
Auto-scaling Techniques for Elastic Applications in

Cloud Environments

Tania Lorido-Botrán, José Miguel-Alonso, José A. Lozano

Technical Report EHU-KAT-IK-09-12

Department of Computer Architecture and Technology
University of the Basque Country

September 5, 2012

1

Contents

1 Introduction 3

2 Problem Definition 5

3 Performance Evaluation in the Cloud: Experimental Platforms, Workloads
and Application Benchmarks 7
3.1 Experimental Environments . 7
3.2 Synthetic Workloads . 8
3.3 Real Traces . 9
3.4 Application Benchmarks . 10

4 Classification for Auto-scaling Techniques 11

5 Review of Auto-scaling Techniques 13
5.1 Static Threshold-based Rules . 14

5.1.1 Definition of the Technique . 14
5.1.2 Review of Proposals . 15

5.2 Reinforcement Learning (Q-Learning) . 16
5.2.1 Definition of the Technique . 16
5.2.2 Review of Proposals . 20

5.3 Queuing Theory . 21
5.3.1 Definition of the Technique . 21
5.3.2 Review of Proposals . 24

5.4 Control Theory . 25
5.4.1 Definition of the Technique . 25
5.4.2 Review of Proposals . 27

5.5 Time-series Analysis . 29
5.5.1 Definition of the Technique . 30
5.5.2 Review of Proposals . 32

6 Discussion and Open Research Lines 34

7 Conclusions and Future Work 36

2

1 Introduction

Cloud computing is an emerging technology that is becoming more and more popular. This
is due primarily to its elastic nature: users can acquire and release resources on-demand, and
pay only for the resources they need (pay-per-use or pay-as-you-go model). Those resources
are usually in the form of Virtual Machines (VM). Companies can use clouds for different
purposes, such as running batch jobs, hosting web applications or for backup and storage.
Three main markets are associated to cloud computing:

• Infrastructure-as-a-Service (IaaS) designates the provision of IT and network resources
such as processing, storage and bandwidth as well as management middleware. Ex-
amples are Amazon EC2 [3], RackSpace [26] and the new Google Compute Engine
[17].

• Platform-as-a-Service (PaaS) designates programming environments and tools sup-
ported by cloud providers that can be used by consumers to build and deploy ap-
plications onto the cloud infrastructure. Examples of PaaS include Amazon Elastic
Beanstalk [4], Heroku [20], Force.com [11], Google App Engine [12], and Microsoft
Windows Azure [38].

• Software-as-a-Service (SaaS) designates hosted vendor applications. For example,
Google Apps [13] (such as Google Docs, Google Calendar or Google Sites), Microsoft
Office 365 [24] and Salesforce.com [31].

In the current work, we will focus on the IaaS client’s perspective. A typical scenario
could be a user that wants to host a web application, and for this purpose contracts several
resources from a known IaaS provider such as Amazon EC2. From now on we will use the
following terminology:

• Provider. It refers mainly to the IaaS provider, that offers virtually unlimited re-
sources in the form of VMs. It could also apply to a PaaS provider, although they
sometimes offer limited scaling capacity, that usually cannot be configured by the
user.

• Client. The client is the user of the IaaS or PaaS service, that uses it for hosting the
application. In other words, it is the application owner or provider.

• User. It is the final user that accesses the web application.

A real case could be the Groupon [19] website that is deployed on both the Amazon
EC2 infrastructure and the Force.com PaaS provider, enabling it to adjust seamlessly to a
changing demand [2]. The Groupon website is the client of two providers : Amazon EC2 and
Force.com. The website presents daily several offers and discounts to its users. Those users
can visit Groupon anytime from their browser. But Groupon is just an example: Amazon
EC2 presents a large list of client companies which use the infrastructure for diverse purposes

3

[5] such as application hosting, web hosting, e-commerce, search engines, High Performance
Computing (HPC) or simply for backup and storage service.

