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Abstract

Cricket is a popular sport played by 16 countries, is
the second most watched sport in the world after soc-
cer, and enjoys a multi-million dollar industry. There
is tremendous interest in simulating cricket and more
importantly in predicting the outcome of games, par-
ticularly in their one-day international format. The
complex rules governing the game, along with the nu-
merous natural parameters affecting the outcome of a
cricket match present significant challenges for accurate
prediction. Multiple diverse parameters, including but
not limited to cricketing skills and performances, match
venues and even weather conditions can significantly
affect the outcome of a game. The sheer number of
parameters, along with their interdependence and vari-
ance create a non-trivial challenge to create an accurate
quantitative model of a game Unlike other sports such as
basketball and baseball which are well researched from a
sports analytics perspective, for cricket, these tasks have
yet to be investigated in depth. In this paper, we build a
prediction system that takes in historical match data as
well as the instantaneous state of a match, and predicts
future match events culminating in a victory or loss. We
model the game using a subset of match parameters,
using a combination of linear regression and nearest-
neighbor clustering algorithms. We describe our model
and algorithms and finally present quantitative results,
demonstrating the performance of our algorithms in pre-
dicting the number of runs scored, one of the most im-
portant determinants of match outcome.
Keywords
Sports prediction, analytics, ridge regression, attribute
bagging, nearest neighbors

1 Introduction

Primarily played in the member countries of the Com-
monwealth, cricket has grown in following across all con-
tinents. It has the second largest viewership by popula-

tion for any sport, next only to soccer, and generates an
extremely passionate following among the supporters.
There is huge commercial interest in strategic planning
for ensuring victory and in game outcome prediction.
This has motivated thorough and methodical analysis
of individual and team performance, as well as predic-
tion of future games, across all formats of the game.

Currently, team strategists rely on a combination
of personal experience, team constitution and seat of
the pants “cricketing sense” for making instantaneous
strategic decisions. Inherently, the methodology em-
ployed by human experts is to extract and leverage im-
portant information from both past and current game
statistics. However, to our knowledge, the underlying
science behind this has not been clearly articulated.
One of the key problems that needs to be solved in for-
mulating strategies is predicting the outcome of a game.
Our focus in this paper is to address the problem of
accurately modeling game progression towards match
outcome prediction. We learn a model for one-day for-
mat games by mining existing game data. In principle,
our approach is applicable towards modeling any for-
mat of the game; however, we choose to focus our test-
ing and evaluation on the most popular format, namely
one-day international (ODI). By using a combination of
supervised and unsupervised learning algorithms, our
approach learns a number of features from a one-day
cricket dataset which consists of complete records of all
games played in a 19-month period between January
2011 and July 2012. Along with these learned histor-
ical features of the game, our model also incorporates
instantaneous match state data, such as runs scored,
wickets lost etc., as game progresses, to predict future
states of an on-going match. By using a weighted com-
bination of both historical and instantaneous features,
our approach is thus able to simulate and predict game
progression before and during a match. We motivate
the problem of game modeling and outcome prediction



in Section 2. Along with a brief introduction to cricket,
Section 3 presents the problem formulation, with details
on feature modeling. In Section 4, we present our algo-
rithm for predicting the game progression and outcome,
with results discussed in Section 5

2 Related Work

2.1 Data Mining in Other Sports The problem of
match outcome prediction has been studied extensively
in the context of basketball and soccer. Bhandari
et al. [4] developed the Advanced Scout system for
discovering interesting patterns from basketball games,
which has is now used by the NBA teams. More
recently, Schultz [12] studies how to determine types
and combination of players most relevant to winning
matches. In soccer, Luckner et al. [11] predict the
outcome of FIFA World Cup 2006 matches using live
Prediction Markets. In baseball, Gartheepan et al. [7]
built a data driven model that helps in deciding when
to ‘pull a starting pitcher’. These works are developed
with a sport specific intuition which would render them
inapplicable to the sport of cricket.

