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Abstract

Attempts to explicate the neural abnormalities behind autism spectrum disorders frequently revealed impaired brain
connectivity, yet our knowledge is limited about the alterations linked with autistic traits in the non-clinical population. In
our study, we aimed at exploring the neural correlates of dimensional autistic traits using a dual approach of diffusion
tensor imaging (DTI) and graph theoretical analysis of resting state functional MRI data. Subjects were sampled from a
public neuroimaging dataset of healthy volunteers. Inclusion criteria were adult age (age: 18–65), availability of DTI and
resting state functional acquisitions and psychological evaluation including the Social Responsiveness Scale (SRS) and
Autistic Spectrum Screening Questionnaire (ASSQ). The final subject cohort consisted of 127 neurotypicals. Global brain
network structure was described by graph theoretical parameters: global and average local efficiency. Regional topology
was characterized by degree and efficiency. We provided measurements for diffusion anisotropy. The association between
autistic traits and the neuroimaging findings was studied using a general linear model analysis, controlling for the effects of
age, gender and IQ profile. Significant negative correlation was found between the degree and efficiency of the right
posterior cingulate cortex and autistic traits, measured by the combination of ASSQ and SRS scores. Autistic phenotype was
associated with the decrease of whole-brain local efficiency. Reduction of diffusion anisotropy was found bilaterally in the
temporal fusiform and parahippocampal gyri. Numerous models describe the autistic brain connectome to be dominated
by reduced long-range connections and excessive short-range fibers. Our finding of decreased efficiency supports this
hypothesis although the only prominent effect was seen in the posterior limbic lobe, which is known to act as a connector
hub. The neural correlates of the autistic trait in neurotypicals showed only limited similarities to the reported findings in
clinical populations with low functioning autism.
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Introduction

The American Psychiatric Association defines autism as a

pervasive developmental disability with impairments in social

interaction, verbal, nonverbal communication and limited behav-

ioral flexibility [1]. Conventionally, if an individual with autism

has an intelligence quotient in the normal range (or above), the

term high-functioning autism (HFA) is used, while meeting all of

the criteria for HFA except communicative abnormality or history

of language delay defines Asperger’s syndrome [2]. Neuroana-

tomic observations provided evidence about micro- and macro-

structural abnormalities in the autistic brain [3] and in the quest

for characterizing such malformations, neuroimaging gained

prominent attention. MRI volumetry revealed abnormal develop-

mental pattern in autism, which is characterized by an early brain

overgrowth that diminished in adults [4], [5]. Further evidence on

localized structural abnormalities was provided by voxel-based

morphometry studies [6]–[][8] and cortical thickness measure-

ments [9], [10]. Distinct anatomic correlates were linked with

Asperger’s Syndrome [11] and high-functioning autism [12].

Technological developments in the last two decades enabled the

use of more advanced structural and functional magnetic

resonance approaches. Here we shortly summarize the contribu-

tions of diffusion magnetic resonance and functional MR (fMRI)

to autism research.

Diffusion-weighted imaging (DWI) is based on the sensitization

of the magnetic resonance signal to molecular displacements while

diffusion tensor imaging (DTI) acquires information on the
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directional preference of the anisotropic diffusion in the brain [13].

The driving force behind DWI’s 25-year success story is that

opened a new window on the characterization of tissue

microarchitecture by probing the microscopic, diffusion-driven

molecular motions. This approach gave rise to diverse studies that

elucidated the correlations between regional changes of diffusion

anisotropy and various psychopathologies [14] or linked the

diffusion characteristics with cognitive phenotypes [15]. Lowered

quantitative measures, such as the DTI-derived diffusion anisot-

ropy, were reported in the white matter of autistic children’s brains

[16], [17] or in adults with Asperger’s syndrome [18]. Inconsis-

tently, some studies report regionally increased fractional anisot-

ropy (FA) in diverse brain regions [19], [20].

Functional magnetic resonance imaging (fMRI) is an optimal

modality for the in vivo observation of the working brain and to

infer patterns of brain activity from the changes of the blood

oxygen-level dependent (BOLD) MR signal. In autism research

putative functional impairments can be characterized by using

experimental tasks such as executive function tests [21], cognitive

control [22] or verbal fluency tasks [23]. The endeavor to study

the normally functioning or pathologically altered macroscopic

functional networks of the human brain was recently revitalized by

the resting state fMRI concept [24]. In such studies the

fundamental hypothesis is that the temporal coherence of BOLD

signal time-courses marks the degree to which two regions are

functionally connected [25], although this simple model does not

imply causality and further inconsistency of such reports is caused

by the large number of signal and image processing approaches

that are in use [26]. More complex models can be used to examine

the brain as a network of interconnected processing units rather

than interpreting individually measured functional connections.

One such mathematical approach is graph theory where brain

regions define graph nodes and edges represent the strengths of

structural or functional connectivity. This emerging network-based

technique allows the calculation of graph topological measures

that hallmark the properties of information exchange. The most

commonly used indicators are small-worldness, efficiency, degree,

modularity. Such quantitative studies are increasingly recognized

– we refer to review articles on the background and possible

clinical applications of the graph theoretical analysis of the human

brain connectome [27], [28].

Resting state fMRI measurements, diffusion tensor imaging and

tractography are potentially applicable to indirectly explore the

disturbed neuronal communication in autism. Our study aims to

stand in the line of studies that assume abnormal formation of

cortico-cortical short or long-range interconnections. Such models

postulate impaired long-range connectivity in autism and in HFA

which is also hallmarked by decreased diffusion anisotropy that

predominantly affects frontal, fronto-parietal and fronto-occipital

pathways [29]. Conversely, a minority of studies revealed

increased connectivity values or diffusion anisotropy [30], [31]

particularly coinciding with the spatial patterns of short-range

association fibers [19], [32]. The reported inconsistencies in

neuroimaging studies reflect the puzzling nature of autism in

which the core anatomical features and the common pathome-

chanisms of disrupted connectivity remains unknown.

Our investigation was designed to elucidate the putative effects

of the autistic traits on the patterns of functional brain connectivity

and diffusion anisotropy. Autism spectrum disorders are com-

monly understood to comprise traits with dimensionality; such

traits can plausibly be quantified by clinical batteries or self-

reported screening tests [33]. Accordingly, we assume that

normally functioning adults with a certain degree of social

reciprocity impairment and inflexible behavior present altered

structural and functional brain connectivity. This supposition

prompted us to employ a graph theoretical analysis that is

presumably feasible and sensitive for characterizing changes in the

functional topology of resting state networks (RSNs). We aim to

relate the RSN topological correlates of autistic traits to the

commonly reported observations from the broader spectrum of the

disease.

Methods

Study population
Phenotypic information and imaging data of 207 subjects were

taken from the public repository of the International Neuroimag-

ing Data-sharing Initiative (INDI); we used the most recent release

of the Nathan Kline Institute’s Rockland Sample [34]. It is a freely

available, large-scale, extensively phenotyped dataset for the

discovery research and it contains healthy subjects from nearly

all age groups. During sampling, inclusion criteria were: (i) age

between 18 and 65, (ii) availability of the Wechsler Abbreviated

Scale of Intelligence (WASI), Social Responsiveness Scale (SRS)

and the autism spectrum screening questionnaire (ASSQ) scores,

(iii) availability of DTI and resting-state fMRI scans, (iv) IQ above

70. As a result of this selection, we performed our analysis on a

cohort of 127 neurotypical adults. The original NKI/Rockland

data collection was preceded by the approval of the relevant

ethical committee and subjects gave informed consent to the

imaging studies.

Psychological evaluations
Our hypothesis is that inter-individual variability in dimensional

autistic traits is correlated with characteristic changes in the

functional network topology and diffusion anisotropy in neuroty-

pical adults. The study was consequently designed to utilize

multiple psychological tests as explanatory variables for functional

topological measurements. First, we accessed data of the Autism

Spectrum Screening Questionnaire (ASSQ), which is a 27 item

checklist for completion by lay informants. This battery was

reported to be plausible in assessing symptoms characteristic of

Asperger’s syndrome and other high functioning autism spectrum

disorders in children and adolescents with normal intelligence

[35]. The ASSQ was self-administered by the adults participating

in this study. Data of self-reported autistic traits were completed by

using the Social Responsiveness Scale (SRS) Adult version. The

SRS is a 65 item questionnaire originally intended for an

informant, but it was completed by the subjects here. Total SRS

scores range from 0, corresponding to high social competence, to

195, corresponding to severe social impairment as observed in

individuals with severe ASD. Scores between 60 and 80 are

associated with mild forms of ASD [36]. SRS measures autistic

traits that are continuously distributed in the normal population

and has been used in similar investigations that correlate such

traits with functional neuroimaging based data [37]. HFA is

occasionally characterized by discrepant IQ profile, in other

words, performance IQ scores significantly exceeding verbal IQ

[38], but this observation is not ubiquitous [39]. To evaluate the

intelligence profile, the authors of the NKI/Rockland dataset

utilized the WASI, which consists of four subtests [40]. The

performance IQ is composed of the scores of two subsets: the

Block Design and Matrix reasoning, while the verbal IQ comprises

the Vocabulary and Similarities tests. The distribution of the

above mentioned demographic variables were tested for normality

with one sample Kolmogorov-Smirnov (K-S) procedure. WASI

verbal and full IQ scores were normally distributed (K-S; p = 0.57,

0.81). Age was not found to be normally distributed due to the
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lower and upper thresholds applied (K-S; asymptotic significance;

p = 0.031). SRS total score was normally distributed (K-S;

p = 0.23) while ASSQ showed significant deviation from the

assumed distribution (K-S; p,0.001). Table 1 summarizes the

basic demographic data and trait-based measures for the study

group. Figure 1 illustrates the distribution of age and the

psychological assessments.

