of content (what to teach) and tutoring strategy (how to teach it), but these can
not be made completely independent. Even if a system successfully encapsulates certain aspects
in independent modules there are still complex conceptual relationships that the author must be
aware of. For example, the structure of the student model depends on the structure of the
domain model; the form of the teaching strategies depends on the structure of the domain
model; the actions in the teaching strategies depend on the form of the tutor’s student interface.
Navigation aides that let authors move between various related pieces of information and
different representations of the same information have been implemented, but are not nearly as
common as in off-the-shelf multimedia authoring and CAD software. For example, if different
parts of a tutoring strategy refer to topics, student model rules, and interface components, the
author should be able to click on the associated item in the strategy authoring tool and be
brought directly to the topic authoring tool, student model authoring tool, or interface authoring
tool.

Tools that allow authors to zoom in and out between the details and the big picture can help
manage large information spaces. Object browsers, which allow authors to scroll through all of
the objects of one type and inspect properties and/or relationships with other objects are
available in several of the systems (including RIDES, D3 Trainer, IRIS, Eon, SMISLE, and
CREAM-Tools). Tools for managing evolving software components and versions are important
to most off-the-shelf software engineering design environments, but these features have not yet
been incorporated into ITS authoring tools.

4. Knowledge visualization

Perhaps the most powerful way to help authors understand and comprehend the large amounts
of complexly interconnected knowledge is with powerful visualization tools. Unfortunately,
building the user interface is usually far and away the most labor intensive part of programming
any interactive software. The level of interactivity and visualization in ITS authoring tools is
still quite primitive as compared with off-the-shelf productivity software.

The topic or curriculum network authoring tools mentioned previously are the most
common knowledge visualization tools in ITS authoring. LAT has tools that help authors
visualize conversational grammars. LAT’s grammars, which represent how a customer contact
employee should respond to service calls of various types, are composed of individual scripts
that define the possible actions (things to say to a customer) and decisions points of a thematic
unit in the conversation (such as "processing a discounted sales order"). Each script can invoke
other scripts. A relatively simple set of scripts can result in a large and complex set of possible
conversational scenarios. LAT provides visualization tools that allow the author to see both the
static structure of the scripts and the run-time dynamics that simulate possible tutorial scenarios.
LAT designers also stress the importance of providing multiple views of authored content.

Little currently exists to allow authors to visualize teaching strategies. Eon uses a highly
visual flow-line metaphor for authoring tutoring strategies. Strategy authoring in REDEEM
consists of setting parameters, so strategies can be easily visualized with a screen of sliders and
radio buttons.

Murray

112

5. Knowledge elicitation and work-flow management

Knowledge acquisition is widely acknowledged as the limiting factor or bottleneck in building
AI systems. A number of techniques have been used for extracting knowledge from experts,
most of which are "manual" methods that involve a knowledge engineer interviewing or
observing the expert (Hoffman 1987). Software tools have been developed to scaffold or
automate some knowledge acquisition (Boose 1988; Shaw & Gaines 1986). Many of the
automated techniques use contrived tasks such as sorting or ranking to find conceptual
dependencies, logical entailments, or other patterns in the data, which are not generally
applicable to acquiring domain or teaching knowledge for ITSs. However, the method of
interactive elicitation of knowledge to fill in a pre-structured knowledge base has been used in
ITS authoring, as described below. As mentioned previously, using an authoring tool to build
an ITS involves both knowledge acquisition and design processes. Authors need to be
supported not only in filling in a knowledge base, but in the overall ITS design process. This
includes designing the interface, domain model, and teaching strategies; conceptualizing the
interaction among several knowledge bases; and the iterative process of user testing and
refinement. Interactive prompts and dialogs can help with work-flow management (or
"performance support"), as well as knowledge elicitation.

ISD-Expert (a precursor to ED-EXPERT) led the author through a sometimes
excruciatingly long dialog to create an entire course in a top-down manner. The dialog started
with general questions such as "what is the title of the module?" and "what is the average
motivation for the target audience?" Then a series of questions fleshed out the content and
behavioral objectives in a top down fashion, and included questions for each content unit such
as "which of the following describes what the student will learn: a. What is it? b. How to do it;
c. How does it work?" The potential benefit of this system was that, since the authoring
involves responding to specific prompts, the author did not have to make any high-level design
decisions (only low level and concrete decisions). Also the author did not have to know
instructional design theory. But there were two serious drawbacks to the system. First, authors
felt too constrained by the fixed sequence of data entry. The design of complex systems usually
requires a mixture of top down and bottom up design (i.e. "opportunistic" design). Authors
need to flesh out content in an order that makes sense to them, and to a depth that makes sense
to them. The second problem with such highly constrained dialogs is that the more a system
constrains data entry the more essential it is that the underlying model be accurate and complete.
But instructional theories are neither entirely accurate nor entirely complete, and each author
may have her own style or preferences. It is often better for a system to offer suggestions but
allow the author to override the default design decisions. REDEEM’s meta-strategy authoring
tool uses an automated knowledge elicitation dialog that is less restrictive. First, the dialog is
limited to defining the meta-strategy parameters for a particular strategy, and the author chooses
when to initiate this dialog. Second, the dialog consists of a series of screens rather than a series
of text-based questions. Each screen has a data entry form for several parameters, and includes
default choices for these parameters.

DNA uses a semi-structured interactive dialog to elicit domain knowledge from a SME
(subject matter expert) (a process called cognitive task analysis). As mentioned earlier, DNA
can elicit curriculum elements of three interrelated types: factual ("symbolic knowledge"),
procedural, and conceptual. Thus, as the SME is defining a curriculum element he is prompted
for the existence of related facts, concepts, and procedures. Questions such as "What is the
definition of [a term used in a procedure]" and "Why is [some fact] important" prompt the SME
to continue to flesh out the content to include all three knowledge types. The process is called
"semi-structured" elicitation because the questions are presented as options on the design
screen, allowing the author to choose which one to answer next (and which ones to ignore).

Expert-CML is designed to scaffold the instructional design process by providing advice
that is sufficient for the novice user but does not hinder the expert user. A rule-base of over 100
rules provides advice in two forms. The first suggests what to do next (similar to DNA above)
and the second points out possible errors in the tutor (as described below). The advice is shown
in a status bar at the bottom of the screen, where the author can use it or choose to ignore it.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

113

Also, the author can turn off certain instructional design rules to permanently override the
system’s suggestions. REDEEM includes an agenda mechanism that keeps track of incomplete
authoring tasks and prompts the user to complete them.

6. Knowledge and design validation

Each authoring system makes different compromises along the spectrum of free-form design to
constrained design. More open-ended systems allow for more flexibility in both the form of the
content and the sequence of steps taken to design the tutor. However, the more flexibility given
to the author the higher the probability that they will enter something inconsistent, inaccurate, or
something that is at odds with the principles of good instructional design (according to whatever
your instructional theory happens to be). One way to allow flexible authoring while
maintaining quality is to allow the author to enter what she wants in the way she wants, but to
include mechanisms that check the authored information for accuracy, consistency,
completeness, and effectiveness. As mentioned above, the Expert-CML system includes an
expert system that offers this type of content evaluation. For example, rules exist that inform
the author of the following: when the author’s estimate of the time to complete a lesson is at
odds with the accumulated times given for the component parts; when a summary or
introduction might be needed to break up a long sequence of new material; when the objectives
of a lesson are not adequately covered by the lesson’s instructional components; and when a
lesson’s general cognitive level (according to Bloom’s Taxonomy) does not match with the
cognitive levels of the lesson’s objectives.

The DNA system deals with content accuracy and completeness by facilitating the process
of having several SMEs review the knowledge structures authored by the primary author/SME.
The reviewing SMEs can edit and comment on the original knowledge base.

