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As distributed applications increase in size and complexity, traditional authorization architectures based on
a dedicated authorization server become increasingly fragile because this decision point represents a single
point of failure and a performance bottleneck. Authorization caching, which enables the reuse of previous
authorization decisions, is one technique that has been used to address these challenges.

This article introduces and evaluates the mechanisms for authorization “recycling” in RBAC enterprise
systems. The algorithms that support these mechanisms allow making precise and approximate autho-
rization decisions, thereby masking possible failures of the authorization server and reducing its load. We
evaluate these algorithms analytically as well as using simulation and a prototype implementation. Our eval-
uation results demonstrate that authorization recycling can improve the performance of distributed-access
control mechanisms.
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1. INTRODUCTION

Modern access control solutions [Borders et al. 2005; DeMichiel et al. 2001; Entrust
1999; Karjoth 2003; Netegrity 2000; OMG 2002; Securant 1999; Spencer et al. 1999;
Oracle 2008] are based on the request-response model as illustrated in Figure 1. In
this model, a policy enforcement point (PEP) intercepts application requests, obtains
access control decisions (also known as authorizations) from a policy decision point
(PDP), and enforces these decisions.
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Fig. 1. Access control based on request-response model.

In the large enterprise systems currently deployed, PDPs are commonly implemented
as logically centralized authorization servers. This design provides two benefits: con-
sistent policy enforcement across multiple PEPs and reduced administration cost for
authorization policies. Like all centralized approaches, however, this architecture has
two critical drawbacks: the PDP is a single point of failure and a potential performance
bottleneck.

The single point of failure property of the PDP leads to reduced availability: the
authorization server may not be reachable due to a failure (transient, intermittent,
or permanent) of the network, of the software located in the critical path (e.g., the
operating system), of the hardware, or even as a result of a misconfiguration of the
supporting infrastructure. A conventional approach to improving the availability of a
distributed infrastructure is failure masking through redundancy (either information,
time, or physical [Johnson 1996]). However, redundancy and other general-purpose
fault-tolerance techniques for distributed systems scale poorly, and become technically
and economically infeasible when the number of entities in the system reaches thou-
sands [Kalbarczyk et al. 2005; Vogels 2004]. At the same time, large-scale commodity
computing is becoming a reality, with eBay having 12,000 servers and 15,000 applica-
tion server instances [Strong 2007], and Google estimated to have “more than 450,000
servers spread in at least 25 locations around the world” [Markoff and Hansell 2006].

In a massive-scale enterprise system with nontrivial authorization policies, making
authorization decisions is often computationally expensive due to the complexity of
the policies involved and the large size of the resource and user populations. Thus
the centralized PDP often becomes a performance bottleneck [Nicomette and Deswarte
1997]. Additionally, the communication delay between the PEP and the PDP can make
the authorization overhead prohibitively high.

The state-of-the-practice approach to improving overall system availability and
reducing the authorization processing delays observed by the client is to cache
authorizations at each PEP—what we refer to as authorization recycling. Existing au-
thorization solutions commonly provide PEP-side caching [Borders et al. 2005; Entrust
1999; Oracle 2008; Netegrity 2000; Spencer et al. 1999]. These solutions, however,
only employ a simple form of authorization recycling: a cached authorization is reused
only if the authorization request in question exactly matches the original request for
which the authorization was made. We refer to such reuse as precise recycling.

To improve authorization system availability and reduce delay, we previously pro-
posed the Secondary and Approximate Authorization Model (SAAM) [Crampton et al.
2006]. SAAM adds a secondary decision point (SDP) to the request-response model, as
shown in Figure 2. The SDP is collocated with the PEP and can resolve authorization re-
quests not only by precise recycling but also by computing approximate authorizations
from cached authorizations. SAAM is independent of the specifics of the application
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Fig. 2. SAAM adds a secondary decision point (SDP) to the request-response model.

and access control policy. For each class of access control policies, however, specific
algorithms for inferring approximate responses need to be designed.

This article proposes SAAMRBAC—the SAAM authorization recycling algorithm
for role-based access control (RBAC) model. Introduced more than a decade ago,
RBAC [Ferraiolo and Kuhn 1992; Sandhu et al. 1996] has been deployed in many
organizations for access control enforcement and eventually matured into the ANSI
RBAC standard [ANSI 2004]. In RBAC, instead of directly assigning permissions to
users, the users are assigned to roles and the roles are mapped to permissions. A
role normally represents the organizational position that is responsible for certain job
functions. Users are assigned roles according to their qualifications. Permissions are
a set of many-to-many relations between objects and operations. Roles describe the
relationship between users and permissions through user-to-role assignment (UA) and
permission-to-role assignment (PA). Our inference algorithm uses this structure to
infer approximate authorizations for new requests.

Compared to approaches that proactively pull or push the entire PA set (or even the
whole policy) to each SDP, our approach—based on on-demand caching of authorization
responses—offers two advantages. First of all, if the working set of the PEP is a signif-
icantly smaller subset of the whole policy, it may well be the case that the SDP cache
is “warm” enough and hence able to answer a significant proportion of authorization
requests more quickly than the PDP (since the cache size is significantly smaller than
the whole RBAC policy and the SDP is collocated with the PEP). Thus, depending on
application workload and deployment scenario, our approach offers the possibility of
rapid response times without the need for large caches. Second and more importantly,
our approach allows for the PEP and PDP remain unchanged. That is, the middleware
used for PEP-to-PDP communications can be reconfigured in such a way that the SDP
is interposed between the PEP and PDP. As a result, the SDP can act as a PDP’s proxy
for the PEP, without requiring any modification at the PEP or at the PDP. This means
that one can retrofit existing authorization systems with our SDP without changing
PEPs or PDPs. For this purpose, dynamic weaving [Schroder-Preikschat et al. 2006] or
other existing techniques, such as meta-objects [Astley et al. 2001], for automatically
generating custom RPC stubs are readily available. Those RBAC systems that already
employ SDPs for precise recycling are even more amenable to being retrofitted with the
SAAMRBAC aproximate recycling logic proposed in this article.

To evaluate properties of SAAMRBAC algorithms, we used an experimental testbed
with 100 subjects, 3000 permissions, and 50 roles. The evaluation results demonstrate
an 80% increase, compared to precise recycling, in the number of authorization requests
that can be served without consulting the access control policies stored remotely at the
PDP. These results suggest that deploying SAAMRBAC improves the availability and
scalability of RBAC systems, which in turn improves the performance of the enterprise
systems.
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To summarize, we make four technical contributions. First, we define inference rules
specific to RBAC authorization semantics and develop recycling algorithms from these
rules. Second, we suggest how modification to these algorithms in order to support hier-
archical RBAC. Third, we develop algorithms that update SDP cache to handle different
types of policy changes. Finally, we study deployment strategies of our algorithms to
achieve different performance-related goals.

The rest of this article is organized as follows. Section 2 presents background, includ-
ing SAAM and RBAC. Section 3 describes SAAMRBAC design. Section 4 reports results
of evaluating SAAMRBAC. Section 5 discusses related work. We conclude in Section 6.

2. BACKGROUND

This section provides background on SAAM and ANSI RBAC that is necessary for
understanding the rest of the article.

2.1. Secondary and Approximate Authorization Model

SAAM [Crampton et al. 2006] is a general framework for making use of cached PDP
responses to compute approximate responses for new authorization requests. An au-
thorization request is a tuple (s, o, a, c, i), where s is the subject, o is the object, a is
the access right, c is the contextual information relevant to the request, and i is the
request identifier. Two requests are equivalent if they only differ in their identifiers. An
authorization response is a tuple (r, i, E, d), where r is the response identifier, i is the
corresponding request identifier, d is the decision, and E is the evidence. The evidence
can be used in some SAAM implementations to aid the response verification.

SAAM also defines primary, secondary, precise, and approximate authorization re-
sponses. A primary response is a response made by the PDP, whereas a secondary
response is produced by an SDP. A response is precise if it is a primary response to the
request in question or a (secondary) response to an equivalent request. Otherwise, if
the SDP infers the response based on primary responses to other requests, the response
is approximate.

In general, the SDP infers approximate responses based on cached primary responses
and any information that can be deduced from the application request and system
environment. The larger the number of cached responses, the more information is
available to the SDP, and the SDP will become a better and better PDP simulator.

We say an SDP is safe if any request it allows would also be allowed by the
PDP [Crampton et al. 2006]. A safe SDP returns either undecided or deny for any
request for which it cannot infer an allow response. A safe SDP can be configured or
designed to implement a closed world policy1 by simply denying any request that it
cannot evaluate. More generally, we allow the SDP to return an undecided response; it
is then up to the PEP to decide how such a response should be handled. In most cases,
the PEP will deny the request, thereby “failing safe”—one of the important principles
identified by Saltzer and Schroeder [1975]. We say an SDP is consistent if any request
it denies would also be denied by the PDP.

In general, one would wish to implement a safe and consistent SDP, which returns the
same response as the PDP would have for any request that it can evaluate. Clearly, any
SDP that only returns precise decisions—by only returning responses for equivalent
requests for which decisions have been cached—is safe and consistent. However, such
an SDP is rather limited. SAAM seeks to extend the functionality of the SDP so that
it can generate approximate responses and remain safe and consistent. However, the
limitations of the underlying access control policy, time or space complexity of the

1A closed world policy allows a request if there exists an allow response for it, and denies it otherwise.
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inference algorithms, or business requirements could limit an SDP implementation to
being either safe or consistent, but not both.

