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ABSTRACT

Infection of Novel Coronavirus 2019 (COVID-19) on lung cells and human respiratory systems have
raised real concern to the human lives during the current pandemic spread across the world. Recent
observations on CT images of human lungs infected by COVID-19 is a challenging task for the
researchers in finding suitable image patterns for automatic diagnosis. In this paper, a novel semi-
supervised shallow learning network model comprising Parallel Quantum-Inspired Self-supervised
Network (PQIS-Net) with Fully Connected (FC) layers is proposed for automatic segmentation
followed by patch-based classifications on segmented lung CT images for the diagnosis of COVID-19
disease. The PQIS-Net model is incorporated for fully automated segmentation of lung CT scan
images obviating pre-trained convolutional neural network models for feature learning. The PQIS-Net
model comprises a trinity of layered structures of quantum bits inter-connected through rotation gates
using an 8-connected second-order neighborhood topology for the segmentation of wide variation
of local intensities of the CT images. Intensive experiments have been carried out on two publicly
available lung CT image data sets thereby achieving promising segmentation outcome and diagnosis
efficiency (F1-score and AUC) while compared with the state of the art pre-trained convolutional
based models.

1 Introduction

The world has suffered a lot in the recent pandemic due to the 2019 novel coronavirus disease (COVID-19) since
its rapid outbreak from Wuhan, China. There have been sharp rises in infected and suspected cases in almost all the
countries in the world from the beginning of January 2020 as reported by World Health Organization [1]. The severe
affect of coronavirus disease has inflicted a SARS-CoV-2 acute respiratory syndrome and has resulted in a new febrile
respiratory tract illness. Despite imposition of various strict measures and physical isolation guidelines, the number
of positive test cases is rising rapidly and as of today (22/05/2020), the total number of cases reported in the entire
world is 5, 329, 268 [2]. There are mainly three standard widely used diagnosis procedures viz. Reverse Transcription
Polymerase Chain Reaction (RT-PCR) test from swab samples, Chest X-ray and Lung CT scan images for COVID-19
detection. However, the real-time RT-PRT test using detection of nucleotide has reported low sensitivity in China
and hence it is not an effective tool for coronavirus infection detection [4] owing to lack of stability, quality and viral
materials in specimens. In addition, lack of testing capabilities in the underdeveloped countries owing to insufficient
test kits has spurred the demand for alternative COVID-19 diagnosis. The potential alternatives to RT-PRT test based
COVID-19 detection are methods used on Lung CT scan image and Chest X-ray image segmentation. The captured
lung CT scans of COVID-19 infected patients often show a bilateral patchy shadow. Moreover, Chest CT scan is a
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noninvasive and a fast diagnosis procedure and reported high sensitivity for pre-screening of COVID-19 infections [4].
However, with rise in number of infections and suspected cases, it is a paramount and laborious tasks for the health
experts to manually annotate the infected lesions and manual contour them in the current world-wide pandemic situation.
In these circumstances, in order to maximize the diagnosis of the infected patients and to improve the treatment access,
it is always preferred to have an automatic and robust segmentation technique followed by assessment of coronavirus
infections.