Inconsistencies in authored information that manifest at run time might be invisible during
authoring. REDEEM includes a conflict resolution component that prioritizes instructional
rules when they conflict. For example, one rule may look at student mastery and decide to
decrease the feedback level, while another might look at topic difficulty and want to increase the
feedback level. The system automatically determines which rule takes priority based on a set of
instructionally plausible heuristics. 15 RIDES includes a consistency checker : integrated
debugger/stepper that allows authors to run and debug their device simulations.

7. Knowledge re-use

Authoring tools have the potential to increase the efficiency of building ITSs through re-use of
common elements. To date most ITS authoring tools have not been used to build enough ITSs
to experience this benefit. Realizing re-use would require a resource library structure, where
authored topics, activities, strategies, interface components, and/or domain knowledge could be
stored independently from a tutor, and loaded from this library into any tutor. Sparks et al
(1999--- the LAT system) discuss the implications of object libraries for work reduction,
reduced maintenance effort; and increased consistency among tutors. However, they note that
supporting re-use may have considerable costs in terms of system complexity and ease of use.

REDEEM is built to take advantage of courseware libraries. The content and interactive
screens of a REDEEM ITS are not authored using REDEEM, but are authored using ToolBook,
an off-the-shelf multimedia authoring tool. ToolBook authored content is exported to a library
and from there it is imported by REDEEM. Component libraries in SIMQUEST included
reusable interface components as well as reusable content objects.

15 In this example the instructional rules are not really "inconsistent," in that it is perfectly acceptable to
create strategies that will result in such run-time conflicts.

Murray

114

8. Automated knowledge creation

Some ITS authoring systems infer or create new knowledge or information from scratch, saving
the author from having to derive, articulate, and enter this information. RIDES and Demonstr8
use example-based programming techniques to infer general procedures from specific examples
given by the author. RIDES creates a device’s operational procedure by recording the author’s
actions as he uses the device simulation to illustrate the procedure. Demonstr8’s method, which
generalizes the elements of the authors actions to produce expert system production rules, is
more powerful but potentially has more limited application. The DIAG system infers a large
body of device fault diagnosis information from a relatively small number of qualitative failure
symptoms entered by the author.

Systems in the Device Simulation and Expert System categories are sophisticated enough
to generate new problems and their solutions from general principles or rules, thus saving the
author from having to enter every problem and its solution.

General Authoring Features

Though the authoring systems described in this paper have a variety of features, a number of
features have emerged as being generally important to robust usability, as described below.

1. WYSIWIG editing and rapid testing. Authors should be able to easily see and test both the
static visual elements of the tutor and the dynamic run-time behavior of a tutor. Easy movement
back and forth from editing to test-run modes facilitates rapid prototyping.

2. Flexible, opportunistic design. ITS authoring tools should be designed to work best for
those who have had some training. Features that make it easy for a first-time user to get to work
should not get in the way of serious longer term use. Tools should allow for a mixture of top
down (starting with the abstract curriculum structure) and bottom up (starting with specific
screens and content) authoring for different design styles.

3. Visual reification. The conceptual and structural elements of a representational formalism
should be portrayed graphically with high visual fidelity if ITS Authoring systems are to be
used by non-programmers. Such user interfaces relieve working memory load by reifying the
underlying structures, and assist long term memory by providing reminders of this structure.
Also, multiple views (visual perspectives) of information are often needed.

4. Content modularity and re-usability. Instructional content should be represented and
authored modularly so that it can be used for multiple instructional purposes. Include library
structures for saving reusable components. Provide productivity tools that capitalize on
repetitive or template-like content. Provide tools that make it easy to browse, search for, and
reference content objects.

5. Customization, extensibility, and scriptabilty. A tool cannot anticipate everything a
designer will want. All modern design and authoring software provides for extensibility and
scripting. Scripting allows authors with moderate skills to create "generative" ITSs that
construct problems, explanation, hint, etc. on the fly.

6. Undo! Mundane features such as Undo, Copy/Paste, and Find can be extremely time
consuming to build into complex design software such as authoring tools, yet such features are
essential components of all robust usable software.

7. Administrative features. Though perhaps only two of the authoring tools (RIDES and
Electronic Trainer) have administrative facilities for such things as class rostering, grade
analysis and statistics, and generating progress reports, such features may be essential to the
eventual adoption of ITSs into mainstream education.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

115

To the above list I will add the following which, though not as generally accepted, I believe to
be important for building authoring tools that are both usable and powerful:

8. Include customizable representational formalisms. An authoring system will be based on
some underlying representational formalism, and any such formalism will satisfy the needs of
authoring some types of tutors yet not be appropriate for authoring other tutors. To achieve
greater flexibility, authoring tools should include the ability to customize the representational
formalism (this is discussed in a later section).

9. Anchor usability on familiar authoring paradigms, and facilitate evolution to more
powerful paradigms. For those used to building traditional computer-based instruction,
building intelligent tutors requires a conceptual shift from "story board" representations of
content to more modular knowledge based representations (Murray 1996). It is useful to have
some ITS authoring tools have a look and feel similar to common off-the-shelf CAI authoring
tools, and to provide features which allow a smooth transition from traditional authoring
paradigms to authoring more powerful intelligent tutors.

10. Facilitate design at a pedagogically relevant level of abstraction. Provide tools which
allow subject matter experts to author using primitives at the "pedagogical level" as well as the
media level (Murray 1996). Media level primitive are "graphic," "button," mouse click, etc.
Objects at the pedagogical level have instructional meaning, for example "hint," "explanation,"
"topic," "prerequisite," and "mastered."

HOW ARE AUTHORING SYSTEMS BUILT? -- DESIGN TRADE-OFFS.

In the previous sections I have characterized the range of tools and methods used by ITS
authoring systems. The wide variation among these systems should be evident to the reader.
The differences are in part due to different theories and models of knowledge and instruction,
but in large part can be attributed to different priorities and design tradeoffs. If one were in the
impossible position of choosing among all of these authoring tools for a specific job, or in the
position of intending to design a new ITS authoring tool from scratch, how would one decide
which of the tools, methods, and features were most important? Trying to build an authoring
tool that incorporates the "the whole enchilada" is impossible, not only because of the
prohibitive cost and complexity, but because the design decisions these systems are based on are
at odds with each other. For instance, increasing the flexibility or generality of a system comes
at the cost of usability.

A space of design tradeoffs

Figure 1 illustrates the space of factors leading to design tradeoffs for ITS authoring systems,
including breadth, depth, learnability, productivity, fidelity, and cost.16

16 The important metric of “instructional effectiveness” is not included in our metrics, because this
depends very much on how the authoring tool is used to produce a tutor. However it is also true that the
design of an authoring tool can have a tremendous effect on the instructional effectiveness of the systems
it is used to build.

Murray

116

Domain
Model

Tutoring
Strategy

Student
Model

Learning
Environment

Power/ Breadth

Flexibility Depth

Learnability
Usability Productivity

Fidelity

Cost

[The design space has 24 (6x4)

independent dimensions or axes.]