2.2. Role-Based Access Control

There are a number of RBAC models in the literature, including RBAC96 [Sandhu et al.
1996] and the ANSI RBAC standard [ANSI 2004]. All such models assume the existence
of a set of users U , a set of roles R, and a set of permissions P. They also assume the
existence of a user-to-role assignment relation UA ⊆ U × R and a permission-to-
role assignment relation PA ⊆ P × R. A user u is authorized for a permission p ∈ P if
there exists a role r ∈ R such that (u, r) ∈ UA and (p, r) ∈ PA.

Many models also assume the existence of a role hierarchy RH, which is modeled
as a partial order on the set of roles. That is, RH ⊆ R × R, where RH is reflexive,
anti-symmetric, and transitive. It is customary to write r � r′ rather than (r, r′) ∈ RH.
In this case, u is authorized for p if there exist roles r, r′ ∈ R such that (u, r) ∈ UA,
r � r′, and (p, r′) ∈ PA.

An important innovation in RBAC96 and ANSI RBAC is the concept of sessions. A
user initiates a session (typically when authenticating to the system) by activating
some subset of the roles to which he is assigned. Access requests are evaluated in the
context of the session that initiates the request. A request for permission p is granted
if the user session contains a role r and there exists a role r′ such that r � r′ and
(p, r′) ∈ PA.

3. SAAMRBAC

SAAMRBAC applies SAAM concepts to RBAC systems. In a system using SAAMRBAC,
the SDP caches authorization requests and the corresponding authorization decisions,
and computes new authorization decisions based on the cache when the PDP is unable
to make a timely decision. As these decisions are not obtained from the PDP, they are
by necessity secondary. In this section we present the algorithms that can be employed
by an SDP in the context of RBAC systems. We show that an SDP that implements
these algorithms will make safe and consistent secondary decisions.

3.1. Assumptions

In general, we assume that the PDP is the only component that has access to the entire
authorization policy and the SDP is not aware of the policy. In particular, we assume
that the SDP does not have direct access to the permission-to-role assignment relation
(PA). It is the job of the SDP to try to “reconstruct” PA on the basis of information
that can be inferred from primary responses to previous requests. If we relieve this
assumption, for example, the PDP is able to “push” the entire policy to the SDP, then
the SDP may compute a precise response using the same authorization logic as the
PDP. However, pushing entire policy is rarely done in enterprise-grade deployments
due to the limitations of the underlying security protocols, the scale of the authorization
policies, the administrative constraints, or the cost of keeping up to date user, attribute,
and permission data at multiple SDPs. Providing SDP with no direct access to PA
also enables transparently interposing SDP between PEP and PDP without having to
modify the protocol between the two. This is an important practical benefit when it
comes to retrofitting existing authorization systems with SDP-like components.

We further assume that authorization requests made to the SDP (and the PDP)
include the set of roles, this information being supplied by the PEP. This role
information arrives at the PEP in a number of different ways [Lorch et al. 2003]. First,
it can be “pushed” from the client’s security subsystem, as in CORBA [OMG 2002],
DCE [Gittler and Hopkins 1995], SESAME [Kaijser 1998], and GAA API [Ryutov and
Neuman 2000], where the security attributes are a part of the security context of the
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application request. Second, it can also be “pulled” by the PEP from external attribute
services such as LDAP or the Shibboleth Attribute Authority [Internet2 2008].

For most of Section 3, we assume that the SDP does not have access to the role
hierarchy relation and does not try to reconstruct hierarchical relationships between
roles. In Section 3.8, we drop this assumption and show how our approach needs to be
modified when the SDP is aware of the role hierarchy structure.

3.2. Preliminaries

We must first consider how to map SAAM notions of subject and request to appropriate
RBAC concepts. The notion of session is important in RBAC96 and ANSI RBAC for im-
plementing the principle of least privilege [Saltzer and Schroeder 1975]: by activating
a strict subset of the roles to which she is authorized, a user may limit the privileges
that she can exercise while interacting with a computer system. It is a session that
is synonymous with a subject in identity-based access control systems, since access
decisions are made on the basis of the permissions that are available to the activated
roles. Accordingly, SAAMRBAC models a subject as a set of roles.

The Core Specification of ANSI RBAC, similarly to RBAC96, defines two functions
that map sessions to users and roles: session users(s : SESSIONS) → U SERS
and session roles(s : SESSIONS) → 2ROLES. SAAMRBAC abstracts a subject as a
set of roles activated in a given session. In the terms of above functions, a subject
in SAAMRBAC is an output of session roles(. . . ). Therefore, if user u started two ses-
sions s1 and s2, they are treated as two separate—and possibly unrelated—subjects in
SAAMRBAC, unless same roles are activated for both of these sessions. On the other
hand, if another user u′ started session s3, and the sets of activated roles in s2 and s3 are
equal, then SAAMRBAC algorithms do not distinguish between the corresponding sub-
jects. Furthermore, in SAAMRBAC, we do not consider the relationship between users
and their sessions.

RBAC96 treats permissions as “uninterpreted symbols,” because such entities are
very likely to be application- and context-specific. However, ANSI RBAC defines per-
missions to be object-operation pairs. It seems appropriate to regard a SAAM request
(s, o, a, c, i) and an RBAC request (s, p, c, i) as equivalent, where p = (o, a).

A response (r, i, E, d) indicates the decision to a request (s, p, c, i). For simplicity, we
introduce the following conventions that will be used in the remainder of the article:
we omit c and i from requests; we omit r, E and i from responses; we write +(s, p) to
denote a grant decision for request (s, p), and −(s, p) to denote a deny decision. More
specifically, +(s, p) means that there exists role r ∈ s such that (p, r) ∈ P A and −(s, p)
means that there does not exist such an r. We also write X − Y to denote the set
{x ∈ X : x �∈ Y }.
3.3. Inference Rules

Using the notation from the previous section, we first note the following rules that can
be applied to generate approximate responses.

—Rule+. If +(s, p) and s′ ⊇ s, then request (s′, p) should be granted.
—Rule−. If −(s, p) and s′ ⊆ s, then request (s′, p) should be denied.

Rule+ follows from the fact that if some permission p is granted for the set of roles s,
then there exists r ∈ s such that r is authorized for p, and r ∈ s′ for any s′ ⊇ s. Rule−

follows from the fact that if p is denied for the set of roles s, then there does not exist
r ∈ s such that r is authorized for p; trivially, no subset of s will be authorized for p.

In the following subsections, we first present naive algorithms and show that they
are suboptimal in terms of success rate and space. Then we define canonical form of
cache and describe algorithms that work over such cache.
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3.4. Naive Algorithms

We construct two relations Cache+ ⊆ 2R × P and Cache− ⊆ R × P to generate approx-
imate responses. The basic idea is to use primary deny responses to build Cache− and
primary allow responses to build Cache+.

Cache construction. Whenever the SDP receives a deny response −(s, p), the pair
(r, p) is added to Cache− for every role r ∈ s (since we know that no role in s can be
authorized for p). In contrast, whenever the SDP receives an allow response +(s, p),
the pair (s, p) is added to Cache+.

Request evaluation. Then to evaluate a request (s, p), the SDP first checks whether s
contains a role r such that (r, p) �∈ Cache−. (If not, no role in s is authorized for p and the
SDP denies the request.) Then the SDP checks whether there exists (s′, p) ∈ Cache+

such that s ⊇ s′. If so, then the SDP allows the request and otherwise the SDP returns
undecided. The algorithm to evaluate request (s, p) is summarized below.

(1) Let s+ = {r ∈ s : (r, p) �∈ Cache−}
(2) If s+ = ∅, then deny (every role in s was not authorized for p)
(3) Else

(a) If there exists (s′, p) ∈ Cache+ such that s ⊇ s′ then allow
(b) Else undecided

PROPOSITION 1. An SDP that implements the above request evaluation algorithm is
safe and consistent.

PROOF. Consider the response produced by the SDP for request (s, p). If the SDP pro-
duces a deny response then, for all r ∈ s, there exists (r, p) ∈ Cache−. This means that
the PDP must have generated a number of responses of the form −(s1, p), . . . ,−(sk, p),
k � 1, such that for all r ∈ s, r ∈ si for some i. Hence, the PDP would also deny (s, p).

If the SDP produces an allow response then there exists (s′, p) ∈ Cache+ such that
s ⊇ s′. Hence, the PDP would allow request (s, p), since it must have allowed (s′, p).

The naive algorithms, however, may return undecided responses for some re-
quests that would be allowed by the PDP. Suppose that ({r1, r2, r3}, p) ∈ Cache+ and
(r3, p) ∈ Cache−. Now the evaluation of request ({r1, r2, r4}, p) with the above algorithm
returns undecided because {r1, r2, r4} �⊇ {r1, r2, r3}. However, {r1, r2, r4} ⊃ {r1, r2} and
hence request ({r1, r2, r4}, p) can safely be authorized. The optimized algorithms we
present in the following sections correct this problem.

3.5. Cache Compression

We have seen that the naive method of constructing the cache may not optimize the “hit
rate”—the proportion of requests for which the SDP can provide a definitive answer.
We now define the canonical form of the cache.