As we said previously, the key characteristic of cloud computing is elasticity. However, it
is also a double-edged sword. Elasticity allows users to acquire and release resources dynam-
ically according to changing demands, but deciding the right amount of resources is not an
easy task. Indeed, appropriately dimensioning resources to applications is a crucial issue in
cloud computing. Many web applications face large, fluctuating loads. In predictable situa-
tions (new campaigns, seasonal), resources can be provisioned in advance through capacity
planning techniques. But for unplanned, spike loads, it would be desirable an automatic
scaling system (or auto-scaling system) that adjusts resources allocated to an application
based on its needs at any given time. This would free the user from the burden of deciding
how many resources are necessary at each time.

Resource allocation actions can focus on horizontal scaling: i.e adding new server replicas
and load balancers to distribute load among all available replicas, or vertical scaling: on-the-
fly changing the resources assigned to an already running instance, for example, allocating
more physical CPU or memory to a running VM). Unfortunately, the most common operating
systems do not support on-the-fly (without rebooting) changes on the available CPU or
memory to support this vertical scaling. For this reason, most of the cloud providers only
offer horizontal scaling.

The final objective of an auto-scaling system is to automatically adjust acquired resources
to minimize cost while complying with the SLO. To do this, it must take into account:

• Cloud provider prizing model. For example, Amazon offers three charge models: pay-
per-use model, reserved instance pricing model with long-term commitment of availabil-
ity, and spot instances. Typically, several VM types are offered, with a pre-configured
set of resources (ideal scenario for horizontal scaling).

• Unit charge: Cloud providers usually charge the user per hour of VM use. There are
some particular cases such as Windows Azure that charges users per natural hour, i.e,
if an VM is started at 10.55AM and stopped at 11.05AM, the user will pay for 2 hours.
Generally, partial hour usage is rounded up to one hour. Therefore, even if the load
is low and machine is not required, the entire hour has been paid for, so there is no
reason to terminate it before the hour is over. This is sometimes called smart kill.

• VM boot-up time o acquisition lag: It takes several minutes for a new VM to become
ready to operate. This needs to be taken into account in auto-scaling.

The problem of automatic scaling can be addressed using different approaches. These
have been reviewed in the current work. The remainder of the paper is organized as follows.
Section 2 provides a general definition of the auto-scaling problem. Section 3 covers the
details about the experimental platform, workload generation and application benchmarks
used to test the different algorithms. A classification for the different auto-scaling techniques
is introduced in Section 4. Section 5 further describes each of these auto-scaling techniques.
Finally, we conclude with an outline of research lines (Section 6) and several conclusions
extracted from the study (Section 7).

4

2 Problem Definition

We will consider a typical web application with a 3-tier architecture (see Figure 1), managed
by a IaaS user and deployed on a IaaS infrastructure:

• Load balancer (LB): It receives all the incoming requests from users and routes them
to the application servers.

• Business-logic tier (BT): It contains the application servers that execute the application
logic.

• Storage or persistence tier (ST): It refers to the database system.

Each tier can be scaled separately, but we will focus on scaling the business tier (the
application servers).

Figure 1: Web application with a 3-tier architecture1.

Let us consider an application deployed over a pool of n VMs. VMs may have the same
or different resource assignment, but each VM has its own unique identifier (it could be
the IP address). Final users will send requests to the load balancer. Those requests can be
either considered as simple independent jobs, with homogeneous or heterogeneous processing
times, or as part of sophisticated models of user behavior, which consider sequences of actions
called sessions (e.g. login, list, order, ...), each one with a different duration, thinking times,
and so on. The load balancer will receive all the incoming requests and forward them to
one of the servers in the pool. Several balancing policies can be considered such as random,
round-robin and least-connection. Each request will be assigned to a unique server.

Each application server will be hosted in a different VM. We assume that servers can
process several requests simultaneously, but note that the service time will increase depending

1Figure taken from http://support.rightscale.com/03-Tutorials/02-AWS/02-Website_Edition/

Set_up_Autoscaling_using_Voting_Tags

5

on the number of concurrent requests. No that in a context in which we only scale horizontally
the business-logic tier, we may use server and VM with the same meaning.

The auto-scaling system requires two elements: a monitor and the scaling unit. Any auto-
scaling method needs a good monitoring system, gathering different and updated metrics
about system and application current state, and at a suitable granularity (e.g. per second,
per minute). Ghanbari et al. [56] propose a list of performance metrics or variables for
scaling purposes:

• Hardware: CPU utilization, disk access, network interface access, memory usage.

