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Abstract 

 

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas 

chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable 

the community to store, process, share, annotate, compare, and perform molecular 

networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular 

Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound 

fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the 

reproducibility of fragmentation patterns across samples.  

 

 

Main 

 
Given its ease of use and low operational cost, gas chromatography-mass 

spectrometry (GC-MS) has applications with broad societal impact, such as detection of 

metabolic disease in newborns, toxicology, doping, forensics, food science, and clinical 

testing. The predominant ionization technique in GC-MS is electron ionization (EI), in which 

all compounds are ionized by high energy (70eV) electrons. Because fragmentation occurs 

with ionization, EI GC-MS data are subjected to spectral deconvolution, a process that 

separates fragmentation ion patterns for each eluting molecule into a composite mass 

spectrum.  
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The 70eV for ionizing electrons in GC-MS has been the standard , making it possible 

to use decades-old EI reference spectra for annotation 1. There are ~1.2 million reference 

spectra that have been accumulated and curated over a period of >50 years 2. Many tools 

and repositories for GC-MS data have been introduced 3–15; however, much of GC-MS data 

processing is restricted to vendor-specific formats and software8. Currently, deconvolution 

requires setting multiple parameters manually 3–5, or computational skills to run the software 

7. Also, the lack of data sharing in a uniform format precludes data comparison between 

laboratories and prevents taking advantage of repository-scale information and community 

knowledge, resulting in infrequent reuse of GC-MS data 8,11–15.  

Although batch modes exist, deconvolution quality is currently not enhanced by 

utilizing information from all other files. To leverage across-file information, improve 

scalability of spectral deconvolution, and eliminate the need for manually setting the 

deconvolution parameters (m/z error correction of the ions, peak shape - slopes of raising 

and trailing edges, peak RT shifts, and noise/intensity thresholds), we developed an 

algorithmic learning strategy for auto-deconvolution (Figure 1a-f). We deployed this 

functionality within GNPS/MassIVE (https://gnps.ucsd.edu)16 (Figure 1f-i). To promote 

analysis reproducibility, all GNPS jobs performed are retained in the “My User” space and 

can be shared as hyperlinks.  

This user-independent ‘automatic’ parameter optimization is accomplished via fast 

Fourier transformation, multiplication, and inverse Fourier transformation for each ion across 

entire data sets, followed by an unsupervised non-negative matrix factorization (one layer 

neural network). Then, the compositional consistency of spectral patterns for each spectral 

feature deconvoluted across the entire data set can be summarized as a “balance score”. 

The balance score (mathematical definition in the Methods) quantifies reproducibility of the 

deconvoluted fragmentation patterns across the data, which, in turn, gives insight into how 

well the spectral feature is explained by the available data. Thus the balance score provides 

an orthogonal metric of deconvoluted spectral quality. We refer to the dataset spectral 

deconvolution tool within the GNPS environment as “MSHub”.  
 

 

All MSHub algorithms use efficient HDF5 technologies. The Fourier transform with 

multiplication improves MSHub’s efficiency, resulting in deconvolution times that scale linearly 

with the number of files (Figure 1j, Supplementary Fig. 1a, Supplementary Fig. 2, 

Supplementary Fig. 4). We achieved this performance using out-of-core processing, a 
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technique used to process data that are too large to fit in a computer’s main memory (RAM): 

MSHub uploads files one at a time into the RAM module, data are then processed and deleted 

from memory, iteratively. Because only one sample is stored in the memory, the load is 

constant (Supplementary Fig. 2a-f). As machine learning approaches gain improved 

performance with increased volumes of information, including more data into analysis leads to 

better scores of spectral matches (Figure 1k,l and Supplementary Fig. 1b). The spectral 

library match scores increase and their distributions become narrower indicating better quality 

of results (Figure 1p,q). More files deconvoluted in MSHub leads to fewer chimeric spectra, 

resulting in higher quality spectral features, and an increase in the number of annotations with 

improved scores (Figure 1r,s). MSHub performs as well or better as other deconvolution tools 

(Figure 1t,u and Supplementary Fig. 3, Supplementary Fig. 4, Supplementary Fig. 5). 