1.1 Related Works

Recent years have witnessed the progress of deep learning technologies in the field of medical image segmentation
which have become popular diagnostic tool due to key feature representation [5, 6, 7, 8, 9, 10]. In this year, a plethora
of deep learning networks have been employed for automatic detection of COVID-19 pneumonia lung CT volumes and
have reported promising accuracy [11, 12, 13, 14, 15]. A multi-objective differential evolution assisted convolutional
neural network (CNN) [12] is suggested for COVID-19 lung CT image classification by leveraging the hyper-parameters
of the CNN. Zheng et al. [16] proposed a weakly supervised deep learning model with the pre-trained U-Net for
COVID-19 infection detection using lung CT volumes and reported high accuracy, sensitivity and specificity. Yan et
al. [17] introduced a convolutional neural network introducing Progressive Atrous Spatial Pyramid Pooling to address
the sophisticated infected lesions with overlapping and with wide variations of shape and orientation of lung CT
volumes. However, owing to lack of sufficient annotated lung CT images and lack of image specific adaptability for
unforeseen lung CT image classes (the infections on lung CT images vary with regions), pre-trained CNN models fail to
achieve desired accuracy. In addition to this, requirement of high computational resources to train the aforementioned
deeply supervised networks is seldom a cost effective solution for COVID-19 diagnosis. To avoid the over-fitting during
training of CNN based models with small data sets, a latent representation learning exploring multiple features prevalent
to lung CT volumes, is suggested by Kang et al. [15]. In addition to this, simple neural network model incorporating
two coupled 3D Res-Nets with prior attention learning is proposed by Wang et al. [18]. In spite being relatively less
complex models for COVID-19 infected lung CT image segmentation, these approaches rely on extensive feature
learning during training.
In this article, we have proposed an integrated semi-supervised shallow learning network model comprising a Parallel
Quantum-Inspired Self-Supervised Neural Network (PQIS-Net) followed by fully connected classification layers for
COVID-19 diagnosis. Of late, the authors have proposed quantum-inspired self-supervised networks referred to as
QIS-Net [19] and QIBDS Net [20] for automatic brain lesion segmentation. Authors have also developed the optimized
version of QIBDS Net referred to as Opti-QIBDS Net [21] which is found suitable for brain tumor segmentation. These
self-supervised network architectures which are tailored and tested on brain MR images and efficient in brain MR image
segmentation serve as the inspiration behind the current work. In this manuscript, we aim to further investigate the
parallel version of our proposed QIS-Net on COVID-19 infected lung CT images without any sort of supervision or
training for segmentation followed by classification by fully connected layers for feasibility analysis on COVID-19
diagnosis.

1.2 Contributions

The four-fold significant contributions of the article are highlighted as follows:

1. Eventually, in the current pandemic situation in the world, it is an uphill task for the health care professionals
to acquire large volumes of lung CT images with annotations for deep supervision. Hence, the primary
focus of the paper is to offer a potential alternative to deeply supervised networks using a semi-supervised
shallow neural network model composed of a fully parallel self-supervised network (PQIS-Net) for appropriate
segmentation for tiny COVID-19 infected lesions and fully connected layer (FC layer) at the end for enabling
training on weak data labels for suitable assessment of COVID-19 infections.

2. An 8-connected neighborhood topology-based segmentation using PQIS-Net for taking into cognizance the
wide variations of local intensities of lung CT images, is the key contribution of the proposed work.

3. In addition, selections of p-random 2D patches from the PQIS-Net segmented images are allowed to augment
the limited training data sets with high representation features to the constituent FC layers for processing
(training) thereby obviating over-fitting.

4. Rigorous experiments have been carried out considering two different publicly available data sets of COVID-19
lung CT images, one purely for segmentation task and the other one for segmentation followed by classification
to facilitate an accurate diagnosis. The extensive experimental results validate our proposed semi-supervised
shallow neural network model which outperforms the state of the art pre-trained CNN models with weak
annotations, thus promoting auto-diagnosis with self-supervised neural network models.
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Figure 1: A parallel quantum-inspired self-supervised Network (PQIS-Net) assisted Semi-supervised Shallow Learning network for
COVID-19 diagnosis (only three inter-layer connections are shown for clarity).

The remaining portion of the manuscript is organized as follows: The proposed semi-supervised shallow neural network
model comprising PQIS-Net architecture and its operation with the fully connected layers are discussed in Section 2.
Experimental results and discussions including the data set details, experimental setup is provided in Section 3. Finally,
the concluding remarks are confabulated in Section 4.

2 Proposed Semi-supervised Shallow Neural Network model

The Parallel Quantum-Inspired Self-Supervised Neural Network (PQIS-Net) is the core of the proposed semi-supervised
shallow neural learning model which is combined with fully connected layers at the end for classification and diagnosis
of COVID-19 disease. The PQIS-Net is employed to segment lung CT image slices which are infected by COVID-19
or pneumonia in parallel fashion thereby reducing processing time. The PQIS-Net segmented images form highly
representative features for classifications. An integrated semi-supervised shallow learning model incorporating the
self-supervised PQIS-Net with Fully Connected (FC) layers at the end is targeted to develop which is appropriate for
training at the FC layers with limited training data sets and can offer accurate diagnosis. The classification outcome is
obtained using a majority voting scheme. A schematic outline of the proposed integrated self-supervised shallow neural
network model with the fully connected layers is illustrated in Figure 1. The following subsection 2.1 sheds light on the
detailed description of our previously developed quantum-inspired fully self-supervised neural networks [19, 20] and a
short description about FC layers is also provided in subsection 2.2.

