
Auto-Pipe and the X Language: A Pipeline Design Tool and Description
Language

Mark A. Franklin1, Eric J. Tyson1,
James Buckley2, Patrick Crowley1, and John Maschmeyer1

1Department of Computer Science and Engineering 2Department of Physics
Washington University in St.Louis

St. Louis, MO 63130 USA
1{jbf, etyson, pcrowley}@wustl.edu 2buckley@wuphys.wustl.edu

Abstract

Auto-Pipe is a tool that aids in the design, evaluation
and implementation of applications that can be executed on
computational pipelines (and other topologies) using a set
of heterogeneous devices including multiple processors and
FPGAs. It has been developed to meet the needs arising
in the domains of communications, computation on large
datasets, and real time streaming data applications.

This paper introduces the Auto-Pipe design flow and
the X design language, and presents sample applications.
The applications include the Triple-DES encryption stan-
dard, a subset of the signal-processing pipeline for VER-
ITAS, a high-energy gamma-ray astrophysics experiment.
These applications are discussed and their description in
X is presented. From X, simulations of alternative system
designs and stage-to-device assignments are obtained and
analyzed. The complete system will permit production of
executable code and bit maps that may be downloaded onto
real devices. Future work required to complete the Auto-
Pipe design tool is discussed.

1. Introduction

For application sets where the input data arrives as a se-
quential stream and data must be processed in real-time, the
use of pipelining is an effective design style for exploiting
parallelism. Auto-Pipe is a design tool aimed at automating
this process. While pipeline architectures are the main focus
of the work, more generalized topologies can also be imple-
mented. Auto-Pipe includes the following components:

This research has been supported in part by National Science Foundation
grant CCF-0427794.

• A high-level application language, X [21], for speci-
fying a set of relatively coarse-grained tasks to be mapped
onto devices (i.e., computational nodes) connected in a gen-
eral topology. In the initial version, tasks are written us-
ing either C or VHDL. Associated with the X language is
a compiler that integrates the tasks and topology specifica-
tions with the components and features given below.

• A set of both generic devices and particular devices
(e.g., Xilinx Virtex II) on which tasks execute. The devices
may include a combination of single processors, chip multi-
processors, or FPGAs.

• A mapping of tasks to generic or particular devices.
• A simulation infrastructure that permits simulation and

performance analysis of the system with alternative task and
device mappings.

• A set of loadable modules consisting of compiled
computational tasks, loadable FPGA bitmaps, and interface
modules. Together with the appropriate hardware, this will
permit implementation of an application.

In this paper, the overall design of Auto-Pipe and the
X language is presented and a subset of their operational
capabilities are described along with their use in exam-
ple applications. Auto-Pipe was motivated by pipeline
design issues that arise in the following application do-
mains: networking and communications; large, mass stor-
age based computation; and real-time scientific experimen-
tally derived data. Additionally, technology developments
in the areas of NPs (Network Processors) and chip multi-
processors have made utilization of pipelined designs more
attractive from both implementation and cost perspectives.
While pipelined applications are of principal interest, Auto-
Pipe has been designed to handle more general topologies.
The application domains of interest are:

Networking and Communications. In this environ-
ment, routers and related components must perform real-

1-4244-0054-6/06/$20.00 ©2006 IEEE

time examination and processing of data packets, where
processing includes such operations as packet routing, clas-
sification and encryption. While currently computational
pipelines are often implemented using network proces-
sors [6], Auto-Pipe will permit the exploration and imple-
mentation of more general topologies and target platforms.
The example problem considered in this paper relates to
real-time packet encryption using the DES [1], a common
and widely studied algorithm.

Storage Based Supercomputing. The sizes of
databases and associated mass storage devices have grown
dramatically over the past ten years with systems containing
tens of terabytes of data now becoming common. During
this time period magnetic bit densities have grown faster
than comparable semiconductor bit densities. One result
is that a performance bottleneck now exists between pro-
cessing performance (along with disk-processor intercon-
nect bandwidth) and storage capacities. That is, there are
a growing number of applications where processing can-
not keep up with the growth of the datasets that provide the
driving application inputs.

One approach dealing with this problem is to move
pipelined computational capabilities closer to where the
data is stored, and stream the data directly from the disk
heads to a processing pipeline which, in turn, feeds one or
more primary system processors. If the data is partitioned
appropriately over a multiple RAID system, then multiple
computational pipelines can operate in parallel across the
data, providing for even higher performance. This general
approach has been presented in [3, 10, 17, 23].

Scientific Data Collection. The third application do-
main is in the area of scientific data collection. The com-
bination of low cost electronics (e.g., sensors) and low cost
communications links, processors, and data storage has led
to an explosion in the amount of data being collected in vari-
ous scientific experiments. The information generally orig-
inates in the analog domain, is transformed to the digital
domain, goes through a sequence of processing steps (e.g.,
filtering), and is finally stored away for further processing
at a later time. Pipelines are natural architectures for pro-
cessing this data.

We have focused on an experiment derived from the
VERITAS project [22] and on a very common step in many
areas of high-energy physics and astrophysics: the process-
ing of time-domain data streams in continuously digitized
signals from high speed sensors. In the case of VERITAS,
we implement the signal processing tasks responsible for re-
constructing characteristics of the Cherenkov pulses regis-
tered by an array of sensors and flash analog-to-digital con-
verters (Section 3.2).

