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ABSTRACT

We present a method for automatic microphone localization in ad-

hoc microphone arrays. The localization is based on time-of-arrival

(TOA) measurements obtained from spatially distributed acoustic

events. In practice, measured TOAs are an incomplete representa-

tion of the true TOAs due to unknown onset times of the acoustic

events and internal delays in the capturing devices and make the

localization problem insoluble if not addressed appropriately. The

main contribution of the proposed method is an algorithm that iden-

tifies and corrects for such internal delays and acoustic event onset

times in the measured TOAs. Experimental results using both simu-

lated and real-world data demonstrate the performance of the method

and highlight the significance of correct estimation of the internal

delays and onset times.

Index Terms— microphone array, auto-localization

1. INTRODUCTION

Microphone arrays facilitate the use of both spatial and temporal in-

formation and can provide superior results in speech enhancement

compared to a single microphone [1]. Many established methods

for multi-microphone audio processing such as beamforming, re-

quire knowledge of the relative positions of the microphones. This

requirement is easily satisfied in conventional microphone arrays

where the microphones are positioned in a fixed configuration. On

the other hand, ad-hoc microphone arrays have an unknown config-

uration that changes every time the microphones are deployed and a

method to automatically localize the microphones is necessary.

Auto-localization methods [2, 3] typically use acoustic events

emitted from varying spatial locations and measure the time-of-

arrivals (TOAs), which are used to localize the microphones. How-

ever, practical TOA measurements are incomplete because they in-

clude an unknown source onset time – the time the acoustic event

was generated, and an unknown internal delay – the time taken from

the sound reaching the microphone to that it is registered as received

by the capturing device. Some alternatives to TOA have been ex-

plored such as, the time-difference-of-arrival (TDOA) [4, 5, 6], the

diffuse noise field coherence [7] and received signal power [8, 9].

One of the earliest methods for auto-localization is the multi-

dimensional scaling (MDS) [10, 3, 11], which provides the rela-

tive configuration of sensors given the distances between all sen-

sors. This implicitly assumes that sensors and sources are co-

located, which is of limited applicability for microphone arrays.

Non-linear least-squares (LS) formulations for simultaneous estima-

tion of the sources and the sensors have been proposed by several

authors [4, 5, 12, 13, 14]. The solution is typically found through
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gradient descent optimization and suffers from the common prob-

lem of local minima, if not carefully initialized. The initialization

is addressed in [4, 5] where it is assumed that sources and micro-

phones are closely spaced – approximately co-located. Then, MDS

is used to find approximate locations of the sources and the mi-

crophones, which are used to initialize the non-linear LS optimiza-

tion. This yields improved results but requires at least seven de-

vices with closely spaced microphones and loudspeakers. An al-

ternative approach was formulated in [13]. It assumes sources in

the far-field leading to a least squares solution that is accurate up

to an arbitrary matrix, which is estimated through non-linear opti-

mization. While some of the above methods do address the onset

times [4, 5, 12, 13, 15] and/or the internal delays [4, 5, 15], they all

impose geometrical constraints on the placement of the microphones

and the sound sources.

Crocco et al. [16, 17] generalized the method in [13] such that

it does not rely on the far-field assumption and showed that if one

source and one sensor are co-located, it can lead to an exact closed-

form solution. This method is attractive for localization in ad-hoc

microphone arrays but it does not consider acoustic event onset times

and internal delays – these are assumed to be known. In practice it

may be difficult or even impossible to measure these and they must

be estimated from the observed data.

In this paper, we begin by formulating the problem of mi-

crophone localization in Section 2. Then, building on the work

of [16, 17], we propose an algorithm in Section 3 that estimates and

corrects for internal delays and acoustic event onset times, and lo-

calizes the microphones. In Section 4 we present results using both

simulated and real-world experiments and conclusions are drawn in

Section 5.