Linear scaling for MSHub makes it the only tool amenable to repository-scale operation in its 

present form (Supplementary Table 2).  GNPS saves deconvoluted data as a summary file, 

so the deconvolution step does not need to be re-performed for any future analyses.  

Once the summary file is generated by GNPS-MSHub or imported from another 

deconvolution tool, the spectra can be searched against public, private or commercial 

libraries. Matches are narrowed down based on user-defined filtering criteria such as number 

of matched ions, Kovats index, balance score, cosine score, and abundance. We provide 

freely available reference data of 19,808 spectra for 19,708 standards, a ~29% increase of 

free public libraries. All annotations should be considered level 3 (a molecular family) 

annotation 17. When multiple annotations can be assigned, GNPS provides all candidate 

matches within the user's filtering criteria. 

One of the developments that enabled finding structural relationships within mass 

spectrometry data is spectral alignment, which forms the basis for molecular networking 18. 

GNPS has now expanded to include GC-MS-specific molecular networking16. GNPS-based 

GC-MS analysis enables data co- and re-analysis, as the processing is agnostic to the data 

origin.  To showcase this ability, we built a global network of various public GC-MS datasets 

and applied a balance score of 65% (Figure 2 a,b, Supplementary Fig. 6) to ensure that 

only good quality deconvoluted spectra are matched against the reference library (Figure 2c-

e, Supplementary Fig. 9, Supplementary Fig. 10). Molecular networking can further guide 

the annotation at the family level by utilizing information from connected nodes rather than 

focusing on individual annotations (Supplementary Fig. 7, Supplementary Fig. 8). One can 

visualize aspects such as derivatized vs. non-derivatized, candidate compound class or 

subclass, instrument type or other metadata and inspect individual clusters of nodes 

https://paperpile.com/c/ib1EYS/itVa6
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(Supplementary Fig. 9).  For example, we observed a cluster that belonged to dart frogs 

from the Dendrobatoidea superfamily, while the long-chain ketones are found in cheese and 

beer (Figure 2e, Supplementary Fig. 10a). The output from GNPS can be exported for use 

in statistical analysis environments and for data visualization (e.g., Supplementary Figs. 7-

10), including molecular cartography 19 (Figure 2f-i).  

GNPS/MassIVE lowers the expertise threshold required for analysis and encourages 

FAIR practices20 by promoting re-use of GC-MS data. To highlight the broader utility of GNPS 

GC-MS based analysis, videos were created (Supplemental Videos 1-6). This work aims to 

democratize scientific analyses. GC-MS is often the only mass spectrometry method in non-

metabolomics laboratories or laboratories with fewer resources, including those from 

developing countries. GNPS-based GC-MS allows free access to data and reference data, 

and to powerful computing infrastructures.  

 

Author contributions: 

PCD, AAA, MW, LFN came up with the concept of GNPS for GC-MS data.  

KV designed and supervised MSHub platform development 

IL, DV, VV, KV developed the MSHub platform 

MW, ZZ, AAA developed the workflows 

AAA, ZZ, MW, BBM, RSB performed infrastructure testing and benchmarking 

AAA, ZZ assessed EI-based molecular networking 

WB generated plots for MSHub algorithm performance testing and benchmarking against 

existing deconvolution tools 

ZZ, AA, ME generated molecular network plots 

ME, JJJvdH adapted the MolNetEnhancer workflow for GC-MS Molecular Networks 

AS, XD, AAA, BBM conducted comparative testing of MSHub with existing deconvolution 

tools 

AAA, AVM, MP, KJ, KD conducted 3D skin volatilome mapping studies 

SD, IB, GH conducted oesophageal and gastric breath analysis cancers detection study 