The next section presents the overall design of Auto-Pipe
and the X language. Section 3 presents two example ap-
plications, DES encryption and VERITAS signal prepro-

cessing. Section 4 presents the mapping of the applica-
tions’ computational tasks to several pipeline implementa-
tions. Performance data is presented and we indicate how
that data may be used in obtaining a “good” pipeline design.
Section 5 contains a summary of the paper and projected fu-
ture work in this area.

2. The Auto-Pipe System

2.1. System Overview

Many applications can be decomposed into a set of tasks,
some of which can be executed sequentially in a pipelined
fashion, and some in parallel. With such applications, a
large set of interacting design choices are available that re-
late to determining the best task graph topology, mapping
tasks onto generic devices (e.g., processors, FPGAs), and
specifying the implementation platform or particular device
to be used (e.g., the specific FPGA model).

Auto-Pipe and the X language allow the user to spec-
ify an application in terms of a set of user-defined coarse-
grained tasks or blocks. These blocks communicate us-
ing well-defined interfaces for inputs, outputs, and a user-
determined static topology. At the user level, interfaces are
agnostic to the device on which the task is implemented.
The language supports a hierarchical description of blocks
where both multiple instances of a block may be invoked,
and blocks may be aggregated into higher level groupings.
Auto-Pipe allows arbitrary feed-forward pipelines, which
also permits parallel structures for improved performance.

Clearly, determining the best design choices in terms
of topology and task-to-device mapping is a difficult prob-
lem. However, Auto-Pipe permits investigation of alterna-
tive algorithm partitionings and mappings. All interface-to-
interface communication is robustly handled by the com-
piler with ordered queuing and flow control automatically
generated, thus significantly reducing programmer effort.

2.2. Design Flow

Figure 1 depicts the overall Auto-Pipe design flow with
the flow being divided both horizontally and vertically. Hor-
izontally, four main phases are present and range from func-
tional representation and correctness checking, to actual
pipeline implementation. Vertically, A represents the X lan-
guage specification level; B corresponds to the activity of
the X language compiler and other compilers and simula-
tors (e.g., GCC, Modelsim), and C contains performance
measurement, optimization and output tools. We focus here
on phases 1 and 2, and on levels A and B that are currently
implemented.

In Phase 1, functional simulation, levels A and B, the
general algorithm is developed and specified in the X lan-

Figure 1. The Auto-Pipe design flow. A: X language,B: compilers,C: performance measurement, optimization, etc.

guage without concern for timing, execution device/plat-
form issues, and certain aspects of overall performance. The
goal at this point is to provide a high level representation
mechanism (A) that captures aspects of the pipeline and par-
allel structures the algorithm designer believes are useful,
and then executes (B) the overall algorithm providing ver-
ification of functional correctness. The compiler provides
for all of the proper interfaces necessary for proper simula-
tion of the specified task graph.

The next phase focuses on task allocation & simulation.
In A of this phase, tasks/blocks are assigned to generic de-
vices where these devices are either processors or VHDL
targeted devices (e.g., FPGAs or ASICs). More than a sin-
gle task can be assigned to a given device and the hierarchi-
cal structure of the language can be used to aid in the spec-
ification. When topologies are not linear pipelines, the as-
signment will initially be done manually. However, for lin-
ear pipelines, tools are available to aid in the process[7, 11].

If the platform is a processor, then the appropriate soft-
ware libraries and compilers are designated. If the platform
is an FPGA or an ASIC, then the VHDL code libraries and
simulation engines are specified and in B the system is again
simulated. Auto-Pipe uses a message passing TCP inter-
face between the processor based devices, and a file I/O
approach when interfacing between processors and VHDL
models (simulated in ModelSim). From this, using generic
processor and FPGA parameters, the performance statis-
tics associated with each task in the algorithm are gathered.
Based on these results, alternative task and device type as-
signments can be explored and the process repeated.

Phase 3 replicates Phase 2, with the generic devices
now identified with particular components. The simula-
tions and performance measurements are further refined and

more specific optimizations involving topology, task assign-
ments, and particular device selections are made.

In the final phase, design execution, the compiled ob-
jects run on the actual devices. This phase is used to further
tune the system by testing the design under expected run-
ning conditions (e.g. nonzero bus and interconnect utiliza-
tion). Initially we are targeting a general-purpose hardware
system that contains a Xilinx Virtex II FPGA development
board and dual AMD Opteron processors.

2.3. The X Language

2.3.1. Overview

X is a dataflow-like programming language that can express
the nodes and edges of a task processing graph, as well as
the configuration, platform definition, and device bindings
required to implement an application (a set of tasks) on a
set of devices. The language was developed to aid the in-
cremental development of applications distributed across a
set of traditional and non-traditional computing platforms,
and to aid developers in integrating designs into the Auto-
Pipe design flow for design optimization. Unlike other
projects with similar motivation (see Section 2.4), X does
not intend to be the sole development language within an
overall project. Instead, X was created to:

• Serve as a connection language, enforcing strict inter-
faces between the processing components of a system. In
doing this, X is able to automate the tedious and error-prone
process of creating and managing the communication chan-
nels between tasks.