2.1 Parallel Quantum-Inspired Self-Supervised Neural Network (PQIS-Net) for Segmentation

The Parallel Quantum-Inspired Self-Supervised Neural Network is the extended version of our previous network
architectures [19, 20] and comprises a trinity of layers of quantum neurons (represented as quantum bits or qubits).
The incorporation of quantum-inspired computing in the suggested PQIS-Net stems from the fact that the classical
self-supervised networks suffer from convergence problems [23, 24, 25]. The incorporation of quantum-inspired
computing in the suggested parallel quantum-inspired self-supervised neural networks enables the faster convergence
by reducing the number of epochs with forceful termination and hence yields better accuracy in segmentation tasks [19,
20, 21, 22, 26, 27]. The network dynamics of PQIS-Net replicates the basic operation of QIS-Net model [19] in parallel.
The basis computation unit for the PQIS-Net is a quantum bit or a qubit designated by a quantum neuron in all trinity of
layers in the architecture in matrix notation. One such layer matrix comprising qubits is shown out of the identical
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parallel layers in the PQIS-Net, as follows.
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Hence, each qubit is designated as φl
ij at the lth layer of the network architecture. The network layers are inter-connected

through 8-connected spatial neighborhood neuron subsets and serve as the significant characteristic of the network
architecture. In each layer of the PQIS-Net architecture, quantum neurons are also intra-linked among themselves with
intra-connection strengths π

2 (quantum 1 logic). The 8-connected neighborhood information of each candidate pixel is
propagated to the subsequent layers for further computation in forward (input to hidden and hidden to output layer) and
in counter-propagation fashions. The counter-propagation obviates the quantum back-propagation procedure thereby
enabling faster convergence and reduced time complexity.
The principle of operation of the network is as follows: Each neuron of the network layers are designated as qubits or
quantum bits and the inter-linked weights and its corresponding activation are mapped using rotation gates operating on
the qubits. The classical input image pixels (xl

i) at layer l are converted to quantum bits as

|φl
i〉 =

[

cos(π2x
l
i)

sin(π2x
l
i)

]

i = 1, . . .m× n (1)

The rotation gates are employed to update the qubit with rotation angle for inter-connection strength and activation as ωl

and γl (say) at layer l, respectively. The angle of rotation of an interconnection strength, ωl
i,j is decided by the relative

difference measure between the candidate pixel (i) and its corresponding neighborhood (j) located at its 8-connected
region in quantum formalism. The inspiration behind the adaptive relative measure in rotation angle evaluation is to
distinct between the foreground and background image pixels. The angle of rotation is evaluated as

ωl
i,j = 1− (µl

i − µl
i,j); i ∈ m× n, j ∈ {1, 2, . . . 8} (2)

Hence, the fuzzy graded input at the ith candidate neuron and its corresponding spatially 8-connected second-order
neighborhood neuron at layers l are µl

i and µl
i,j , respectively. A single qubit is updated using a rotation gate with an

angle ωl as
[

φl
0′

φl
1′

]

=

[

cos(π2ω
l) − sin(π2ω

l)
sin(π2ω

l) cos(π2ω
l)

]

×

[

φl
0

φl
1

]

(3)

The fuzzy context sensitive activation in quantum formalism enables the bi-directional propagations (forward and
counter propagations) is denoted at a layer l of a candidate neuron (pixel) i by ξli as

|ξli〉 =

[

cos γl
i

sin γl
i

]

(4)

where, the angle of rotation for activation ξli is γl
i measured as the contribution of its 8-connected neighborhood neurons

as follows

γl
i = 2π × (

∑

j

µl
i,j) (5)

The network input-output dynamics of a basic quantum neuron (i) in the self-supervised PQIS-Net is defined at the
layer l as follows.

|yli〉 = σPQIS−Net(

8
∑

j

f(yl−1
i )〈ϕl

j |ξ
l
j〉) (6)

i.e.,

|yli〉 = f(
π

2
δl−1
i − arg{

8
∑

j

f(ωl−1
j,i )f(yl−1

i )− f(ξl−1
i )})

= σPQIS−Net(

8
∑

j

f(yl−1
i ){cos((ωl−1

j,i )− γl−1
i )+

τ sin((ωl−1
j,i )− γl−1

i ))}

(7)
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Hence, the output at the ith quantum neuron is depicted as yli and the phase transformation parameters are denoted as

δl−1
i (τ is an imaginary number).

|yli〉 = σPQIS−Net(
8

∑

j

f(
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2
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i.e.,

|yli〉 =

σPQIS−Net(
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2
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k) sin(ω
l
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j))))

(9)

The σPQIS−Net activation function [Quantum Multi-level Sigmoidal (QMSig)] employed in the above Equation is
defend as follows [19, 20].