Figure 1: ITS Authoring Tool Design Tradeoffs

Power/flexibility and usability are usually at odds with each other. Power/flexibility has
two aspects: breadth (scope) and depth of knowledge. Breadth is how general the framework is
for building tutors for diverse subject areas and instructional approaches. Knowledge depth is
the depth to which a system can reason about and teach the knowledge, and the depth to which
it can infer a student’s knowledge and respond accordingly. Breadth and Depth are often at odds,
because one must often limit the generality of a system to be able to represent deep causal
knowledge. Usability also has two aspects: learnability and productivity. Learnability is how
easy a system is to learn how to use. Productivity is how quickly a trained user can enter
information and produce a tutoring system. Learnability and productivity are often at odds,
since a system that is designed to be picked up quickly by novices may not provide the powerful
features that experienced users need to efficiently produce large systems. Fidelity is the degree
to which a tutor perceptually and operationally matches its target domain.17 A 3-D immersive
environment has more visual fidelity than a 2D simulation. A learning environments that allows
the student to directly practice a task has more fidelity than one that merely describes and asks
questions about the task. Fidelity can be closely related to depth, since deeper knowledge
facilitates more realistic interactions, but it is possible for a system to have shallow knowledge
and high fidelity. Cost refers to the amount of resources needed to build the authoring system
(for this discussion the availability of personnel, expertise, and time are included in this
category). I will not say more about cost except to note the obvious fact that the resources
available to a software project greatly effect design decisions. Finally, Figure 1 illustrates that
all of the design factors mentioned above come into play for each ITS component separately---
domain model, tutoring strategy, student model, and learning environment. For example, an
authoring system can have a highly usable tool for authoring shallow student models and a not
so usable tool for authoring deep teaching strategies. (See Murray 1998 for more complete
discussion of how design tradeoffs effect the authoring of the domain, tutoring, and student
models)

The design space for ITS authoring tools is indeed huge. There is rough consensus on the
nature of the tradeoffs involved, but not on how to balance those tradeoffs to produce the most
effective and usable authoring systems. Questions that must be addressed include:

• How much should the author be constrained to a particular (favored) pedagogical model?
• Who are the prototypical authors who will use the system?
• What types of knowledge and skills should be modeled by the system?
• What is the source of the teaching and domain expertise?

17 Fidelity, depth, and cost are qualities of the tutor that an authoring system produces, while all of the
other design factors are about the authoring system itself.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

117

These questions must be answered to make the design decisions and compromises involved
in building an ITS authoring tool. Each authoring tool, no matter how general, will embody
particular assumptions and models and thus be more appropriate for building certain types of
ITSs than others. Before designing an ITS authoring tool it is best to be as explicit as possible
about the nature of the ITSs to be built. I discuss some of the design decisions in more detail
below.

General or special purpose authoring systems?

One of the most active areas of disagreement among the authoring tool research community
concerns the appropriate degree of generality for an authoring system. For example, the LAT
system is designed to only produce tutors to train customer service personnel how to respond to
customer inquiries. It is a general tool in that it can be used to create a customer service ITS for
a variety of products. An authoring tool that specializes in producing a very particular type of
ITS has many benefits. In principle, by severely constraining the universe of what can be
designed, an authoring system can have higher usability, higher fidelity, more depth, and be
more efficient. More constrained systems make it less likely for authors to enter incorrect,
inconsistent, or pedagogically poor content or teaching methods.

IDLE-Tool is designed to build tutors for "Investigate and Decide" learning environments.
Bell (1998, and Jona & Kass 1997) proposes a suite of special purpose authoring tools, each for
learning a particular type of complex task, such as Investigate and Decide, Run an Organization,
and Evidence Based Reporting. In Investigate and Decide environments learners are supported
in gathering data about a realistic case or scenario (such as a medical diagnosis), interpreting the
data, taking some action based on their hypothesis (such as prescribing medication), and
receiving feedback about their action (such as whether it helped the patient). The IDLE
authoring tool provides the author with a fixed template for representing the outcomes,
feedback, reference informant, and graphics. The task structure and the pedagogy for teaching
about the task are predefined based on (presumably) sound instructional principles. A formative
study found the tool to be too constraining. Its fill-in-the blanks style did not support the kind
of "big picture" view of the instructional scenario that can be important in designing
instructional scenarios. Bell and others are continuing to work toward authoring tools that
tightly constrain the authoring process but include adequate flexibility.

There are several issues related to tool generality. First, although "Investigate and Decide"
seems to be a very general type of task, the authoring system embodies a very specific
interpretation of that task and a fixed pedagogical model. Assuming there are a large number of
educators (mostly science and technology educators) who would be interested in building (or
using) an Investigate and Decide tutor for some topic, it is not clear how many of these would
find IDLE-Tool’s specific model agreeable. Bell’s formative study will lead to more flexible
and customizable systems, such as IMAP, which will inevitably require more skilled authors.
We can’t yet say where the most appropriate generality vs. usability line should be drawn for
these types of systems, but every new data point will help.

The LAT system paints a slightly clearer picture. Its conversational grammar approach to
customer service training seems more certain to be widely usable than IDLE-Tool’s template-
based approach to Investigate and Decide types of inquiry learning. This is partly because LAT
has a deeper and more general representation of the task. But it is also because the customer
contact task is more easily defined. I think that special purpose authoring tools will find much
wider appeal in "training" applications than "educational" applications. With training
applications there is wider agreement on the nature of the task and what the behavioral
objectives are, but in educational applications (which tend to address higher order thinking and
skills) there is much less agreement over exactly what and how to teach. The authoring tools in
the device simulation category are a good case in point. The task of training someone how to
operate and understand (at a basic level) how a piece of machinery works is very general and
there is a fair degree of agreement concerning effective training approaches. Consequently, the
RIDES system has seen the widest application of any of the authoring tools.

Murray

118

Research with XAIDA is pushing the generality vs. usability issue in interesting directions.
Its target user is much less sophisticated than RIDES’, which also teaches about device
operation and maintenance. This has lead to a number of design simplifications aimed at
usability. For instance, RIDES represents component interdependencies in terms of constraints
and event results, while XAIDA uses a less powerful but more felicitous cause-effect
framework. Compared to RIDES and the systems in the Domain Expert System category,
XAIDA has a relatively shallow knowledge representation (but it is still runnable or executable
knowledge---i.e. the system has limited "understanding" of what it is teaching). If looked at
separately each of XAIDA’s four knowledge types (physical characteristics, theory of operation,
operating and maintenance procedures, and troubleshooting) has a relatively shallow
representation. Yet its incorporation of four different knowledge types adds a degree of power
and generality. Thus XAIDA has been used to prototype tutors in a number of domains,
including several that are quite distant from the originally intended domain of equipment
operation and maintenance. These domains include algebra, medicine, computer literacy, and
biology.

DNA and ID-Expert rely on a similar combination of relatively shallow knowledge
representation and distinct knowledge types to achieve a high level of generality. The
preliminary successes of these systems indicate that the correct level of abstraction for
distinguishing different types of authoring tools may be more at the cognitive level of
knowledge types (such as concepts vs. procedures) than at the more surface level of task types
(such as investigate vs. advise).18

Up to this point I have shown how usability is at odds with the power/flexibility of an
authoring tool. The only method mentioned thus far that results in both powerful and usable
authoring tools is to limit them to particular domains or knowledge types. Another method, that
of creating "meta-authoring" environments, is described in a later section.

Who are the authors?

I have alluded to the fact that the nature of intended authors have a critical effect on the design
of an ITS authoring tool. Authors may need some skill in several areas in addition to expertise
in the subject matter: programming, instructional design, graphic design, and knowledge
engineering. Some systems, such as XAIDA, IDLE-Tool, and REDEEM, are aimed at authors
with very little training (from several hours to a day), so that any instructor could, theoretically,
built an ITS. This level of skill is on the order of an intermediate level user of a word processor
or spreadsheet program. Other systems, such as RIDES and Eon, assume that the author will be
more skilled. My own belief is that ITSs are complex systems and we should expect users to
have a reasonable degree of training in how to use them, on the order of database programming,
CAD-CAM authoring, 3-D modeling, or spread sheet macro scripting. There are many
thousands of people with proficient levels of these skills, as compared to the small number who
know how to program an ITS from scratch, so having ITS authoring tools aimed at this level of
usability is a substantial improvement. Some would like to bring the task of ITS authoring to
the average teacher. In contrast, I propose a model in which each company or school has one
person trained in using an ITS authoring tool. That person would work on a design team that
includes a domain expert, a graphics artist, and an instructional expert. The average teacher
should not be expected to design ITSs any more than the average teacher should be expected to
author a text book in their field. As with all user-focussed software, an effective ITS design will
require several test and re-design iterations to get it right, and all of this requires a significant
commitment on the part of the author(s).