• General OS Process: CPU-time, page faults, real memory (resident set).

• Load balancer: size of request queue length, session rate, number of current sessions,
transmitted bytes, number of denied requests, number of errors.

• Web server: transmitted bytes and requests, number of connections in specific states
(e.g. closing, sending, waiting, starting, ...).

• Application server: total threads count, active threads count, used memory, session
count, processed requests, pending requests, dropped requests, response time.

• Database server: number of active threads, number of transactions in a particular state
(write, commit, roll-back, ...) .

The scaling unit will use this information to decide the scaling action to be performed,
e.g. remove a VM or add some extra memory. Each scaling action should be decided taking
into account the different cloud provider prizing models and the VM boot-up time. The
final objective is to find a trade-off between meeting Service Level Objectives or SLO (for
example, 99.9% of availability or a maximum response time of 2 seconds) and minimizing
the cost of renting cloud resources.

6

3 Performance Evaluation in the Cloud: Experimental

Platforms, Workloads and Application Benchmarks

Before proceeding to introduce the different auto-scaling techniques proposed in the litera-
ture, it is necessary to describe the variety of experimental platforms that have been used.
There is no standard method for evaluating auto-scaling techniques, and researchers in the
field have built their own testing environments, suitable to their own needs. However, there
is a common pattern for all of them: evaluation requires a real or realistic environment, using
simulators, real cloud providers or custom testbeds.

Regardless the selected experimental platform, controlled workloads are required to drive
the experiments. The term workload refers to a list of user requests, together with the
arrival timestamp. The workload can be either synthetic, generated with specific programs,
or obtained from real cloud platforms and stored in trace files (traces, for short). Both
synthetic workloads and real traces will be described in the current section.

Apart from selecting a suitable workload, an application benchmark is required to execute
the input requests in real cloud providers or custom testbeds. We will also review the
benchmarks most commonly found in the literature.

3.1 Experimental Environments

Experimentation could be done in production infrastructures, either from real cloud providers
or in a private cloud. The major advantage is that proposals can be checked in actual sce-
narios, thus proving a proof of suitability. However, it has a clear drawback: for each
experimentation, the whole scenario needs to be set. In case of a real provider, the infras-
tructure is already given, but we still need to configure the monitoring and auto-scaling
system, deploy an application benchmark and a load generator over a pool of VMs, figure
out how to extract the information and store it for later processing. Probably, each execution
will be charged according to the fees established by the cloud provider.

In order to avoid the experimentation cost and to have a more controlled environment,
we could utilize a custom testbed. This has a cost in terms of system configuration effort.
The most relevant step consists of installing the virtualization software, that will manage the
VM creation, scaling and so on. Virtualization can be applied at the server level, OS level
or at the application level. For custom testbeds, virtualization at the server level is needed,
commonly referred as Hypervisor or Virtual Machine Monitor (VMM). Some popular hyper-
visors include Xen [40], VMWare ESXi [37] and Kernel Virtual Machine (KVM) [23]. There
are several platforms for deploying custom clouds, including open-source alternatives such
as Eucalyptus [9] and OpenStack [25], and commercial software like vCloud Director [36].
OpenStack is an open-source initiative supported by many enterprises such as RackSpace,
HP, Intel and AMD, but still under development. Eucalyptus enables the creation of on-
premises Infrastructure as a Service clouds, with support for Xen, KVM and ESXi, and the
Amazon EC2 API. VCloud Director is the commercial platform developed by VMWare.

7

In contrast to real infrastructure, we could use software to simulate the functioning of
a cloud platform, including resource allocation and deallocation, VM execution, monitoring
and the remaining cloud management tasks. We could select an already existing simulator
and adapt it to our needs, or implement a custom software from scratch. Obviously, us-
ing a simulator implies an initial effort to prepare the software but, in contrast, has many
advantages. The evaluation process is shortened in many ways. It makes possible to test
multiple algorithms without having to re-configure all the infrastructure each time. Besides,
the simulator prevents the influence from external factors (this would be impossible in a real
cloud provider). Experiments carried out in real infrastructures may last hours, whereas in
an event-based simulator, this process may only take minutes. Simulators are highly con-
figurable and allow the user to gather any information about system state or performance
metrics. In spite of the advantages mentioned, simulated environments are still an abstrac-
tion of physical machine clusters, thus the reliability of the results will depend on the level
of implementation detail considered during the development. Some research-oriented cloud
simulators are CloudSim [7], GreenCloud [18], and GroudSim [73].