σPQIS−Net(x;λθ, sθ) =

L
∑

θ=1

1

λθ + e−µ(x−(θ−1)sθ−1−ξ)
(10)

where,

λθ =
SN

sθ − sθ−1
(11)

Hence, the outcome of two adjacent classes viz., θ and θ − 1 are sθ and sθ−1 and the sum of the contribution of the
8-connected neighborhood pixels is designated as SN . µ designates the steepness factor of the function and L is the
number of gray levels in the segmented image.
The coherent network error cum loss function is introduced in the PQIS-Net and is evaluated as follows [19]:

ζ(ω, γ) =
1

2

S
∑

k

m×n
∑

i

8
∑

j

[Wι+1
i,j (ωi,j , γi)−Wι

i,j(ωi,j , γi)]
2 (12)

where, Wι(ωi,j , γi) is the weighted inter-connection at a particular epoch ι and is linearly dependent on ω and γ. S is
the number networks which constitute the PQIS-Net and is equal to number of image slices in a lung CT volume.

2.2 Fully-Connected (FC) Layers for Classification

The segmented lung CT images by PQIS-Net are targeted for classification using two Fully Connected (FC) layers to
enable the diagnosis of COVID-19 or pneumonia (Non-Covid). However, to avoid over-fitting in the FC layers due
to large size of segmented image features, patch-based classification is preferred incorporating p-number of random
patches with relatively small size of 32× 32 highly representative features. The center of the patches are randomly
chosen to obviate the empty region of the segmented image. It may be noted that each image pixel of the p-random
patches i considered as the highly representative features for classification. The value of p is chosen judiciously such
that each pixel of the segmented CT image is considered at least once. Each path is fed to the FC layers for classification
with a Softmax function and out of p-outcomes the final decision is made by a majority voting scheme [28]. Here, we
have employed binary cross entropy loss for COVID-19 diagnosis. The loss (L(w)) is computed by leveraging the
hyper-parameters w of the semi-supervised neural network model. It is defined as

argmin
w

L(w) =

C
∑

i

[ti log y(αi) + (1− ti) log{1− y(αi)}] (13)

where, y(αi) is the predicted outcome by the FC layers on input αi and with respect to the network parameter set w. ti
is the target output.
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3 Results and Discussion

3.1 Data Set

Publicly available lung CT scan images are collected from two data sources [29, 30] and experiments are performed
using the proposed semi-supervised neural network model on both the data sets. One of the data sets [29] contains total
2482 lung CT scans with variable sizes and out of these, 1252 lung CT scans are infected by COVID-19 and 1230 CT
slices are not infected as COVID-19. The data set [29] is acquired from the real patients of Sao Paulo, City hospitals,
Brazil. Another data set [30] comprises only 20 labelled COVID-19 lung CT volumes of fixed size 512× 512 which
includes infection masks, lung masks (left and right) and lung-infection pair masks. These labelled CT volumes are
manually segmented and verified by radiologist experts. The data set [30] comprising the labelled CT volume masks
are used in the experiment for the segmentation task. On the contrary, the other data set [29] is used for segmentation as
well as classification tasks. Few samples from the Brazil data set [29] are shown in Figure 2 (COVID-19 infected) and
in Figure 3 (non-COVID-19 infected).

(a) #1 (b) #27 (c) #35 (d) #55 (e) #242 (f) #343 (g) #434 (h) #1212

Figure 2: COVID-19 infected input lung CT slices [29]

(a) #3 (b) #28 (c) #121 (d) #186 (e) #290 (f) #317 (g) #842 (h) #1217

Figure 3: Pneumonia (Non-Covid) infected input lung CT slices [29]