2.2 Academic Interest in Cricket One of the ear-
liest and pioneering works in cricket was by Duckworth
and Lewis [6] where they introduce the Duckworth-
Lewis or D-L method, which allows fair adjustment of
scores in proportion to the time lost due to match inter-
ruption (often due to adverse weather conditions such
as rain, poor visibility etc.). This proposal has been
adopted by the International Cricket Council (ICC) as a
means to reset targets in matches where time is lost due
to match interruptions. The method proposed in [6],
and subsequently adapted by [14], for capturing the re-
sources of a team during the progression of a match has
found independent use in subsequent work in cricket
modeling and mining [14][2].

Lewis [10], Lemmer [9], Alsopp and Clarke [1], and
Beaudoin [3] develop new performance measures to rate
teams and to find the most valuable players. Raj and
Padma [15] analyze the Indian cricket team’s One-Day
International (ODI) match data and mine association
rules from a set of features, namely toss, home or
away game, batting first or second and game outcome.
Kaluarachchi and Varde [8] employ both association
rules and naive Bayes classifier and analyze the factors
contributing to a win, also taking day/day-night game
into account. Both approaches use a very limited subset
of high-level features to analyze the factors contributing
to victory. Furthermore, they do not address score
prediction, nor the progression of the game.

Bailey and Clarke [2] use historical match data
and predict the total score of an innings using linear

regression. As data of a match in progress streams
in, the prediction model is updated. Using this, they
analyze betting1 market’s sensitivity to the ups and
downs of the game. Swartz et al. [17] use Markov
Chain Monte Carlo methods to simulate ball by ball
outcome of a match using a Bayesian Latent variable
model. Based on the features of current batsman,
bowler, and game situation (number of wickets lost and
number of balls bowled), they estimate the outcome of
the next ball. This model suffers from severe sparsity
as noted by the authors themselves: the likelihood of a
given batsman having previously faced a given bowler
in previous games in the dataset is low.

While both [17] and [2] have built match simulators
for ODI cricket, their models rely on games played
over 10 years ago. ODI cricket has since undergone
a number of major rule modifications. Important
examples include powerplays, free hit after an illegal ball
delivery, and the use of two new balls (as opposed to just
one) in an innings. These changes significantly affect
the team strategies, and essentially render old models
a poor fit. Our focus is on the modern and current
form of ODI cricket, incorporating all recent changes to
the game with support for accommodating future rule
modifications.

3 Game Modeling

3.1 Overview of ODI Cricket Rules and Objec-
tives We provide a brief overview of ODI cricket and
review its basic rules as they pertain to game modeling
and score prediction. We also introduce several basic
notations and terminologies used in the rest of the pa-
per.
Toss: Similar to a number of other sports, an ODI
cricket match starts with a toss. The team that wins
the toss can choose to bat first or can ask the opponents
to bat first. This decision is important and takes
into account the nature of the playing field, weather
conditions, and relative strengths and weaknesses of the
two teams.
Objective: In a game between TeamA and TeamB ,
suppose TeamA wins the toss and chooses to bat
first. The period during which TeamA bats is called
innings1, in which TeamA has 50 overs to score as
many runs as possible, while TeamB tries to minimize
the scoring by getting TeamA’s batsmen out (more
commonly referred to as taking wickets). Scoring can
also be restricted by TeamB , by bowling balls that
are difficult to score off and by flawless fielding, where
fielders stop hits by batsmen of TeamA to deny them

1There is a vibrant betting market associated with cricket. See,
e.g., http://www.betfair.com/exchange/en-gb/cricket-4/sp/.



opportunities to score runs. Innings1 comes to an end
when TeamA loses all its wickets or finishes its quota of
50 overs, whichever happens first. Let ScoreA denote
the number of runs accumulated by TeamA at this
point.When TeamB comes in to bat in innings2, it has
the exact same number of 50 overs to play, with the goal
of scoring at least ScoreA+1 runs; innings2 ends when
ScoreB , the number of runs scored by TeamB , exceeds
ScoreA, or when TeamB finishes its quota of 50 overs
or loses all its wickets, whichever happens first. TeamB

is deemed the winner in the first case, and TeamA wins
otherwise. A third possibility is a tie when ScoreA and
ScoreB are equal at the end of the game.2