3.2 Synthetic Workloads

Synthetic workloads can be generated based on different patterns. According to Mao and
Humphrey [69], there are four representative workload patterns in the cloud environment:
Stable, Growing, Cycle/Bursting and On-and-off. Each of them represents a typical appli-
cation or scenario. A Stable workload is characterized by a constant number of requests per
minute. The Growing workload pattern may represent a scenario in which a piece of news or
a video suddenly becomes popular, or the consequent Slashdot effect. The Cyclic/Bursting
workload may represent the workload pattern of an online retailer, in which daytime has
more workload than the night and holiday shopping seasons might handle more traffic than
normal. The On-and-off workload pattern represents the work to be processed periodically
or occasionally, such as batch processing and data analysis performed everyday.

There is a broad range of workload generators, that can be used to generate simple
requests based on any of the patterns mentioned above, or even real HTTP sessions, that
mix different actions (e.g. login or browsing) and simulate user thinking times. Examples of
workload generators are:

• Faban [10]: A Markov-based workload generator, included in the CloudStone stack.

• Apache JMeter [22]: A Java workload generator used for load testing and measuring
performance. It can be used to test performance both on static and dynamic resources
(files, Servlets, Perl scripts, Java Objects, Data Bases and Queries, FTP Servers and
more). It can also generate heavy loads for a server, network or object, either to test
its strength or to analyze overall performance under different scenarios.

• Rain [27]: A statistics-based workload generation toolkit that uses parameterized and
empirical distributions to model the different classes of workload variations.

8

• Httperf [21]: A tool for measuring web server performance. It provides a flexible facility
for generating various HTTP workloads and for measuring server performance.

Synthetic workloads are suitable to carry out controlled experimentation. For example,
we can tune the workload in order to test the system under different number of users or
request rates, with smooth increments or sudden peaks. However, they may not be realistic
enough, a reason that makes necessary to use traces from real production systems.

3.3 Real Traces

Application workloads for cloud-based systems can be separated into two classes: batch
and transactional. Batch workloads consist of arbitrary, long running, resource-intensive
jobs, such as text mining, video transcoding and graphical rendering. The most well-known
examples of transactional workloads are web applications built to serve online HTTP clients.
These systems usually serve content types such as HTML pages, images or video streams.
All of these contents can be statically stored or dynamically rendered by the servers.

To the best of our knowledge, there are no publicly available, real traces from cloud
providers, and this is an evident drawback for cloud research. In the literature, some authors
have generated their own traces, running benchmarks or real applications in cloud platforms.
There are also some references to traces from private clouds that have not been published.
However, most authors have used traces from Internet servers, such as the ClarkNet trace
[6] or the World Cup 98 trace [39].

The ClarkNet trace [6] contains the HTTP requests received by the ClarkNet server
over a two-weeks period in 1995. ClarkNet is a full Internet access provider for the metro
Baltimore-Washington DC area. It shows a clear cyclic workload pattern (see Figure 2):
daytime has more workload than the night, and the workload on weekends is lower than that
taking place on weekdays.

Figure 2: Number of requests per minute for ClarkNet Trace.

9

The World Cup 98 trace [39] has been extensively used in the literature. It contains all
the HTTP requests made to the 1998 World Cup Web site between April 30, 1998 and July
26, 1998.

Some authors have used traces from Grid environments (Caron et al. [47]), but although
there is an extensive number of public traces, the job execution scheme is not suitable for
evaluating web applications. However, they could be useful for batch-based workloads.

It is also worth mentioning the Google Cluster Data [14], two sets of traces that contain
the workloads running on Google compute cells. The first dataset [15] refers to a 7-hour pe-
riod and consists of a set of tasks. However, the data have been anonymized, and the CPU
and RAM consumption have been normalized and obscured using a linear transformation.
The second trace [16] includes significantly more information about jobs, machine charac-
teristics and constraints. This trace includes data from an 11k-machine cell over about a
month-long period. Similarly to the first trace, all the numeric data have been normalized,
and there is no information about the job type. For this reason, no Google trace can be
utilized to test auto-scaling techniques, but they would be useful in other scenarios such as
the IaaS level.