Imaging protocols
DTI and fMRI scans were acquired on a 3.0 T MRI system

(Magnetom Trio Tim, Siemens, Erlangen, Germany) using a spin

echo echo-planar imaging (EPI) sequence (TR=10000 ms,

TE= 91 ms) with the GRAPPA parallel imaging technique

(acceleration factor: 3). Diffusion-weighting gradients were applied

in 64 different directions, b-value: 1000 s/mm2. Volumes consist-

ed of 58 transverse slices, slice thickness: 2 mm, voxel size: 2 mm *

2 mm, matrix size: 128 * 128 (field of view: 256 mm). Resting-

state functional magnetic resonance imaging protocol was adapted

from the Brain Genomics Superstruct Project common acquisition

protocol, provided courtesy of Randy Buckner. Over an exper-

imental period of approximately 10 minutes, 260 volumes were

acquired with a spin echo EPI sequence (TR=2500 ms,

TE= 30 ms). 38 axial slices were acquired with a matrix resolution

of 72 * 72 (field of view: 216 mm), isotropic voxel size was 3 mm.

Image processing – spatial standardization
Diffusion tensor and fMRI data were standardized to the

MNI152 neuroimaging space. For guiding the transformation of

the DTI space into the standard space, the fractional anisotropy

(FA) images were used. Initially, FA images were registered to the

FMRIB58 fractional anisotropy template linearly (FLIRT algo-

rithm, 12 degrees of freedom registration using normalized

correlation cost function, included in the FSL software library

[41]). This affine transformation served as an initial stage for the

non-linear registration (FNIRT algorithm).

The rs-fMRI data of each participant were realigned to the

middle scan of the series using rigid body registration (MCFLIRT

algorithm in FSL) [42]–[44] to adjust for motion and then co-

registered to the T1-weighted MPRAGE image using rigid-body

algorithm (FLIRT, FSL) [45]–[47]. Data were then spatially

standardized by applying the warp field produced by the nonlinear

co-registration of the skull-stripped [48] MPRAGE scan to the

MNI152 non-linear template [49], [50] using the FNIRT tool in

FSL. The diffusion-weighted and T1-weighted scans were skull-

stripped using the BET command in FSL.

Image processing – brain region system
A customized brain region system was defined to comprise the

entire cortex and subcortical areas including the cerebellum.

When determining the nodes of the network, Smith et al. showed

that it is of crucial importance to ensure that the ROIs provide

whole gray matter coverage and thus eliminate the deleterious

effect of shared extra-network inputs [51].

For this purpose, we constructed a custom region system

containing 149 regions, based on multiple brain atlases. Atlas data

were available in MNI152 standard space. Regions were sampled

from the Harvard-Oxford Cortical and Subcortical Structural

[52]–[55] atlas while cerebellar labels were taken from the UCL

(University College, London) probabilistic cerebellar atlas [56].

The thalamus region of the Harvard-Oxford atlas was parceled

into seven sub-regions based upon the Oxford Thalamic

Connectivity Atlas [57], [58], each subdivision representing

thalamic connectivity domains to major cortical areas. Each atlas

comprised voxel-wise probabilities of the volumetric label maps.

Accessing this data, we delineated each ROI at p.0.25 probability

threshold, using the in-house developed BrainLOC (Software

Access: www.minipetct.hu/brainloc) software package. To elimi-

nate regional overlaps, voxels belonging simultaneously to two or

more ROIs were assigned to the one with the highest probability.

We provide a complete list of label names, abbreviations and data

sources in Table S1.

Image processing - diffusion tensor estimation
Before the non-linear standardization of DTI acquisitions,

tensors were fitted to the observed DWI signal using the DTIFIT

algorithm (FSL), this step included the calculation of fractional

anisotropy (FA) values. For the equation describing the relation-

ship between the tensorial eigenvalues and FA, we refer to the

commonly used ways in the literature [59]. Atlas-based labels were

used to extract the regional values of FA. To determine the mean

anisotropy value for each region, anisotropy measurements in each

image voxel were weighted with the corresponding atlas-based

probabilities.

Image processing and network construction - resting
state fMRI
We characterized the strength of temporal coherence (function-

al connectivity) between each pair of brain regions with the

wavelet correlations of the averaged regional BOLD signals [60]

on a low (,0.1 Hz) frequency band, which is most commonly used

in rs-fMRI studies [61], [62]. For estimating wavelet correlations

we applied four level maximum overlap discrete wavelet transfor-

mation [63], [64] with a Daubechies least asymmetric wavelets of

length 8 (so called LA(8) wavelet) to calculate four sets of wavelet

coefficients for each BOLD signal. The four level wavelet

decomposition refers to four frequency bands (0.1–0.2 Hz, 0.05–

0.1 Hz, 0.025–0.05 Hz, 0.0125–0.025 Hz) depending on the

[21/(k+1)/TR – 21/k/TR, k= 1…4] rule and the TR=2500 ms

repetition time, we chose the coefficients related to the 0.025–

0.05 Hz frequency range for the further analysis (Band 3). The

wavelet correlation for this band was calculated from the wavelet

coefficients as described in [63], [64].

Wavelet correlations (rij) between each possible pair of brain

regions were computed and stored in 149*149 symmetric

correlation matrices. In order to preserve the continuous nature

of the correlation information we chose the weighted undirected

network model for characterizing network properties [65]–[][67].

To emphasize strong correlations and punish weak correlations we

defined the connectivity between two regions as a power 2 of the

absolute value of the wavelet correlation coefficients [68]: wij= rij
2.

Using this soft threshold approach we produced 149*149 weighted

connectivity matrices for each subject. Figure 2 summarizes the

image processing pipeline that was utilized for the rs-fMRI data.

Graph theoretical analysis of functional connectivities
In graph theory, the mathematical abstraction of a network is a

G graph containing a set of N nodes and M edges. This graph can

be represented as an N*N square ‘‘A’’ adjacency matrix with

elements aij=1 or 0, depending on whether an edge does (1) or

does not exists (0) between nodes i and j. In the case of weighted

networks the W connectivity/weight matrix containing wij

elements represents the strength of connections between nodes i

and j. In MRI-based functional brain network analysis the

adjacency and weight matrices are zero-diagonal, symmetric matrices

(wij=aij=0, wij=wji, aij=aji) since modeling regional self-

connections (i = j) and directed regional connections (wij?wji,

aij?aji) are meaningless. These matrix properties correspond to

Functional Network Correlates of Autistic Traits
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undirected binary (so called unweighted) or undirected weighted graphs,

depending on the used edge model (binary, weighted). In the case

of weighted functional brain network without losing generality we

assume that the weights of edges (i.e. the strength of connections)

lie in the unit interval, [0,1].

Measurement of graph sparsity
The number of maximum edges of an undirected graph

MC=N(N21)/2, i.e. the number of elements of the upper-triangle

of adjacency or weight matrix. The C index stands for ‘‘complete

graph’’ in which every pair of nodes are connected. In the case of

binary undirected graphs the

K(G)~
M

Mc

ðEq:1Þ

ratio defines the edge density or wiring cost of G. It is obvious that this

parameter lies in the unit interval, [0,1], while the number of edges

of empty and complete graphs is 0 and MC, respectively.