Definition 1. Given a cache, Cache = (Cache+
, Cache−), we say Cache is in canonical

form if the following conditions hold

(1) if for all (s, p) ∈ Cache+, there does not exist r ∈ s such that (r, p) ∈ Cache−;
(2) for all distinct (s, p), (s′, p) ∈ Cache+, s �⊆ s′ and s �⊇ s′.

The first of the two requirements above ensures that all roles of a subject s that
are known not to be authorized for a permission are removed from s. The second
requirement simply ensures that there is no redundancy in the cache: it makes no
difference to the allow responses returned by the request evaluation algorithm; in
other words, it minimizes the amount of storage required for Cache+.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 3, Publication date: May 2011.
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Fig. 3. SAAMRBAC optimized recycling algorithms.

Cache compression improves the hit rate. In particular, we claim the following state-
ments hold.

(1) If Cache+ satisfies property (2) but does not satisfy property (1) then the hit rate is
not optimal.

(2) If Cache+ does not satisfy property (2) then the size of the cache is not minimal, that
is, there exists a smaller cache that provides the same hit rate.

(3) If the cache is in canonical form, then any smaller cache has a lower hit rate.

PROOF OF CLAIM 1. Suppose that Cache+ does not satisfy property (1). Then there exists
(s, p) ∈ Cache+ such that r ∈ s and (r, p) ∈ Cache−. Now request (s′, p), where s′ ⊇ s−{r},
is authorized since r is not authorized for p. However, s′ �⊇ s and by assumption Cache+

satisfies property (2) so there does not exist s′′ ⊆ s such that (s′′, p) ∈ Cache+. Hence,
the SDP cannot resolve request (s′, p). Hence, the hit rate is not optimal.

PROOF OF CLAIM 2. Suppose that (s, p), (s′, p) ∈ Cache+ and s′ ⊇ s. Then (s′, p) is
authorized and any request (s′′, p), where s′′ ⊇ s′, is authorized because s′′ ⊃ s. Hence
(s′, p) may be omitted from Cache+.

PROOF OF CLAIM 3 Suppose now that (s, p) ∈ Cache+ and there does not exist (s′, p) ∈
Cache+ such that s′ ⊃ s or s′ ⊂ s. Then request (s, p) is authorized when the SDP uses
Cache+ but is not authorized if we remove (s, p) from Cache+ (since, by assumption,
there is no s′ ⊂ s such that (s′, p) ∈ Cache+, we cannot find an entry (s′, p) ∈ Cache+

such that s ⊇ s′). In other words, omitting (s, p) from Cache+ will decrease the hit
rate.

3.6. Optimized Algorithms

We now present optimized algorithms that produce a canonical form of the cache in
order to improve the likelihood of the evaluation algorithm returning an allow response.
Henceforth, we write Cache− ⊆ 2R × P, making it consistent with the representation
of Cache+. Naturally, the meaning of (s, p) ∈ Cache− is that all roles in s are known
not to be authorized for p. The full algorithm (C) for constructing compressed cache
relations is shown in Figure 3(a). To satisfy property (1) of the canonical form definition,
in line 3C, which handles negative primary responses, we delete any roles in s from
sets of roles that had previously been authorized for p (that is, tuples in Cache+).

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 3, Publication date: May 2011.
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Table I. Building Cache+ and Cache− from Primary Responses

Response Cache+ Cache−
−({r1, r2}, p) ({r1, r2}, p)
+({r2, r3, r4}, p) ({r3, r4}, p) ({r1, r2}, p)
+({r4, r5, r6}, p) ({r3, r4}, p), ({r1, r2}, p)

({r4, r5, r6}, p)
−({r4, r7}, p) ({r3}, p), ({r1, r2, r4, r7}, p)

({r5, r6}, p)

Analogously, in line 15C, which handles positive primary responses, we delete any
roles from s that are known not to be authorized for p. To satisfy property (2) of the
canonical form definition, line 10C is used to prevent any superset of existing roles in
Cache+ from being added and line 14C is used to prune redundant tuples from Cache+.

Figure 3(b) shows the decision algorithm (D) for generating an approximate response,
which follows directly from rules Rule+ and Rule− (Section 3.3) and the construction
of the cache. Since s may include roles that are known not to be authorized for p, we
remove those roles first and then see whether the remaining roles are authorized for p.
In other words, given request (s, p), we first find (s−, p) ∈ Cache− (line 2D) and compute
those roles in s that are not in s− (line 3D), namely, s − s−. If this set is empty, then we
know that all roles in s are in s−; that is, s ⊆ s− and the request should be denied (by
Rule−). Otherwise, we need to check whether there is a tuple (s+, p) ∈ Cache+ such
that s+ ⊆ (s − s−).

The following example shows how the optimized algorithms work. Suppose Cache−

and Cache+ are empty and the following primary responses are obtained from the PDP:

−({r1, r2}, p), +({r2, r3, r4}, p), +({r4, r5, r6}, p), −({r4, r7}, p).

Table I illustrates how Cache− and Cache+ develop as these responses are processed
by the SDP. Notice how r4 is removed from both tuples in Cache+ once the primary
deny response −({r4, r7}, p) is processed.

Note also that the final contents of Cache− and Cache+ are independent of the order
in which primary responses are received. If, for example, we reverse the order of the
last two responses, we find that r4 is added to Cache− a step earlier and that r4 does
not appear with r5 and r6 in a tuple in Cache+.

Now suppose we wish to generate secondary responses for the following requests:
(1) ({r3, r4}, p), (2) ({r1, r4, r7}, p), (3) ({r1, r5}, p).

—The SDP returns an allow response for request (1) because ({r3}, p) ∈ Cache+.
—The SDP returns a deny response for request (2) because ({r1, r2, r4, r7}, p) ∈ Cache−.
—The SDP returns an undecided response for request (3).

It is worth noting that although the SDP does not explicitly store primary responses,
it will always return the same response as the PDP for any requests whose decisions
have been included in the cache relations. More formally, we have the following result.

PROPOSITION 2. Suppose the PDP has produced a response for request (s, p). Then an
SDP that implements the construction and decision algorithms in Figure 3 will produce
the same response as the PDP for request (s, p).

PROOF. First note that lines 3C and 15C imply that, if (t−, p) ∈ Cache− and (t+, p) ∈
Cache+, then t− ∩ t+ = ∅.

Given that the PDP has produced a response, there are two possibilities to consider.
If the PDP produced an allow response for (s, p), then (s+, p) ∈ Cache+ for some s+ ⊆ s,
by construction of Cache+. If there does not exist (s−, p) ∈ Cache− then we are done.
Otherwise, consider d = s−s− (as computed in line 3D). We claim that d ⊇ s+ and hence

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 3, Publication date: May 2011.



3:10 Q. Wei et al.

the SDP will return an allow response. To establish the above claim, consider r ∈ s+.
Then r ∈ s since s+ ⊆ s. Now s+ ∩ s− = ∅ and r ∈ s+. Hence, r �∈ s− and r ∈ s − s− = d.

Conversely, if there exists a primary deny response for (s, p), then (s−, p) ∈ Cache−

for some s− ⊇ s, by construction of Cache−. Hence s − s− = ∅ and the SDP will return
a deny response (line 5D).

LEMMA 1. An SDP that implements the construction and decision algorithms is safe
and consistent.

PROOF. We need to show that if the SDP produces a conclusive (i.e., not undecided)
secondary response for request (s, p), then that response is the one that would be
produced by the PDP.

Suppose that the SDP produces the response −(s, p). Then there exists (s−, p) ∈
Cache− such that s ⊆ s− (by line 5D). Moreover, for each r ∈ s−, r is not authorized for
p, by construction of Cache−. Hence, the PDP would return −(s, p).

Suppose that the SDP produces the response +(s, p). Then there exists (s+
1 , p) ∈

Cache+ such that s ⊇ s+
1 , which implies the existence of a primary response +(s+

2 , p)
with s+

2 ⊇ s+
1 . This implies the existence of r ∈ s+

2 such that r is authorized for p.
Moreover, the construction of Cache− and Cache+ implies that r ∈ s+

1 . Hence r ∈ s,
since s ⊇ s+

1 and r ∈ s+
1 , and the PDP would return +(s, p).

3.7. Discussion

We now briefly and informally discuss the expected behavior of the SDP algorithms.
In Section 4, we describe the experimental work we undertook to evaluate the actual
behavior.

Suppose p is assigned to roles r1, . . . , rk, and that there are n users u1, . . . , un with
ui assigned to roles si ⊆ R. Now a user ui may request p using a subject comprising
any subset of si. In principle, therefore, Cache− may contain (s−, p), where s− ⊆ R −
{r1, . . . , rk}, and Cache+ may contain (s+, p), where s+ ⊆ si for some i.

3.7.1. Secondary Response Rate. Let us suppose that (s+
1 , p), . . . , (s+

m, p) ∈ Cache+ and
(s−, p) ∈ Cache−. Then the probability that our SDP can produce an approximate
response (a hit) is the probability of it returning either allow or deny. Clearly, the
smaller s+

1 , . . . , s+
m are, the greater the chance of an allow response, because allow

responses require the subject to be a superset of an element in Cache+. Conversely, the
larger s− is, the greater the chance of a deny response are, because allow responses
require the subject to be a subset of an element in Cache−.