It would appear that some believe that by using AI technology we can create authoring
tools that build tutors that are an order of magnitude more powerful and flexible than traditional
CAI, yet take an order of magnitude less time to develop. To me this seems overly ambitious,

18 It is also possible that an appropriate level of abstraction will similar to the "generic tasks" proposed in
the context of expert systems research (Chandrasekaran, B. 1986).

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

119

except for the case of special purpose authoring tools which could use a "mass production"
paradigm to easily turn out very similar systems.

Where do the teaching strategies come from?

Another area of active disagreement in the research community is the appropriate source of
instructional expertise. The question regards both embedded, fixed tutoring expertise and
authored tutoring expertise. Authoring tools are designed with certain instructional assumptions
and/or knowledge embedded into them, and the design of representations and tools reflect the
intended source of the expertise. There is very little agreement on this front, and the arguments
sometimes sound more religious than analytical. Below I present a somewhat hyperbolic
characterization of the arguments.

Some emphasize that the power to determine an ITS’s teaching strategy should rest with the
practicing teacher. After all, they are ones working "in the trenches." But others argue that
practicing teachers are, first, not very pedagogically adept on the average, and second, not very
good at articulating their knowledge. Systems in the Multiple Knowledge Types category rely
on instructional design theories. ID theories, though primarily prescriptive and lacking in
rigorous experimental verification, have stood the test of time in countless on- and off-line
industry and government training programs. Though their theories include the most practical
and operational prescriptions, some critique instructional design theorists as being "arm-chair"
researchers and systems thinkers. Some say that instruction via computers is too new to be able
to rely on existing theories, and that we need to rely on empirical evidence from educational
psychologists to determine which teaching strategies are most appropriate under various
conditions. But educational researchers are sometimes criticized for having amassed decades
worth of data which has lead to very few generally agreed upon operational principles. Perhaps
instructional settings are just too complex to hope for definitive data and analysis. Still others
maintain that traditional educational theory and research are based on outmoded behaviorist
theories that do not take into account the constructivist and situated nature of learning, and that
cognitive science might come to the rescue and show our ITSs how to teach. After all, they
know how the mind works (!). And finally there are some research groups who simply have the
right answer, and reference only their own home-grown theories of learning and instruction,
ignoring outside empirical or theoretical work.

It is too early to ignore any of the sources of inspiration for ITS teaching strategies:
practicing teachers, instructional designers, educational theorists, cognitive scientists, and
innovative mavericks. The best models will most probably come from a synthesis of theories
from several of these areas.

Flexible ontologies and meta-level authoring

As mentioned above, one method for maintaining both depth and usability in an ITS authoring
system is to forgo breadth, i.e. specialize the authoring tool for a specific type of domain or task.
Another approach, which has the potential of maintaining depth, breadth and usability, is the
meta-authoring approach. By a meta-authoring system I mean a general purpose authoring
system that could be used to build or configure special-purpose authoring systems. For example,
ITS authoring shells could be produced for science concepts, human service/customer contact
skills, language arts, and equipment maintenance instruction. One problem with current special
purpose authoring systems is that so many of them would have to be built to cover a reasonable
diversity of tasks or domains. A proliferation of special purpose tools, each with different
underlying frameworks and user interface conventions, will be hard to learn. Meta-authoring
allows for the proliferation of special-purpose shells with a common underlying structure, so
that inter-domain commonalties can be exploited in both content creation and in training the
authors. A meta-authoring system requires a relatively high level of skill to use, but relatively
few authors would use it. Most ITS authors would be using more usable special purpose
authoring systems.

Murray

120

Current special purpose systems were programmed from scratch. Yet there are many
common features among the diverse authoring tools described in this paper. A topic or
curriculum network authoring tool would be useful to almost any authoring tool, as would a
highly usable authoring tool for procedures or instructional strategies. Though very few of the
authoring systems have tools for constructing the user interface, an interface building tool would
be of use to all of them. Eon was designed as a meta-authoring tool, (as well as an authoring
tool) but this use has not been realized yet. Jona and Kass (1997) describe an approach similar
to meta-authoring, but in the context of ITS shells (architectures) rather than authoring tools.
Ritter & Blessing (1998) argue for a component-based architecture for ITSs, and champion
reusable software modules and standard module communication protocols. From an authoring
perspective, it may be possible to build tools that allow authors to put tutors together form
libraries of interoperable components.

An important aspect of meta-authoring is the ability to customize the conceptual
vocabulary or ontology used to represent knowledge. Many authoring systems use a semantic
network representation of content but they differ on the types of nodes and links used. Expert-
CML has a variety of common taxonomies for knowledge and learning objectives that the
author can choose from. The Eon system allows the user to customize the vocabulary of node
and link types in its topic network, the topic properties (such as importance and difficulty), and
the vocabularies used in the student model and strategy editors. Customizable vocabularies of
attributes or primitives are possible for teaching strategies, interface design, and student
modeling as well as domain knowledge.

ARE ITS AUTHORING SYSTEMS "REAL?" -- USE AND EVALUATION

In this section I address the pragmatic questions of use, evaluation, throughput, and availability
of ITS authoring tools. Availability is easy to describe. Two of the systems described here
have recently become commercial products: Electronic Trainer (a simplified cousin of ID-
Expert), and SIMQUEST. 19 Neither of these have seen widespread purchasing or use in real
educational situations as of yet. In addition some systems have been used by several groups
other than the research group that developed the system and may be available through special
arrangement.

Authoring tool use

One measure of the viability of an authoring tool is the number and variety of tutors it has been
used to build, and the degree to which the system has been used independent of the lab in which
it was developed. Of course, the fact that a system has not seen much use does not indicate that
its design is not viable. But, since making usable software requires design iterations based on
feedback from user and field tests, it is reasonable to assume that systems that have not been
widely used will require significant additional work to become usable. It is also important to
note that some systems are the latest in a series of efforts by a particular research group, so a
relatively new and untested system may be built with the cumulative expertise from previous
generations. For example RIDES is a third or fourth generation system and REDEEM,
Electronic Trainer, and Eon are second generation systems.

Table 3 shows a rough estimation of the degree to which various systems have been used.
Category 1 is for early prototypes that are not fully functional authoring systems, and have been
tested on a small number of "toy domains." Category 2 contains prototype systems that are
complete authoring tools, most of which have been used to build several complete tutors, but the
tutors were not used. Category 3 systems are a bit more robust or have seen more use than those
in category 2, and most have been used outside of the lab where they were built. Category 4

19 Commercialization requires additional levels of testing, bug-proofing, user documentation, and
interface perfection, that, all told, require an order of magnitude more effort that building a solid working
prototype. For the most part, the perceived demand for ITSs and ITS authoring tools has not been high
enough to justify risky commercialization attempts.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

121

systems have been used to build a dozen or more tutors, have built tutors that have been used in
real training situations, and have reached a stage of maturity in robustness and user
documentation where they have been used relatively independently of the authoring tool
designers.20 SIMQUEST and Training Express are in category 3 because they are robust
enough to be commercialized, however there does not seem to be evidence that they have been
used to build more than a dozen ITSs.

Table 3: Degree of use of ITS authoring tools

1. Early prototypes and proofs of concept D3 Trainer, Demonstr8, DIAG, Expert-CML, IRIS

2. Evaluated or used prototypes CREAM-Tools, DNA, Eon, GTE, IDLE-Tool, LAT

3. Moderately evaluated or used ISD-Expert/Training Express, REDEEM,

SIMQUEST, XAIDA

4. Heavily used (relatively) IDE, CALAT, RIDES

RIDES is currently the most fully developed system. It has been used to develop tutors or
components of tutors in a number of research efforts, most of which involved exporting the
technology to another lab. As well as producing tutors for a variety of types of equipment, these
efforts are investigating such issues as immersive VR training, real-time collaborative
environments, diagnostic expert systems, and web-based delivery (see Munro et al.1997,
Towne 1997).