• Express a binding or assignment of tasks to devices. A
primary goal of the X language is to increase the ease with
which a developer may experiment with placing tasks on

different devices.
• Be able to associate additional parameters with task

blocks and devices. Other software tools may also embed
additional information in X language objects. The Auto-
Pipe toolset uses performance statistics gathered by execut-
ing compiled X applications in exploring and optimizing the
mapping of blocks to platforms.

In the following subsections, a representative subset of
the syntactic and semantic features of the X language are
described in the context of a single example (figure 5).

2.3.2. Descriptive features of language

X supports an assortment of common basic datatypes, and
allows for their grouping into composite data types. The
basic types supported are unsigned8, unsigned16, un-
signed32, and unsigned64 for 8, 16, 32, and 64 bit
unsigned integer data types; signed8 through signed64

for their signed counterparts; float32, float64, and
float128 for IEEE-754/854 single, double, and extended
precision floating points, and the string type for conve-
nient configuration. These types represent the basic data
types common to traditional programming languages.

In addition to basic types, X supports both homo-
geneous and heterogeneous data types comprising mul-
tiple data types. The array type is an ordered, stat-
ically sized array of one kind of data. For instance,
array<unsigned32>[4] describes an array of four 32-
bit unsigned values. varray is an array with vari-
able length and one kind of data. Finally, the struct
type can be used to describe heterogeneous data types
with named contents, for example struct<float32

x,float32 y, unsigned8 count>. Each composite
data type supports a hierarchy of datatypes, such as ar-

ray<array<unsigned8>[8]>[4] which describes a 4 by
8 matrix of unsigned8s. Not all device execution plat-
forms will need support for all data types. For instance,
while all basic types are supported on a generic processor
software platform, VHDL platforms generally do not sup-
port the string type except as a configuration input.

The primary building block of the X language is the
Block. Blocks are processing structures with static, well-
defined interfaces. They may contain X language structures,
or be empty atomic blocks. Regardless of contents, a Block
is the object that may be directly tied to an implementation
of the computation (i.e., a computation task specified by C
and/or VHDL programs).

block Cblock {
input unsigned8 quant, data;
output array<unsigned8>[3] result;
config string setup = ”mult”;

};
3setupquant

Cblock
data

"mult"

result

Figure 2. Block declaration example

Blocks may be given any number (including zero) of in-
put ports, output ports, and configuration inputs. In Figure
2, Cblock is an atomic block. It has two inputs, quant
and data, each with type unsigned8. The output result
is an array of three unsigned8s. The configuration option
setup is a string, and is given the default value "mult".
This means that unless otherwise specified in the X input,
the value "mult" will be passed to the implementation as a
static configuration parameter.

Blocks may also be composed of multiple blocks, as long
as they do not instantiate themselves infinitely. Figure 3
shows a composite block, Dgroup that has one input and
one output, and contains a simple pipeline of two Dblock

(D1 and D2). Connections, described below, associate the
ports of Dgroup with the ports of D1 and D2.

block Dgroup {
input unsigned8 in;
output unsigned8 out;
Dblock D1, D2;
in −> D1 −> D2 −> out;

};

x

Dblock

Dgroup

in
yD1

Dblock

D2x y
out

Figure 3. Composite block example

In this composite block example, the expression in-
>D1->D2->out; describes how to connect (with edges) the
inputs, outputs, and internal blocks. The example depicts
three edges, connecting in and D1, D1 and D2, and D2 and
out and is a shortcut for the more verbose notation: in

-> D1.x; D1.y -> D2.x; D2.y -> out;
When there is only one input or output port, this single

default port may be inferred as it was for the ports in the
above example. Also, for readability and convenience of
the common pipelining operation, X allows the program to
chain multiple default connections on a single line.

Figure 4 depicts two additional X language features;
block arrays and the split operation. In the example,
Dgroup myDg[2]; declares an instance of two Dgroup

blocks, named myDg[1] and myDg[2]. Block arrays are
statically sized, and they may be configured through their
config ports either individually or as a group.

The =< (split) operation in Figure 4 takes the array out-
put of myC (introduced in Figure 2) and splits it into three
scalar components. These components are then distributed
to the ordered list of three input ports given in the right-
hand side of the edge. Splits only perform the operation

Cblock myC;
Dblock myD;
Dgroup myDg[2];

myC.out =< { myDg[1].in,
myDg[2].in,
myD.in};

Dblock

myC
Cblock

out

Dgroup

myDg[1]

Dgroup

myDg[2] myD
in in x

3

Figure 4. Block array and split example

of dividing an N -element array into its individual elements
and routing them to a corresponding number of block in-
puts. If other functionality is required (e.g. position- or
time-multiplexing, round-robin, etc.), the programmer must
design a new block or use one of the available blocks that
explicitly performs the appropriate operation.

Blocks without inputs or outputs are called systems and
are considered to be self-contained entities that are instanti-
ated at the highest level; X does not assume any data inputs
or outputs on its own, so all such sources and sinks are con-
tained within a system. In Figure 5 the entire set of blocks
constitutes a system, using the blocks and syntax introduced
earlier. The use keyword indicates to the X compiler that
code is to be generated/synthesized for this system (Top).
Multiple instances of the same system are permitted if de-
sired, and they may be passed configuration inputs to dis-
tinguish their function.