Substitution M and MC into formula of K(G):

M~
1

2

X

i,j~1::N,i=j

aij ðEq:2Þ

and so

K(G)~

P
i,j~1::N,i=j aij

N(N{1)
ðEq:3Þ

results in the fact that the wiring cost is the mean of values of the

off-diagonal elements of the adjacency matrix. The adaptation of

wiring cost definition of binary graphs to weighted graphs is simple

[69], because the K(G) can be calculated as the mean value of the

off-diagonal elements of weight matrix, if the weight values lie in

the unit interval, with maximal value 1:

Kw(G)~

P
i,j~1::N,i=j wij

N(N{1)
ðEq:4Þ

Network topology: global graph features
Using the described graph theoretical notation we can

formulate a large set of parameters that characterize the global,

nodal or modular properties of the investigated networks, as

reviewed by Rubinov and Sporns [67]. It is known from the

literature that the functional human brain network shows small-

world characteristics, therefore in our study we focused on

quantifying only those nodal and global parameters that may

have an influence on this property. Latora and Marchiori [70]

introduced the efficiency-based characterization of small-world

networks, which, due to its computational benefits, was proved to

be more effective than the classical characteristic path length and

clustering coefficient based calculation methods [71], [72]. The

efficiency was introduced as the measure of the effectiveness of

information exchange between nodes, while the average efficiency

of nodes of a G graph was defined as global efficiency (Eg), which

gives a normalized measure (lies in [0,1]) of the information

transfer efficiency of parallel systems. The normalized local efficiency

(El) of the network measures how efficient the local communica-

tion between first neighbors of a node is if this node is faulted or

removed (fault tolerance). Latora and Marchiori also showed that

the small-world behavioral network has high global and local

efficiency [70]. According to this assumption, we calculated two

nodal (degree and efficiency) and two global (global and local

efficiency) parameters for all subjects networks using the following

formulas.

Nodal parameters of unweighted graphs
The ki node degree [67] is defined as the sum of edges of node i:

ki~
X

j~1::N,i=j
aij ðEq:5Þ

The efficiency coefficient of the path (path efficiencies) between

node i and j is defined as the inverse of the lij shortest distance

between these nodes [67]. The shortest path length lij between

nodes i and j means the minimum of all possible path lengths

between nodes i and j, and can be calculated from the adjacency

matrix by Dijksra’s [73] or Floyd’s [74] algorithms. Using these

definitions the efficiency of node i is defined as the average of the path

efficiencies of the given node:

Figure 1. Demographic data of the study population. Distribution of subject age, full scale IQ, verbal IQ, ASSQ and SRS scores. Data are
depicted as histograms (left panels) and Q-Q (quantile-quantile) probability plots (right panels) in which reference lines of the normal distribution are
given (n = 127).
doi:10.1371/journal.pone.0060982.g001

Table 1. Demographic data of the study population and summary of psychological evaluations.

Total population Females Males

n 127 49 78

Age 35.8612.8 (18–65) 36.3613.2 (19–64) 35.5612.6 (18–65)

Full Scale IQ 108.3613.1 (74–137) 107.9613.4 (80–137) 108.5613.1 (74–136)

Verbal IQ 106.9613 (67–134) 106.4612.9 (79–129) 107.1613.2 (67–134)

ASSQ Score 5.267.9 (0–39) 465.9 (0–22) 668.9 (0–39)

SRS Total Score 27.2619.4 (0–109) 22614.6 (1–71) 30.4621.4 (0–109)

Data are given in mean 6 standard deviation (range: minimum – maximum) format. ASSQ: Autism Spectrum Screening Questionnaire, SRS: Social Responsiveness Scale.
doi:10.1371/journal.pone.0060982.t001
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ei~
1

N{1

X

j~1::N,i=j

1

lij
ðEq:6Þ

Global graph parameters of unweighted graphs
Global efficiency Eg is given as the mean of nodal efficiencies

and gives a normalized measure (lies in [0,1]) of the information

transfer efficiency of the network:

Eg~
1

N

X

i~1::N

ei ðEq:7Þ

Local efficiency of an unweighted graph is defined as the average

global efficiency of sub-graphs of nodes, because it measures how

efficient the local communication is between the first neighbors of

a node if this node is faulted or removed:

Figure 2. Processing pipeline of resting state functional MRI data. Panel A, far left: two atlas regions, Inferior Frontal Gyrus, triangular part
(red, R23) and Middle Temporal Gyrus temporooccipital part (blue, R58) were overlaid on an atlas-space aligned fMRI image. The corresponding
regional BOLD curves and their wavelet coefficients are shown on next images. Accordingly, the TR= 2500 ms repetition time and the four level
wavelet decomposition the evaluated wavelet coefficients of four frequency bands (0.1–0.2 Hz, 0.05–0.1 Hz, 0.025–0.05 Hz, 0.0125–0.025 Hz) were
generated (middle bottom image). In the 4th column the evaluated wavelet correlation matrix (top) and the distribution of correlation coefficients
(bottom) are shown. We used these wavelet correlation values between each pair of brain regions to construct the matrix in which yellow color
represents high correlation coefficients while red means low values. Panel B: In the bottom row, three adjacency matrices are shown with wired costs
0.1, 0.4 and 0.9. These matrices were generated from the weighted connectivity matrix (4th panel, right bottom image) by different weight thresholds.
Vertical gray arrows represent the calculation procedure of nodal and global network parameters at different cost levels. The horizontal gray arrows
demonstrate the final step of Monte-Carlo based cost-integration procedure in which the summed parameters are divided by the integration steps
(MC).
doi:10.1371/journal.pone.0060982.g002
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El~
1

N

X

i~1::N

Eg(Gi) ðEq:8Þ

Where Gi denotes the subgraph composed from the neighbors of

node i, and by definition does not contain node i.

Cost-integrated measurement of topological metrics
One of the critical points of functional brain network analysis is

the connection (edge) selection or the thresholding procedure. The

fundamental aim of this process is to eliminate weak connections

from the graph representation of network by an arbitrarily chosen

weight threshold. The result can be a weighted graph containing

only edges with higher weight than the applied threshold or it can

be an unweighted graph containing only thresholded edges.

Thresholding will change the wiring cost of graphs, in other words,

it changes the topology of the investigated network. In the

functional brain network assays we have an illusory solution to

avoid this problem if we use the evaluated, unthresholded primary

networks for any population level analysis. However, the primary

networks differ in their average correlation coefficients and they

also differ in their mean weights and wired-costs [75], which

makes difficult to compare their topology parameters. Although,

the adaptive thresholding technique [76] could guarantee the

same weighted or unweighted wired cost for all networks in the

population by uniquely selected thresholds, but it generates new

questions: which wired cost is the best for the analysis and how the

selected cost affects the results? Since there is currently no

consensus in the literature regarding selection of threshold for

weighted graph analysis we applied a cost-integrated technique as

introduced by Ginestet et.al. in [69]. Following the definition of this

paper we calculate the cost-integrated values of any X topological

parameter of the graph G by this formula:

X�
~

X

k[V

X (Gk)p(k) ðEq:9Þ

where k is a cost value from the V set (set of all possible cost

values), and p(k) the denotes the probability of the occurrence of k

cost. The Gk is an unweighted graph having k wired cost and it is

generated from G by an appropriate threshold and X(Gk) is the value of

the X topological parameter calculated on Gk. We assumed that k

has uniform distribution, which means that the p(k) = 1/Mc, so the

cost-integrated version of any X can be calculated as follows:

X�
~

1

Mc

X

k~1::Mc

X (Gk) ðEq:10Þ

In our case, the number of nodes is N=149 and so the

MC=11026, we had to apply the Monte-Carlo (MC) based

estimation to calculate cost integrated values (described also in

[69]). Our preliminary analysis showed that in the case of 5

randomly selected subjects 200 MC-sample gave correct Eg and El

values, so this sample rate was used in this study. The cost

integration range was set as [0.05, 0.95].

In our special case the cost-integrated nodal degree (ki*), nodal

efficiency (ei*), global efficiency (Eg*) and local efficiency (El*) were

calculated for a subject as described in the Document S1 and

illustrated in Panel B of Figure 2.

Software environment
For the network generation and for the cost-integrated

evaluation of topological metrics we used FSL and the following

in-house developed software:

BrainLOC (www.minipetct.com/brainloc) atlas database man-

agement software was used to generate 149-regional database

from different atlases end evaluate averaged regional BOLD

curves.

BrainNetTools parallelized utilities running on the high-

performance cluster (HPC) of University of Debrecen were used to

generate wavelet correlation matrices, connectivity matrices and to

calculate cost-integrated topological metrics.

BrainCON (www.minipetct.com/braincon) was used for

network visualization.

The components of BrainNetTool were validated by the

following external software.

N Brain Connectivity Toolbox (BCT, http://www.brain-

connectivity-toolbox.net/), release 29/03/2012.

N igraph 0.6 R-package (http://igraph.sourceforge.net/)

N wavelets 0.2–7 R-package (http://cran.r-project.org/web/

packages/wavelets/index.html)

N NetworkAnalysis 0.3–1 R-package (http://cran.r-project.org/

package =NetworkAnalysis)

Utilizing the statistical parametric network approach
The statistical parametric network (SPN) terminology was

introduced by Ginestet and Simmons [77]. We used the

population level mean SPN to demonstrate the subgraph of

regional connectivity system. The generated mean SPN provides a

method to statistically infer the mean wavelet correlation matrix of

the population, and it contains z-scores of correlation coefficients:

ze~
re{r

sd(r)
e~1:::M ðEq:11Þ

Where r2 and sd(r) stand for the grand sample mean and grand

sample standard deviation. The re

denotes the mean correlation coefficients of the edge e:

re~
1

NS

X

S

rs
e ðEq:12Þ

r~
1

M

X

e~1::M

re ðEq:13Þ

Correlation model, covariates and contrasts
A general linear model (GLM) based variance analysis was

performed. The effects of the dimensional autistic traits (ASSQ

and SRS scores) on the relevant graph theoretical and diffusion

anisotropy were tested, age and gender terms were added as

covariates. Random effects were modeled by using the randomly

assigned subject identifier in the model. The general model was

formulated according to:

Xij~interceptzdijzb1 SRS Total Score, ASSQ Scoreð Þ

zb . . . COVARIATESð Þzeij
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where Xij is the ith graph-theory based global or local topological

descriptor or the regional diffusion anisotropy for the jth subject.