3.4 Application Benchmarks

Application benchmarks are used to evaluate server’s performance and scalability. Typically,
they comprise a web application together with a workload generator that creates synthetic
session-based requests to the application. Some commonly used benchmarks for cloud re-
search are RUBiS [1], TPC-W [35] and CloudStone [8]. Although both RUBiS and TPC-W
benchmarks are out-dated or declared obsolete, they are still being used by the research
community.

• RUBiS [1]: It is a prototype of an auction website modeled after eBay.com. It offers
the core functionality of an auction site (selling, browsing and bidding) and supports
three kinds of user sessions: visitor, buyer, and seller. The applications consists of
three main components: Apache load balancer server, JBoss application server and
MySQL database server. The last update in this benchmark was in 2008.

• TPC-W [35]: TPC [33] is a is a non-profit organization founded to define transaction
processing and database benchmarks. Among them, TPC-W is a complex e-commerce
application, specifically an online bookshop. It simulates three different profiles: pri-
marily shopping, browsing and web-ased ordering. The performance metric reported
is the number of web interactions processed per second. It was declared obsolete in
2005.

• CloudStone [8]: It is a multi-platform, multi-language performance measurement tool
for Web 2.0 and Cloud Computing, developed by the Rad Lab group at the University
of Berkeley. CloudStone involves using a flexible, realistic workload generator (Faban)
to generate load against a realistic Web 2.0 application (Olio). The stack is deployed

10

on Amazon EC2 instances. As explained before, Faban is an open-source Markov-
chain, session-based synthetic workload generator, while Olio 2.0 is a two-tier social
networking benchmark, with a web frontend and a database backend. The application
metric is the number of active users of the social networking application, which drives
the throughput or the number of operations per second.

There are other, less used benchmarks such as SpecWeb [82], TPC-C [34] and RUBBoS
[30]. SpecWeb is a benchmark tool, created by the Standard Performance Evaluation Cor-
poration (SPEC), that is able to create banking, e-commerce and support (large downloads)
workloads. SpecWeb has been discontinued in early 2012 and now the SPEC company has
created a cloud benchmarking group [32]. TPC-C is an on-line transaction processing bench-
mark that simulates a complete computing environment where a population of users executes
transactions against a database. The performance metric is the number of transactions per
minute. RUBBoS is a bulletin board benchmark, modeled after an online news forum like
Slashdot. The last update was in 2005.

4 Classification for Auto-scaling Techniques

Managing cloud computing elasticity is typically a per-application task and it implies map-
ping performance requirements to the underlying available resources. This process of adapt-
ing resources to the on-demand requirements of an application, called scaling, can be very
challenging. Resource under-provisioning will inevitably hurt performance and create SLO
violations, while resource over-provisioning can result in idle instances, thereby incurring
unnecessary costs.

The first thought could lead us to plan capacity for the average load or for the peak
load. When planed for the average load, there is less cost incurred, but performance will be
a problem if peaks of load occurs. Bad performance will discourage customers, and revenue
will be affected. On the other hand if capacity is planned for peak workload, resources will
remain idle most of the time.

Therefore, it seems necessary a more sophisticated technique for resource allocation, that
automatically scales resources according to demand. These are called auto-scaling techniques.
To date, cloud practitioners have pursued schedule-based and rule-based mechanisms to at-
tempt to automate this matching between computing requirement and computing resources.
Schedule-based techniques take into account the cyclical pattern of the daily workload. The
scaling actions are configured manually, based on the time of the day, so the system cannot
adapt to the unexpected changes in the load. For this reason, schedule-based techniques will
not be discussed in this work.