In short, the probability of a hit increases as the size of s− increases and the sizes of
s+
i decrease. It can be seen from the construction algorithm that the effect of processing

a primary response (whether it is an allow or deny response) is to either increase the
size of s− or decrease the size of s+

i (or both). In other words, increasing the cache size
will increase the hit rate.

It is worth noting that it is advantageous to have negative primary responses in
the cache, because these affect both Cache+ and Cache−. If there have only been allow
primary responses, then Cache− = ∅ and hits can only be obtained from secondary
allow responses.

For a cache of fixed size, it is advantageous to have s− large and s+
i small. It is easy

to see that s− will be large if the number of roles to which p is assigned is small and
there have been a large number of requests for p that have been denied (by the PDP).
One way to ensure small s+

i is by assigning each user to a small number of roles.
Alternatively, we are likely to get a hit if there is a significant amount of overlap

between the sets of roles assigned to different users. This situation arises when each
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user is assigned to a significant fraction of the available roles or when some roles are
more popular than others so that many users are assigned to those roles. In summary,
we would expect the probability of a hit (the hit rate) to increase when users are
assigned to a small number of roles, or to a significant proportion of the roles available,
or to a similar set of roles due to the uneven role assignment. We sought to confirm
these expectations by experiment, the results of which are reported in Section 4.1.2.

3.7.2. Performance Considerations. Clearly, the number of tuples in Cache− is bounded
by |P|, while the number of tuples in Cache+ is bounded by |P| 2|R|. For a request
(s, p), a secondary deny response can be computed in time proportional to |s| log |R|,
as we simply need to determine whether s is a subset of the roles contained in s−.
Therefore, the number of primary deny responses is unlikely to have a significant
effect on performance. However, the time taken to compute a secondary allow response
grows with the number of primary allow responses.

The time taken by the construction algorithm to process a primary response is pro-
portional to the size of Cache+. In the case of a deny response, it is necessary to check
each tuple in Cache+ and remove any roles that formed part of the denied request
(line 3C, Figure 3). In the case of an allow response, we check to see whether each tuple
has been made redundant by the new information (line 14C, Figure 3).

However, we note that the existence of redundant tuples in Cache+ does not com-
promise the ability of the SDP to compute correct secondary responses, although it
may degrade the response time. Therefore, we could periodically purge Cache+ of re-
dundant tuples, rather than delete them as new primary responses are added, thereby
improving the processing time for primary allow responses.

In summary, it is easier to incorporate new primary allow responses into the cache
rather than deny responses, but it is harder to produce secondary allow responses than
deny responses. We investigate these aspects in Section 4.1.4.

3.8. Using the Role Hierarchy in SAAMRBAC

When flat RBAC is employed, the binding of a session to a set of roles is trivial: the
session is associated with the roles activated by the user. However, in hierarchical
RBAC, there are two possibilities, which we call prerequest and postrequest session-to-
role binding. We assume that a user initiates a session s ⊆ R by selecting some subset
of the roles to which she is assigned. The set of permissions for which the session
is authorized is determined by the permissions assigned to the roles in s and to any
roles in R that are junior to at least one role in s. It is this set of roles, therefore,
that should be used to evaluate requests, not simply s. More formally, let ↓s denote
{r′ ∈ R : ∃r ∈ s, r′ � r}. Then the evaluation of a request originating from session s
requires the computation of the permissions for which the roles in ↓s are authorized.

Prerequest binding occurs when the user authenticates. The user u first activates a
set of roles s for which she is authorized: that is, for all r ∈ s, there exists r′ � r and
(u, r′) ∈ UA. The authentication service uses the role hierarchy to compute ↓s, which is
then bound to each process associated with session s. This set of roles forms part of the
application request that is passed to the PEP. Clearly, prerequest binding means that
the computation of all roles associated with a session is performed once, which means
that request evaluation should be quicker. Postrequest binding occurs when the PDP
evaluates an access request. In this case, the PDP has to compute ↓s before querying
the PA relation.

In the case of prerequest binding, neither the PDP nor the SDP need be aware of the
role hierarchy. Hence, we only need to consider what we should do if postrequest binding
is employed. So far, we have assumed that the SDP is unaware of the role hierarchy.
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Fig. 4. The decision algorithm in a hierarchical setting.

As an optimization, let us now assume that the SDP is aware of the structure of the
role hierarchy, and examine how the SAAMRBAC algorithms need to be modified.

We first note that the SDP could perform postrequest binding in exactly the same way
as the PDP would. However, we observe that it is not necessary to do this when checking
Cache−. To see this, suppose that (s−, p) ∈ Cache− and request (s, p) is received by the
SDP. We can check whether s ⊆ s−, as before. Moreover, if s ⊆ s−, then no role belonging
to ↓s can be authorized for p either (otherwise, some role in s, and hence s−, would be
authorized for p). Hence, it suffices to compute ↓s only if the request is not denied. The
revised decision algorithm is shown in Figure 4. Notice the use of ↓d, where d = s − s−,
in line 8D′ of Figure 4. Also note that ↓d can be computed in polynomial time.2

3.9. Handling Policy Changes

An enterprise authorization system must support changes to security policies. If the
access control policy changes and the SDP is not updated accordingly, the SDP may
make incorrect decisions. Policy changes in an RBAC system occur as a result of changes
to one of U , P, U A, P A, R, or RH. Changes to U , P, or U A do not affect the cache
construction and decision-making algorithms. Hence, we only consider changes to P A,
R, and RH.

The first type of change involves modification of PA. In particular, we considered the
following two basic cases.

—A permission p is assigned to a role r, that is, (p, r) is added to PA. If the cache is
not updated, the SDP may return incorrect negative decisions for some requests for
p. Specifically, if (s, p) ∈ Cache− and r ∈ s, then any request (s′, p) such that s′ ⊆ s
and r ∈ s′ will be denied despite the fact that r is now authorized for p. To avoid this
situation, r needs to be removed from (s, p) ∈ Cache−. Moreover, ({r}, p) should be
added to Cache+.

—A permission p is revoked from a role r, that is, (p, r) is removed from PA. If the
cache is not updated, the SDP may make false positive decisions, because it may
compute allow decisions to those requests that are denied by the PDP. To avoid this,
we replace (s, p) ∈ Cache− (if it exists) with (s ∪ {r}, p), or add ({r}, p) to Cache−

otherwise. Moreover, we delete every (s, p) ∈ Cache+ such that r ∈ s. This is because
we cannot assume that any of the remaining roles in s are authorized for p.

2More specifically, it can be computed in time proportional to the total number of edges and vertices in the
role hierarchy using a simple modification to a standard graph traversal algorithm.
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Fig. 5. Cache update algorithms.

The full algorithm for updating the cache relations to deal with updates to PA is
shown in Figure 5(a). Comparing it with the cache construction algorithm (Figure 3(a)),
we note that there are two main differences. First, if p is revoked from r, it is not
sufficient to remove r from each tuple in the Cache+; instead, all tuples in Cache+ that
contain r need to be removed (Figure 5, line 3UPA). Second, if p is assigned to r, we
add ({r}, p) to Cache+ (Figure 5, line 16UPA) and also delete r from the set of roles in
Cache− (Figure 5, line 13UPA), since we know that r is authorized for p.

PA changes can be signaled to the SDP by passing “artificial” responses to it. For
example, when (p, r) is added to PA, the SDP can be sent response +({r}, p). These
responses are “artificial” in the sense that they are not generated as a result of a
genuine request. In order to distinguish them from normal primary responses, we call
them policy update responses. When the SDP receives a policy update response, it
will invoke the cache update algorithm (shown in Figure 5(a)), rather than the cache
construction algorithm.

We note that adding ({r}, p) to Cache+ may not be necessary but it is a desirable
optimization step for two reasons. First, having many tuples of the form ({r}, p) in
Cache+ will lead to a higher hit rate since more sessions will be a strict superset of
an entry in Cache+. Second, it helps remove redundancy from Cache+ as shown in
line 15UPA of Figure 5.3 In an extreme case, while all permissions are being added to
PA from scratch and the cache is updated using the cache update algorithm, Cache+

will increasingly resemble PA. However, due to the limited size of cache storage and the
large size of PA, it is unlikely that the SDP will eventually store the whole PA in the
cache. By using some cache replacement algorithm, for example, the least-frequently
used (LRU) algorithm, SDP is able to keep a small but most-used portion of PA in the
cache.

The second type of changes that we considered involves modification of R, in par-
ticular, when a role r is removed from R. Assuming that users cannot start a session
that includes deleted role(s), keeping r in the cache will not affect the correctness of the

3Note line 15UPA is used to remove redundancy from Cache+: as for the construction algorithm, this step
may be omitted and Cache+ periodically purged of redundant tuples instead.
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responses that the SDP makes, but will degrade the performance of the SDP. Therefore,
it is still desirable to purge the cache of those roles.

The full algorithm for updating the cache relations to deal with updates to R is
shown in Figure 5(b). Unlike the previous cache update algorithm, this algorithm must
consider all tuples containing r in both Cache− and Cache+. Therefore, this change may
result in a large number of tuples being removed from the cache. Like the previous
algorithm, all tuples in Cache+ that contain r need to be removed, because we can not
assume that any of the remaining roles in the tuple are authorized for p.