AAA, ZZ, MP, MW converted and added public libraries to GNPS 

AAA, AVM, SD, BBM, MG, CC, AA, JM, RQ, AB, AAO, DP, AMS, SPC, TOM, MCB, CDN, 

EZ, VA, EHF, RG, MMM, IM, SE, PLB, BA, RL, YG, SP, AP, GD, BLB, AF, NS, KG, CS, RC, 

MG, JM, JUS, DB, SA, AF generated GC-MS data 

RSB, LNK, MP, AAA assembled the initial version of the public reference spectra library 

RS created MZmine export module for GNPS GC-MS input files and RI markers file export 

AAA, RS, IB, AAO, AMS, BA, MG, KNM, RSB produced training videos 

MNE, AAA, MG, BBM, AS, LFN wrote and compiled tutorials and documentation 

PCD, AAA, WB, KV, RM, RK wrote the paper  

 

https://paperpile.com/c/ib1EYS/MaLC
https://paperpile.com/c/ib1EYS/rGngV


Competing interests  

Pieter C. Dorrestein is a scientific advisor for Sirenas LLC. Mingxun Wang is a consultant for 

Sirenas LLC and the founder of Ometa labs LLC. Alexander A. Aksenov is a consultant for 

Ometa labs LLC. 

 

Acknowledgments:  The conversion of the data from different repositories was supported by 

R03 CA211211 on reuse of metabolomics data, to build enabling chemical analysis tools for 

the ocean symbiosis program, the development of a user-friendly interface for GC-MS 

analysis was supported by the Gordon and Betty Moore Foundation through Grant 

GBMF7622. The UC San Diego Center for Microbiome Innovation supported the campus 

wide SEED grant awards for data collection that enabled the development of some of this 

infrastructure. PCD was supported by National Sciences Foundation (NSF) (grant IOS-

1656475), and the U.S. National Institutes of Health (NIH) (grants U19 AG063744 01, P41 

GM103484, R03 CA211211, R01 GM107550). KV and IL are very grateful for the support of 

Vodafone Foundation as part of the project DRUGS/DreamLab. ME was supported by the 

University of Corsica. LFN was supported by the NIH (R01 GM107550), and the European 

Union’s Horizon 2020 program (MSCA-GF, 704786). AB was supported by the National 

Institute of Justice Award 2015-DN-BX-K047. Additional support for data acquisition and data 

storage was provided by P41 GM103484 Center for Computational Mass Spectrometry, the 

collection of data from the HomeChem project was supported by the Sloan Foundation. GBH, 

SD, IL, KV and IB are grateful for the support of the OG cancer breath analysis study by the 

NIHR London Invitro Diagnostic Co-operative and Imperial Biomedical Research Centre, 

Rosetrees and Stonegate Trusts and Imperial College Charity. DV acknowledges support by 

ERC-Consolidator Grant No. 724228 (LEMAN). IB acknowledges the contribution of Qing 

Wen and Dr Michelangelo Colavita for the production of the training video. CC was supported 

by the Research Foundation Flanders (FWO), with support from the industrial research fund 

of Ghent University. WB was supported by the Research Foundation Flanders (FWO). AAO 

acknowledges the support of Fulbright Commission and Consejo Nacional de Investigaciones 

Científicas y Técnicas (CONICET-Argentina). The work of RL and PLB on the dataset 30 was 

supported by the Metaboscope, part of the "Platform 3A" funded by the European Regional 

Development Fund, the French Ministry of Research, Higher Education and Innovation, the 

region Provence-Alpes-Côte d'Azur, the Departmental Council of Vaucluse and the Urban 

Community of Avignon. SA and ARF acknowledge the PlantaSYST project by the European 

Unions Horizon 2020 research and innovation programme (SGA-CSA No 664621 and No 

739582 under FPA No. 664620). VV acknowledges the support by the National Institute On 

Alcohol Abuse and Alcoholism award R24AA022057. MG and RC acknowledge the support 

of the Krupp Endowed Fund grant. A portion of mass spectra in the public reference library 

was produced within the framework of the State Task for the Topchiev Institute of 

Petrochemical Synthesis RAS and with the support of the RUDN University Program 5-100. 