Ablock

myA

myB

Bblock

Cblock

myC

Eblock

myE

Dblock

myD

Dblock

D1

Dblock

D2

Dgroup

myDg[1]

Dblock

D2

Dblock

D1

Dgroup

myDg[2]

block algo {
Ablock myA;
Bblock myB;
Cblock myC(setup=”mult”);
Dblock myD;
Dgroup myDg[2];
Eblock myE;

myA.one −> myB −> myC.quant;
myA.two −> myC.data;
myC =< { myDg[1], myDg[2], myD };
{ myDg[1], myDg[2], myD } >= myE;

};
use algo Top;

Figure 5. Complete System Example

In addition to describing the processing tasks and sys-
tems which are available, developers may express particu-
lar device platforms on which tasks may be assigned. Plat-
forms are declared in a hierarchy, wherein each platform
may be a derivative of a broader class of platforms. For
example, a hypothetical “C-Opteron” platform would de-
rive from a “C-x86” platform, which would derive from a
base “C”. Similarly, an FPGA development board might be
called “VHDL-VirtexII-XYZDevBoard” and derive from
“VHDL-VirtexII” and further “VHDL”. In this way the user
can attach their implementing functions (e.g. C functions or
VHDL entities) to the appropriate platform. Below is an ex-
ample of attaching C and VHDL functions to the X blocks
used in the system example. The platform statement in-

dicates its name, parent platform, and any known block im-
plementations and configuration options.

platform ”C” {
impl Bblock ”func b”;
impl Eblock ”efunction”;
impl Dblock ”slowDfunc”;

};
platform ”C−x86” : ”C” {

impl Ablock ”do a x86”;
impl Cblock ”fastCfunc”;
impl Dblock ”fastDfunc”;
config string gatherStats = ”FALSE”; // default configuration

};
platform ”VHDL” {

impl Dblock ”DBLOCK”;
};
platform ”VHDL−ModelSim” {

impl Cblock ”CPROC TEXTIO”;
config string statsOutputFile; // required configuration

};

Once the X programmer has developed a full system, the
next step is to synthesize it in a functional test configuration,
as described in the first phase of the Auto-Pipe design flow
(Section 2.2). To do this, the target keyword is employed,
for example:

target test = { Top };

This invokes synthesis of the entire system Top to the “test”
device, which creates a set of source files that compile to a
functional test or simulation of the system.

The subsequent phases of the Auto-Pipe design flow are
performed by defining and refining new target devices, to
which different blocks are allocated. For example, splitting
Top across three processors could be performed by:

device proc[3] : ”C−x86”;
target proc[1] = { Top.myA, Top.myB, Top.myC };
target proc[2] = { Top.myDg[1], Top.myDg[2].D2, Top.myE };
target proc[3] = { Top.myDg[2].D1, Top.myD };

The device keyword indicates that an array of three “C-
x86” devices exist, and the target statements are used to
allocate sets of blocks to each device. If the Dblock op-
erations were particularly slow, the designer might explore
their options by simulating a hardware device as follows:

device proc : ”C−x86”;
device fpga : ”ModelSim−VHDL” (statsOutput=”mysim.stats”);
target proc = { Top.myA, Top.myB, Top.myC, Top.myE };
target fpga = { Top.myD, Top.myDg };

With this device allocation, the five parallel blocks in the
middle of the system are allocated to an FPGA, and the re-
mainder of the blocks execute on a processor.

2.3.3. Implementation and Related Issues

One of the principal goals of the X language is that it pro-
vide a straightforward programming model to the developer.

The semantics of the edges between blocks supports this by
allowing the programmer to assume a large queue exists be-
tween any two connected blocks. The X language compiler
then ensures that the connections are implemented and pro-
vide this “large queue” abstraction for block interconnects.

Edges are also abstracted from the actual code that per-
forms the communication. The programmer may simply
place the blocks on either side of an edge onto different de-
vices, and all device interfaces are generated automatically
during compilation of the X application description. Further
parametrization of the edge is possible if desired.

Performance capture is also an important feature of the
compiled X code. At every stage of the Auto-Pipe design
flow, the programmer will want to acquire performance
statistics as detailed as possible, in order to optimize the
mapping of blocks to devices. Every platform supported by
X therefore supports the capturing of detailed performance
information, which integrates into the Auto-Pipe toolset.
Our current version of X language implementations consists
of three platforms: a C simulation platform, a C multipro-
cessor platform, and a VHDL simulation platform.

The C implementations use standard GNU C, tested with
versions 3.4.4 and 4.0.2 on Linux and Cygwin (Windows)
platforms. We support 32- and 64-bit x86-compatible pro-
cessors, and make use of the RDTSC system clock instruc-
tion for accurate performance statistics. Data types and
queues use the glib-2 core libraries. Future versions of
X will use glib’s threading and memory management ca-
pabilities.

Execution of the compiled X language application repre-
sentation requires that communication take place between
processors, between FPGA devices, and between both pro-
cessors and FPGAs. Currently, in the first phases of Auto-
Pipe where the goals are achieving functional correctness
and obtaining block level timing data, communication be-
tween C processors is performed by TCP using traditional
BSD sockets. In the next version of Auto-Pipe and the
X language, the user will be able to select (or provide)
among various edge communications models (e.g., Myrinet,
shared memory, etc.) that correspond more closely to the
underlying hardware system being designed.