Scoring: Teams can accumulate runs in two ways. One
way of scoring is to power-hit the ball outside the
playing area. Four runs are awarded if the ball touches
the ground before rolling past the boundary of the
playing area. If the ball lands directly outside the
playing area, six runs are awarded. Borrowing a term
from baseball, game, for convenience, we collectively
term runs scored this way as home runs. Home runs
yield greater reward in terms of runs scored, but the
batsmen have to take risks to hit them, which increases
their chance of getting out. The other way of scoring
is to hit the ball within the playing area and for the
two batsmen to run and exchange their positions. In
the mean time, the opponent players try to collect the
ball to minimize the number of exchanges. Runs are
awarded based on the number of times the batsmen
exchange their positions before the ball is returned to
one of the positions. There is theoretically no bound on
the number of exchanges possible in a given ball but this
value typically lies in the range 1 –3 runs. This way of
scoring has a lower risk of the batsman getting out but
yields a lower number of runs. We term these non-home
runs. Runs are awarded to the batting team when the
bowler commits a foul while delivering the ball. Runs
conceded this way are usually small and are accounted
for by non-home runs in our model.
Dismissal: There are eleven ways for a batsman to
lose his wicket, commonly referred to as getting out or
dismissed. The common ways to get dismissed are being
bowled, caught by opponents, run out and Leg-Before-
Wicket (abbreviated as LBW). In our model, we do not
distinguish between the different forms of dismissal.
Target score: The number of runs accumulated by
TeamA at the end of innings1 is ScoreA. ScoreA+1
run is set as the Target that the team batting second
tries to achieve or exceed in innings2.
Resources: Overs and Wickets are collectively termed

2Currently, there are no tie-breakers in ODI the format,
possibly because ties are extremely rare.

as resource. The batting team consumes the overs
to accumulate runs and loses wickets in the process.
A batting team has 50 overs and 10 wickets at their
disposal at the start of an innings. This resource
continually decreases as the game progresses.
Segment: The batting period of a team is called an
innings and it lasts till they run out of one of the
resources. We split the 50-over window into 10 segments
of 5 overs each, denoted Si, 1 ≤ i ≤ 10. For a team T ,
RT

i and WT
i denote the the number of runs scored and

the number of wickets lost in segment Si, respectively.
The total number of runs scored by team T at the
end of their innings is given by RT

eoi =
∑10

i=1R
T
i . We

drop the superscript T when the team is clear from the
context. Below, we formalize the problem addressed in
this paper.

3.2 Problem Formulation The main problem we
tackle in this paper is given the instantaneous match
data up to a certain point in the game, predict the
progression of the remainder of the game, and in
particular, predict the winner. Before we formalize this,
we define a match state at segment n, 0 ≤ n < 10, as
the pair of numbers consisting of the number of runs
scored and the number of wickets lost so far, by the
batting team. Notice that given a match state, the
resources remaining at the batting team’s disposal can
be easily calculated: the number of balls remaining is
(10−n)× 5× 6 and the number of wickets remaining is
10− (#wickets lost so far).

More precisely, given a match state associated with
segment n, namely (Rknown =

∑n
i=1Ri,Wknown =∑n

i=1Wi), predict the number of runs R̂i for the re-
maining segments i, n+ 1 ≤ i ≤ 10. Using these predic-
tions, the total predicted score at the end of the innings
can be obtained as

(3.1) R̂eoi = Rknown +

n∑
i=n+1

R̂i

If an innings has not commenced, as a special case,
n = 0, Rknown = 0 and Wknown = 0.

We follow this segmented prediction approach to
predict R̂eoi for both innings1 and innings2. TeamA

is predicted to be the winner if R̂A
eoi >R̂

B
eoi. TeamB is

predicted to be the winner if R̂A
eoi <R̂

B
eoi.

3.3 Sub-Problem We break down the problem of
predicting the number of runs in the next segment
Sn+1, given the match state up to segment Sn, into
two subproblems, by recognizing that home runs and
non-home runs are strategized and scored by different
means by the batsmen. We have found from our
analysis and exploration that the number of runs can be
predicted more accurately if we learn separate models



for predicting the home runs HRn+1 and non-home
runs NHRn+1. More precisely, for any segment i,
Ri = HRi + NHRi and R̂i = ĤRi + ˆNHRi, where
X̂ is the predicted value of X.