3.2 Experimental Setup

In this current work, extensive experiments have been carried out on lung CT images of variable sizes using high
performance DL GPU (Nvidia RTX2070) System with MATLAB 2020a and Python 3.6.2 (Pytorch). The Brazilian
data set [29] is divided into 7 : 3 ratio for training and testing, respectively for segmentation followed by classification
tasks. In addition, experiments are carried out using 5 and 10-fold cross validations separately. The results for these two
different scenario are investigated by leveraging the set of hyper-parameters of the proposed semi-supervised shallow
neural network.
The parallel quantum-inspired self-supervised network (PQIS-Net) is experimented with the pre-processed normalized
gray-level CT scan images. Pre-processing of the input lung CT images from both the data sets [29, 30] are performed
using normalization and standardization. The PQIS-Net segmented CT volumes are processed though the 2D binary
masks available in the labelled CT volumes in the data set [30] to obtain the infected lesion on lung CT scans in the
suggested semi-supervised model. The PQIS-Net is experimented with gray-level CT scan images using with distinct
classes L = 4, 5, 6, 7 and 8 in optimized fashion [21]. In this experiment, the steepness (µ) in the σPQIS−Net activation
function, is varied in the range 0.230 to 0.240 with a step size 0.001. It has been observed that in majority cases,
µ = 0.239 yields the optimal segmentation.
The FC layers in the proposed semi-supervised shallow neural network model are rigorously trained using the stochastic
gradient descent algorithm with a learning rate of 0.001. The convergence of accuracy and loss during training using
the proposed semi-supervised shallow neural network is shown in Figure 4. In addition to this, experiments have been
performed on two recently developed CNN architectures suitable for medical image segmentation viz., convolutional
3D-UNet [10] and Residual U-Net (ResNet50) [9] available in GitHub. The 3D-UNet and ResNet50 networks are
rigorously trained using the adam optimizer with a learning rate of 0.0001 and a batch size of 32 allowing maximum 30
epochs to converge. The convergence of accuracy and loss during training using ResNet50 [9] are also demonstrated in
Figure 5. The segmented output images resemble in size with the dimensions of the binary mask and the outcome 1 is
considered as tumor region and 0 as background in detecting complete tumour. Pixel by pixel comparison with the
manually segmented regions of interest or lesion mask allows to evaluate the dice similarity (DS) which is considered as
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a standard evaluation procedure in automatic medical image segmentation. In addition to this segmentation, experiments
are also set up for classifications the proposed Semi-supervised model, ResNet50 [9], 3D-UNet [10]. The other state of
the art techniques include Kang et al. [15] and Wang et al. [18] for COVID-19 detection on the Brazilian data set [29].
The evaluation process involves the manually segmented lesion mask as ground truth and each 2D pixel is predicted as
either True Positive (TRP ) or True Negative (TRN ) or False Positive (TRN ) or False Negative (FLN ).

Figure 4: Convergence of the proposed semi-supervised shallow neural learning model allowing maximum 10 epochs during
training with learning rate=0.001.

Figure 5: Convergence of the ResNet50 [9] model allowing maximum 30 epochs during training with learning rate=0.0001 and
batch size =32

3.3 Experimental Results

Extensive experiments have been performed in the current setup and experimental outcomes are reported with the
demonstration of numerical and statistical analyses on two different data sets [29, 30]. Segmentation using the proposed
semi-supervised shallow neural network, pre-trained ResNet50 [9] and 3D-UNet [10] have been performed using both
the data sets and segmentation performance is measured on data set [30] using evaluation metrics (ACC, DS, PPV,
SS) [31]. The human expert (radiologist) segmented lung and infection masks lung CT image slices of size 512× 512
are provided in Figure 6 with the input and the PQIS-Net segmented slice. The PQIS-Net is also tested on the Brazilian
data set [29] and segmentation is performed on lung CT slices with two different classes (COVID-19 infected and non
COVID-19 infected) as shown in Figure 7 and Figure 8, respectively. Table 1 reports the segmentation results of the
proposed PQIS-Net with ResNet50 [9] and 3D-UNet [10] models for three different tasks (infection, lung, infection
and lung). It is evident from the experimental data provided in Table 1 and from the statistical significance test (KS
test) [19] conducted on the results that in spite of being a self-supervised network, the proposed PQIS-Net attains similar
performance in segmentation tasks on the data set [30] in comparison with the pre-trained CNN models (ResNet50 [9]
and 3D-UNet [10]) under the four evaluation parameters (ACC,DS, PPV, SS).