Descriptions of some other system use profiles follows.

• CALAT has been used to build over 300 web-based "courseware packages" which are being
used for in-house training at NTT, where CALAT was developed.

• REDEEM: Has been used used to build a Genetics tutor consisting of 12 hours of on-line
content, which was used in a high school classroom.

• SMISLE (SIMQUEST’s predecessor) has been used to author half a dozen systems in
various introductory science domains.

• Eon has been used to build five prototype tutors covering a wide range of domain types and
instructional methods, including: a tutor that incorporates a Socratic teaching strategy to
remediate common misconceptions in science; a tutor that teaches a part of Japanese
language called “honorifics;” an open-ended learning-by-doing chemistry workbench
environment, and a tutor that uses a spiral teaching method to teach introductory physics
concepts.

• As mentioned above, XAIDA has been used to develop tutors in diverse domains, including
algebra, medicine, computer literacy, and biology, as well as device operation and
maintenance.

• IDLE-Tool underwent three informal trials: 21 graduate students produced 10 goal-based
scenario (GBS) tutors during a six week graduate seminar; 8 primary school teachers
produced four GBS tutors over a six week period; and eight graduate students produced
GBS tutors in another seminar over a three week period (results summarized below).

Authoring tool productivity

ITS authoring tools have the potential for decreasing the effort it takes to build instructional
systems or, with the same effort, increasing the adaptivity, depth, and effectiveness of
instructional systems. A very rough estimate of 300 hours of development time per hour of on-
line instruction is commonly used for the development time of traditional CAI. We have
indications of the development ratios for some ITS authoring tools. These numbers are very

20 Though IDE is one of the most heavily used systems, it was also one of the earliest. I believe IDE is
now a "legacy system," since it runs on obsolete software (NoteCards) and does not incorporate
multimedia capabilities that are now de rigueur.

Murray

122

hard to interpret, but give us hope that cost-effective ITS authoring is possible. One reason it is
hard to interpret these results is that they usually do not include the time for creating graphics.

Many hope to see ITS development times that are an order of magnitude less than the 300:1
CAI productivity ratio. ID-Expert’s goal is a 30:1 ratio. An informal analysis of Demonstr8
describes a model tracing multi-column addition or subtraction tutor being built in less than 20
minutes. XAIDA’s goal is for a 10:1 productivity ratio. Formative evaluations to date indicate
that in some situations a first-time XAIDA user can develop a 1-2 hour lesson in 3-4 days,
including training.

A sixteen month case study of three educators using KAFITS, the precursor to Eon, to
build a 41 topic tutor for high school Statics (representing about six hours of on-line instruction)
resulted in a 100:1 effort ratio. Analysis of time vs. development task and development role
yielded the following: 47% effort by the SME, 40 % by the "knowledge based managers", and
13% by the knowledge engineer. Also, design constituted about 15% of the total time, and
implementation the other 85%. A similar breakdown of authoring tasks for use of the CALAT
system yielded these estimates: planning 10%, design 50%, multimedia material creation 30%,
and testing and evaluation 10% of the total time. It was estimated that development time for
CALAT tutors was about the same as traditional, non-adaptive instructional systems.

Authoring tool evaluation

There have been relatively few evaluations of ITS authoring tools. This is in part because the
tools have numerous features and it is difficult to measure the effect of individual features and
difficult to create control situations against which to compare the results. Also, it could be
argued that it is sufficient to demonstrate that a variety of authors have successfully used an
authoring tool to produce a variety of ITSs that were actually used by students. There are few
authoring tools that have seen enough use to claim such an "existence proof." In addition,
existence proofs, while giving the field greater credibility, are of little help in addressing
specific research questions. Because ITS authoring tools are still relatively new, summative
evaluations, which ostensibly prove that an entire system "works," may be less valuable that
formative evaluations, which give indications of what parts of a system do and don’t work and
why. A number of qualitative and formative evaluation methods can be used (Murray 1993). A
summary of authoring tool evaluations follows.

A formative evaluation of KAFITS was mentioned above, as were estimates of CALAT’s
productivity, based informally on its widespread use. IDLE-Tool’s informal user trials were
mentioned above. Conclusions included the need for a higher level view of the curriculum and
more conceptually oriented (as opposed to interface or task oriented) help. Practicing teachers
using the system differed from the graduate students in their pedagogical competence and their
willingness to work within the limits of the template-based authoring. Users found the
example-based help feature very helpful.

REDEEM has not been evaluated yet, but its predecessor, COCA was. Ten teachers each
using COCA for 2 to 3 hours to build a tutor for the American Revolution. Teachers’ attitudes
regarding the ability of AI technology to simulate reasonable teaching strategies changed from
noncommittal to positive. However, many of the systems features were too complex for
teachers, and these problems lead to the design of REDEEM.

A formative evaluation of LEAP consisted of user participatory design sessions with three
authors from a population of target users. The users built a working body of courseware from
scratch, and maintained a large body of pre-existing courseware. Anecdotal usability data
indicated that the authoring tool was much easier and less error prone than previous text-based
methods used for knowledge elicitation. However, the authoring tool designers concluded that
they overestimated the level of experience that would be achieved by typical authors.

A preliminary evaluation of DNA compared the knowledge base of a "measures of central
tendency" (statistics) tutor, built using DNA’s automated knowledge elicitation, with the
knowledge base of a benchmark ITS for the same domain. The benchmark tutor was build from
scratch using a lengthy hand-coded cognitive task analysis, which took several months and
resulted in 78 "curriculum units" (topics). Three subjects used DNA to elicit their knowledge

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

123

about this domain, and the three resulting knowledge bases were compared with each other and
with the benchmark. Analysis of the results showed that the three authors had 25%, 49%, and
23% coverage of the 78 curriculum units, with a combined coverage of 62% over the total of
nine hours that the three experts used the system. That a collaborative authoring effort that took
nine hours resulted in 62% coverage of a knowledge base that took several months to code by
hand indicated that the DNA framework is viable.

By far, the most extensively evaluated ITS authoring tool has been XAIDA.21 Formative
data was taken as XAIDA was used in eight authoring field studies with an average of about 10
participants (mostly military training personnel) in each study. As mentioned, one result was
that a 1-2 hour lesson can be developed in 3-4 days. The framework was found appropriate for
a wide variety of domains, as mentioned above. Researchers noted a reluctance of some trainers
to reconceptualize their model of instruction from a linear lesson plan to the more modular one
used in the knowledge-based approach. In addition to formative evaluations of the authoring
tools, there have been 13 studies of students using tutors built with XAIDA. These have
indicated that tutors built with the XAIDA framework successfully promote mastery of a wide
range of subjects, and that students acquire robust cognitive structures if they are motivated
learners. Finally, researchers conducted an in-depth study of 17 participants’ attitudes and skills
as they learned to use XAIDA (only the physical characteristics shell). Several types of data
were gathered, including usability comments, attitudes, productivity metrics, and knowledge
base structural analyses. Results indicate that the tool can be used to author ITSs rapidly.
However, the training and evaluation focussed on low level authoring skills, and it was unclear
how limitations in higher level design and content analysis skills would effect authoring and the
adoption of such authoring tools by instructors.

CONCLUSIONS-- HOW EASY CAN IT BE?