2. PROBLEM FORMULATION

Consider I microphones and J acoustic events distributed in a

3-dimensional Euclidean space. We specify the ith microphone

and the jth source locations by the Cartesian coordinates ri =
[rx,i ry,i rz,i]

T and sj = [sx,j sy,j sz,j ]
T , respectively; the coor-

dinates of all microphones and sound sources are represented by

the I × 3 matrix R = [r1 r2 . . . rI ]
T and the J × 3 matrix

S = [s1 s2 . . . sJ ]T .

The localization is performed using measured TOAs. The mea-

surements arise from acoustic events such as hand claps, from un-

known locations sj and onset times τj captured by microphones with

unknown locations ri and internal delays δi. The measured TOA of

acoustic event sj at microphone ri is given by

tij =
‖ri − sj‖

c
+ τj + δi + νij , (1)

where c is the speed of sound, ‖ · ‖ denotes Euclidean norm and νij
is measurement noise.
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The objective of auto-localization is to identify the internal de-

lays δi and the onset times τj , and to find an estimate, R̂, of the

microphone locations R, using only the measured TOAs, tij .

3. MICROPHONE LOCALIZATION

A straightforward solution to the localization can be obtained by

finding the minimum of the non-linear LS problem [12, 4, 5, 13, 14]

R̂, Ŝ = argmin
R,S

I∑

i=1

J∑

j=1

(
‖ri − sj‖

c
− tij

)2

, (2)

which is the maximum likelihood solution if the measurement noise,

νij , is assumed Gaussian. The solution to (2) is generally obtained

using gradient descent optimization. This approach does not guaran-

tee a unique solution; it generally finds a local rather than the global

minimum if not initialized with care. It also assumes that the internal

delays and onset times are known. In the remainder of this section

we describe a two-stage method. In the first stage, the internal de-

lays and acoustic event onset times are identified. These are used

to estimate the correct TOAs, which are applied for the microphone

localization in the second stage.

3.1. Internal delay and onset time estimation

We assume, without loss of generality, that c = 1 and we set the time

reference for the acoustic events to τ1 = 0; we also assume absence

of observation noise, νij = 0. Expanding the equation of observed

TOAs in (1) we obtain

r
T
i ri+s

T
j sj−2rTi sj = t

2
ij+τ

2
j +δ

2
i −2(tijτj+tijδi−δiτj) (3)

Next, we subtract the corresponding equation for i = 1 from the

general form of (3), which results in

r
T
i ri − r

T
1 r1 − 2(ri − r1)

T
sj = t

2
ij − t

2
1j + δ

2
i − δ

2
1

− 2tij(δi + τj) + 2t1j(δ1 + τj)

+ 2τj(δi − δ1), (4)

and then we subtract the equation for j = 1 from (4)

−2(ri − r1)
T (si − s1) = t

2
ij − t

2
1j − t

2
i1 + t

2
11

− 2δi(tij − ti1) + 2δ1(t1j − t11)

− 2τj(tij − t1j) + 2τj(δi − δ1). (5)

Let C{X} be an operator that transforms a matrix into a column

vector and C−1
M×N{x} the corresponding inverse operator that trans-

forms a vector x into a M ×N matrix X. Then we can write (5) in

a matrix form as

−2R̄S̄
T = T+A(p) + Γ, (6)

where Tij = t2ij − t21j − t2i1 + t211 for i = 2, . . . , I, j =

2, . . . ,J , A(p) = C−1
I−1×J−1 {Wp}, Γij = 2(δi − δ1)τj ,

p = [δ1 δ2 . . . δI τ2 τ3 . . . τJ ]T and W is a matrix composed of

terms (tij − ti1), (t1j− t11) and (tij − t1j); R̄ is the (I−1)×3 lo-

cation matrix of the microphones relative to the first microphone and

S̄ is the (J −1)×3 location matrix of the acoustic events relative to

the first event. It can be seen that A(p) and Γ act as correction ma-

trices to T that compensate for the internal delays and onset times;

if these are assumed known, then the formulation in (6) is equivalent

to that presented in [16] and a solution can be found accordingly.