RSB acknowledges support of the State Task for the Topchiev Institute of Petrochemical 

Synthesis RAS. LNK acknowledges support of the RUDN University Program 5-100. IM 

acknowledges support of the Israel Science Foundation project number 1947/19 and 

European Research Council under the European Union’s Horizon 2020 research and 
innovation program (project number 640384). JS has been supported by NIH/NIAMS 



R03AR072182, The Colton Center for Autoimmunity, Rheumatology Research Foundation, 

The Riley Family Foundation and The Snyder Family Foundation. JM acknowledges support 

from 2017 Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 

(GRAPPA) Pilot Research Grant and NIH/NIAMS T32AR069515. RG is grateful to the Azrieli 

Foundation for the award of an Azrieli Fellowship. JJJvdH acknowledges support from an 

ASDI eScience grant, ASDI.2017.030, from the Netherlands eScience Center-NLeSC. BA 

was supported by the NSF through the Graduate Research Fellowship Program. GC-MS 

analyses for collection of the dataset MSV000083743 were supported by the Pacific 

Northwest National Laboratory, Laboratory Directed Research and Development Program, 

and were contributed by the Microbiomes in Transition Initiative; data were collected in the 

Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by 

the Department of Energy (DOE) Office of Biological and Environmental Research and 

located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle 

Memorial Institute for the DOE under contract DEAC05-76RLO1830. Authors are grateful to 

Dr. Ricardo da Silva for his contribution to developing the first prototype of the EI data 

network and his continuous assistance with further development and testing of the 

infrastructure. Authors are also grateful to Drs. Marina Vance and Delphine Farmer who have 

organized the sampling for HomeChem indoor chemistry project 

(https://indoorchem.org/projects/homechem/) that allowed to collect samples for the dataset 

MSV000083598. Brandon Ross has assisted with collecting data for the dataset 

MSV000084348. GC-MS analyses for collection of the datasets MSV000084211 and 

MSV000084212 were supported by the announcement N757 Doctorados Nacionales and 

project EXT-2016-69-1713 from Departamento Administrativo de Ciencia, Tecnología e 

Innovación (COLCIENCIAS), the seed project INV-2019-67-1747 and FAPA project of Chiara 

Carazzone from the Faculty of Science at Universidad de los Andes, and the grant No. 

FP80740-064-2016 of COLCIENCIAS. Authors are grateful to Lida M. Garzón, Pablo 

Palacios, Marco Gonzalez and Jack Hernandez for their contributions collecting the samples, 

and to Jhony Oswaldo Turizo for designing and manufacturing the amphibian electrical 

stimulator. AS and XD acknowledge the support by the National Cancer Institute award 

U01CA235507. Authors are grateful to Dr. Steffen Neuman for the feedback regarding the 

XCMS deconvolution tool.  

 

 

 

Online Methods:  

 

Tutorials and general note 

 

The tools are accessible through gnps.ucsd.edu. The documentation to use the GC-MS 

interface can be found here: https://ccms-ucsd.github.io/GNPSDocumentation/gcanalysis/. 

The tutorials for the deconvolution with can be accessed here: https://ccms-

ucsd.github.io/GNPSDocumentation/gc-ms-deconvolution/ while the library search and 

molecular networking instructions can be found here: https://ccms-

ucsd.github.io/GNPSDocumentation/gc-ms-library-molecular-network/. 



The tutorial for spectral libraries upload can be found here: https://ccms-

ucsd.github.io/GNPSDocumentation/batchupload/ 

The GNPS workflows can be launched with recommended default settings or adjusted 

according to user’s needs. The ranges and impact of settings are described in the tutorial. 
The results can be inspected and quality filters applied according to the user's criteria. 