Intercept and b terms are fixed effects (b1: explanatory variables –

psychological scores, covariates: age, gender or scanner depen-

dency), dij stands for random effects (within-person dependence)

and eij is the residual error. In our study design, we used two

different sets of covariates. Here we describe these models by

listing the relevant dependent variables or explanatory variables,

factors and covariates. The hypothesized interaction is defined by

a contrast matrix in which the columns correspond to the elements

of the parameter vector.

The first model assumes an inverse relationship between the

psychological measurements and the predicted variable (i.e.

functional topology or diffusion anisotropy). Age, gender and

subject identifier are taken as covariates. The relevant parameter

vector and contrast matrix are described below.

SRS ASSQ Age Gender Subject Intercept � {1 {1 0 0 0 0½ ��½

We hypothesize that the intelligence profile (i.e. performance IQ

and verbal IQ) interacts with regional graph theoretical param-

eters and also correlates with the autistic traits. Therefore we

aimed to utilize a model which is adjusted for this putative effect.

The intelligence profile is commonly characterized by discrepant

values of performance and verbal IQ scores [38] although the

direct relationship between HFA and IQ discrepancy has been

questioned [39]. In our study population, verbal IQ significantly

and positively correlated with performance IQ (Pearson’s r = 0.55;

p,0.001) while negative correlation was discovered between the

verbal IQ and the ASSQ score (r =20.393; p,0.001) and the

SRS score (r =20.343; p,0.001). Hence in the second model, we

controlled the effects of the WASI verbal IQ profile:

Figure 3. Distribution of global functional network properties. Global efficiency (Eg) and average local efficiency (El). Data are depicted as
histograms (left panels) and Q-Q (quantile-quantile) probability plots (right panels) in which reference lines of the normal distribution are given
(n = 127).
doi:10.1371/journal.pone.0060982.g003
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SRS ASSQ Age Gender VerbalIQ Subject Intercept½ �

� {1 {1 0 0 0 0 0½ �

Custom scripts in IBM SPSS Statistics for Windows 20 were used

to perform multiple univariate GLM tests for the 149 brain

regions. The effects of the autistic trait were tested with variance

statistics, for each test we provide the F values and uncorrected p-

values. The contribution of each variable to the overall variance is

characterized by reporting the slope (B) and the relevant

significance values. The effect size is estimated by the partial eta

squared value, which is calculated using the following equation:

g2p~
dfh � F

dfh � Fzdfe
ðEq:14Þ

where F is the test statistic and dfh and dfe are its degrees of

freedom and degrees of freedom for error. For the interpretation

of effect size, we refer to the rule of thumb by Cohen, where

similarly to r2 and R2 values, 0.01 denotes small, 0.06 moderate

and .0.14 marks large correlation [78]. However, it is also

important to note that partial eta measures tend to overestimate

the effect size.

The relevant software syntax is described in the Document S2.

False discovery rate correction
Due to the exploratory design of our study and the large

number of brain regions evaluated, it was necessary to account for

multiple comparisons during hypothesis testing. Here we report

results as if the 149 measurements (i.e. in each evaluated brain

region) were independent. After obtaining the p-value vectors for

the network degree, efficiency and regional white matter

anisostropy, we utilized the Benjamini-Hochberg (BH) procedure

for false discovery rate (FDR) control [79], with a level set at 0.05.

The relevant SPSS syntax of the correction procedure is described

in the Document S2.

Results

Validation of network measurements
We analyzed the population level cost-dependent distribution of

Eg and El parameters, which is illustrated in Figure 3. Figure 4

demonstrates that the Eg and El of the brain networks

monotonically increase by the cost with relatively low standard

deviation. It means that all brain networks have high Eg and El

values in the [0.34–0.5] cost-range, a conservatively defined small-

world regime [80], which verifies that these networks have small-

world properties [70]. We also calculated the cost-dependent

efficiencies for random (red) and regular (blue) networks. In the

case of random network containing 149 nodes, similarly to the

brain networks, the edges were randomly generated in proportion

to the given wired cost. The calculation was repeated 30 times for

evaluating averaged cost-dependent Eg and El values. Efficiencies

of regular networks were also calculated from 149-node networks,

but in this case the required edge density was guaranteed by

regularly distributed edges. It seems that the brain networks are

better suited for efficiency-based small-world criteria (high Eg and

high El) than the regular and random network networks, i.e. at any

cost level; the brain networks have higher Eg than the regular and

higher El values than the random networks.

Global functional connectivity
Global brain functional connectivity was portrayed by two

graph theoretical parameters (Eg, El); here we describe their

observed characteristics and interactions with the phenotypic

descriptors. All parameters were normally distributed in the study

cohort (K-S test; asymptotic significances; Eg: p = 0.63; El:

p = 0.99). The factor gender was not associated with any of the

global graph theoretical parameters, age showed significant

positive correlation with El (gp
2: 0.046; F = 6.54; p = 0.012).

Figure 4. Small-world properties of functional and synthetic networks. Global (Eg) and local (El) efficiencies are depicted as a function of
wired-cost for random (red), a regular (blue) and the investigated human brain networks. In latter case, the averages (black line) and the standard
deviation (gray band) of efficiency values are shown. The Eg and El of brain networks monotonically increase by the cost with relatively low standard
deviation. This means that all brain networks have simultaneously high Eg and El values in the [0.34–0.5] cost-range, which verify that these networks
have small-world properties.
doi:10.1371/journal.pone.0060982.g004
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WASI verbal IQ scores did not correlate with the connectivity

parameters (controlling for age and gender). ASSQ values were

found to significantly predict the averaged local efficiency

parameter El when controlling for the effects of age and gender

(gp
2=0.046; F= 6.33; p = 0.013); the SRS Total Score alone did

not show such effect. Similarly to the analysis of regional

parameters, a combined model of the ASSQ and SRS, controlling

for age and gender effects was utilized. This revealed small,

significant association between the psychological trait and average

local efficiency El (gp
2=0.047; F= 5.99; p = 0.016). When

Table 2. Global graph theoretical network correlates of autistic traits, age, gender and IQ using GLM.

Dependent variables in

the GLM design

Covariates in GLM

(variables to control) Association with Global efficiency Eg

Association with Average local

efficiency El

Age - F: 0.25 F: 6.54

p: 0.62 p: 0.012*

gp
2: 0.002 gp

2: 0.046

Bage: 6.07*10
25 Bage: 2.59*10

24

Gender - F: 0.55 F: 2.02

p: 0.46 p: 0.16

gp
2: 0.004 gp

2: 0.015

BGender: 2.67*10
23 BGender: 3.9*10

23

WASI Verbal IQ Age, Gender F: 1.97 F: 0.68

p: 0.16 p: 0.41

gp
2: 0.016 gp

2: 0.0055

BWASI: 1.94*10
24 (gp

2: 0.016; p: 0.16) BWASI: 8.79*10
25 (gp

2: 0.0055; p: 0.41)

BAge: 4.59*10
25 (gp

2: 8.6*1024; p: 0.75) BAge: 2.45*10
24 (gp

2: 0.04; p: 0.026)*

BGender: 8.8*10
24 (gp

2: 4.57*1024; p: 0.81) BGender: 0.0035 (gp
2: 0.012; p: 0.22)

ASSQ Score Age, Gender F: 0.051 F: 6.33

p: 0.82 p: 0.013*

gp
2: 3.8*1024

gp
2: 0.046

BASSQ: 5.24*10
25 (gp

2: 3.8*1024; p: 0.82) BASSQ: 24.28*10
24 (gp

2: 0.046; p: 0.013)*

BAge: 6.21*10
25 (gp

2: 0.0016; p: 0.65) BAge: 2.45*10
23 (gp

2: 0.044; p: 0.015)*

BGender: 0.003 (gp
2: 0.0037; p: 0.49) BGender: 0.0048 (gp

2: 0.024; p: 0.075)

SRS Total Score Age, Gender F: 1.09 F: 1.36

p: 0.29 p: 0.25

gp
2: 0.0088 gp

2: 0.011

BSRS: 21.04*10
24 (gp

2: 0.0088; p: 0.29) BSRS: 28.72*10
25 (gp

2: 0.011; p: 0.25)