The VHDL simulation implementation creates VHDL
1993 syntax behavioral architectures, using FIFO queue
structures between blocks and the standard TEXTIO pack-
age to communicate with C processes using the filesys-
tem. Data types use the standard IEEE 1164 types, as
well as floating point types from the proposed IEEE 1076.3
(VHDL200x) specification. Mentor Graphics’ ModelSim
performs the simulation.

2.4. Related Work

Auto-Pipe shares many features with other academic
and commercial tools. It draws on developments in per-

formance modeling, graphical and streaming programming
languages, hardware/software codesign toolsets and earlier
work on implementing dataflow languages. An early review
of some of this work is given in [19] and some examples of
related work are outlined below.

The programming interface employed by Auto-Pipe is
similar to many other graphical system programming lan-
guages such as LabVIEW [16]. Additionally various
projects allow for the simplified development of streaming
applications using the familiar environment of traditionally
sequential programming languages. Most involve a sub- or
super-set of the functionality available in C [13], C++ [18],
or Java [5]. These projects share the similar goal of easing
the development of streaming algorithms in hardware and
software [20], however they generally concentrate on fine-
grained and implicit dataflow programming, as opposed to
the coarse-grained programming of Auto-Pipe. In some
cases, they are restricted to the limited topologies (e.g.,
pipelines) and in others they rely on C to VHDL compi-
lation techniques. Currently, Auto-Pipe assumes that user
selected tasks have already been programmed in VHDL.
In the future, however, as C to VHDL compilation im-
proves in the efficiency of the resulting FPGA designs,
Auto-Pipe will be modified to use such languages (e.g.,
Handel-C [4], System-C [14]) in specifying tasks, compil-
ing them to VHDL and then integrating the VHDL models
into Auto-Pipe.

The codesign aspect of Auto-Pipe shares features with
other systems design projects. Bluespec [2], for example, is
a hardware design toolset for behavioral synthesis using the
SystemVerilog HDL. Bluespec creates accurate C programs
and testbenches at all levels of development, including be-
havioral, timing, and gate-level implementation.

The Auto-Pipe infrastructure differs from the above
projects in several ways:

(a) Auto-Pipe aids the analysis and performance tuning
of both pipelined architectures and architectures with
more general topologies. New processing infrastruc-
tures can be discovered and tested by exploring alter-
native topologies. Also, connection semantics are not
limited to certain synchronization assumptions (e.g.
synchronous dataflow).

(b) Auto-Pipe supports the ability to easily try both dif-
ferent task to generic device assignments, and generic
device to particular device platform assignments. Such
devices will eventually include any mix of FPGAs, net-
work processors, clusters, and desktops.

(c) Auto-Pipe does not constrain development to any sin-
gle set of hardware and software languages. Instead,
it is a code generation tool for any language for which
an Auto-Pipe interface has been written. Initially, in-

terfaces for C software development and VHDL hard-
ware development have been created.

3. Example Applications

3.1. DES Encryption

Encryption involves transforming unsecured information
into coded information under control of a key. The Data
Encryption Standard (DES) operates on 64-bit data using
a 56-bit key. To encrypt data blocks longer than 64 bits,
several iterations are required.

Triple-DES uses three sequential DES stages to increase
the key size. Each stage performs a standard DES encryp-
tion using the first, second and third 56-bit keys (64-bits
with parity) respectively, and results in a more effective key-
length of 168 bits, (versus 56 bits in DES). While the in-
ner pipeline of Triple-DES can be broken into many small
stages, we have chosen to demonstrate Auto-Pipe using a
simple 3-stage pipeline, one stage for each DES block.

3.2. Astrophysics Data Pipeline

In ground-based high-energy astrophysics observations,
very high energy gamma-rays and cosmic-ray particles
strike the atmosphere and produce Cherenkov light. En-
ergetic gamma-rays have been observed from scientifically
interesting sources including supernova remnants and pul-
sars.

A number of new-generation projects including
HESS [15] and the VERITAS [22] project are based on
the technique of stereoscopic imaging of Cherenkov light
from gamma-ray induced electromagnetic showers. These
systems employ large (10 - 17m diameter) mirrors to image
the faint flashes of Cherenkov light onto large arrays of
photomultiplier tube sensors, each capable of detecting
single photon events at sampling rates surpassing 500
MHz. To improve the signal-to-noise ratio for detecting
these images against the large diffuse night-sky background
light, rigorous signal processing must be performed on the
digitized waveforms registered by each sensor channel. The
signal must be deconvolved, its signal-to-noise ratio im-
proved, and the timescales that characterize the Cherenkov
pulses extracted. Furthermore, an image analysis must be
performed across all channels in a telescope to detect and
characterize events based on the shape properties of the
images produced by the gamma-ray showers. A detailed
description of this process is given in Gammel [12] and an
example processing pipeline is shown in Figure 6.