It has been said that building explicit models of expertise is at the heart of AI work (Clancey
1986). Questions about building explicit models are also at the heart of ITS authoring, as we
will see. The main goal of an ITS authoring system is to make the process of building an ITS
easier. This ease translates into reduced cost and a decrease in the skill threshold for potential
authors. ITSs are complex systems containing embedded models of several types (roughly
characterized as domain, teaching, and student models). How easy could authoring an ITS be?
Asked another way, what types of tasks do people find relatively easy--what types of tasks can
be done without significant skills or training? And can authoring tools reduce the design
process to a (perhaps long) sequence of such easy tasks in such a way that they are independent
and the interrelations between these easy tasks does not add an order of magnitude to the
cognitive skills required? Entering known information into forms and templates is relatively
easy; answering prompted questions is easy; selecting from a list of options is relatively easy.
Establishing connections between individual items of information, such as prerequisite
relationships between topics, or connecting an explanation object with a graphic object, is a bit
more cognitively challenging, but still relatively easy. These all involve low-level information
and decisions. But, I would argue, it is not possible to author an ITS without considering the
big picture. This includes conceptualizing the intended audience and their needs;
reconceputalizing instruction so that it can be delivered flexibly for each student; and
decomposing content in a way that maintains coherence and consistence when it is
reconstructed and seen by a student, i.e. ITS authoring will usually involve modeling.
Understanding ITS authoring requires a conceptual separation of content from instructional
method--a reconceptualization of content as flexible and modular. This is very different from
designing the screens that a student will see and enumerating the possible paths a student can
take, as is done in designing traditional educational software.

21 Note however that for the most part, only the simplest of XAIDAs four knowledge types was authored
in these trials, i.e. physical characteristics.

Murray

124

Building an explicit model of anything is not an easy task, and requires analysis, synthesis,
and abstraction skills along with a healthy dose of creativity. Authoring tools can significantly
decrease the cognitive load involved in various design steps, but it is difficult to reduce the
entire design task to low level decisions that yield a quality product. ITSs are clearly not as
simple as date books, so an authoring tool analogous to an electronic ’Rolodex’ is not possible.
ITSs are user-oriented software systems that behave. Designing good ones involves iterative
test trials to make sure they work as intended. Testing software implies that it will be
debugged or modified. This means that the designer has to understand the relationship between
non-optimal runtime behavior and information inside the system. All of this leads to the
inevitable conclusion that, although authoring tools can scaffold both the underlying
representational structure and the design process itself, the author will still need to have an
adequate understanding of both the representational structure and the design process.22 Even
though an authoring tool might be able to reduce the process to simple atomic steps done in
isolation, some degree of holistic understanding and abstract thinking will eventually have to
come into play.23 As has been mentioned previously, this does not raise the bar unrealistically
high, since this level of knowledge and creative/analytical skill is used for many common jobs.
But training and commitment is required to do the job. Fortunately, it is sometimes reasonable
to expect an untrained SME or teacher to enter the bulk of the authored information, and then
hand the system over to a more highly trained person for completion.

A large scale review of US government-sponsored research and development in intelligent
tutoring systems, looking at 47 funded projects, found that one third of the total expenditure was
on the 11% of the projects developing authoring tools (Youngblut, 1995). The review
concluded that this level of funding might be premature because there were many basic research
issues in ITS needing to be resolved before authoring systems were generally applicable.
However, ITS authoring tools have matured substantially in the last half decade. Several are at
or near commercial quality. Though there are of course many unanswered questions in this
relatively new research area, it seems that there are three related major unknowns. The first is
the extent to which the difficult task of modeling can be scaffolded, as discussed above. The
second question, representing the other side of the coin, is the degree to which we can identify
instructional situations that can be embodied in special purpose authoring shells that are both
specific enough to make authoring template-based, yet general enough to be attractive to many
educators. Third is the larger question of whether intelligent tutoring systems will ever be in
demand enough to warrant the effort of building authoring tools for them. Those in the
authoring tools community see this as a chicken-egg problem, since the demand for ITSs
depends in part on their cost, and in part on their perceived effectiveness. Authoring tools
certainly reduce the cost, and they also will make it possible to build enough systems so that
formal and anecdotal evidence will accumulate regarding ITS effectiveness.

REFERENCES

Some of the references and citations in this paper are in non-standard format. Citations to the
major authoring tool projects are given by the tool name (e.g. RIDES) rather than the author of a
paper (e.g. Munro et al. 1997). References to these papers are shown in the table in the
Appendix, which is organized according to the authoring tool.

Anderson, J. R. & Pelletier, R. (1991). A development system for model-tracing tutors. In Proc.
of the International Conference on the Learning Sciences, Evanston, IL, pp. 1-8.

22 Tools can also be provided to assist with testing and debugging, as described earlier, but it is hard to
imagine a system that reduced the entire debugging process to simple steps.
23 I am not arguing against the merit of special purpose authoring tools, but against the idea that untrained
authors can create quality ITSs.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

125

Bell, B. (1998). Investigate and decide learning environments: Specializing task models for
authoring tools design. J. of the Learning Sciences, 7(1) pp. 65-106.Bloom, B. S. (1956).
Taxonomy of Educational Objectives, Vol. 1. New York: David McKay Co.

Boose, J. H. (1988). "A Survey of Knowledge Acquisition Techniques and Tools." 3rd AAAI-
Sponsored Knowledge Acquisition for Knowledge-Based Systems Workshop, November
1988, pg. 3.1-3.23. Banff, Canada.

Brusilovsky, P. (1998). Methods and Techniques of Adaptive Hypermedia. In P. Brusilovsky,
A. Kobsa, and J. Vassileva, editors, Adaptive Hypertext and Hypermedia, Chapter 1, pp. 1-
44, Kluwer Academic Publishers, The Netherlands, 1998.

Clancey, W. J. (1986). "Qualitative Student Models." In Annual Review of Computer Science,
pp. 381-450: Palo Alto, CA.

Chandrasekaran,B. (1986). Generic tasks in knowledge based reasoning: high-level building
blocks for expert system design. IEEE Expert, 1(3), pp. 23-30.

Collins, J.A., Greer, J.E., & Huang, S.H. "Adaptive assesment using granularity hierarchies and
Bayesian nets." Proceedings of the Third International Conference: ITS ’96. Frasson,
Gautheir & Lesgold (Eds). Springer, pp. 569-577.

Gagne, R. (1985). The Conditions of Learning and Theory of Instruction. New York: Holt,
Rinehard, and Winston.

Goodkovsky, V.A., Kirjutin, E.V. & Bulekov, A.A. (1994). Shell, tool, and technology for Pop
Class ITS production. In P. Brusilovsky, S. Dikareve, J.Greer & V. Pertrushin (Eds). Proc.
of East-West International Conference on Computer Technology in Education. Part 1, pp.
87-92. Crimea, Ukraine.

Goodyear, P. & Johnson, R. (1990). Knowledge-based authoring of knowledge-based
courseware. In Proc. of ICTE-7, Brussels:CEP Consultants LTD.

Hoffman, R. (1987). "The Problem of Extracting the Knowledge of Experts From the
Perspective of Experimental Psychology." AI Magazine, pp. 53-67, Summer 1987.

Jonassen, D.H. & Reeves, T.C (1996). Learning with Technology: Using Computers as
Cognitive Tools. In D.H. Jonassen, (Ed.) Handbook of Research on Educational
Communications and Technology. New York: Scholastic Press, Chapter 25.

Ikeda, M. & Mizoguchi, R. (1994). FITS: A Framework for ITS--A computational model of
tutoring. J. of Artificial Intelligence in Education 5(3) pp. 319-348.

Jona, M. & Kass, A. (1997). A Fully-Integrated Approach to Authoring Learning Environments:
Case Studies and Lessons Learned. In the Collected Papers from AAAI-97 Fall Symposium
workshop Intelligent Tutoring System Authoring Tools. AAAI-Press.Koedinger, K., &
Anderson, J. (1995). Intelligent tutoring goes to the big city. Proc. of the International
Conference on Artificial Intelligence in Education, Jim Greer (Ed). AACE: Charlottesville,
VA pp. 421-428.