Third, we consider those changes that involve modification of RH. No support for
changes in RH is needed if prerequest binding is used. When postrequest binding is
used, the SDP needs to be updated with the new RH so that the computation of ↓d is
correct when a request is evaluated (line 8D′ in Figure 4).

PROPOSITION 3. A safe and consistent SDP that implements the cache update algo-
rithm is still safe and consistent after a policy change.

PROOF. We need to show that, after a policy change, if the SDP produces a secondary
response for request (s, p), then that response is the one that would be produced by the
PDP after the same policy change.

First, we consider the case when (p, r) is added to PA. For any request (s, p) such that
r /∈ s, the policy change has no effect on the decisions returned by the PDP and SDP.
We now consider the case when r ∈ s. Clearly, the SDP will return allow for all such
requests, since ({r}, p) was added to Cache+ as a result of the cache update. Equally,
the PDP will return allow for such requests since (p, r) ∈ PA as a result of the policy
change.

Second, we consider the the case when (p, r) is removed from PA. As above, we need
only consider the case when r ∈ s. If the SDP returns an allow decision then there exists
(s+, p) ∈ Cache+ such that s+ ⊆ s and r �∈ s+. Hence, there exists some role r′ ∈ s+
that is authorized for p. Since the only change to PA was to remove the authorization
for role r, we may infer that the PDP would also allow request (s, p), since r′ ∈ s. If
the SDP returns a deny decision then s ⊆ s− ∪ {r}. In other words, no role in s− ∪ {r}
is authorized for p, and now that (p, r) has been removed from PA, the PDP will also
return deny.

Third, we consider the case when role r is removed from R. No new session will
contain role r and Cache− and Cache+ are able to decide fewer requests.

—Suppose first that (s, p) was allowed by the SDP and the PDP before the removal of
r.
Now if (s−{r}, p) is denied by the SDP after the removal of r, then (s−, p) ∈ Cache− and
r′ ∈ s− for all r′ ∈ s − {r}, which in turn implies that no role in s − {r} is authorized
for p and the request would also be denied by the PDP. If, however, (s − {r}, p) is
allowed by the SDP after the removal of r, then there exists (s+, p) ∈ Cache+ such
that s − {r} ⊇ s+ and hence it would be allowed by the PDP.
(There are also requests that may be allowed by the SDP before the removal of r, but
cannot be decided after. However, these requests are irrelevant to the definitions of
safety and consistency.)

—Suppose now that (s, p) was denied by the SDP and the PDP before the removal of r.
Then (s − {r}, p) will be denied after r’s removal. Hence, any request that is denied
by the SDP after r’s removal will be denied by the PDP.

3.9.1. Propagating Policy Changes. An important question to answer is how to propagate
update messages to SDPs. We provided in Wei et al. [2007] a detailed discussion on the
alternatives for propagating update messages and a solution for implementing well-
defined semantics for policy updates. In what follows, we briefly describe our solution.
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We first state our assumptions relevant to the access control systems. We assume that
the PDP makes decisions using an access control policy stored persistently in a policy
store of the authorization server. In practice, the policy store can be a policy database or
a collection of policy files. We further assume that security administrators deploy and
update policies through the policy administration point (PAP), which is consistent with
the XACML architecture [Committee 2005]. To avoid modifying existing authorization
servers and maintain backward compatibility, we further add a policy change manager
(PCM), collocated with the policy store. The PCM monitors the policy store, detects
policy changes, and informs the SDPs about the changes.

Based on the fact that not all policy changes are at the same level of criticality,
we divide policy changes into three types: critical, time-sensitive, and time-insensitive
changes. By discriminating policy changes according to these types, system adminis-
trators can choose to achieve different consistency levels. In addition, system designers
are able to provide different consistency techniques to achieve efficiency for each type.
Our design allows a SAAMRBAC deployment to support any combination of the three
types. In the rest of this section, we define each type of policy change and discuss the
consistency properties.

Critical changes of authorization policies are those changes that need to be propa-
gated urgently throughout the enterprise applications, requiring immediate updates
on all SDPs. When an administrator makes a critical change, our approach requires
that he also specifies a time period t for the change. PCM will attempt to propagate the
policy change by contacting all SDPs involved, and must within period t either inform
the administrator that the change has been successfully performed or provide a list
of SDPs that have not confirmed the change. In the latter case, administrators might
want to resort to out-of-band means of flushing caches of the unconfirmed SDPs by, for
example, restarting them. To support critical changes, SDPs would have to implement
algorithms in Figure 5 and PCM would have to “push” changes to SDPs, which re-
quires adding SDP-PCM communication channel. Support for two other types of policy
changes is less intrusive, however.

Time-sensitive changes in authorization policies are less urgent than critical ones
but still need to be propagated within a known period of time. When an administrator
makes a time-sensitive change, it is the PCM that computes the time period t during
which caches of all SDPs are guaranteed to become consistent with the change. As a
result, even though the PDP starts making authorization decisions using the modified
policy, the change becomes in effect throughout the SAAMRBAC deployment only after
time period t. Notice that this does not necessarily mean that the change itself will
be reflected in the SDPs’ caches by then, only that the caches will not use responses
invalidated by the change.

We suggest using time-to-live (TTL) approach for processing time-sensitive changes.
Every primary response is assigned a TTL that determines how long the response
should remain valid in the cache, for example, 1 day, 1 h, or 1 min. The assignment can
be performed by either the SDP, the PDP itself, or a proxy, through which all responses
from the PDP pass before arriving to the SDPs. The choice depends on the deployment
environment and backward compatibility requirements. Every SDP periodically purges
from its cache those responses whose TTL elapses.

The TTL value can also vary from response to response. Some responses (say, au-
thorizing access to more valuable resources) can be assigned a smaller TTL than
others.

When the administrator makes a time-insensitive change, the system guarantees
that all SDPs will eventually become consistent with the change. No promises are
given, however, about how long it will take. Support for time-insensitive changes is
necessary because some systems may not be able to afford the cost of, or are just not
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willing to support, critical or time-sensitive changes. A simple approach for supporting
time-insensitive change is for system administrators to periodically flush SDPs caches.

3.10. Implementation Considerations

To facilitate the integration with existing access control systems, the SDP should pro-
vide the same policy evaluation interface to its PEP as the PDP, thus enabling SAAM
incremental deployment without any change to existing PEP or PDP components. Sim-
ilarly, in systems that already employ authorization caching but do not use SAAM, the
SDP can offer the same interface and protocol as the existing cache component.

SAAM may be deployed for a variety of performance-related reasons, depending on
the specific application, geographic distribution, and network characteristics. These
reasons will typically include one or more of the following: to reduce the overall load
on the PDP; to minimize the delay in responding to the client; and to minimize the
network traffic generated by the authorization service. We now discuss two alternative
ways for managing the interactions between the PEP, the SDP, and the PDP. These
strategies lead to different performance characteristics. Hence, different performance-
related priorities can be realized by choosing different deployment strategies.

The first strategy is concurrent authorization by the SDP and the PDP. When the SDP
receives an authorization request from the PEP, it forwards the request to the PDP.
While waiting for a decision from the PDP, it also computes a decision locally. The SDP
then returns to the PEP the first conclusive decision it receives or computes. The use of
concurrent authorization reduces system response time but increases load on the PDP.
Alternatively, we may use sequential authorization. The SDP only forwards the request
to the PDP if it cannot decide the request. The use of sequential authorization reduces
network traffic and load on the PDP, at the cost of increased response time as observed
by the PEP. The evaluation of these two strategies is presented in Section 4.2.

4. EXPERIMENTAL EVALUATION

While the previous section describes SAAMRBAC algorithms and estimates their com-
plexity, this section presents an experimental evaluation of those algorithms. We used
both simulation and a prototype for evaluation. The simulation enabled us to study
the algorithms by hiding the complexity of underlying communication, while the pro-
totype enabled us to study the system performance in a more dynamic and realistic
environment.

4.1. Simulation-Based Evaluation

In the simulation-based evaluation, we studied three performance aspects of our al-
gorithms: the achieved hit rate, the impact of policy changes on the hit rate, and the
computational cost.

First, we studied the hit rate, which we define to be the ratio between the num-
ber of requests resolved by the SDP (regardless of the specific allow/deny decision)
and the total number of requests received. A high hit rate has the effect of masking
transient PDP failures, thus improving the overall authorization system’s availability.
It also reduces the load on the PDP, thus improving the system’s scalability, and the
authorization system response time.

Our informal analysis in Section 3.7 suggested that the hit rate is influenced by the
following factors: (1) the cache warmness (the ratio between the number of authoriza-
tion responses cached at the SDP and the number of possible requests); (2) the percent-
age of deny responses in the cache at a fixed cache warmness; (3) the characteristics of
the RBAC policy, including the ratios between the numbers of users, permissions, and
roles in the system; and (4) the popularity distribution of roles. Section 4.1.2 presents
results of our experiments investigating the impact of these factors on the hit rate.
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The second performance aspect we studied was the impact of policy changes on the
hit rate. We wanted to understand how the algorithms for handling policy changes
(Figure 3) affected the hit rate. Section 4.1.3 presents the experiment results.