While it may seem counter-intuitive to use two
different classes of techniques to predict the overall
total score, this decision was driven by observing the
inherent nature of the game itself, and has eventually
been justified by our experimental results. In a given
game, the number of non-home run scoring balls greatly
outnumber the home run scoring balls. A linear-
regression based approach to predict non-home runs
thus runs into the problem of data sparsity. Attribute
bagging, on the other hand, enables our system to find
matches that have similar home-run scoring patterns,
given the set of match features, and thus avoids the
sparsity issue altogether. Our experiments have shown
(see Section 5) much degraded performance when using
ridge regression for HR prediction, with the MAE for
R̂eoiincreasing from 16.5 runs to 29.4 runs.

Prediction of ĤRi and ˆNHRi is accomplished
using two sets of features – historical features and
the instantaneous features, described next. Of these,
historical features are critical for predicting runs for
the first segment, since by definition, no instantaneous
match data is available before the first segment.

3.4 Historical Features Our model consists of 6
historical features for each team in the dataset. They
are mined from data across all matches played by a given
team. The historical features of a team are as follows:
(1) Average runs scored (by the team) in an innings;
(2) Average number of wickets lost in an innings; (3)
Frequency of being all-out;3 (4) Average runs conceded
in an innings; (5) Average number of opponent wickets
taken in an innings; (6) Frequency of getting opposition
all-out.

In what follows, we will use N to denote the total
number of matches in the training dataset. Recall, n
denotes the segment up to which match state is known.
The first feature is calculated by dividing the total runs
scored by the given team across the number of matches
it played.

(3.2) AverageScore =

∑N
i=1(Runs scored in matchi)

N

The subsequent five features are self-explanatory
and are calculated similarly to (3.2). Out of the 6
features, the first three represent the team’s batting
ability, while the last three represent the team’s bowling
ability.

3That is, losing all 10 wickets in an innings within 50 overs.

3.5 Instantaneous features In addition to the fea-
tures mined from past game data, i.e., the historical fea-
tures, we incorporate several instantaneous match fea-
tures in our prediction model. What has happened in
the game so far is an important indicator for predicting
game outcome. We extract the following instantaneous
features from the dataset.
1. Home or Away: This is a binary feature describing
if the batting team is playing in its home ground. If the
match is played in a neutral venue, this feature carries
no weight for both teams.
2. Powerplay: Powerplay is a restriction on the number
of fielders that could be placed by the bowling team
outside a certain range from the batsmen (usually
30 yards, approx. 27.432 meters). This restriction
enables the batsmen to hit the balls aggressively and
try and score home runs, with a relatively reduced
risk of getting out. The first 10 overs of the game
are mandatory powerplays, with two more instances of
powerplay periods arbitrarily chosen by the batting and
bowling team each, to occur at any point in the game
up to the 45th over. For any segment, the powerplay
can occupy between 0 and 5 overs of the segment.
Consequently, the value of this feature ranges from 0
to 1 in increments of 0.2.
3. Target: The goal of the team batting second is to
achieve the Target Score, (= ScoreA +1 runs). This
used as a feature
4. Batsmen performance features: For any given
segment Sn, we identify four performance indicators for
each of the two currently playing batsmen. They are
batsman-cluster (to be described in section 3.6), #runs
scored, #balls faced, and #home runs hit till segment
Sn−1.
5. Game snapshot: This feature is a pair of game
state variables, namely current score and #wickets (i.e.,
#batsmen) left.

Instantaneous features 4 and 5 are explained in
detail in Sections 3.6 and 3.7.

3.6 Batsmen Clustering In our dataset, there are
more than 200 players who have faced at least one ball.
Given data corresponding to 125 matches, learning the
features for each of the 200 individual players is fraught
with extreme sparsity. To give an example, given a
currently playing batsman b and a current bowler `,
the probability that b has faced ` in earlier matches
can be quite low. Even when b has faced ` before,
the number of such matches can be too small to learn
any useful signals from, for purposes of prediction. To
quantify, if in a dataset of M matches, the average
number of matches played by player b is mb, and by
player l is ml (where M � mb and M � ml), even



assuming independence, the probability that b and l
played together is mb

M ×
ml

M . To overcome this sparsity,
we cluster the batsmen according to their batting skills,
using the following four features: (1) Batting Average;
(2) Strike Rate; (3) Home-run hitting ability; and (4)
Milestone reaching ability. The first two features are
standard metrics used to report batsmen stats in cricket.
Although they are used to express a batsman’s quality,
they do not quite capture his skill as observed by cricket
experts and proved by [16] and [1]. Hence for batsman
clustering, we use Features 3 and 4 that capture the
quality of batsmen more accurately.