However, in most practical scenarios this will not be the case, and

the unknown onset times and internal delays must be estimated.

An important observation can be made in (6): R̄S̄T is a ma-

trix of rank 3 provided that we have three or more microphones and

acoustic events, which must be the case as will be shown in Sec-

tion 3.3. If A(p) and Γ are not considered, as in [16], the relation-

ship in (6) does not hold and it is not possible to localize the acoustic

events or the microphones. However, this insight can be used to de-

vise an algorithm, which finds an estimate p̂ of the unknown onset

times and internal delays such that T̂ = T+A(p̂) + Γ̂ is rank 3.

Evidently, this is a rank-reduction problem and the estimation of

p can be based on the Eckart-Young-Mirsky low-rank approxima-

tion theorem [18]: the best rank-r approximation, X̃, of a matrix X

such that the Frobenius norm ‖X− X̃‖F is minimised is given by

X̃ = UΣ̃rV
T

(7)

where X = UΣVT is the singular value decomposition (SVD) of

X and Σ̃r = diag(σ1 . . . σr 0 . . . 0) is a diagonal matrix with

the r largest singular values of Σ; the rest are set to zero. Low-rank

approximation has been applied to the solution of several problems

in signal processing [19, 20]. We can use this result to estimate p it-

eratively by minimizing the following cost function at each iteration

p̂
(n+1) = argmin

p̂(n)
‖E(n) − (A(p̂(n)) + Γ̂)‖2F + λ‖T̂(n)‖2F , (8)

with

E
(n) = T̃

(n)
3 −T, (9)

where T̂(n) = T + A(p̂(n)) + Γ̂(n) and T̃
(n)
3 is the best rank-3

approximation of T̂(n) obtained from (7).

Consider first the case when λ = 0 and the internal delays are all

equal; for equal internal delays Γ = 0. This leads to a least squares

solution of (8)

p̂
(n+1) = W

+
e
(n)

, (10)

where W+ is the pseudo-inverse of W and e(n) = C{E(n)}. It fol-

lows from the optimization procedure that ‖E(n)−A(p̂(n+1))‖F ≤

‖E(n) −A(p̂(n))‖F and therefore, ‖T̂
(n)
3 − T̂(n+1)‖F ≤ ‖T̂

(n)
3 −

T̂(n)‖F . By the Eckart-Young-Mirsky theorem we must have that

‖T̂
(n+1)
3 − T̂(n+1)‖F ≤ ‖T̂

(n)
3 − T̂(n+1)‖F and therefore, the

algorithm converges. The algorithm is summarized in Algorithm 1.

Although, the algorithm is shown here to converge, the conver-

gence rate can be very slow in practice. Therefore, the additional

constraint to minimize ‖T̂(n)‖F is introduced in order to force the

solution to be within reasonable dimensions. This increases the

initial convergence rate but λ needs to be set to zero according to

some criterion to allow the algorithm to converge fully. We monitor

‖T̂(n)‖F and set λ = 0 when the change from one iteration to the

next is below a threshold.

In the general case when the internal delays are different, the

solution to (8) has to be found through non-linear LS optimization.

3.2. Localizing the microphones

Having identified the internal delays and the acoustic event onset

times, we can now use the corrected matrix of relative TOAs, T̂, to

estimate the locations of the sources and the microphones as in [16].

First, we have to convert T̂ to a squared distance matrix multiplying

it by c2 such that D = c2T̂. Here the correct speed of sound in air
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Algorithm 1 Internal delay and onset time estimation

Initialize: p̂(0)

Computation: n = 0, 1, 2 . . .