BAge: 4.92*10
25 (gp

2: 9.2*1023; p: 0.74) BAge: 2.56*10
24 (gp

2: 0.042; p: 0.022)*

BGender: 0.0046 (gp
2: 0.011; p: 0.25) BGender: 0.005 (gp

2: 0.023; p: 0.091)

ASSQ*SRS Total Score Age, Gender F: 0.025 F: 5.99

p: 0.88 p: 0.016*

gp
2: 2.06*1023

gp
2: 0.047

BSRS: 21.23*10
24 (gp

2: 8.6*1023; p: 0.31) BSRS: 1.95*10
25 (gp

2: 4*1024; p: 0.83)

BASSQ: 8.46*10
25 (gp

2: 7.02*1023; p: 0.77) BASSQ: 24.62*10
24 (gp

2: 0.037; p: 0.033)*

BAge: 5.65*10
25 (gp

2: 1.2*1023; p: 0.71) BAge: 2.16*10
24 (gp

2: 0.031; p: 0.053)

BGender: 4.58*10
23 (gp

2: 0.011 p: 0.25) BGender: 0.0049 (gp
2: 0.024; p: 0.089)

ASSQ*SRS Total Score Age, Gender, WASI Verbal IQ F: 0.77 F: 4.39

p: 0.39 p: 0.038*

gp
2: 0.007 gp

2: 0.038

BSRS: 29.14*10
25 (gp

2: 0.0047; p: 0.47) BSRS: 5.14*10
26 (gp

2: 2.5*1025; p: 0.96)

BASSQ: 3.2*10
24 (gp

2: 0.01; p: 0.28) BASSQ: 24.26*10
24 (gp

2: 0.03; p: 0.065)

BAge: 3.73*10
25 (gp

2: 5.2*1023; p: 0.81) BAge: 1.88*10
24 (gp

2: 0.022; p: 0.12)

BVIQ: 3*10
23 (gp

2: 0.028; p: 0.078) BVIQ: 27.34 *1026 (gp
2: 2.9*1025; p: 0.96)

BGender: 0.0023 (gp
2: 0.0028; p: 0.58) BGender: 4.8*10

23 (gp
2: 0.021 p: 0.13)

GLM: General Linear Model, ASSQ: Autism Spectrum Screening Questionnaire, SRS: Social Responsiveness Scale.
*: p,0.05
doi:10.1371/journal.pone.0060982.t002
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controlling the model for the effects of the verbal IQ profile, the

correlation with average local efficiency was slightly reduced

(gp
2=0.038; F= 4.39; p = 0.038). Numeric data of the described

interactions are given in Table 2.

Regional functional connectivities and diffusion
anisotropy
The regional degree and efficiency values were predominantly

normally distributed in the study population (K-S tests). In the first

part of the regional evaluations, we tested the joint effects of the

ASSQ and SRS on graph theoretical parameters. This model was

Table 3. Regional neural correlates of self-reported autistic traits, GLM design 1.

Region name Nodal Degree Nodal Efficiency Regional Diffusion Anisotropy

Right cingulate gyrus,
posterior part

F: 14.98 F: 14.34 F: 0.27

p: 0.00018***{ p: 0.00024***{ p: 0.61

gp
2: 0.11 gp

2: 0.11 gp
2: 0.002

BASSQ: 20.51
(gp

2: 0.11; p: 1.64*1024)***
BASSQ: 21.9*1023

(gp
2: 0.11; p: 1.8*1024)**

BASSQ: 27.15*10
25 (gp

2: 0.002; p: 0.65)

BSRS: 0.083 (gp
2: 0.019; p: 0.13) BSRS: 3.5*10

24

(gp
2: 0.022; p: 0.1)

BSRS: 2.37*10
26 (gp

2: 1.1*1025; p: 0.97)

BAge: 20.018 (gp
2: 0.001; p: 0.79) BAge: 28.8*10

25

(gp
2: 0.001; p: 0.74)

BAge: 29.47*1027 (gp
2: 0.012; p: 0.23)

BGender: 20.41
(gp

2: 4.33*1024; p: 0.82)
BGender: 21.8*1023

(gp
2: 5.8*1024; p: 0.79)

BGender: 4*10
23 (gp

2: 0.034; p: 0.044)*

Left cingulate gyrus,
posterior part

F: 8.05 F: 7.18 F: 0.21

p: 0.0053** p: 0.0084** p: 0.65

gp
2: 0.062 gp

2: 0.056 gp
2: 0.002

BASSQ: 20.37
(gp

2: 0.068; p: 0.004)**
BASSQ: 21.4*1023

(gp
2: 0.065; p: 0.004)**

BASSQ: 3.15*10
25 (gp

2: 2.61*1024; p: 0.86)

BSRS: 0.072 (gp
2: 0.016; p: 0.16) BSRS: 3.08*10

24 (gp
2: 0.02; p: 0.12) BSRS: 3.78*10

25 (gp
2: 0.002; p: 0.61)

BAge: 0.062 (gp
2: 0.008; p: 0.33) BAge: 2.3*10

24 (gp
2: 0.007; p: 0.34) BAge: 21.11*1024 (gp

2: 0.012; p: 0.23)

BGender: 20.27
(gp

2: 2.1*1024; p: 0.88)
BGender: 21.2*1023

(gp
2: 2.9*1024; p: 0.85)

BGender: 2.2*10
23 (gp

2: 0.007; p: 0.36)

Right parahippocampal
gyrus, posterior part

F: 0.3 F: 0.34 F: 8.81

p: 0.58 p: 0.56 p: 0.0036**

gp
2: 0.002 gp

2: 0.003 gp
2: 0.069

BASSQ: 0.12 (gp
2: 0.002; p: 0.66) BASSQ: 6.7*10

24

(gp
2: 1.4*1023; p: 0.69)

BASSQ: 21.1*10
23 (gp

2: 0.066; p: 0.005)**

BSRS: 0.007 (gp
2: 2.8*1025; p: 0.95) BSRS: 1.4*10

24

(gp
2: 3.5*1024; p: 0.84)

BSRS: 1.5*10
24 (gp

2: 0.008; p: 0.34)

BAge: 0.085 (gp
2: 0.003; p: 0.54) BAge: 1.52*10

26

(gp
2: ,0 p: 0.99)

BAge: 5.32*10
25 (gp

2: 0.001; p: 0.78)

BGender: 6.34 (gp
2: 0.024; p: 0.089) BGender: 0.051

(gp
2: 0.04; p: 0.026)*

BGender: 3.8*10
23 (gp

2: 0.005; p: 0.45)

Right temporal fusiform
cortex, posterior part

F: 0.34 F: 0.51 F: 6.83

p: 0.56 p: 0.48 p: 0.01*

gp
2: 0.003 gp

2: 0.004 gp
2: 0.054

BASSQ: 0.14 (gp
2: 0.003; p: 0.53) BASSQ: 7.5*10

24

(gp
2: 0.004; p: 0.48)

BASSQ: 26.7*10
24 (gp

2: 0.051; p: 0.013)*

BSRS: 20.029 (gp
2: 0.001; p: 0.75) BSRS: 21.11*1024 (gp

2: 0.001; p: 0.8) BSRS: 8.95*10
25 (gp

2: 0.005; p: 0.42)

BAge: 0.084 (gp
2: 0.005; p: 0.45) BAge: 3.5*10

24 (gp
2: 0.003; p: 0.53) BAge: 9.46*10

25 (gp
2: 0.004; p: 0.49)

BGender: 3.7 (gp
2: 0.013; p: 0.21) BGender: 0.015 (gp

2: 0.009; p: 0.29) BGender: 21.4*10
23 (gp

2: 0.001; p: 0.71)

We demonstrate the joint effects of Social Responsiveness Scale (SRS Total Score) and Autism Spectrum Screening Questionnaire (ASSQ), controlling for age and gender.
GLM: General Linear Model.
*: 0.01#p,0.05.
**: 0.001#p,0.01.
***: p,0.001.
{: Significant interaction after false discovery rate correction with the Benjamini-Hochberg procedure.
doi:10.1371/journal.pone.0060982.t003
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adjusted to control for the subject’s age and gender. Significant

inverse, moderate correlation was discovered between the autistic

traits and the network degree and efficiency of the left and right

posterior cingulate gyrus, although after FDR adjustment, only

that of the right posterior cingulate gyrus remained statistically

significant (nodal degree: gp
2=0.11; F = 14.98; p = 0.00018; nodal

efficiency: gp
2=0.11; F = 14.43; p = 0.00024). The diffusion

anisotropy of these two areas did not present significant association

with the examined autistic traits. After accounting for contribu-

tions of age, gender and random effects, we found that higher

scores on the SRS and ASSQ – indicating greater autistic traits –

were associated with lower diffusion anisotropy in the right

parahippocampal gyrus, posterior part (gp
2=0.069; F= 8.81;

p = 0.0036) and right temporal fusiform cortex, posterior part

(gp
2=0.054; F= 6.82; p = 0.01). However, we emphasize that this

interaction was not proven to be significant after FDR adjustment

by the BH procedure. We summarized the results of this analysis

in Table 3.