Batting Average for a batsman is the ratio of the
total number of runs he has scored across all matches,
over the number of times he has gotten out. Strike
Rate is the average number of runs scored per 100
balls, again calculated across all matches played. Both
Batting Average and Strike Rate are standard player
statistics used in cricket.

We measure the ability of a batsman to frequently
hit home runs using
(3.3)

HR-hittingAbility =

∑N
i=1 #home runs hit in matchi∑N

i=1 balls faced in matchi

Scoring fifty runs or a hundred runs (commonly
referred to as half-century and century) are considered
batting milestones in cricket. Players who consistently
and frequently reach these milestones are considered to
be of very high caliber. To capture this, we define
a metric called milestone reaching ability (MRA) as
follows:

(3.4)

MRA =
# of 50 & 100 run scores in N matches played

N

MRA is thus a good indication of batsman quality.
Using the above four statistics, we cluster the batsmen
into 5 clusters using the k-nearest neighbor clustering.
We chose 5 clusters based on the intuition that a team
consists of opening batsmen, middle-order batsmen, all-
rounders, wicket-keeper, and tail-enders, having differ-
ent batting capabilities.

3.7 Game Snapshot Recall that the problem is,
given the match state data up to segment n < 10,
i.e., runs scored Ri and wickets lost Wi in segment
i, 1 ≤ i ≤ n, we need to predict the number of runs
for segment n + 1. To facilitate this, we aggregate
all of the information in segments S1 to Sn−1 and
retain the information in segment Sn separately. More
precisely, we set R1:n−1 =

∑n−1
i=1 Ri and W1:n−1 =∑n−1

i=1 Wi. We then incorporate the instantaneous
features R1:n−1,W1:n−1, Rn,Wn in our model. Since

our score prediction is done separately for home and
non-home runs, we use HR1:n−1 =

∑n−1
i=1 HRi and

NHR1:n−1 =
∑n−1

i=1 NHRi and use these features
instead of R1:n−1, and predict the number of home runs
and non-home runs for segment n.

For example, to predict the runs in segment S6

(overs 26 to 30), runs scored and wickets lost in segments
S1 to S4 are aggregated. Runs and wickets in segment
S5 are retained as such. This approach provides the
game information till segment Sn−1 and the game in-
formation in segment Sn separately to the model. This
provides a broader snapshot of match state and also
gives more importance to the immediately preceding
segment.

Our learning algorithm, described in the next sec-
tion, makes use of the aforementioned historical and in-
stantaneous features up to a given segment to predict
scores for subsequent segments and uses that to predict
the overall score R̂eoi. As a special case, when n = 0,
the algorithm relies on historical features alone to make
its predictions.

4 Algorithm

4.1 Home-Run Prediction Model Using the his-
torical and non-historical features discussed above, we
predict the number of home runs ĤRi for a segment
Si, using attribute bagging ensemble method [5] with
nearest-neighbor clustering. Here, we choose random
subsets of features for n classifiers with l features each
and aggregate the overall results. Different sets of fea-
tures corresponding to the previous states are chosen
randomly and their nearest neighbors are identified from
history, thereby leveraging the Markovian nature of seg-
ments. Number of features for every classifier is set to be
the root value of the total number of features. The num-
ber of classifiers is experimentally determined. The in-
tuition behind using nearest-neighbor algorithm is that
information from similar match situations can be “bor-
rowed” from the training dataset. We use Spearman’s
distance metric, that uses rank correlation to identify
the top neighbor.

The Spearman distance is a measure of pairwise
linear correlation between ranked variables. Suppose
a sequence of values of two variables u = (u1, ..., um)
and v = (v1, ..., vm) are rank-ordered, then Spearman
correlation coefficient is defined as:

(4.5) ρ =

∑m
i (ui − ū)(vi − v̄)∑m

i (ui − ū)2
∑m

i (vi − v̄)2

It is the same as Pearson correlation coefficient except
ranks are used in place of observed values.