In this pipeline, records containing signal waveforms are
retrieved from a subset of telescope channels. These are
distributed among up to 499 (the total number of channels)
signal processing pipelines. In each pipeline, the wave-
form is zero-padded to a higher resolution and undergoes a

Figure 6. The Overall VERITAS Pipeline for
Cherenkov Light Processing

Fast Fourier Transform (FFT). The frequency-domain sig-
nal is low-pass filtered and then deconvolved (a vector mul-
tiplication with the channel’s inverse transfer function [8]).
These steps accomplish an interpolation of the input which
smooths the waveform and improves the photon pulses’
signal-to-noise ratio by reducing signal “smear” from adja-
cent pulses. This is followed by an inverse FFT that returns
the signal to the time domain. Following the processing of
each channel, the entire channel set is analyzed and image
parameters determined. Our initial efforts aim at employ-
ing the X language in evaluating and implementing one of
the real-time processing pipelines required; for example the
leftmost, dot enclosed pipeline shown in Figure 6.

4. Application Implementation & Evaluation

We have written X language code to generate the DES
and VERITAS applications. Figure 7 contains representa-
tive high-level block from each. For brevity, the atomic
blocks and top-level blocks containing the data sinks and
sources are omitted.

Each code segment directly follows from the discussed
application flow. Note, however, that the frequency domain
signals (i.e., between the FFT and IFFT blocks) are divided
into real and imaginary values. This allows us to parallelize
the filtering on each. The implications of this on perfor-
mance optimization are discussed later. The remainder of
this section examines these X implementations and their re-
sultant simulation performance with different device assign-
ments. In order to use Auto-Pipe, the basic tasks were first
coded in a combination C and VHDL.

constant array<FLOAT32>[128] FILT LOWPASS = {. . .};
constant array<FLOAT32>[128] FILT DECONV = {. . .};

block VeritasSigProc {
input array<UNSIGNED8>[32] in;
output array<FLOAT32>[256] out;
ConvertU8F32 conv;
ZeropadF32 zp(pad = 8);
FFT256F32 fft;
IFFT256F32 ifft;
FilterF32 lpr(filter=FILT LOWPASS),

lpi(filter=FILT LOWPASS),
dcr(filter=FILT DECONV),
dci(filter=FILT DECONV);

in −> conv −> zp −> fft;
fft.real −> lpr −> dcr −> ifft.real;
fft.imag −> lpi −> dci −> ifft.imag;

};

typedef array<UNSIGNED8>[8] phrase;

block TripleDESEncrypt {
input phrase in;
output phrase out;
des encrypt des e1(keyfile=”key1”);
des decrypt des d1(keyfile=”key2”);
des encrypt des e2(keyfile=”key3”);
in −> des e1 −> des d1 −> des e2 −> out;

};

Figure 7. DES and VERITAS Applications

Table 1 lists the application tasks and the available im-
plementation devices. Once functional correctness was es-
tablished, performance was measured on an 3.4GHz Pen-
tium 4 single-processor PC which provided base perfor-
mance metrics. For VHDL performance, we assumed a
clock rate of 150MHz based on our experience synthesiz-
ing the major components on a Xilinx VirtexII FPGA.

In the following subsections, we investigate a “manual
approach” to the optimization component of Auto-Pipe. In
particular, the performance implications of different stage-
to-device allocations is discussed. This corresponds to re-
peated iterations of Phase 2, task allocation & simulation.

4.1. The DES Pipeline

While the inner pipeline of Triple-DES could be bro-
ken into many small stages, we have chosen to demonstrate
Auto-Pipe using a simple 3-stage pipeline, one stage for
each DES block. Each of the three pipeline stages takes a
single 64-bit input and generates a single 64-bit output. The
56-bit key is not treated as an input since it is only set once.
We assume data can be supplied to, and results read from,
the pipeline at a rate high enough to ensure the pipeline is
a performance bottleneck. Both the encryption and decryp-
tion blocks can be implemented on a conventional micro-

Function Execution Execution Throughput
Block Platform Time (µs) (KOps/s)

Zeropad Proc 3.90 256.41
FFT Proc 30.54 32.75
FFT FPGA 0.87 1153.40

Low Pass Proc 4.67 214.18
Deconvolve Proc 5.63 177.78

IFFT Proc 25.85 38.68
IFFT FPGA 0.87 1153.40

DES Proc 49.95 20.02
DES FPGA 0.11 8823.53

Table 1. Stage performance

Configuration Longest Stage Throughput
(µs) (KOps/s)

A P 146.63 6.82
B P-P-P 49.95 20.02
C P-F-P 49.91 20.01
D F-F-F 0.11 8823.53

Table 2. Performance of various Triple-DES
pipeline implementations

processor or on an FPGA. The time for each of the identi-
cal stages when implemented on either of these platforms
is given in Table 1. Using these values, performance of al-
ternative task(s)-to-stage and stage-to-platform assignments
can be evaluated.

The results of four assignments are shown in Table 2.
For the simplest case, A, all three tasks are placed on a sin-
gle processor (P) and must be executed sequentially. Thus,
throughput is limited to approximately 6.8 thousand Triple-
DES operations per second (KOps/s).

In the next case, B, the Triple-DES stages are imple-
mented on a pipeline consisting of three separate processors
(P-P-P). The maximum throughput for the pipeline is now
limited by the slowest stage of the pipeline. Since the stages
are identical, the throughput is equal to the throughput of a
single stage or approximately 20 KOps/s, about three times
that of a single processor. This is consistent with our first
level approximation which has no message passing over-
head.