Lesgold, A. (1988). Toward a Theory of Curriculum for Use in Designing Instructional
Systems. In H. Mandl & A. Lesgold (Eds.), Learning Issues for Intelligent Tutoring
Systems. New York: Springer-Verlag, pp. 114-137.

Major, N. (1995). Modeling Teaching Strategies. J. of Artificial Intelligence in Education,
6(2/3), pp. 117-152.

Merrill, M.D. (1983). Component Display Theory. In Instructional-design theories and models:
An overview of their current status,. C.M. Reigeluth. (Ed). Hillsdale, NJ: Lawrence
Erlbaum, pp. 279 - 333.

McCalla, G. & Greer, J. (1988). "Intelligent Advising in Problem Solving Domains: The
SCENT-3 Architecture." Proceedings of ITS-88, pp. 124-131. June, 1988, Montreal,
Canada.

McMillan, S., Emme, D., & Berkowitz, M. (1980). Instructional Planners: Lessons Learned. In
Psotka, Massey, & Mutter (Eds.), Intelligent Tutoring Systems, Lessons Learned.
Hillsdale, NJ: Lawrence Erlbaum, pp. 229-256.

Mizoguchi, R., Sinitsa, K., Ikeda, M. (1996). Knowledge Engineering of Educational Systems
for Authoring System Design. In Proceedings. of EuroAIED-96, Lisbon, pp. 593-600.

Murray

126

Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S., Towne, D.M, & Wogulis, J.L. (1997).
Authoring simulation-centered tutors with RIDES. International J. of Artificial
Intelligence in Education. Vol. 8 , No. 3-4, pp. 284-316.

Murray, T. (1993). Formative Qualitative Evaluation for “Exploratory” ITS research. J. of
Artificial Intelligence in Education. 4(2/3), pp. 179-207.

Murray, T. (1996). From Story Boards to Knowledge Bases: The First Paradigm Shift in
Making CAI "Intelligent.". Proceedings of the ED-Media 96 Conference, Boston, MA,
June 1996, pp. 509-514.

Murray, T. (1996b). Toward a Conceptual Vocabulary for Intelligent Tutoring Systems.
Working Paper.

Murray, T. (1997) Expanding the knowledge acquisition bottleneck for intelligent tutoring
systems. International J. of Artificial Intelligence in Education. Vol. 8 , No. 3-4, pp. 222-
232.

Murray, T. (1998). Authoring knowledge-based tutors: Tools for content, instructional strategy,
student model, and interface design. J. of the Learning Sciences, 7(1) pp. 5-64.

Ohlsson, S. (1987). Some Principles of Intelligent Tutoring. In Lawler & Yazdani (Eds.),
Artificial Intelligence and Education, Volume 1. Ablex: Norwood, NJ, pp. 203-238.

Reigeluth, C. (1983). The Elaboration Theory of Instruction. In Reigeluth (Ed.), Instructional
Design Theories and Models. Hillsdale, NJ: Lawrence Erlbaum.

Ritter, S. & Blessing, S. (1998). Authoring tools for component-based learning environments.
Journal of the Learning Sciences,. 7(1) pp. 107-132.

Schank, R., Fano, A. Bell, B. & Jona, M. (1994). The Design of Goal-Based Scenarios.
Journal of the Learning Sciences, 3(4) pp. 305-346.

Shaw, M. L. G. & Gaines, B. R. (1986). "Advances in Interactive Knowledge Engineering."
Submitted to Expert Systems '86. University of Calgary, Alberta, CANADA: Dept. of
Computer Science.

Shute, V.J. and Regian, J.W. (1990). Rose Garden Promises of Intelligent Tutoring Systems:
Blossom or Thorn? Presented at Space Operations, Automation and Robotics Conference,
June 1990, Albuquerque, NM.

Sparks, R. Dooley, S., Meiskey, L. & Blumenthal, R. (1999). The LEAP authoring tool:
supporting complex courseware authoring through reuse, rapid prototyping, and interactive
visualizations. Int. J. of Artificial Intelligence in Education (this issue).

Towne, D.M. (1997). Approximate reasoning techniques for intelligent diagnostic instruction.
International J. of Artificial Intelligence in Education. Vol. 8 , No. 3-4, pp. 262-283.

Van Marcke, K. (1992). Instructional Expertise. In Frasson, C., Gauthier, G., & McCalla, G.I.
(Eds.) Procs. of Intelligent Tutoring Systems '92. New York: Springer-Verlag pp. 234-243.

Wasson, B. (1992) PEPE: A computational framework for a content planner. In S.A. Dijkstra,
H.P.M. Krammer & J.J.G. van Merrienboer (Eds), Instructional Models in Computer-
Based Learning Environments. NATO ASI Series F. Vol. 104 (pp. 153-170). New York:
Sringer-Verlag.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan
Kaufmann.

White, B. & Frederiksen, J. (1995). Developing Metacognitive Knowledge and Processes: The
Key to Making Scientific Inquiry and Modeling Accessible to All Students. Technical
Report No CM-95-04. Berkeley, CA: School of Education, University of California at
Berkeley.

Winne, P.H. & Kramer, L.L. (1989). Representing and inferencing with knowledge about
teaching: DOCENT --- an artificially intelligent planning system for teachers.

Youngblut, C., 1995. Government-Sponsored Research and Development Efforts in the Area of
Intelligent Tutoring Systems: Summary Report. Inst. for Defense Analyses Paper No. P-
3058, Alexandra VA.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

127

APPENDIX

Below is a table of the ITS authoring tools discussed in this paper, with selected references for
each.

CALAT (&
CAIRNEY)

Kiyama, M., Ishiuchi, S., Ikeda, K., Tsujimoto, M. & Fukuhara, Y. (1997). Authoring
Methods for the Web-Based Intelligent CAI System CALAT and its Application
to Telecommunications Service. In the Proceedings of AAAI-97 , Providence, RI.

CREAM-TOOLS Frasson, C., Nkambou, R., Gauthier, G., Rouane, K. (1998). An authoring model and
tools for curriculum development in intelligent tutoring systems. Working Paper
available from the authors.

Nkambou, R., Gauthier, R., & Frasson, M.C. (1996). CREAM-Tools: an authoring
environment for curriculum and course building in an ITS. In Proceedings of the
Third International Conference on Computer Aided Learning and Instructional
Science and Engineering. New York: Springer-Verlag.

D3-TRAINER Reinhardt, B., Schewe, S. (1995). A shell for intelligent tutoring systems. In J. Greer
(Ed) Proc. of the Int. Conf. on AI in Education. AACE: Charlottesville, VA,
1995.

DEMONSTR8 (&
TDK, PUPS)

Blessing, S.B. (1997). A programming by demonstration authoring tool for model
tracing tutors. Int. J. of Artificial Intelligence in Education. Vol. 8 , No. 3-4, pp
233-261.

Anderson, J. R. & Pelletier, R. (1991). A development system for model tracing tutors.
In Proc. of the International Conference on the Learning Sciences, Evanston, IL,
1-8.

Anderson, J. & Skwarecki, E. (1986). The Automated Tutoring of Introductory
Computer Programming. Communications of the ACM, Vol. 29 No. 9. pp. 842-
849.

DIAG Towne, D.M. (1997). Approximate reasoning techniques for intelligent diagnostic
instruction. International J. of Artificial Intelligence in Education. Vol. 8 , No. 3-
4, pp. 262-283.

DNA/SMART Shute, V.J. (1998). DNA - Uncorking the bottleneck in knowledge elicitation and
organization. Proceedings of ITS-98, San Antonio, TX, pp. 146-155.