1. Compute: T̂(n) = T+A(p̂(n))

2. Rank-3 approximation of T̂(n): T̃
(n)
3 = UΣ̃3V

T

3. Compute the error: E(n) = T̃
(n)
3 −T

4. Update estimate of p from (8):

p̂(n+1) = argminp̂(n) ‖E(n) −A(p̂(n))‖2F

5. Update estimate of A(p):

A(p̂(n+1)) = C−1
I−1×J−1

{
Wp̂(n+1)

}

6. Compute Frobenius norm

F (n) = ‖E(n) −A(p̂(n+1))‖F

7. Exit if converged

is required and we assume c = 343 m/s in room temperature. We

can now write (6) as

−2R̄S̄
T = D, (11)

and by taking the SVD of D, we have

D = UΣV
T
. (12)

Since R̄S̄T is a matrix of rank 3, as discussed in Section 3.1, only

the three largest singular values in Σ need to be considered and the

remaining should ideally be zero or close to zero. Consequently, U,

Σ and V can be truncated and using (11) and (12) we can write

R̄ = U
′
C (13)

−2S̄T = C
−1

Σ
′
V

′T
, (14)

where C is an arbitrary invertible 3 × 3 matrix and X′ denotes a

truncated version of X. The minimum solution for the localization is

invariant to rotations or translations of the source-microphone con-

figuration. Therefore, we can constrain the coordinates of the first

microphone to be at the origin, r1 = [0 0 0]T , and the coordinates

of the first source to be on the x-axis, s1 = [sx,1 0 0]T . An estimate

of the matrix C and of sx,1 can then be found based on (4) with the

corrected TOAs, t̂ij , according to [16]

r
T
i ri − r

T
1 r1 − 2(ri − r1)

T
sj = d

2
ij − d

2
1j , (15)

where dij = ct̂ij . The non-linear LS optimization criterion is

formed by substituting the known values from (11) and (12) into (15)

Ĉ = argmax
C

I−1∑

i=1

J−1∑

j=1

{
([U′

C]2i1 + [U′
C]2i2 + [U′

C]2i3)
2

+[U′
Σ

′
V

′T ]ij − 2[U′
C]i1sx,1 − d

2
i+1j+1 + d

2
1j+1 }2 . (16)

Finally, we find the estimate of the the microphone positions by sub-

stituting Ĉ into (13). This method results in the estimation of only

ten parameters, independent of the number of acoustic events and

microphones.

3.3. Identifiability conditions

From (1) we see that every microphone and every acoustic event

introduces four unknowns (three for the spatial coordinates and one

for the acoustic event onset or internal delay) and there are IJ equa-

tions. The localization is invariant to rotations or translations of the

source-microphone configuration. Therefore, we can constrain to the

origin the coordinates of the first item (source or microphone), two of

the coordinates of a second item and one coordinate of a third item.

We have also set the time origin of the acoustic events to τ1 = 0.

Thus, we have that IJ ≥ 4I + 4J − 7, which leads to

J ≥
4I − 7

I − 4
. (17)

In other words, we require a minimum of five microphones and 13

sound source events. Note that different acoustic events means that

they have to be in different spatial locations, the actual signal can be

the same.

4. EXPERIMENTS AND RESULTS

In this section, we present experimental results with the objective to

highlight two particular features of the localization method described

in Section 3. First, we demonstrate the properties of the algorithm

for identification of the internal delays and the acoustic event onset

times described in Section 3.1. Then, we show results for the local-

ization algorithm in Section 3.2 with and without the compensation

for delays and onset times in order to emphasize its importance. Fi-

nally, we will show an example using real-world data.

The accuracy of the estimated delays and onset times was mea-

sured in terms of the root mean squared error (RMSE) between the

true and the estimated values and the accuracy of the estimated mi-

crophone locations was evaluated with the RMSE between the true

and the estimated locations. Since the estimated microphone loca-

tions are a rotated and translated version of the true locations, they

were first aligned to the actual locations using the Procrustes opti-

mal alignment [3] – a common practice in the evaluation of auto-

localization methods.