The tutorial also describes how user can utilize various other aspects of GNPS functionality 

that include:  

● Data upload and storage 

● Data sharing 

● Sharing analysis by sharing workflows 

● Reproducing analyses 

● Saving and sharing reference spectra  

● Using GNPS analysis links for publishing 

● Using GNPS/MassIVE repository for providing access to data along with the 

publication when required by journal 

 

The video tutorials for GNPS use for GC-MS data and examples of networking application 

videos can be accessed at: 

Tutorial for the use of GNPS for analysis of GC-MS data. 

https://www.youtube.com/watch?v=KIOim2h8i64 

GNPS for GC-MS in breathomics: using molecular networking to combine different datasets. 

https://www.youtube.com/watch?v=bDZj7NI-ZGw 

GNPS for GC-MS in petroleomics: using molecular networks to find incorrect annotations. 

https://www.youtube.com/watch?v=r7DSsL03Hbk 

GNPS for GC-MS in biology: using molecular networks for compound discovery in dart frogs. 

https://www.youtube.com/watch?v=eNLPrAjuX6w 

GNPS for GC-MS in microbiology: using networks to explore chemistry of cheese. 

https://www.youtube.com/watch?v=fWus3zhKbOA 

GNPS for GC-MS in biochemistry: use of networking to discover antifungals produced by B. 

Subtilis. 

https://www.youtube.com/watch?v=cNPW6V3RJY4 

 

Use of the GNPS GC-MS workflows 

 

GNPS GC-MS environment 

The GNPS leverages the repository infrastructure now has expanded to include GC-MS-

specific deconvolution, reference spectra matching and molecular networking tools. The new 

analysis workflows not only solved the scaling of analysis, but are also configured to promote 

data analysis reproducibility, as an analysis performed in GNPS is retained in the account-

specific job tab and can be shared as a hyperlink. The user’s own or someone else’s shared 
analysis can be precisely reproduced by clicking the “clone” button. In addition, we have 

enabled the community to upload and share reference spectra which then continuously 

accumulate leading to continuous improvements of annotations. GNPS also gives the ability 

to explore all public data sets together with studies in one's private space for a particular 

https://www.youtube.com/watch?v=cNPW6V3RJY4


research problem (e.g. drug discovery). There are no other GC-MS deconvolution and 

annotation infrastructures that also work with the data in a repository. The scalability, 

reproducibility, capture of knowledge and the ability to efficiently reuse data in the public 

domain make the GC-MS infrastructure in GNPS unique compared to other existing open or 

commercial resources. GNPS promotes Findable, Accessible, Interoperable, and Reusable 

(FAIR) use practices for mass spectrometry data20.  

The community infrastructure can be accessed at https://gnps.ucsd.edu under the header 

“GC-MS EI Data Analysis”.  
 

Deconvolution 

Currently, 1D EI GC-MS data are amenable. We recommend to use a minimum of 10 files in 

the dataset for deconvolution with MSHub. If the user only has fewer than 10 files, spectral 

deconvolution and alignment should be performed using alternative methods (e.g. MZmine, 

OpenChrom, AMDIS, MZmine/ADAP, MS-DIAL, BinBase, XCMS/XCMS Online, MetAlign, 

SpecAlign, SpectConnect, PARAFAC2, MeltDB, eRah). After using one of those tools, 

molecular networking can be performed in the same fashion as for MSHub (detailed 

description is given in the Supplementary Notes), as the library search GNPS workflow 

accepts input from other tools into the GNPS/MassIVE environment. GNPS directly supports 

deconvolution output from MZmine/ADAP and MS-DIAL. The quantitative table of the 

deconvolution output can be used for statistical analysis with external tools. 