In the next series of evaluations, we adjusted the GLM to

account for the confounding effects of WASI verbal IQ. In this

test, the putative interaction between regional graph theoretical

variables and the verbal intelligence profile is controlled. The

significance level of the interaction between autistic traits and right

posterior cingulate gyrus degree and efficiency was mildly reduced

but small correlations were found (degree: gp
2=0.094; F= 11.46;

p = 0.00098; efficiency: gp
2=0.078; F= 9.45; p = 0.0026). After

our conservative FDR adjustment procedure neither the left nor

the right posterior cingulate gyrus showed significant association

with the physiological markers, although the interaction effect in

these regions still remained prominent when comparing to other

areas. In this model, the diffusion anisotropy of the left anterior

parahippocampal gyrus was found to be significantly correlating

with the autistic trait (gp
2=0.094; F= 11.46; p = 0.00098). Similar

effect was noted for the right posterior parahippocampal gyrus

(gp
2=0.101; F= 12.29; p= 0.00066), left posterior temporal

fusiform gyrus (gp
2=0.093; F= 11.28; p = 0.0011) and the right

posterior temporal fusiform gyrus (gp
2=0.109; F= 13.46;

p = 0.00038). The relationship of the predicted and observed

values of graph measurements and diffusion anisotropy is depicted

in Figure 5 and Figure 6. Supporting data are given in Table 4.

Unadjusted p values for each brain region are listed in Table S2.

An important part of the analysis is to interpret graph

theoretical results in a broader context: to relate regional

impairments to the brain’s overall functional network organiza-

tion. To portray the sub-network to which the posterior cingulate

gyrus belongs, we provide quantitative values for the strengths of

first degree connections in this area in Table 5. In subjects with

high ASSQ scores, the right posterior cingulate is most strongly

connected to its contralateral equivalent and to anterior cingulate

gyri in both hemispheres. Further strong connections were found

with the precuneus and cuneus cortex, to the temporal connec-

tivity domains of the thalamus and to the right frontal pole. A

notable difference is seen in the network structure in low and high

scorers of the ASSQ test (the later marking greater traits of

autism). For illustrating these networks, we used the correlation

coefficient threshold of 0.634 (95th percentile strongest connec-

tion), this selected the 9 regions that were most strongly

interconnected to the right posterior cingulate gyrus. The same

threshold in low scorers revealed 34 connected regions. As the

network density is defined by the wiring cost [69], correlation

coefficients may not be suitable for inter-subject comparisons – we

propose to use the statistical parametric network approach. This

would help tackle this problem in a way that graph edges

(connections) significantly deviating from the group mean can be

pinpointed. Using a correlation threshold of p = 0.005 during SPN

analysis, a similar difference was noted between high and low

ASSQ scorer groups. Using the SPN approach, 6 regions were

connected to the right posterior cingulate in high ASSQ scorers,

Figure 5. Regional graph theoretical correlates of self-reported autistic traits. Left panels: observed vs. predicted values of the dependent
variables in the general linear model analysis. Middle panels: predicted values vs. ASSQ score. Right panels: predicted values vs. SRS total scores.
doi:10.1371/journal.pone.0060982.g005
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while the same cut-off threshold depicted 75 connections in low

ASSQ scorers. This approach reveals an overall reduction of first

degree connections of the right posterior cingulate, more

specifically, reduced connections to the frontal lobe, superior

temporal regions and the occipital lobe. We illustrate the network

structure of the right posterior cingulate gyrus in Figure 7, Figure 8

and Figure 9.

Discussion

Global functional network correlates of autistic traits
Network-based approaches are valuable for autism research:

they allow interpreting brain connectivity information as complex

interactions between remote neuronal groups and therefore

provide feasible means to study the effects of autism globally. In

the graph theoretical model each network node is interconnected

Figure 6. Regional diffusion anisotropy correlates of self-reported autistic traits. Left panels: observed vs. predicted values of the
dependent variables in the general linear model analysis. Middle panels: predicted values vs. ASSQ score. Right panels: predicted values vs. SRS total
scores.
doi:10.1371/journal.pone.0060982.g006
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Table 4. Regional neural correlates of self-reported autistic traits, controlled for verbal IQ: GLM design 2.

Region name Nodal Degree Nodal Efficiency Regional Diffusion Anisotropy

Right cingulate gyrus,
posterior part

F: 11.46 F: 9.45 F: 1.01

p: 0.00098*** p: 0.0026** p: 0.32

gp
2: 0.094 gp

2: 0.078 gp
2: 0.0022

BASSQ: 20.49
(gp

2: 0.102; p: 5.6*1024)***
BASSQ: 21.8*1023

(gp
2: 0.092; p: 0.001)**

BASSQ: 21.2*10
24 (gp

2: 0.0047; p: 0.47)

BSRS: 0.081
(gp

2: 0.017; p: 0.17)
BSRS: 3.5*10

24

(gp
2: 0.02; p: 0.13)

BSRS: 22.7*10
25 (gp

2:1.3*1023; p: 0.71)

BAge: 20.017
(gp

2: 4.7*1024; p: 0.82)
BAge: 26.9*10

25

(gp
2: 5.4*1024; p: 0.81)

BAge: 27.6*1025 (gp
2: 0.0069; p: 0.38)

Bviq: 0.04
(gp

2: 2.3*1023; p: 0.61)
Bviq: 2.9*10

24

(gp
2: 7.9*1023; p: 0.35)

Bviq: 21.6*10
24 (gp

2: 0.026; p: 0.088)

BGender: 20.25
(gp

2: 1.6*1024; p: 0.89)
BGender: 21.9*1023

(gp
2: 6.2*1024; p: 0.79)

BGender: 0.0053(gp
2: 0.049; p: 0.019)*

Left cingulate gyrus,
posterior part

F: 5.35 F: 3.82 F: 0.00

p: 0.023* p: 0.53 p: 1.00

gp
2: 0.046 gp

2: 0.033 gp
2: 0.0018

BASSQ: 20.36
(gp

2: 0.064; p: 0.007)**
BASSQ: 21.3*1023

(gp
2: 0.053; p: 0.014)*

BASSQ: 22.2*10
25 (gp

2: 1.1*1024; p: 0.91)

BSRS: 0.095 (gp
2: 0.025; p: 0.092) BSRS: 3.9*10

24 (gp
2: 0.03; p: 0.067) BSRS: 1.4*10

25 (gp
2: 2.8*1024; p: 0.86)

BAge: 0.074 (gp
2: 0.01; p: 0.28) BAge: 2.9*10

24 (gp
2: 0.011; p: 0.28) BAge: 21.5*1024 (gp

2: 0.021; p: 0.13)

Bviq: 0.071 (gp
2: 0.008; p: 0.34) Bviq: 3.8*10

24 (gp
2: 0.016; p: 0.19) Bviq: 21.3*10

24 (gp
2: 0.014; p: 0.22)

BGender: 20.056
(gp

2: 9*1026; p: 0.97)
BGender: 29.6*1024

(gp
2: 1.7*1024; p: 0.89)

BGender: 0.0028 (gp
2: 0.01; p: 0.29)

Left parahippocampal gyrus,
anterior part

F: 0.37 F: 0.83 F: 11.46

p: 0.544 p: 0.36 p: 0.00098***{

gp
2: 0.003 gp

2: 0.007 gp
2: 0.094

BASSQ: 0.33 (gp
2: 0.016; p: 0.18) BASSQ: 1.8*10

23

(gp
2: 0.019; p: 0.14)

BASSQ: 27.5*10
24 (gp

2: 0.073; p: 0.004)**

BSRS: 20.2 (gp
2: 0.031; p: 0.062) BSRS: 28.4*1024

(gp
2: 0.023; p: 0.11)

BSRS: 25.7*10
26 (gp

2: 2.5*1024; p: 0.96)

BAge: 0.11 (gp
2: 6.1*1023; p: 0.41) BAge: 4.7*10

24

(gp
2: 4.7*1023; p: 0.47)

BAge: 21.5*1024 (gp
2: 0.012; p: 0.25)

Bviq: 0.075 (gp
2: 3.2*1023; p: 0.59) Bviq: 5.6*10

24

(gp
2: 5.8*1023; p: 0.42)

Bviq: 25.6*1024 (gp
2: 0.12; p: 1.7*1024)***

BGender: 0.94
(gp

2: 1.4*1023; p: 0.78)
BGender: 3.3*10

23

(gp
2: 3.6*1024; p: 0.84)

BGender: 8.7*10
24 (gp

2: 5.7*1024; p: 0.8)

Right parahippocampal
gyrus, posterior part

F: 0.19 F: 0.56 F: 12.29

p: 0.66 p: 0.46 p: 0.00066***{

gp
2: 0.002 gp

2: 0.005 gp
2: 0.101

BASSQ: 0.11 (gp
2: 1.3*1023; p: 0.69) BASSQ: 9.8*10

24

(gp
2: 2.8*1023; p: 0.58)