DOCENT (&
Study)

Winne P.H. (1991). Project DOCENT: Design for a Teacher’s Consultant. In Goodyear
(Ed.), Teaching Knowledge and Intelligent Tutoring. Norwood, NJ: Ablex.

Winne, P. & Kramer, L. (1988). "Representing and Inferencing with Knowledge
about Teaching: DOCENT." Proceedings of ITS-88. June 1988,Montreal, Canada.

EON (& KAFITS) Murray, T. (1998). Authoring knowledge-based tutors: Tools for content, instructional
strategy, student model, and interface design. J. of the Learning Sciences, Vol. 7.
No. 1.

Murray, T. (1996). Special Purpose Ontologies and the Representation of Pedagogical
Knowledge. In Proceedings of the International Conference on the Learning
Sciences, (ICLS-96), Evanston, IL, 1996. Charlottesville, VA: AACE.

Murray, T. & Woolf, B. (1992). Results of Encoding Knowledge with Tutor
Construction Tools. Proceedings of AAAI-92. San Jose, CA., July, 1992.

EXPERT-CML Jones, M. & Wipond, K. (1991). Intelligent Environments for Curriculum and Course
Development. In Goodyear (Ed.), Teaching Knowledge and Intelligent Tutoring.
Norwood, NJ: Ablex.

GETMAS Wong, W.K. & Chan, T.W. (1997). A Multimedia authoring system for crafting topic
hierarchy, learning strategies, and intelligent models. International J. of Artificial
Intelligence in Education, Vol. 8, No 1, pp. 71-96.

GTE Van Marcke, K. (1998). GTE: An epistemological approach to instructional modeling.
Instructional Science, Vol. 26, pp 147-191.

Van Marcke, K. (1992). Instructional Expertise. In Frasson, C., Gauthier, G., &
McCalla, G.I. (Eds.) Procs. of Intelligent Tutoring Systems ’92. New York:
Springer-Verlag.

Murray

128

ID EXPERT (&
Electronic Trainer,
ISD-Expert)

Merrill, M.D., & ID2 Research Group (1998). ID Expert: A Second generation
instructional development system. Instructional Science, Vol. 26, pp. 243-262.

Merrill, M. D. (1989). An Instructional Design Expert System. Computer-Based
Instruction, Vol. 16 No. 3, 95-101.

Merrill, M. D. (1987). "An Expert System for Instructional Design. "IEEE Expert,
Summer 1987, pg. 25-37. Merrill, M. D. & Li, Z. (1989). "An Instructional
Design Expert Sys-tem." Journal of Computer-Based Instruction, Vol. 16, No. 3,
pg. 95-101.

IDE (& IDE
Interpreter)

Russell, D. (1988). "IDE: The Interpreter." In Psotka, Massey, &Mutter (Eds.),
Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ:Lawrence Erlbaum.

Russell, D., Moran, T. & Jordan, D. (1988). The Instructional Design Environment.
In Psotka, Massey, & Mutter (Eds.), Intelligent Tutoring Systems, Lessons
Learned. Hillsdale, NJ: Lawrence Erlbaum.

IDLE-Tool (&
IMAP, INDIE,
GBS-
architectures)

Bell, B. (1999). Supporting educational software design with knowledge-rich tools.
Int. J. of Artificial Intelligence in Education (this issue).

Bell, B. (1998). Investigate and decide learning environments: Specializing task
models for authoring tools design. J. of the Learning Sciences, Vol. 7. No. 1.

Jona, M. & Kass, A. (1997). A Fully-Integrated Approach to Authoring Learning
Environments: Case Studies and Lessons Learned. In the Collected Papers from
AAAI-97 Fall Symposium workshop Intelligent Tutoring System Authoring Tools.
AAAI-Press.

InterBook (&
ElM-Art)

Brusilovsky, P., Schwartz, E., & Weber, G. (1996). A Tool for Developing Adaptive
Electronic Textbooks on WWW. Proc. of WebNet-96, AACE.

Brusilovsky, P, Schwartz, E. & Weber, G. (1996). ELM -ART: An Intelligent
Tutoring System on the Work Wide Web. In Proceedings of ITS-96, Frasson,
Gauthier, Lesgold (Eds.), Springer: Berlin, 1996. pp. 261-269.

IRIS Arruarte, A., Fernandez-Castro, I., Ferrero, B. & Greer, J. (1997). The IRIS shell:
How to build ITSs from pedagogical and design requisites. International J. of
Artificial Intelligence in Education. Vol. 8 , No. 3-4, pp. 341-381.

LAT (LEAP
Authoring Tool)

Sparks, R. Dooley, S., Meiskey, L. & Blumenthal, R. (1999). The LEAP authoring
tool: supporting complex courseware authoring through reuse, rapid prototyping,
and interactive visualizations. Int. J. of Artificial Intelligence in Education (this
issue).

Dooley, S., Meiskey, L., Blumenthal, R., & Sparks, R. (1995). Developing reusable
intelligent tutoring system shells. In AIED-95 workshop papers for Authoring
Shells for Intelligent Tutoring Systems.

MetaLinks Murray, T., Condit, C., & Haaugsjaa, E. (1998). MetaLinks: A Preliminary
Framework for Concept-based Adaptive Hypermedia. Workshop Proceedings
from ITS-98 WWW-Based Tutoring Workshop., San Antonio, Texas, 1998.

REDEEM (&
COCA)

Major, N., Ainsworth, S. & Wood, D. (1997). REDEEM: Exploiting symbiosis
between psychology and authoring environments. International J. of Artificial
Intelligence in Education. Vol. 8 , No. 3-4, pp. 317-340.

Major, N. (1995). Modeling Teaching Strategies. J. of AI in Education, 6(2/3), pp.
117-152.

Major, N.P. & Reichgelt, H (1992). COCA - A shell for intelligent tutoring systems.
In Frasson, C., Gauthier, G., & McCalla, G.I. (Eds.) Procs. of Intelligent Tutoring
Systems ’92. New York: Springer-Verlag.

RIDES (& IMTS,
RAPIDS, and see
DIAG)

Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S., Towne, D.M, & Wogulis, J.L.
(1997). Authoring simulation-centered tutors with RIDES. International J. of
Artificial Intelligence in Education. Vol. 8 , No. 3-4, pp. 284-316.

Towne, D.M., Munro, A., (1988). The Intelligent Maintenance Training System. In
Psotka, Massey, & Mutter (Eds.), Intelligent Tutoring Systems, Lessons Learned.
Hillsdale, NJ: Lawrence Erlbaum.

Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art

129

SIMQUEST (&
SMISLE)

Jong, T. de & vanJoolingen, W.R. (1998). Scientific discovery learning with computer
simulations of conceptual domains. Review of Educational Research, Vol. 68 No.
2, pp. 179-201.

Van Joolingen, W.R. & Jong, T. de (1996). Design and implementation of simulation-
based discovery environments: The SMISLE solution. Int. J. of Artificial
Intelligence in Education 7(3/4). pp. 253-276.

TRAINING
EXPRESS

Clancey, W. & Joerger, K. (1988). “A Practical Authoring Shell for Apprenticeship
Learning.'' Proceedings of ITS-88, 67-74. June 1988, Montreal.

XAIDA Hsieh, P., Halff, H, Redfield, C. (1999). Four easy pieces: Developing systems for
knowledge-based generative instruction. Int. J. of Artificial Intelligence in
Education. (this issue)

Wenzel, B., Dirnberger, M., Hsieh, P., Chudanov, T., & Halff, H. (1998). Evaluating
Subject Matter Experts' Learning and Use of an ITS Authoring Tool. Proceedings
of ITS-98, San Antonio, TX, pp. 156-165.

Redfield, C.L., (1996). "Demonstration of the experimental advanced instructional
design advisor." In the Third International Conference on Intelligent Tutoring
Systems, Montreal, Quebec, Canada, June 12-14, 1996