 

Library search  

Once the .mgf file is generated by GNPS-MSHub or imported from another deconvolution 

tool, the spectral features can be searched against public libraries (currently GNPS has 

Fiehn, HMDB, MoNA, VocBinBase) or the user’s own private or commercial libraries (such as 
NIST 2017 and Wiley) and the freely available reference data of 19,808 spectra for 19,708 

standards released with this manuscript. Users can also upload their own libraries to GNPS 

as well to share them with the community. Although the possible candidate annotations can 

be further narrowed by retention index (RI), they should still be considered level 3, a 

molecular family, annotation according to the 2007 metabolomics standards initiative (MSI) 
17. Calculation of RIs is enabled and encouraged but not enforced. When multiple annotations 

can be assigned, GNPS provides all candidate matches within the user's filtering criteria. 

Filtering the results 

The balance score is a new metric which will be available when MSHub deconvolution is 

used. A fragmentation pattern of a compound found to be the same in different 

measurements would result in a high balance score. Missing or chimeric peaks would change 

randomly across files and would result in a low balance score. Even when a compound is 

present in a few samples, as long as the spectral patterns, irrespective of compound 

abundances, are conserved across samples it would result in a high balance score.  

Cosine and balance score should be jointly used as spectral matching filters for processing of 

the final results. The effect of filtering can be seen on the Figure 1m-o and S3d,e. For the 

test dataset shown on Figure 1m,n, the lowest FDR of the top match is achieved with the 

combined threshold values of cosine >0.9 and balance score >60% (Figure 1m). A more 

https://gnps.ucsd.edu/
https://gnps.ucsd.edu/
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conservative balance score value of >80% essentially ensures the lowest observed FDR, 

even for poor cosine scores (here referred to as match scores). Conversely, even the high 

match score by itself may still result in unacceptably high FDR if the balance score is poor 

(Figure 1m,n). The high match score reflects that a library spectrum exists that is similar to 

the query spectrum, while a high balance score is reflective of the high confidence in 

deconvolution of the spectral pattern. A well-deconvoluted pattern as defined by the balance 

score is more likely to give better matches against the spectral library. Selecting higher 

values of both metrics ensures the best spectra are used and are matched to most likely 

annotations. The “optimal” thresholds, i.e. the values that minimize mis-annotations without 

being excessively restrictive, are data-specific, but we recommend to use the above values 

as a good starting point. 

 

Molecular networks 

No matter how the spectral library is searched in GC-MS, due to the absence of a parent 

mass, a list of spectral matches is more likely to contain mis-annotations, both related 

(isomers, isobars) or less frequent, entirely unrelated compounds 1. However, to spot mis-

assignments at the molecular family level, we propose to explore deconvoluted GC-MS data 

via molecular networking, a strategy that has been effective for LC-MS/MS data 16. In the 

case of EI, unlike in LC-MS/MS where the precursor ion mass is known, the molecular ion is 

often absent. For this reason, the molecular networks are created through spectral similarity 

of the deconvoluted fragmentation spectrum without considering the molecular ion. We 

explored molecular networking patterns for the EI data (Figure S7) and observed that the EI-

based cosine similarity networks are predominantly driven by structural similarity based on 

chemical class annotations (Figure S7a). These EI networks can be used to visualize 

chemical distributions and guide annotations (Figure S8). Some examples of molecular 

networking applications are discussed in the Supplemental Videos. 

  

3D mapping of volatilome  

 

The sample collection and GC-MS analysis are described above in the “Skin volatilome 
analysis” section of Supplementary Notes. Feature tables from the deconvolution jobs for 

headspace and liquid injection were downloaded from GNPS and combined into a single table. 

The coordinates for 3D model were picked for all of the sampled spots and added into the 

feature table as described in the tutorial (https://ccms-

ucsd.github.io/GNPSDocumentation/gcanalysis/). The chemical distributors were then 

visualized using ‘ili19. The chemical annotations of features have been cross-referenced from 

the library search jobs as described in the tutorial. Using balance filters at 50% and >0.9 cosine, 

we arrived at annotations that, once visualized, revealed the distributions of skin volatiles 

(Figure 2f-i). For example, squalene was found on all locations, but less on the feet. Hexanoic 

acid was most abundant on the chest and armpits. Globulol, a perfume ingredient this individual 

used on the chest, was most intense on the chest, while phenylene dibenzoate, a skincare 

ingredient, was found on the face and hands. 