Game features are ranked in the training and test
dataset separately. The distance between a match in the



test dataset and one in the training dataset is the dot
product of the (ranked) feature vectors of the matches.

After running n number of classifiers with l features
each, we pick the top 5 neighbors based on frequency
counts and average the home run hits. This number of
neighbors, 5, has been determined experimentally.

4.2 Non-Home-Run Prediction Using the same
historical and instantaneous features, non-home runs
of segment Si, ˆNHRi is predicted by means of Ridge
Regression [13].

The iterative algorithm to predict the runs Ri of
future segments and consequently, Reoi of the whole
innings is given in Algorithm 1, where we use the
following notation:

ˆNHRi, predicted non-home runs in segment Si

ĤRi, predicted home runs in segment Si

R̂i, predicted total runs in segment Si

R̂eoi, predicted end of innings score
Θ← historical features
n ← segment number till which match information is
available
Ri, Runs scored in segment Si where 1 ≤ i ≤ n
∆n ← instantaneous features till segment Si.

Θ is the set of historical features given in Sec-
tion 3.4, which remain constant through the iterations
since they are learned just once from the historical
match data; n is the segment number till which, match
state data, also called instantaneous features, ∆n are
available. At the start of the algorithm, features Θ and
∆n are fed as input to the algorithm which proceeds iter-
atively to predict R̂i, for every segment i, n+1 ≤ i ≤ 10.

Algorithm 1: Prediction of Future Segments
runs R̂i & End of Innings Score R̂eoi

Input : Θ,∆n, n
Output: Ri for every n+ 1 ≤ i ≤ 10, R̂eoi

1 for i ∈ n+ 1 ≤ i ≤ 10 do
2 for j ∈ 1 ≤ j ≤ L do
3 Γj ← RandomSubspace(Θ,∆i−1)
4 Φj ← NearestNeighbor(Γj)

5 end
6 HRi ←MajorityV oting(Φ1:L)
7 NHRi ← RidgeRegression(Θ,∆i−1)

8 R̂i← HRi + ˆNHRi

9 ∆i ← Update(∆i−1, R̂i)

10 end

11 R̂eoi ←
∑n

i=1Ri +
∑10

i=n+1 R̂i

Using Θ and ∆i−1 (instantaneous features of previ-
ous segment), home runs ĤRi of segment i is predicted
using Attribute bagging algorithm as explained in sec-

tion 4.1(Line 2-6). For every classifier j in L (Num-
ber of Classifiers), a random subspace of features (Γj)
is chosen from the overall feature space (Line 3). The
nearest neighbor based on this subspace of features (Γj)
is found out to be Φj (Line 4). Based on majority voting
among the chosen neighbors (Φ1:L), the closest neighbor
from the raining set is found and home-run information
is borrowed. (Line 6) Using the same features Θ and
∆i−1, non-home runs ˆNHRi are predicted using Ridge
Regression as mentioned earlier in this section (line 7).
ĤRi and ˆNHRi are added together to give R̂i, the pre-
dicted number of runs scored in segment Si (Line 8).

It is to be noted that two of the instantaneous fea-
tures (Section 3.5) namely Home/Away and Batsmen
Cluster do not change through the course of prediction
while Game Snapshot features are constantly updated
based on predictions of the previous iteration as ex-
plained in section 3.7. Number of runs for segment i,
R̂i, predicted in this iteration, is added to the Game
Snapshot features of ∆i−1, thereby modifying it to ∆i

(Line 9). This ∆i is used to predict the ĤRi+1 and
ˆNHRi+1 in the next iteration.

The cumulative sum of all known runs Ri, 1 ≤ i ≤ n
and all predicted runs R̂i, n < i ≤ 10, is the predicted
End-of-Innings Score, R̂eoi (Line 11).

4.3 Cold-Start If prediction is initiated without any
match information, i.e., before the start of the actual
innings, then n = 0, and the algorithm starts prediction
from S1 through S10.