BASSQ: 21.2*10
23 (gp

2: 0.088; p: 0.001)**

BSRS: 24.3*10
24 (gp

2: ,0; p: 0.99) BSRS: 1.8*10
24

(gp
2: 5.1*1024; p: 0.81)

BSRS: 7.1*10
25 (gp

2: 1.7*1023; p: 0.66)

BAge: 0.14 (gp
2: 7.8*1023; p: 0.35) BAge: 2.8*10

24

(gp
2: 8.2*1024; p: 0.76)

BAge: 21.2*1024 (gp
2: 0.003; p: 0.54)

Bviq: 0.025 (gp
2: 2.2*1024; p: 0.87) Bviq: 7.3*10

24

(gp
2: 4.7*1023; p: 0.47)

Bviq: 23.6*10
24 (gp

2: 0.025; p: 0.098)

BGender: 6.2 (gp
2: 0.022; p: 0.11) BGender: 0.048

(gp
2: 0.035; p: 0.046)*

BGender: 0.0047 (gp
2: 0.007; p: 0.37)

Left temporal fusiform
cortex, posterior part

F: 0.01 F: 0.11 F: 11.28

p: 0.93 p: 0.74 p: 0.0011**{

Functional Network Correlates of Autistic Traits

PLOS ONE | www.plosone.org 14 April 2013 | Volume 8 | Issue 4 | e60982



with a large number of brain regions, such connections are

weighted by the degree of temporal coherence of low-frequency

BOLD signals. Hence if a pathological process selectively damages

functionally associated groups of neurons, the largest effect will

presumably be observed in the region or subgraph having the

highest density of connections to the affected areas (i.e. connector

hubs). Similarly, generalized impairments in connections by

pathologic processes can change the nature of information transfer

globally, leaving their mark on graph theoretical descriptors such

as global efficiency or degree [81]. In our study the association of

regional network efficiency was only significant in the right

posterior cingulate gyrus after adjusting for the false discovery rate.

In contrast to this observation, reduced average local efficiency (El)

in the entire network (averaged over 149 regions) was weakly

associated with the autistic trait (gp
2=0.047; F= 5.99; p = 0.016).

This result can putatively be ascribed to the summation of

impairments in distributed regions that are not significant after the

relatively conservative FDR adjustment (Table S2). Recently,

Dennis and colleagues provided whole-brain measures for the

association of structural network structure and the presence of

rs2710102 CNTNAP2 autism risk gene [82]. A significant

reduction of global efficiency, small-worldness and elevated

characteristic path length was discovered in carriers of the gene.

Using EEG data, Barttfeld et al. showed that the functional

network of subjects with autism spectrum disorder have less

clustering coefficient and increased characteristic path length than

controls [83].

Regional functional network correlates of autistic traits
According to our functional network analysis, the posterior

cingulate gyrus was affected in both hemispheres while we

revealed significantly decreased network degree and efficiency

for the right posterior cingulate cortex. The cingulate region was

already proved to play a role in the decreased inhibitory control in

high-functioning autists [84]. Additional support comes from a

study describing neuronal migrational disorder in the cingulate

cortex [85], although the case report by Korkmaz and co-authors

does not imply that such a migration deficit could represent

common pathogenic pathway for autism spectrum disorders. A

histological analysis of autistic brains by Oblak and colleagues

showed that the PCC had altered cytoarchitecture with irregularly

distributed neurons, poorly demarcated layers IV and V, and

increased presence of white matter neurons [86]. The possible role

of the posterior cingulate in the manifestation of adverse socio-

emotional behaviors was postulated: reduced GABA(A) receptors

were found in this region and also in the fusiform gyrus [87]. By

explicating the neural correlates of moral reasoning in ASD,

Schneider et al. revealed decreased activation in the amygdala

while an increase was seen in the cingulate gyri [88]. When we

controlled the extended functional network of the posterior

cingulate gyrus, first degree connections were found with the

cuneus and precuneus cortex, dorsolateral prefrontal cortex

(DLPFC) and superior temporal areas (Table 5, Figure 7). This

pattern coincides with the common descriptions of the task

negative network ( =TNN) [89]. The TNN is known to activate

Table 4. Cont.

Region name Nodal Degree Nodal Efficiency Regional Diffusion Anisotropy

gp
2: 6.9*1025

gp
2: 9.7*1024

gp
2: 0.093

BASSQ: 20.012 (gp
2: 3.1*1024; p: 0.95) BASSQ: 3.1*10

24

(gp
2: 1.1*1023; p: 0.73)

BASSQ: 27.4*10
24 (gp

2: 0.073; p: 0.004)**

BSRS: 23.6*10
23

(gp
2: 1.7*1025; p: 0.97)

BSRS: 24.8*1025

(gp
2: 1.4*1024; p: 0.9)

BSRS: 21.8*10
26 (gp

2: 3.1*1026; p: 0.99)

BAge: 0.11 (gp
2: 0.01; p: 0.29) BAge: 4.3*10

24

(gp
2: 7.6*1023; p: 0.36)

BAge: 21.1*1024 (gp
2: 0.006; p: 0.41)

Bviq: 20.094 (gp
2: 6.4*1023; p: 0.39) Bviq: 22.3*1024

(gp
2: 2*1023; p: 0.64)

Bviq: 24.3*10
24 (gp

2: 0.076; p: 0.003)**

BGender: 28.2*10
23 (gp

2: ,0; p: 0.99) BGender: 1.7*10
24

(gp
2: 2*1027; p: 0.99)

BGender: 1.3*10
23 (gp

2: 1.2*1023; p: 0.71)

Right temporal fusiform
cortex, posterior part

F: 0.1 F: 0.32 F: 13.46

p: 0.75 p: 0.57 p: 0.00038***{

gp
2: 9.1*1024

gp
2: 0.003 gp

2: 0.109

BASSQ: 0.14 (gp
2: 3.3*1023; p: 0.54) BASSQ: 8.9*10

24

(gp
2: 5.6*1023; p: 0.43)

BASSQ: 28.7*10
24 (gp

2: 0.085; p: 0.002)**

BSRS: 20.076 (gp
2: 5.3*1023; p: 0.45) BSRS: 23.4*1024

(gp
2: 4.5*1023; p: 0.48)

BSRS: 26.8*10
26 (gp

2: 3.1*1025; p: 0.95)

BAge: 0.043 (gp
2: 1.1*1023; p: 0.73) BAge: 1.8*10

24

(gp
2: 8.8*1024; p: 0.76)

BAge: 5.9*10
25 (gp

2: 1.6*1023; p: 0.67)

Bviq: 20.13 (gp
2: 8.3*1023; p: 0.34) Bviq: 24.6*1024

(gp
2: 4.7*1023; p: 0.47)

Bviq: 24.9*10
24 (gp

2: 0.083; p: 0.002)**

BGender: 4.2 (gp
2: 0.016; p: 0.18) BGender: 0.016 (gp

2: 0.01; p: 0.29) BGender: 4*10
24 (gp

2: 1.1*1024; p: 0.91)

We demonstrate the joint effects of Social Responsiveness Scale (Total Score) and Autism Spectrum Screening Questionnaire, controlling for age and gender and WASI
Verbal IQ ( = viq).
*: 0.01#p,0.05.
**: 0.001#p,0.01.
***: p,0.001.
{: Significant interaction after false discovery rate correction with the Benjamini-Hochberg procedure.
doi:10.1371/journal.pone.0060982.t004
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during performance of emotional, social and introspective tasks,

such as the theory of mind [90], social perception, emotional

processing, viewing familiar faces [91] and its impairments have

been frequently linked with the autism spectrum disorder. Even

though there is a considerable uncertainty about the function of

the posterior cingulate cortex, functional neuroimaging studies

postulate it as a cortical hub and assume a role in regulating the

balance between internally and externally directed cognition [92].

Intrinsically defined maps of the TNN were found to be altered in

autists [93]. Kennedy and co-authors showed that the posterior

cingulate cortex and precuneus are reproducibly included in TNN

in autistic subjects while other components are diminished,

although this effect was only significant for the medial prefrontal

cortex and the left angular gyrus. The lowered temporal

synchrony of such interconnected areas of the TNN, including

the posterior cingulate, can result in reduced network degree or

nodal efficiency which is coherent with our findings. The limbic

system including the cingulate gyrus is closely tied to emotion and

social behaviors and it is an almost trivial statement that the

disrupted limbic circuitry could provoke some of the behavioral

deficits seen in autists [94].

A review by Courchesne et al. postulates that frontal lobe

abnormality is to be held responsible for the social, emotional and

cognitive impairments in autism [29]. This is supported by

observations of early localized enlargement of the frontal lobe in

young children [95] and impaired frontal activation in tasks

evaluating selective attention [96] or language skills [97]. In

contrast to the commonly described frontal abnormality linked

with the autistic trait, we were unable to show such a pattern.