The 3D model, feature table used for mapping and snapshots shown on the Figure 2f-i are 

available at: https://github.com/aaksenov1/Human-volatilome-3D-mapping- 

https://github.com/aaksenov1/Human-volatilome-3D-mapping-


 

Generation of molecular networks 

 

The data were collected across multiple studies as described in the Supplementary Notes. 

All of the datasets (Table S1) were processed on GNPS MSHub deconvolution workflow as 

described in the tutorial. The figures were generated as described in the Supplementary 

Notes. 

Testing and validation 

 

All modules have been tested and validated individually to determine possible fail points and 

the results validated by manually reviewing the annotations that are obtained. The full 

pipeline was also tested for a variety of datasets, including those collected for this study 

(“GC-MS analysis for validation studies” section of the Supplementary Notes) and data from 

several previously published studies and unpublished public data. A variety of GC-MS data 

are represented, including different types of mass analyzers (both high and low resolution 

instruments), different modes of sample introduction, and analysis of both derivatized and 

non-derivatized samples. The goal was to ensure that both feature finding and library 

matching workflows are operational for all of these scenarios and that the results are 

consistent with those expected. We have manually verified that the molecules that are known 

to be present in the dataset are indeed identified and reported by the workflow. The testing 

information is summarized in Table S1. 

 

Comparison of deconvolution tools 

We have compared the deconvolution performance of MSHub alongside MZmine2/ADAP3 

and MS-DIAL 4. These tools were chosen because they satisfy the following criteria: are 

open, specifically designed for GC-MS data, can perform multi-file processing, are being 

routinely used by the metabolomics community, and are actively being developed and 

maintained. The detailed description of the procedure and parameters are given in the 

Supplementary Notes. 

Generating input files with the alternative workflows 

 

The Mzmine/ADAP and MS-DIAL workflows are the alternative options to perform spectral 

deconvolution on GC-MS data explicitly supported to be compatible with GNPS library search 

workflow. For better integration, we have added a new module to MZmine (version 2.52 and 

later) to export the quantification table (.csv) and the spectra summary file (.mgf) for the 

GNPS GC-MS workflow. Furthermore, a new MZmine module was also developed to enable 

the creation of the Kovats RI marker file compatible with the GNPS workflow. The detailed 

directions are given in the GNPS documentation: https://ccms-

ucsd.github.io/GNPSDocumentation/gc-ms-deconvolution/ 

https://ccms-ucsd.github.io/GNPSDocumentation/gc-ms-deconvolution/
https://ccms-ucsd.github.io/GNPSDocumentation/gc-ms-deconvolution/


Generation of plots  

All plots were generated in Python 3.7.3, using NumPy 1.16.4, Pandas 0.25.0, RDKit 

2019.03.4, and lxml 4.3.4 for data analysis purposes; and Matplotlib 3.1.0 and Seaborn 0.9.0 

for visualization purposes The detailed description is given in the Supplementary Notes. 

 

Data and code availability 

All of the data used in preparation of this manuscript are publicly available at the MassIVE 

repository at the UCSD Center for Computational Mass Spectrometry website 

(https://massive.ucsd.edu). The dataset accession numbers are: #1 (MSV000084033), #2 

(MSV000084033), #3 (MSV000084034), #4 (MSV000084036), #5 (MSV000084032), #6 

(MSV000084038), #7 (MSV000084042), #8 (MSV000084039), #9 (MSV000084040), #10 

(MSV000084037), #11 (MSV000084211), #12 (MSV000083598), #13 (MSV000080892), #14 

(MSV000080892), #15 (MSV000080892), #16 (MSV000084337), #17 (MSV000083658), #18 

(MSV000083743), #19 (MSV000084226), #20 (MSV000083859), #21 (MSV000083294), #22 

(MSV000084349), #23 (MSV000081340), #24 (MSV000084348), #25 (MSV000084378), #26 

(MSV000084338), #27 (MSV000084339), #28 (MSV000081161), #29 (MSV000084350), #30 

(MSV000084377), #31 (MSV000084145), #32 (MSV000084144), #33 (MSV000084146), #34 

(MSV000084379), #35 (MSV000084380), #36 (MSV000084276), #37 (MSV000084277), #38 

(MSV000084212). 