Table 2 presents the numerical results obtained using the proposed semi-supervised shallow neural network model,
ResNet50 [9], 3D-UNet [10], Kang et al. [15] and Wang et al. [18] for COVID-19 detection on the Brazilian data
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(a) Input (b) Segmented (c) Color-mapping (d) Infection mask (e) Lung mask (f) Infection & Lung
mask

Figure 6: PQIS-Net segmented lung CT slice#171 [30] with the three different masks.

(a) #1 (b) #27 (c) #35 (d) #55 (e) #242 (f) #343 (g) #434 (h) #1212

(i) #1 (j) #27 (k) #35 (l) #55 (m) #242 (n) #343 (o) #434 (p) #1212

Figure 7: (a− h) PQIS-Net segmented lung CT slices# [29] with COVID-19 infections followed by (i− p) color mapping for
class level L = 8 with activation ξ

set [29]. The standard evaluation metrics used in Table 2 to measure the COVID-19 detection efficiency are accuracy,
precision, recall, F1-score and AUC (Area under ROC curve) [31]. The convolutional based architectures (ResNet50 [9],
3D-UNet [10]) marginally outperform our proposed semi-supervised shallow neural network model in terms of
accuracy. However, the proposed semi-supervised model report similar precision as ResNet50 [9] and 3D-UNet [10]
and outperforms all four reported methods in terms of F1-score and AUC. In addition, the ROC curves and Confusion
matrix representations for accuracy of COVID-19 detection are shown in Figure 9 and Figure 10, respectively. Moreover,
to show the effectiveness of our proposed semi-supervised shallow neural network model, we have conducted one
sided two sample Kolmogorov-Smirnov (KS) test with significance level α = 0.05. It is interesting to note that in
spite of being a semi-supervised shallow learning framework, the suggested semi-supervised model has shown similar
accuracy (ACC) and F1-score compared with ResNet50 [9], 3D-UNet [10] and outperforms recent works on lung CT
diagnosis proposed by Kang et al. [15] and Wang et al. [18]. Hence, it can be concluded, that the performance of the
semis-supervised model on lung CT images is statistically significant and offers a potential alternative to the solution of
deep learning networks and other time-intensive extensive features based learning paradigms in near future.

4 Conclusion

In this work, a novel attempt has been made using an integrated semi-supervised shallow neural network encompassing
the parallel self-supervised neural network model (PQIS-Net) for fully automatic segmentation of lung CT images
followed by fully connected (FL) layers for patch-based classification with majority voting. The PQIS-Net model
incorporates the frequency components of the weights and inputs in quantum formalism thereby enabling faster
convergence of the network states owing to reduction in computation. This intrinsic property of the PQIS-Net model
yields precise and time efficient segmentation in real-time, which is evident from the results demonstrated in the
experimental section on two different data sets in terms of accuracy, dice similarity, specificity and sensitivity for
segmentation and accuracy, precision, recall, F1 score and AUC for classification in COVID-19 diagnosis. The proposed
PQIS-Net is marginally under performs in lung CT image segmentation tasks by ResNet50 and 3D-UNet in terms of
dice similarity. This is due to the fact that the proposed PQIS-Net is fully self-supervised neural network model based
on pixel intensity based features. However, the proposed semi-supervised model outperforms all four state of the art
methods in terms of F1-score and AUC for classification. Thus, the proposed parallel semi-supervised shallow learning
model serves as an inspiration for promoting a potential alternative to the deep supervised learning frameworks for lung
CT image segmentation for automatic COVID-19 diagnosis as well as for automatic medical image segmentation in
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(a) #3 (b) #28 (c) #121 (d) #186 (e) #290 (f) #317 (g) #842 (h) #1217

(i) #3 (j) #28 (k) #121 (l) #186 (m) #290 (n) #317 (o) #842 (p) #1217

Figure 8: (a − h) PQIS-Net segmented lung CT slices# [29] with Pneumonia (Non-Covid) infection followed by (i − p) color
mapping for class level L = 8 with activation ξ

(a) Epochs#5 (b) Epochs#10

Figure 9: ROC Curves for the COVID-19 detection rate vs false positive usingthe proposed semi-supervised shallow neural network 
model

various applications with limited labelled data sets. It remains to investigate the performance of lung CT segmentation 
using the optimized version of PQIS-Net and the authors are currently engaged in this direction.
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2TRP

2TRP+FLP+FLN
, PPV =

TRP

TRP+FLP
and Sensitivity: SS =

TRP

TRP+FLN
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test [32] with α = 0.05 significance level has been conducted and marked in bold.]
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