Interestingly, the temporal connectivity domain of the thalamus (as

defined by the Oxford Thalamus connectivity atlas) was found to

be among the first degree connections of the right posterior

cingulate gyrus and hence its influence on the network efficiency

can be assumed. The thalamus plays a role in cognitive processes

by relaying cortico-striato-thalamo-cortical loops: three of such

circuits originate from the prefrontal (dorsolateral prefrontal and

medial orbitofrontal cortex) and limbic (anterior cingulate cortex)

cortical areas and pass through the mediodorsal thalamic nucleus

[98]. This model was further stratified by in vivo neuroimaging

studies mapping such neuronal pathways [99] and revealing

correlations between the thalamic representation of such circuits

and executive functions of human subjects [100]. In the present

study we have included the thalamus and various other subcortical

territories in the construction of the functional network. Although

we did not reveal localized disruption in network topology of the

thalamus, it occurs that the autism spectrum disorder as a

distributed disease could affect the thalamus [101], [102] and the

basal ganglia as well [103].

People with autism spectrum disorder exhibit heterogeneous

social-communication characteristics, a phenotype that presum-

ably extends into the neurotypical population [104]. So far, we

reported our findings in comparison to the studies using clinical

(low or high functioning autistic) populations. A different design of

investigations was necessary to find evidence about such autistic

traits in normally developed subjects. In a study by Hagen et al.

structural and functional impairment of superior temporal sulcus

Figure 7. Functional network of the right posterior cingulate cortex, calculated for sub-populations with the lowest and highest
ASSQ scores. Graph edges were depicted based on the strongest functional connectivity (threshold criteria for averaged networks: wavelet
correlation coefficient .0.634; 95th percentile strongest connection in high scorers; threshold criterion for the statistical parametric network (SPN)
method: p,0.005). The nomenclature for brain region abbreviations is given in Table S1. Raw connectivity data are provided in Table 5. First row:
averaged functional network (first degree connections) in subjects with the lowest ASSQ score (n = 52; 5th percentile, cut-off threshold: 2). Second
row: lowest ASSQ scorer group, SPN based determination of connectivity strengths. Third row: averaged functional network in subjects with the
highest ASSQ score (n = 7; 95th percentile, cut-off threshold: 24). Fourth row: high ASSQ scorer group, connections are visualized using SPN analysis.
doi:10.1371/journal.pone.0060982.g007

Figure 8. Demonstrating the functional connections of the right posterior cingulate cortex with a circular connectivity profile.
Connectivity data were calculated for sub-populations with the lowest and highest ASSQ scores. Key for the abbreviations is given in Table S1.
doi:10.1371/journal.pone.0060982.g008
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(pSTS) was implicated to correlate with self-reported traits autism

spectrum characteristics [105]. Similarly to our study, Di Martino

et al. described the neural correlates of the autistic traits in

neurotypical populations and revealed reduced cingulo-insular

functional connectivity in resting state functional imaging data

[37]. Significant negative relationship of this specific connection

was found with the SRS score which is partially coherent with our

findings, however, currently we do not report the effects on edges

( = individual connections) but provide descriptors of network

topology.

White matter impairments linked with autistic traits
Measuring functional network topology and regional diffusion

anisotropy in the same autistic subject group can provide

complementary information on a more pervasive structural deficit

that is characterized by the disruption of white matter integrity,

altered connections or conversely, increased anisotropy could

indirectly indicate ‘‘more ordered’’ axons compared to the control

group [106]. In both hemispheric temporal fusiform gyri, we have

revealed diffusion anisotropy deficits. A mixed pattern of elevated

and reduced FA values was reported by Cheng and colleagues

[19]. Although individuals affected by autistic spectrum disorders

do not usually show severe behavioral consequences of prosopag-

nosia, abnormal response to face stimuli was reported [107], [108],

reduced functional connectivity from the fusiform face area (FFA)

and its associated networks was shown [109], but conversely, the

role of FFA impairment in autism was doubted by others [110].

Moreover, neuropathological evaluations discovered microscopic

structural deficits in this territory, smaller neuronal volumes and

densities were found [111]. Besides the diffusion abnormalities of

the fusiform gyrus, we showed the bilateral association of the FA

values of the parahippocampal gyrus and the self-reported autistic

traits. Among distributed pattern of cortical regions, the cortical

thickness of the left parahippocampal gyrus was found to be a

predictor of autism spectrum disorders [112]. In contrast to this

observation, Ke and colleagues linked the reduction of the right

parahippocampal gray matter volume with HFA [113]. The

significance of the posterior cingulate cortex in autism spectrum

Figure 9. Circular representation of the functional connections of the right posterior cingulate cortex, SPN method. Connectivity data
were calculated for sub-populations with the lowest and highest ASSQ scores. Key for the abbreviations is given in Table S1.
doi:10.1371/journal.pone.0060982.g009

Table 5. Connections of the right posterior cingulate gyrus in subjects with low and high degree of autistic traits.

Group

Connected brain regions and averaged functional connectivity values (correlation

coefficient)

Subjects with the highest ASSQ Total score (n = 52, cut-off
value = 2)

l-CingGyP (0.91), r-PreCC (0.82), l-CunC (0.79), r-CingGyAnt (0.79), l-PreCC (0.78), r-CunC (0.76), l-

CingGyAnt (0.65), r-ThTemp (0.63), r-FrP (0.63)

Subjects with the lowest ASSQ Total score (n = 7, cut-off
value = 24)

l-CingGyP (0.94), r-PreCC (0.85), l-PreCC (0.83), r-CingGyAnt (0.78), l-CunC (0.75), l-CingGyAnt

(0.74), r-CunC (0.74), r-ThPreFr (0.72), r-ThTemp (0.72), l-ThPreFr (0.71), l-LingGy (0.7), r-SupFrGy

(0.69), l-ThPostPar (0.69), r-LingGy (0.69), r-FrP (0.68), l-IntCalC (0.68), l-ThTemp (0.67), r-IntCalC

(0.67), l-LatOccCS (0.66), r-PreCentGy (0.66), r-MiFrGy (0.66), l-CerVI (0.66), l-CerCrI (0.66), r-

LatOccCS (0.66), l-ThOcc (0.65), l-LatOccCInf (0.65), l-Hyp (0.65), r-ParCingGy (0.65), r-ThPostPar

(0.64), r-SupTempGyA (0.64), r-CerVI (0.64), r-SupCalcC (0.64), r-Hyp (0.64), r-PlaT (0.69)

Connection strengths are given as the wavelet correlation coefficients of the BOLD time curves. Cut-off threshold for lowest and highest ASSQ scorers were the 5th and
95th percentile values. Regions were listed in descending order of the connection strengths. Key for the abbreviations is given in Table S1.
doi:10.1371/journal.pone.0060982.t005
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disorders was also noted by Uddin et al. who used multivariate

pattern analysis to find the most discriminative features between

normal subjects and ASD. The largest discriminative power was

achieved by using gray matter thickness measurements in the

posterior cingulate cortex, the parahippocampal gyri and the

anterior temporal lobe [114].

Limitations and future directions
A major limitation in our study protocol is that neither the

ASSQ nor the SRS provides explicit diagnostic data on the autism

spectrum disorder including HFA. Furthermore, the diagnostic

border between Asperger’s syndrome and HFA is not well-defined;

it is acknowledged that the key to the diagnosis is the presence of

early language developmental impairment. We did not have such

historic information about the adult subjects involved. In

conclusion, our results can only be interpreted as the effects of

the self-reported autistic trait on the functional brain connectome

and diffusion anisotropy patterns, observed in normally function-

ing adults. We raised the specificity of our study by employing a

conservative FDR adjustment method, although many of our

measurements are highly dependent from each other; for instance,

hemispheric equivalent regions are highly synchronized (r.0.9).

Therefore the decision threshold in terms of accepted p-values

could be higher and impairments in a larger set of regions would

be linked to the autistic traits. Furthermore, by building and

analyzing larger and clinically controlled datasets such as the

ABIDE ( =Autism Brain Imaging Data Exchange), it will become

possible to explicate the neural correlates of this puzzling mental

condition while more plausible biomarkers could be developed for

the diagnostics and prognostics of ASD.

Conclusions
Recent large-scale neuroimaging data-sharing initiatives such as

the INDI provided valuable normative functional imaging

resources for discovery research. Such complex datasets allow

the observation of the relationship between brain structure and

dimensional psychological scales in neurotypicals. One such

challenging task is exploring traits with relatively low prevalence

like autism. We conclude that high functioning autistic adults carry

peculiar brain abnormalities that are linked with regionally

disrupted functional networks and altered regional diffusion

anisotropy of the brain, especially in the limbic cortex while

reduced diffusion anisotropy is present in temporal fusiform and

parahippocampal gyri. A general tendency was observed towards

lower averaged local efficiency in subjects with higher scores of

self-reported ASSQ and SRS. In contrast to studies revealing

frontal and temporal abnormalities in autism, we did not reveal

such effects in neurotypical adults with different degrees of autistic

traits.
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