All of the GNPS analysis jobs for all of the studies are summarized in Supplementary Table 

1. 

The source code of the MSHub software, including low- and high resolution data processing 

versions is available online at Github (version used in GNPS) (https://github.com/CCMS-

UCSD/GNPS_Workflows/tree/master/mshub-gc/tools/mshub-gc/proc) and at BitBucket 

(standalone version in MSHub developers’ repository, both high and low resolution: 
https://bitbucket.org/iAnalytica/mshub_process/src/master/ ). Scripts used to parse, filter, 

organize data and generate the plots in the manuscript are available online at Github 

(https://github.com/bittremieux/GNPS_GC_fig). Script for merging individual .mgf files into a 

single file for creating global network is available at Github: 

https://github.com/bittremieux/GNPS_GC/blob/master/src/merge_mgf.py ) 

The 3D model, feature table with coordinates used for the mapping and snapshots shown on 

the Figure 4a-d are available at: https://github.com/aaksenov1/Human-volatilome-3D-

mapping- . The GC-MS adapted MolNetEnhancer code with an example Jupyter notebook 

can be found here: https://github.com/madeleineernst/pyMolNetEnhancer.  
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Figure 1. The processing pipeline and performance. a) Spectra are aligned and binned, noise is 

filtered and b) Baseline corrected c) Common profile across the dataset and peaks in RT dimension are 

aligned using Fast Fourier Transform (FFT)-accelerated correlation. d) Generation of both peak integrals 



for all samples and their common fragmentation patterns. e) Separation of overlapping peaks with 

patterns across samples using NMF. f) Peak integrals for all samples and canonical fragmentation 

patterns. g) Annotation with public or private libraries. h) Molecular networks. i) Data and results are 

shared between users. j) Linear dependence of the MSHub processing time. k) Distributions of library 

matching scores with an increased volume of data (datasets with known spiked compounds Test1-

Test11, Table S1) for all matches and l) for the spiked compounds only. m) False discovery rate for 

annotations (Test11) of the top match and (n) top ten matches. o) Number of library matches for spiked 

compounds. p), q) Cosine improves as higher volume of the data enhances deconvolution quality for 

the top match of biological samples: breath (non-derivatized, ICL1-ICL11, Table S1) (p) and human and 

mouse blood serum, adipose tissue and cerebrospinal fluid (silylated, datasets UCD1-UCD16, Table 

S1) (q). r) The unique annotations across datasets ICL1-ICL11 and s) datasets UCD1-UCD16; no 

balance score filtering applied. t, u) Quantitative comparison of XCMS (t) and MSHub (u). NMF - Non-

negative matrix factorization, FFT - Fast Fourier Transform, RT - retention time. 

 



 



Figure 2: Analysis and molecular networking of GC-MS data. Annotated spectra a) without filtering 

and b) with a 65% balance score filtering. c) Global network containing 35,544 nodes from 8,489 files 

in 38 GNPS datasets. The size of the node is proportional to the number of nodes that connect, the 

edge thickness is proportional to the cosine score (Figure S6). The annotation is the top match with 

cosine above 0.65. d) Zoomed-in region e) Cluster of compounds from dart frog skin samples - all 

nodes are alkaloids. f) human surface volatilome visualized with ‘ili19. Molecular distributions for 

squalene g) hexanoic acid, a malodour molecule h) globulol, common uses in perfume i) 

phenylenedibenzoate, common in skin care products. 
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