The third performance aspect we investigated was the computational cost of the SDP
algorithms. We measured two types of computational cost: the inference time—the time
that the SDP takes to infer an approximate response (allow or deny) using its cache; and
the update time—the time that the SDP takes to incorporate a new primary response
in its cache. In particular, the lower the inference time, the more efficient the SDP is
in accelerating the access control system. As cache warmness appears to be the main
factor influencing performance, Section 4.1.4 presents the influence of cache warmness
on the inference and update time.

4.1.1. Experimental Setup. To conduct the experiments, we implemented SAAMRBAC
recycling algorithms and integrated the implementation with the SAAM evaluation
engine used in Crampton et al. [2006]. Each run of the evaluation involved two stages.

The first stage was to create the data input files that were required for the simulation.
The engine first created an RBAC policy and assigned roles to both users (UA) and
permissions (PA). Second, the engine created the warming set and testing set, which
were simply lists of requests. Each request was made up of a subject and a permission.
The warming set was a pseudorandom permutation of all possible requests, while the
testing set was a random sampling of requests.

In the second stage, the simulation engine started operating by alternating between
warming and testing modes. In the warming mode, the engine used a subset of the
requests from the warming set, evaluated them using a simulated PDP, and sent the
responses to the SAAMRBAC SDP to build up the cache. During this phase, the eval-
uation engine also recorded the time required to add primary responses to the cache.
Once the desired cache warmness was achieved, the engine calculated the average
update time and then switched into the testing mode during which the SDP cache re-
mained constant. We used this mode to evaluate the hit rate and the inference time at
controlled, fixed levels of cache warmness. The engine submitted requests from the
testing set, and recorded the inference time. Once all the requests in the testing set
had been submitted, the engine calculated the hit rate as the ratio of the testing re-
quests resolved by the SDP to all test requests and the average inference time, and
then switched back to the warming mode. These two modes were then repeated for
different levels of cache warmness, from 0% to 100% in increments of 5%.

For all experiments we used a Linux machine with two Intel Xeon 2.33-GHz proces-
sors and 4 GB of memory. The evaluation framework ran on Sun’s 1.5.0 Java Runtime
Environment (JRE). Each experiment was run ten times and the average results are
reported.

We assumed for simplicity that a user always activated all her roles. This assumption
allowed us to describe the entire request space more easily because we could assume
then that the request space was defined by the set of users and the set of permissions
rather than the set of permissions and the set of all subsets of any set of roles for
which some user was authorized. However, we do not believe that this assumption had
a detrimental impact on our results. Indeed, our choice was likely to mean that the hit
rate was lower than might be expected if users were to use subsets of their authorized
roles. The reason for this is due to the fact that smaller role sets in subjects mean that
(1) the likelihood of a negative response is increased, which increases the hit rate, and
(2) the size of role sets in Cache+ may be reduced, which means that the chance of a
hit is also increased.

The reference RBAC policy used in our experiments contained 100 users, 3000 per-
missions, and 50 roles. Thus the overall size of the request space and the warming set
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was 300,000. The testing set contained 20,000 unique requests which were randomly
selected from the request space. For simplicity, we only considered the flat RBAC model.
Each assigned role was randomly selected from R. The probability of a given user being
assigned to a given role was 0.1. Hence the number of roles assigned to a user was bi-
nomially distributed with mean 5 and variance 4.5, and the number of users to which a
role was assigned was binomially distributed with mean 10 and variance 9. Similarly,
the probability of a given permission being assigned to a given role was 0.04.

While the scale of the system we studied was limited by the computational resources
available, we believe that the values of these parameters are not important in them-
selves. We were interested in configuring a reasonably large system that would mani-
fest a behavior asymptotically similar to possible real-world deployments. Additionally,
we studied the impact of varying the number of users, roles per user, roles, and roles
per permission as well as the popularity distribution of roles on system’s performance.
We note that, while the overall number of permissions in the system may influence the
response time as a large number of permissions leads to less efficient memory use by
the SDP, it will not influence the achieved hit rate.

4.1.2. Evaluating Hit Rate. We first studied the hit rate for the reference RBAC config-
uration. Figure 6(a) presents the hit rate as a function of cache warmness for both
approximate recycling and precise recycling with the reference policy. As expected, the
hit rate of approximate recycling (AR in the figure) increased with cache warmness
and was always higher than that of precise recycling (PR in the figure). In addition,
the results demonstrate that optimized recycling algorithms achieved a better hit rate
than naive recycling algorithms. The improvement was relatively small because it was
only due to the increase in secondary allow responses.

Figure 6(b) compares the cache size of the naive and optimized approximate recycling
algorithms. The results demonstrate that the optimized algorithms help reduce the
cache size significantly. Specifically, using the optimized algorithms, the cache size
stabilized at about 600 kB after cache warmness reached about 20%. Using the naive
algorithms, however, the cache size kept increasing with the cache warmness, and
eventually reached about 1700 kB. The reason is that optimized algorithms maintain
the cache in canonical form. In the rest of our evaluation, we used the optimized
algorithms for all the experiments.

We then studied the impact of varying the number of users while the other configu-
ration parameters were fixed. Figure 6(c) shows the percentage increase for the hit rate
compared with precise recycling for an RBAC system that had 50, 100, and 200 users,
respectively. As expected, an increase in the number of users increased the chance that
a role-permission pair was already cached thus leading to a higher hit rate. When av-
eraged over the full range of cache warmness, the percentage increase was 36%, 80%,
and 132% for 50, 100, and 200 users, respectively.

For the experiments described in the rest of this section, we fixed the cache warm-
ness and studied the impact of other system characteristics on the achieved hit rate.
We chose to explore hit rate for relatively low cache warmness values as this is the
region where we estimated the system would be most likely to operate due to workload
characteristics, limited storage space, or frequently changing access control policies.

First, we studied the impact of the percentage of deny responses in the cache. In some
systems, users may know what they are allowed to do, or the user interface may even
hide unauthorized actions from users. Hence, the cache may contain more primary
allow responses than primary deny responses. To study this effect in the experiment,
we engineered the warming set so that the PDP could generate a specified proportion
of deny responses. Figure 6(d) confirms our prediction that a higher proportion of deny
responses leads to a higher hit rate. The intuition behind this result is that a negative
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primary response for a permission and a user means that the permission is not assigned
to any of the user’s roles. In contrast, a positive primary response only allows us to
infer that the permission is assigned to at least one of the roles, but without the ability
to infer exactly which role. Note that we only show the results for 15% cache warmness
because the maximum cache warmness we could reach by using only allow responses
was less than 20%.

Second, we studied the impact of the total number of roles on the hit rate by varying
it from 10 to 100 (Figure 6(e)) and keeping constant the number of users and the
mean number of roles a user/permission is assigned to. The results indicate that, as
the number of roles increases, the hit rate decreases. This confirms our intuition that,
as the number of roles increases, the overlap between the sets of roles each user is
assigned to also decreases thus reducing the likelihood of a successful inference.

Third, we studied the impact of the mean number of roles to which each user is
assigned by varying it from one to all the roles the system (50 roles) while keeping
all other parameters constant. The results in Figure 6(f) suggest that the influence of
this parameter on the hit rate is more complex. We now describe our understanding
of these curves. The hit rate was low when each user was assigned to few (fewer than
five) roles because there were few roles in each entry of Cache+ and Cache− and hence
the chances of making an approximate response were limited. As the number of roles
per user increased, the size of the entries of the role sets in the cache increased and
the chance of two users’ role sets overlapping increased. While the overlap was still
relatively low (when each user was assigned to fewer than 10 roles), the deny responses
dominated the content of the SDP cache. However, when the number of roles per user
increased further, Cache+ started increasing at the expense of Cache−, leading to the
decrease in the hit rate (as we predicted in Section 3.5). Moreover, for entries of the form
(s, p) ∈ Cache+, s was likely to be large (since there were few deny responses to reduce
their size). Since subjects contained all roles assigned to a user and users were assigned
to a large number of roles, it became difficult to generate an allow secondary response
for (s, p), because s was large and our approach requires a tuple (s′, p) ∈ Cache+ such
that s′ ⊆ s, and in such tuples s′ was also likely to be large. Less intuitive is the sharp
increase to 100% in the hit rate on the right side of the graph. This increase was likely
due to the fact that each user was assigned to (almost) all the roles in the system and,
as a result, (almost) every user had the same set of roles. In practice, we would expect
the number of roles to be a relatively small compared to the number of users (e.g.,
Schaad et al. [2001] found it to be around 3–4%) and that users would be allocated to a
small fraction of those roles. Our experimental results suggest that the characteristics
of real RBAC systems will not compromise the efficacy of our algorithms.

Fourth, we studied the impact of the mean number of roles to which each permis-
sion was assigned. Figure 6(g) confirms the results of our analytical analysis, which
predicted that a larger number of roles per permission leads to a lower hit rate. This
effect can be also attributed to the decrease of Cache−.

Finally, we studied the impact of role popularity distribution. In all our previous
experiments, roles were uniformly assigned to users and permissions so that all roles
were equally “popular” in UA and PA relations. However, in reality some roles may
be assigned to users or permissions more frequently than other roles. For example,
in an enterprise most users are assigned an “employee” role while only a few are
assigned a “manager” role. To model this type of highly uneven popularity, we used a
Zipf distribution.