Case C implements the Triple-DES pipeline on a mixed
platform (P-F-P). The first stage consists of a single pro-
cessor, the second stage an FPGA, and a second processor
is used for the third stage. In this case, the total system
throughput is again limited by the throughput of an individ-
ual stage running on a processor. While this example does
not show any performance benefit, it does demonstrate the
ease with which a user of X can move a block from one
target implementation to another.

Configuration Longest Stage Throughput
(µs) (KOps/s)

A P 66.72 14.99
B P-P-P-P-P 30.54 32.75
C P-F-P-P-F 5.63 177.67

D P-F=
P − P
P − P

=F 3.900 256.41

Table 3. Performance of various VERITAS
pipeline implementations

The final case, D, implements the entire pipeline on FP-
GAs (F-F-F). Since the FPGAs are identical, the throughput
of the system will be based on the FPGA clock frequency
that can be achieved. If this block is internally pipelined
on a single FPGA, a very high throughput can be attained.
Message passing delays in this case will be negligible. In
the case of the DES block, the FPGA implementation com-
pletes a single operation every 17 cycles and can be clocked
at about 150 MHz. This results in a maximum throughput
of about 8,823 KOps/s, or a speedup of over two orders of
magnitude over the pipelined processor software implemen-
tation.

4.2. The Astrophysics Data Pipeline

As shown in Figure 6, initial VERITAS processing is im-
plemented as a five-stage pipeline. This pipeline is a general
pipeline for optimizing the signal reconstruction for a given
sensor/electronic channel (Section 3.2). The performance
for each of these operations on various execution platforms
can be seen in the top seven rows of Table 1. In the VERI-
TAS pipeline, each input contains twenty 8-bit values. The
output is an up-sampled signal containing 256 samples.

As in the DES example, the VERITAS pipeline can be
implemented in multiple configurations. In the first config-
uration, A, the entire pipeline is implemented on a single
processor. In this case, one would expect very low messag-
ing overheads and overall latency is simply the sum of the
individual block latencies. This results in 66.72 µs per op-
eration or a throughput of about 15 KOps/s. Note that this is
a bit lower then the result obtained if one adds up the indi-
vidual times found in Table 1. This is due to the efficiencies
associated with executing all the tasks as a single process
on a single processor.

The second configuration, B, places each stage onto a
separate processor. The FFT stage is the limiting stage, re-
quiring 30.54 µs per operation. The throughput of the en-
tire pipeline is 32.75 KOps/s, a speedup of only about two
over the single processor implementation. This is a result of
the unbalanced workload in each stage. In fact, the decon-
volve stage could be combined with the IFFT stage creating
a shorter 4-stage pipeline with only a small loss in perfor-

mance.
A significant performance improvement over the soft-

ware implementations can be gained by replacing the FFT
and IFFT stages with faster FPGA implementations. In fact,
the FPGA implementation used can perform a 256-point
FFT or IFFT in 132 cycles and can be synthesized at a rate
of 150 MHz on a Xilinx Virtex II. This results in an oper-
ation latency of only 0.88 µs. By replacing the processor
implementations with FPGAs, the pipeline throughput can
be dramatically improved. The pipeline is now limited by
the lowpass and deconvolve stages, giving it a throughput
of approximately 177 KOps/s. This is a speedup of 5.4 over
the multiple processor pipelined version and almost 12 over
the single processor implementation. Further improvements
can be made by splitting the pipeline after the FFT stage so
that the real and imaginary parts are dealt with separately
and in parallel. When this is done, the longest latency stage
(zeropad) is 3.9 µs, resulting in a throughput of 256 KOps/s.
This is 17 times faster than the single processor case. Thus,
over an order of magnitude in performance can be gained
by pipelining and parallelizing the operation and optimiz-
ing the computation of blocks through the use of FPGAs.

5. Summary and Conclusions

This paper has presented an introduction to Auto-Pipe,
a design tool that addresses many difficulties faced by de-
signers of pipelined algorithms. Applications that make
use of pipelined algorithms face a very broad design space.
The Auto-Pipe tools make development easier by provid-
ing a way to logically express such algorithms, obtain per-
formance data, generate “glue code” to connect tasks with
well-defined interfaces, and provide tools to optimize the
allocation of tasks to pipeline stages where the stages them-
selves may be on a variety of platforms (e.g., FPGA, ASIC,
processor, etc.). While the entire Auto-Pipe suite is not
yet complete, this paper represents a first presentation of
its overall structure and usage. Further developments will
focus on providing a richer library of interconnection mod-
ules so that simulation of messaging overheads can be eval-
uated. Additionally, work is progressing on implementing
hardware support for Auto-Pipe phases 3 and 4.

To implement the “optimize stages” step depicted in Fig-
ure 1 and illustrated manually in Section 3, the Phoenix[7]
tool for optimizing the task-to-stage mapping of a network
processor pipeline will be extended. An important issue that
is being considered is just how to enable Auto-Pipe to in-
clude current network processors and other CMPs (Chip
Multi-Processors) that are rapidly becoming available as
target implementation platforms.

This paper presented relatively small applications that
serve as sample problems. Future research will include ap-
plying the Auto-Pipe design flow tools and programming

methodology on other more complex problems that fit the
general set of domains outlined in the introduction.