In the first iteration when i = 1, no instantaneous
features are available. As the opening pair of batsmen
are known before the start of a game, their cluster
ID numbers (from the feature Batsmen cluster) are
used. In order predict R̂1 accurately, we leverage
the match venue information and use it as a feature
along with the other historical features Θ. The match
venue is incorporated as a multinomial feature called
“Venue Class”, which classifies the location of the
venue into one of the following four continent clusters:
(i) Australia/New Zealand; (ii) Indian Subcontinent;
(iii) The British Isles; and (iv) The Caribbean/South
Africa. This classification is significant since the pitch
(i.e., the area where the ball is bowled and pitched)
and weather conditions across these region clusters are
known to be substantially different, for the purposes of
the game. Using the venue class as a feature is based
on the intuition that a team tends to start differently in
different venue conditions.

5 Experiments

5.1 Dataset Our dataset consists of 125 complete
matches played between January 2011 and July



2012 among the 9 full-time ICC teams of Australia,
Bangladesh, England, India, Sri Lanka, Pakistan, South
Africa, New Zealand and the West Indies who have
played more than 20 matches each excluding all rain-
interrupted and rain-abandoned games. We split the
dataset into training and test set with 100 and 25
matches respectively. We perform ten-fold cross val-
idation on the 100 training matches and and present
our results by testing on the remaining 25 matches. We
crawled the data from http://www.espncricinfo.com,
where ball-by-ball data on all the matches are available
publicly. Team and batsmen statistics for mining his-
torical features and batsmen clustering are also queried
from their publicly-accessible statistics databases. Since
ball-by-ball commentary data consists of transcription
of the human interpretation of actual events, there are
occasional missing values and errors. They were fixed
either manually or by automated consistency checks
with the end-of-over summary, scorecards, partnership
information and other relevant game data. After the
required data is gathered, they were aggregated and
rolled-up to 5-over levels (since a segment is a collec-
tion of 5 overs) without loss of necessary information.
Once the data is available in the processed form, run-
ning time for the model to learn the parameters across
all the segments and testing by 10-fold cross-validation
takes less than 5 seconds on a 4-core, 2.66 GHz machine
with 8 GB RAM, running OpenSuse 12.3. The data is
gathered from publicly available sources, as mentioned
above. Owing to limited space, we combine and present
the innings1 and innings2 prediction performances.
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Figure 1: Total non-home runs scatter plot
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Figure 2: PDF and CDF of Total non-home run
prediction error

5.2 Non-Home Run Prediction Performance
Prediction of ˆNHReoi, which is the sum of individual

ˆNHRi is shown in Figures 1 and 2. Figure 1 shows
a scatter plot between the predicted and actual total
non-home runs for both innings1 and innings2 com-
bined. and demonstrates good agreement between
the predicted and actual Non-Home Runs. Figure 2
shows the total non-home run prediction error distribu-
tion across all the matches. The figure on the left gives
the Probability Density Function (PDF ) and the one
on the right gives the Cumulative Distribution Func-
tion (CDF ). It can be seen that for more than 55% of
the matches, the error margin is less than or equal to 10
runs in both innings. The median number of non-home
runs in an innings in our dataset is 125. It is evident
that our approach is very accurate for the majority of
matches in the dataset, and performs poorly on only a
small percentage of the games.

5.3 Home Run Prediction Performance We ex-
perimented with a number of distance metrics (namely,
Jaccard, Hamming and Cosine measures) and compared
them with the performance of Spearman distance met-
ric., and the Spearman metric was observed to perform
best (i.e., have the lowest minimum average error). We
report the performance of both nearest neighbor and at-
tribute bagging with nearest neighbor technique and ex-
pectedly, attribute bagging performs better than near-
est neighbors.

Figure 3 shows a scatter plot between predicted
and actual total home runs. We have slightly worse
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Figure 3: Total home runs scatter plot
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Figure 4: PDF and CDF of Total home run prediction
error



agreement between predicted and actual, compared to
non-home run prediction (Figure 1). Figure 4 shows
that the error margin for the top 55% of the matches
are less or equal to 20 runs. As mentioned in section 3,
home runs are awarded either 4 or 6 runs based on
where the ball lands. Hence, a single mis-prediction
can induce a maximum error of 6 runs. It is also a more
difficult problem to predict the number of runs scored
through home runs, with the uncertainty arising from
the very nature of the game as described in section 3.
This is reflected in Figure 3 and 4. Figure 4 also shows
that attribute bagging with nearest neighbors performs
better than plain nearest neighbor algorithm.