Zipf distributions have been widely used to model heterogeneous popularity distribu-
tions (e.g., Web page popularity [Breslau et al. 1999], Web site popularity [Adamic and
Huberman 2002], and query term popularity [Klemm et al. 2004]). A set of data obeys
Zipf ’s law if the frequency of an item is inversely proportional to (some nonnegative)
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power of its rank (determined by frequency of occurrence). More formally, suppose we
have a frequency distribution (x1, f1), . . . , (xn, fn), where data item xi occurs fi times
and f1 � f2 � · · · � fn. Then the distribution obeys Zipf ’s law if fi ∝ 1

iα for some α � 0.
Using English language as an example, the relative frequency of the most popular
word “the” is 7%, and the relative frequencies of the next most popular words (“of” and
“and”) are 3.5% and 2.7%, respectively [Francis and Kucera 1967]. In other words, the
most popular word occurs twice as often as the next most popular word, and approx-
imately three times as often as the third most popular word. The frequency of words
approximately follows Zipf ’s law with α = 1.

In our experiment, roles selected from the role set R and assigned to users and
permissions followed Zipf distribution. In particular, the more popular roles were as-
signed to more users in UA than the less popular roles. A role that appeared more
frequently in UA, however, was assigned to fewer permissions in P A. This simulated
a scenario where, for example, the “employee” role is usually assigned to more users
than the “manager” role but the “employee” role usually has fewer permissions than
the “manager” role.

By using a Zipf distribution and varying α for role assignment, we implicitly simu-
lated the existence of a role hierarchy RH. A popular role in U A simulated a junior
role in RH that had fewer permissions but was assigned to more users. In contrast,
a less popular role in U A simulated a senior role in RH that had more permissions
(as it inherited permissions from all its junior roles) but was assigned to fewer users.
In addition, by varying α, we implicitly varied the shape of the RH graph. When α is
small, the corresponding RH graph has a wide and shallow shape. A large α makes
the RH graph narrow and deep.

Since the popularity distribution becomes less and less skewed with the decrease
of α, collapsing to a uniform distribution when α = 0, we varied α between 0 and 1.5
in steps of 0.1. The results in Figure 6(h) show that, when α was lower than 1, the
hit rate was almost the same as in the uniform distribution. When α was larger than
1, the hit rate began to increase along with α. This is expected because the number
of “overlapping” roles between users increased. This was also due to the increase of
negative responses in the cache because more users were assigned fewer permissions.
However, when the cache warmness increased, this improvement was less significant
due to the already high hit rate.

4.1.3. Evaluating the Impact of Policy Changes. We also studied the impact of policy
changes on the hit rate. Since the hit rate depends on the cache warmness, and a
policy change may result in removing one or more responses from SDP caches, we
expected that frequent policy changes at a constant rate would unavoidably result in a
reduced hit rate. This section quantifies this effect.

In the experiments, the simulation engine was responsible for firing a random policy
change and sending the policy change message to both the PDP and SDP at predefined
intervals, for example, after every 10,000 requests. The experiment switched from
the warming mode to the testing mode once a policy change message was received.
After measuring the hit rate right before and after each policy change, the experiment
switched back to the warming mode.

We studied three types of policy change operations: adding a tuple to the PA relation;
deleting a tuple from the PA relation; and deleting a role from R. When adding a
tuple, the cache warmness increases slightly (as a tuple is added to Cache+), so we
would expect to see a slight increase in the hit rate. Our experiments confirmed this,
although the hit rate never increased by more than 0.1%. Conversely, deleting a tuple
from PA causes a reduction in the cache warmness, and is expected to result in a
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decrease in the hit rate. Again, our experiments confirmed this expectation, and the
decrease in hit rate was negligible.

We now focus on the impact of deleting a role, as it is expected to have a more
significant impact on the hit rate. We first studied how the hit rate was affected by an
individual policy change, that is, the removal of a single role from R. We expected that
SAAMRBAC inference algorithms were sufficiently robust so that an individual change
would result in only minor degradation of the hit rate. In the experiment, the warming
set contained 200,000 requests which were selected from the total request space with
equal probability (with replacement). A randomly selected role was removed from R
every 10,000 requests and tuples containing that role in UA and PA were also deleted.
Then the cache was updated accordingly. After the experiment switched back to the
warming mode from the testing mode, the removed role was returned to R; UA and
PA were also restored. Thus the simulated system kept its policy characteristics. Any
change in the hit rate was attributed to the reduced cache size.

Figure 7(a) shows the hit rate as a function of the number of observed requests, with
policy changes (lower curve) or without policy changes (upper curve). Because the hit
rate was measured just before and after each policy change, every kink in the curve
indicates a hit rate drop caused by a policy change. The results suggest that the hit rate
drops were relatively small; the maximum hit rate drop was 6.2%, and the average was
4.0%. After each drop, the curve climbed again because the cache warmness increased
with new requests.

Although the hit rate drop for each policy change was small, one can see that the
cumulative effect of policy changes could be large. As Figure 7(a) shows, the hit rate
decreased about 20% in total when the request number reached 200,000. This result
led us to another question: would the hit rate finally stabilize at some point?

To answer this question, we ran another experiment to study how the hit rate varied
with continuous policy changes over a longer term. We used a larger number of re-
quests (i.e., 1,000,000), and varied the frequency of policy changes from 2,500 to 20,000
requests per change.

Figure 7(b) shows the hit rate as a function of the number of requests, with each curve
corresponding to a different frequency of random policy changes. Because of the con-
tinuous policy change, one cannot see a perfect asymptote of curves. However, the
curves indicate that the hit rate stabilized after 200,000 requests. As we expected, the
more frequent the policy changes were, the lower the stabilized hit rates were, since
the responses were removed from the SDP caches more frequently. This result suggests
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that, if R is changed frequently, it is preferable to purge the cache periodically instead
of immediately.

Figure 7(b) also shows that each curve has a knee. The steep increase in the hit rate
before the knee implies that caching new responses improves the hit rate dramatically
in this interval. Once the number of responses passes the knee, the benefit brought by
caching further responses becomes negligible.

4.1.4. Evaluating Inference and Update Time. Figure 8(a) shows the inference time for al-
low and deny approximate responses as a function of cache warmness for our reference
configuration. As expected, the computational overhead to infer allow responses was
larger than that for deny responses. The inference time increased with cache warm-
ness for two reasons: first, when more responses were cached, the SDP used more re-
sponses for inference leading to higher computational overheads. Second, larger cache
sizes led to less efficient memory usage (because the cache could not accommodate the
SDP data).

Figure 8(b) shows the time for updating the SDP cache using both allow and deny
primary responses as a function of cache warmness. As expected, the update time also
increased with cache warmness. Additionally, the SDP used more time to process allow
than deny responses. The reason is that, in the case of processing each allow response
+(s, p), the SDP had to purge redundant tuples, that is, delete all (s+, p) ∈ Cache+ such
that s − s− ⊆ s+, which involved an extra subset computation. This result suggests
that, to improve the update time, the purge operation should be done in a periodical
manner.

Note that both the inference time and update time stabilized when cache warmness
reached about 40%. This was because at about 40% warmness the SDP was able to
resolve all possible requests so new responses provided no new information to the
cache.

4.2. Prototype-Based Evaluation

We have also implemented a simplified SAAMRBAC prototype system to evaluate the
performance of overall authorization system. In particular, we studied the response
time for two SAAM schemes (described in Section 3.10): sequential and concurrent
authorization.

4.2.1. Experimental Setup. The prototype system consisted of the implementations of
PEP, SDP, and PDP. The PEP was process collocated with the SDP, while the SDP com-
municated with the PDP using Java Remote Method Invocation (RMI). The PEP/SDP
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Fig. 9. Response time variation with cache warmness.

and PDP were located in two separate cluster nodes connected by a 1-Gb/s network.
Each node was equipped with two Intel Xeon 2.33-GHz processors and 4 GB of mem-
ory, running Fedora Linux 2.6.24.3. Upon generating a random request at the PEP, the
system attempted to resolve the request using one of the following two authorization
schemes: sequential authorization, where a request was resolved first by the SDP and
then by the PDP, or concurrent authorization, where a request was resolved by the SDP
and the PDP concurrently.

For each authorization scheme, we ran experiments in the following two scenarios:
(1) Scenario I, where the SDP and the PDP were collocated on the same local area
network (LAN) and that the authorization policy of the PDP was relatively simple,
thus allowing the PDP to make authorization decisions swiftly; and (2) Scenario II,
where the SDP was separated from the PDP by a wide area network (WAN) or/and
the PDP had a complex authorization policy. To model this scenario, we simulated
additional 40-ms delay added to each authorization request sent to the PDP.

4.2.2. Evaluating Response Time. In our experiments, response time was measured as
the time elapsed after the PEP generated a request until it received the response for
that request. At the start of each experiment, the SDP caches were empty. The PEP
uniformly selected a request from the request space, sent it to the SDP, and then
recorded the response time for each request. After every 10,000 requests, the PEP
calculated the mean response time and used it as an indicator of the response time for
that period.

For both scenarios, we also ran experiments for the authorization system without
SAAM, including authorization without caching or only using precise recycling. Our
purpose was to evaluate the gains in terms of response time. The results shown in
Figure 9 suggest that using SAAM helped to reduce the system response time in
both scenarios and this reduction increased with cache warmness. Additionally, as we
expected, the two SAAM authorization schemes showed different patterns in the two
scenarios, which we explain below.