One such recently completed application is the complete
VERITAS signal analysis pipeline. Figure 6 shows the en-
tire pipeline, including the remaining portions (outside the
dashed-line box). Current plans for VERITAS estimate an
average data production of 8 megabytes of event data per
second with 10 percent live time, or about 24 terabytes per
year of operation. For offline data analysis, such a large
database introduces many restrictions to the types of queries
that can be performed by traditional software processing
systems.

Beyond the VERITAS application, other high-
performance computing algorithms will be tested using the
Auto-Pipe system, particularly in the field of computational
biology. The HMMer bioinformatics algorithm [9] is
one such algorithm that is currently being analyzed for
performance improvements using customized hardware.
An additional problem now being investigated involves
mass spectroscopy and the fast identification of substances
in a mass spectrometer by comparing results in real-time
with large datasets of peptides. The comparison is compu-
tationally complex, but permits a pipelined implementation.
Streaming data from the disks holding the dataset, while
ingesting data from the mass spectrometer and performing
the appropriate computation will require special hardware.
Auto-Pipe will be used in the system evaluation and design
process.

References

[1] American National Standards Institute and International Or-
ganization for Standardization. Announcing the Standard
for DATA ENCRYPTION STANDARD (DES), volume 46-
2 of Federal Information Processing Standards publication.
American National Standards Institute, December 1993.

[2] L. Augustsson, J. Schwarz, and R. S. Nikhil. Bluespec Lan-
guage definition. Sandburst Corp., 2002.

[3] R. Chamberlain, R. Cytron, M. Franklin, and R. Indeck.
The Mercury system: Exploiting truly fast hardware for data
search. In Proc. Int’l Workshop on Storage Network Arch. &
Parallel I/Os (SNAPI’03), April 2004.

[4] Stephen Chappell and Chris Sullivan. Handel-c for co-
processing & co-design of field programmable system on
chip. http://www.celoxica.com/.

[5] Michael Chu et al. Object oriented circuit-generators in java.
In Proc. International Symposium on Field-Programmable
Gate Arrays for Custom Computing Machines (FCCM’98),
Washington, DC, 1998. IEEE Computer Soc.

[6] P. Crowley, M. Franklin, H. Hadimioglu, and P. Onufryk.
Network processors: Emerging themes & issues. In Network
Processor Design - Issues & Practices II. Morgan Kauf-
mann, September 2003.

[7] Seema Datar. Pipeline task scheduling with application to
network processors. Master’s thesis, Dept. Computer Sci-

ence and Engineering, Washington University in St. Louis,
August 2004.

[8] Jonathon Driscoll. Computer aided optimization for the
VERITAS project, June 2000. Undergraduate thesis, Dept.
of Physics, Washington University in St. Louis.

[9] S. R. Eddy. HMMer: profile hidden Markov models for bio-
logical sequence analysis. http://hmmer.wustl.edu, 2001.

[10] M. Franklin, R. Chamberlain, M. Henrichs, B. Shands, and
J. White. An architecture for fast processing of large un-
structured data sets. In Proc. 22nd Int’l Conf. on Computer
Design, October 2004.

[11] Mark Franklin and Seema Datar. Network Processor De-
sign: Issues & Practices III, chapter 11. Elsevier/Morgan
Kaufmann Pub., 2005.

[12] Stephen Gammell. A Search for Very High Energy Gamma-
Ray Emission from Active Galactic Nuclei using Multivariate
Analysis Techniques. PhD thesis, University College Dublin,
October 2004.

[13] Maya B. Gokhale, Janice M. Stone, Jeff Arnold, and
Mirek Kalinowski. Stream-oriented FPGA computing in the
Streams-C high level language. In Proc. 2000 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM’00), Washington, DC, 2000. IEEE Computer Soc.

[14] T. Grotker, S. Liao, G. Martin, and S. Swan. System design
with SystemC. Kluwer Academic Pub., 2002.

[15] W. Hofmann. Status of high energy stereoscopic sys. (HESS)
project. In 27th Int’l Cosmic Ray Conf., 2001.

[16] National Instruments. Labview. http://www.ni.com/labview.
[17] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin,

K. Gyang, and J. Lancaster. Biosequence similarity search on
the Mercury system. In Proc. 15th Int’l Conf. on Application-
Specific Systems, Architectures and Processors (ASAP’04),
October 2004.

[18] Oskar Mencer. PAM-Blox II: Design and evaluation of C++
module generation for computing with FPGAs. In Proc.
10th Ann. IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’02), Washington, DC, 2002.
IEEE Computer Soc.

[19] R. Stephens. A survey of stream processing. Acta Informat-
ica, 34, 1997.

[20] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit:
A language for streaming applications. Proc. Inter. Conf. on
Compiler Construction, April 2002.

[21] Eric Tyson. X language specification draft. Technical Report
WUCSE-2005-47, Washington University, 2005.

[22] T. C. Weekes et al. VERITAS: the very energetic radiation
imaging telescope array system. Astroparticle Physics, 17
(2):221–243, May 2002.

[23] Q. Zhang, R. Chamberlain, R. Indeck, B. West, and J. White.
Massively parallel data mining using reconfigurable hard-
ware: Approximate string matching. In Proc. Workshop on
Massively Parallel Proc., April 2004.