We simulated an open cubic space with a side of 5 m. Inside

this space J = 20 acoustic events and a varying number of micro-

phones, I = {5, 10, 15, 20, 25, 30}, were distributed at randomly

chosen locations. For each I between five and 30, we simulated

source and microphone location coordinates using 100 different re-

alizations drawn from a uniform distribution. The internal delays

were assumed to be the same for all microphones and were gener-

ated randomly for each scenario according to δi = α,∀i, where α

is a uniformly distributed random variable; this results in an internal

delay between zero and one second. The acoustic event onsets were

generated to occur approximately every three seconds according to

τj = 3j + β, j = 1, 2, . . . ,J , where β ∼ N (0, 1) is a zero-

mean unit-variance normally distributed random variable. At each

iteration, we identified the internal delays and the acoustic event

onset times following the algorithm in Section 3.1 and the micro-

phones following the algorithm in Section 3.2. The algorithm pa-

rameters p̂ and Ĉ were initialized to non-informative random values

and λ = 0.7. Algorithm 1 was considered to have converged when

the change in Frobenius norm from one iteration to the next was less

than ǫ = 10−12, |F (n−1) − F (n)| < ǫ.

Figure 1a shows the resulting RMSE for the identification of

the internal delays and onset times and Fig. 1b shows the Frobe-

nius norm F (n) at convergence. It can be seen that the algorithm

converges in terms of the Frobenius norm and that the estimated
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Fig. 1. Resulting (a) RMSE for p and (b) the Frobenius norm min-

imized in (8) vs. number of microphones. The results are averaged

over 100 different source-microphone locations; error bars indicate

maximum and minimum values.

times are within 5 ms for five microphones and down to 10−3 ms

as the number of microphones increases to 30. The corresponding

results for the microphone localization with corrected TOA matrix

(squares) are given in Fig. 2. The figure also shows a result for

localization without correction (circles); in this case the measured

TOAs are used directly with the onset time taken as the beginning

of the recording. It is not surprising that this results in wrong esti-

mates but it emphasizes the importance of correct estimation of the

onset times and internal delays. Without these, the localization algo-

rithm is incomplete. Based on the current experiments, the two-stage

method is able to localize the microphones to an accuracy of down

to 10−4 m with increasing number of microphones. Note that keep-

ing the number of microphones fixed but increasing the number of

acoustic events results in similar gradual improvement in estimation

accuracy.

Finally, we present an example of using this algorithm with real

measured data. We used eight AKG C417 lapel microphones po-

sitioned randomly on a table with dimensions 0.75 × 1.5 m. The

microphones were connected to an RME Fireface 800 through an

RME Octamic II microphone preamplifier. A recording was made

of 20 handclaps produced at different locations in the room.This was

used in the localization procedure; the TOAs of the hand-claps were

labelled manually in the recorded data as the largest peaks in each

hand-clap. Figure. 3 shows the table (dashed line), the true micro-

phone locations (crosses) and the estimated microphone locations

(circles). The RMSE of this result is 0.02 m, which is in good agree-

ment with the simulated results.

5. CONCLUSIONS

We proposed a method for auto-localization in ad-hoc microphone

arrays that operates on time-of-arrival measurements from spatially

distributed acoustic events. The proposed method consists of a lo-

calization algorithm and an algorithm to estimate the internal de-
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Fig. 2. RMSE of the localized microphones with correction for the

internal delays and acoustic event onset times (REst+TCorr) and us-

ing the measured TOAs (REst) directly. The results are an average

over 100 different source-microphone configurations.
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Fig. 3. Example with measured data; TOAs extracted from recorded

handclaps with microphones (crosses) randomly positioned on a ta-

ble (dashed line). Estimated microphone locations (circles) are ac-

curate to within 0.02 m.

lays of the devices and the onset times of the acoustic events. We

showed through experiments with simulated and real measured data

that auto-localization can be achieved in practice. However, it is im-

portant to account for the internal delays of the capturing devices

and the onset times of the acoustic events; ignoring these parameters

results in an incomplete localization procedure.
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