Figure 9(a) shows the result for Scenario I. The figure demonstrates that the response
time for both schemes decreased with cache warmness, while sequential authorization
decreased more quickly. The reason was likely due to the lower cost of resolving requests
at the SDP. When cache warmness increased, more requests were resolved by the SDP.
Since the SDP was process collocated with the PEP, getting responses through an
interprocess call to the SDP was faster than getting responses through a network RMI
call to the PDP.
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More specifically, when cache warmness was small, that is, less than 30%, concurrent
authorization achieved a shorter response time than sequential authorization. This was
due to the extra time incurred by cache misses in sequential authorization. One unusual
pattern in our result was that sequential authorization achieved a lower response time
as cache warmness exceeded 30%. This was possibly caused by the thread management
overhead in our concurrent authorization implementation. We should point out that,
in an optimized implementation, concurrent authorization should at least achieve the
same response time as the sequential authorization since concurrent authorization
always uses first returned response.

Figure 9(b) shows the results for Scenario II. As expected, both response times
decreased with cache warmness. More interestingly, the curves for concurrent and
sequential SAAMRBAC authorizations almost overlapped each other. The reason is that
in this scenario the extra time incurred by cache misses and thread management were
small compared to the 40-ms delay at the PDP. Therefore, their impact on the response
time was trivial.

4.3. Discussion

The results of our experiments indicate that approximate recycling leads to higher
SDP hit rates than precise recycling alone, thus improving the availability and scala-
bility of the access control system. Compared with the naive algorithms, the optimized
algorithms achieve a higher hit rate using a smaller cache. These results extend our
understanding of the factors that influence the hit rate as follows.

—For cache warmness between 5% and 50%, the hit rate for approximate recycling is
notably better than that of precise recycling.

—Larger numbers of users in the system having similar role memberships substan-
tially improve the hit rate.

—A higher proportion of deny responses in the cache leads to a higher hit rate.
—As the number of roles increases, the overlap between the sets of roles each user is

assigned to decreases, thus reducing the likelihood of a successful inference based
on cached responses.

—The hit rate is low when each user is assigned to few roles because the SDP cache has
little relevant information. With the increase of overlap in users’ roles, the number of
relevant entries increases, resulting in the increase of the hit rate. While the overlap
is still relatively low, the deny responses dominate the content of the SDP cache,
resulting in a higher hit rate. However, when the number of roles per user increases
further, Cache+ starts increasing at the expense of Cache−, leading to the decrease in
the hit rate. When each user is assigned to (almost) all the roles in the system (almost)
every user has the same set of roles, and the hit rate increases sharply to 100%.

—A larger number of roles per permission leads to a lower hit rate.
—Zipf ’s popularity distribution of roles leads to a higher hit rate when α is larger than

1, due to the increased overlap of roles assigned to users and permissions.

The volume of information available for inference, the percentage of deny responses,
and the distribution of role assignment are the factors that are not controlled by the
administrators of RBAC systems. Other factors that impact performance, however, for
example, the total number of roles, the number of roles per user, and the roles per
permission, might be engineered (e.g., by role engineering [Vaidya et al. 2007]) by the
designers of access control policies who might be able to tune these factors to achieve
higher hit rates using the trends our experiments and evaluation revealed. Thus, we
believe our evaluation results can be used to inform efficient SAAMRBAC deployment
in real enterprise systems, even though our experimental testbed was relatively small
compared to large-scale systems deployed in organizations (e.g., Schaad et al. [2001]).
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Our results indicate that the impact of the update to P A is trivial, as only a single
permission is affected. In contrast, frequent policy changes to R may have a large
impact on the hit rate. Since the correctness of the response is not affected if the cache
is not updated immediately, it is preferable to purge the cache periodically instead of
immediately.

Our experiments also demonstrate inference and update time well under 1 ms, and
we believe that response times can be further reduced by optimizing the implementa-
tion. We note that a low inference time is a key attribute for a real-world deployment
as it directly affects the perceived performance of the access control system: an appli-
cation request cannot be processed until the PEP obtains a response, either primary
or secondary. Cache changes triggered by adding primary responses or policy changes,
on the other hand, can be implemented in the background to hide their impact on
perceived performance.

The evaluation results on response time further suggest that the usefulness of SAAM
techniques for reducing the response time of the overall access control system, espe-
cially in network-based deployments where network latencies are much larger or the
PDP authorization logic, is complex. The results with two authorization schemes indi-
cate that concurrent authorization is only helpful when the PDP can make authoriza-
tion decisions quickly. In other cases, sequential authorization is preferable because it
can achieve both reduced response time and reduced load at the PDP.

An alternative to approximate recycling for RBAC systems is to replicate RBAC policy
at each SDP. Runtime benefits of the proposed approach—compared to just replicating
PA and RH relations at each SDP—depend on a number of factors. The first factor is
the size of the policy (mainly the P A, since this is likely to be the largest) relative to
the size of a PEP working set (the set of all requests that come through the PEP). For
a workload with good locality and a large PA, the proposed approach will require less
space and may well be faster. Furthermore, if the PA is very large (say, larger than
109 elements) then it may be too expensive to duplicate the hardware that supports
the PDP to additionally support each SDP. The second factor is the ability of a PDP to
predict the working set of a PEP. If the PDP is able to predict a PEP’s future working
set, then providing the SDP with corresponding subsets of PA and RH will work better
than authorization recycling (regardless of the relative sizes of the policy and the PEP
working set). The third factor is the frequency of policy changes and the scope of these
changes, that is, how many elements in the PA they affect. The fourth factor is the
relative benefits brought by one-time replication of the PA (or some subset of it)—as
proposed by Tripunitara and Carbunar [2009], for example—to the SDPs, as opposed
to item-by-item caching of the responses.

Depending on the workload and policy characteristics, the most efficient solution
may combine the proposed approach with the replication of some policy elements. For
example, RH can be replicated to the SDPs, as suggested in Section 3.9. As a case in
point, PEPs in the IBM Tivoli Access Manager [Karjoth 2003], which encodes PA in the
form of access control lists, can operate in two modes. In “remote mode,” a PEP sends
authorization requests to the PDP. In “local mode,” the PEP maintains a local replica of
the authorization policy and performs all authorization decisions locally. Depending on
the configuration, the policy local replica can be “pulled from” and/or “pushed” by the
master authorization service database. “Overhead of policy replication” is mentioned
in the technical documentation of the Access Manager [Bücker et al. 2003], but no
evaluation is reported.

5. RELATED WORK

To improve the performance and availability of access control systems, caching of
authorization decisions has been employed in a number of commercial systems
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[Entrust 1999; Oracle 2008; Netegrity 2000], as well as several academic access con-
trol systems [Borders et al. 2005; Spencer et al. 1999]. However, all these systems only
compute precise authorizations and therefore are only effective for resolving repeated
requests. Beznosov [2005] introduced the concept of recycling approximate authoriza-
tions, and later Crampton et al. [2006] formally defined SAAM and introduced the
concept of SDP. The SDP can resolve new requests by extending the space of supported
responses to approximate ones. In other words, SAAM provides a richer alternative
source for authorization responses than the existing approaches do. Additionally, to
further improve the performance and availability of access control systems, Wei et al.
[2007] explored the cooperation between multiple SDPS and combined SDP cooperation
and approximate authorizations.

The inference of approximate responses usually depends on the underlying access
control policy. For access control systems based on the Bell-LaPadula (BLP) model [Bell
and LaPadula 1973a, 1973b], SAAMBLP [Crampton et al. 2006] uses the relationships
between subjects and objects of previous responses to infer approximate responses. In
comparison with SAAMBLP, SAAMRBAC infers relationships between sets of roles and
the permissions assigned to those roles, thereby enabling the computation of approxi-
mate responses. Other work [Motro 1989; Rizvi et al. 2004; Rosenthal and Sciore 2001]
used the relationships between (database) objects to infer new authorizations.

In general, SAAM is a domain-specific approach to improving performance and fault
tolerance of access control mechanisms that employ remote authorization servers. The
general classes of fault tolerance solutions are failure masking through information
redundancy (e.g., error correction checksums), time redundancy (e.g., repetitive invoca-
tions), or physical redundancy (e.g., data replication). SAAM employs physical redun-
dancy [Johnson 1996]: when the PDP is unavailable, the SDP is able to mask the fault
by providing the requested access control decision if relevant authorization responses
are cached. The SAAM approach requires no specialized operating system or commu-
nication software except modifications to the logic of the PEP cache. No distributed
state, election, or synchronization algorithms are necessary either. With SAAM, only
authorization responses are cached, and no dynamic authorization data are replicated,
enabling linear scalability with the number of PEPs and PDPs.

6. CONCLUSION

As distributed systems become increasingly large and complex, their access control
infrastructures face new challenges. Conventional request-response authorization ar-
chitectures become fragile and scale poorly to large systems. Caching authorization
decisions have long been used to improve access control infrastructure availability
and performance. SAAMRBAC extends this approach by enabling the inference of ap-
proximate authorizations for RBAC systems. We propose algorithms to compactly cache
authorization decisions and to efficiently infer approximate decisions from cached data.
Our evaluation results demonstrate an average percentage increase of 36–132% in the
number of authorization requests that can be served without consulting the original
decision point, compared to precise recycling. These results suggest that deploying
SAAMRBAC improves the availability and scalability of RBAC systems, and in turn the
performance of entire enterprise systems.
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