5.4 End-of-Innings Run Prediction Perfor-
mance Figure 5 shows the scatter plot for R̂eoi for ev-
ery match in the dataset.

Figure 6 shows the total score error distribution
across the all the matches in the dataset. It can be
observed that, for 50% of matches, prediction error has
a maximum of 16 runs in Attribute bagging method,
while for nearest neighbor method, it is close to 30 runs.
80% of the matches fall under the same prediction error
ceiling, in attribute bagging method.

5.5 Runs in a Segment, R̂i As match data streams
in, we update the model (in five-over intervals) with
ground truth and make R̂i prediction for the next seg-
ment. Figure 7 shows the mean absolute error values for
R̂i scores across segments Si, given match state data till
segment Si−1. MAEi for both innings1 and innings2
lies within the range of 4 and 12 runs for all the seg-
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Figure 5: Reoi scatter plot
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Figure 6: PDF and CDF of Reoi prediction error

ments, with errors increasing towards the later segments
during the innings. Generally, until the middle overs
(i.e., up to over 35), teams are focusing on building a
good foundation and consolidating their run scoring ef-
forts. On the other hand, in the last 2 or 3 segments
(from overs 35 to 50), it is common for the batsmen
to try to hit most of the deliveries for home runs to
maximize total runs; subsequently, a large chunk of the
total score is accumulated in these last three segments.
In doing so, batsmen take high risk and subsequently
may get dismissed. Hence the match could turn in fa-
vor of any of the two teams with more or less equal
probability. Because of such unpredictable nature of
the game during these segments, it is difficult to esti-
mate R̂i. Accordingly, the performance of our algorithm
suffers somewhat in these segments, as demonstrated by
the plots.

5.6 Performance Comparison with Baseline
Model Bailey et al. [2] propose a model that predicts
the R̂eoi of a game in progress which is used to analyze
the sensitivity of betting markets. Although addressing
a different requirement, their framework allows making
R̂eoi predictions at the end of each innings. In Figure 8,
we demonstrate the accuracy of our model considering
their model as a baseline. At the end of each segment,
R̂eoi is calculated and compared with the actual Reoi

obtained at the end of innings from match data. As
shown in the plot, both our model and that of Bailey
et al. make better predictions, as more segments from
the match in progress are input to the model. However,
MAE for our model is significantly better for all the seg-
ments. It can be observed that our model significantly
outperforms the baseline for both the innings.

We used our framework for predicting R̂eoi for both
innings, to predict the game winner. We found that
the accuracy of this prediction is between 68% and
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Figure 7: Mean absolute error for Runs Ri across
each segments Si, or, 5-over intervals for innings 1 and
innings 2. Since the first and fore-most prediction R1

for i = 1 gives the runs scored at the end of over number
5, the plots start from over 5.



Figure 8: Mean absolute error in R̂eoi prediction for
innings 1 (top) and innings 2 (bottom) for both [2] and
our model.

70%, which is robust regardless of the number of known
segments. To our knowledge, this is the highest winner
prediction accuracy reported in for ODI cricket.

6 Conclusion and Future work

The main goal of this paper is to learn a model for
predicting game progression and outcome in one-day
cricket. We developed separate models for home runs
and non-home runs using historical features as well
as instantaneous match features from past games that
we identified. Ridge Regression and attribute bagging
algorithms are used on the features to incrementally
predict the runs scored in the innings. We demonstrated
the quality and accuracy of our predictions with an
extensive set of experiments on real ODI cricket data.
In addition to predicting runs for future segments, our
winner prediction accuracy is by far the highest reported
in ODI cricket mining literature.

While our technique is significantly more accurate
than the state-of-the-art, we are currently working
to further reduce the prediction error. Furthermore,
to make the prediction engine functionally complete,
we intend to predict fall of wickets, overcoming the
challenges presented from data sparsity. Finally, we
aim to leverage bowler’s features (in addition to the
batsmen’s) to improve the prediction accuracy even
further.
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