Well-known cloud providers such as Amazon EC2 usually offer rule-based auto-scaling.
This simple approach typically involves creating two rules to determine when to scale. For
each rule, the user has to define a condition based on a target variable, for example CPU
load > 80%. When the condition is met, it triggers a pre-defined scaling up or scaling-
down action; e.g. add a new VM. The rule-based approach can be classified as a reactive

11

algorithm, which means that it reacts to system changes, but do not anticipate to them.
In contrast, predictive or proactive auto-scaling techniques try to anticipate to future needs
and consequently acquire or release resources in advance, to have them ready when they
are needed. If we consider the usage of a particular resource (CPU, memory,...) or input
workload as a time series, we can think of several predictive alternatives. For example, we
could consider the mean over the last W samples in the time series as the predicted resource
demand. Alternatively, we could consider the maximum resource usage over the samples in
the window W . Of course, using the mean or the max value is not always a good option,
but there are several alternatives that will be further discussed later.

In the literature, auto-scaling for cloud computing has been extensively discussed from
several points of view, including both predictive and reactive techniques. Authors have put
their focus on the different layers of cloud computing: IaaS, PaaS and SaaS, but on the
current study, we will concentrate on the IaaS client’s perspective. Hence, IaaS management
is out of our scope, including tasks such as VM migration, physical allocation of VMs in
a datacenter or server consolidation. As defined in Section 2, the target scenario is an
application deployed over a pool of VMs, with theoretically unlimited resources to be scaled.
Throughout this paper we will focus on the middle (business) tier, but most techniques are
applicable to all tiers (e.g. Lim et al. [67] designed an auto-scaling algorithm for the business
tier, and later applied the same technique to the storage layer [68]). Some specific papers
consider the scaling task for all three application tiers as a whole. In particular, Urgaonkar
et al. [84] claim that adding servers to the bottleneck tier does not necessarily solve the
problem, but just shifts the bottleneck to a downstream tier.

Cloud providers offer different billing options, that usually follow a pay-as-you-go model.
Amazon EC2 billing schemes are the most commonly used in the literature. The IaaS
provider offers on-demand, reserved and spot instances, to satisfy the different needs of the
users. Spot instances enable the users to bid on unused Amazon EC2 capacity, at lower
prices than regular instances. Amazon sets a spot price that changes based on supply and
demand, and customers whose bids exceeds this spot price gain access to the available spot
instances. Some research has been done in this area, proposing methods to guide users with
the bidding (e.g. Andrzejak et al. [42]). A second billing scheme offered by Amazon EC2 are
reserved instances, intended for long-term use. The user initially pays a fixed amount for
each instance, and the per-hour fee is greatly reduced, in comparison to on-demand instance
price. In the current work, we will focus on standard on-demand instances, that are charged
on an hourly basis.

It is difficult to work out a proper classification of auto-scaling techniques, due to the
wide diversity of approaches found in the literature, that are sometimes hybridizations of
two or more methods. Considering the anticipation capacity as the main criteria, techniques
could be divided into two main classes: reactive and proactive. Threshold-based policies
clearly belong to the reactive category, whereas time-series analysis is a purely proactive
approach. In contrast, reinforcement learning, queuing theory and control theory can be
used with both reactive and proactive approaches. In the present review, we will consider
auto-scaling techniques grouped into these categories:

12

1. Static, threshold-based policies

2. Reinforcement Learning

3. Queuing theory

4. Control theory

5. Time-series analysis

Each technique will be described separately, and then the literature using that technique
will be discussed. As some articles compare two or more auto-scaling proposals, they may
be cited in several sections.

5 Review of Auto-scaling Techniques

The proposed classification for auto-scaling techniques covers different areas of knowledge,
including simple threshold-based rules, reinforcement learning, queuing theory, control the-
ory and time-series analysis. Each of the categories usually includes many diverse methods,
that can follow either a reactive or a proactive approach.

Reactive techniques, as the name suggests, refer to the set of methods that react to
the current system and/or application state. Decisions are taken based on the last values
obtained from a set of monitored variables. Among the mentioned categories, threshold-
based rules or policies follow a purely reactive approach. They are the most extended
auto-scaling technique, including a small variation used by the RightScale [28] vendor.

The lack of anticipation of a reactive approach clearly affects the auto-scaling perfor-
mance. The system might not be able to scale proportionally with the Slashdot effect or
sudden traffic bursts resulting from special offers or market campaigns. In addition to this,
the time it takes to instantiate a new VM can be up to 15 minutes, and the effect of a
scaling-up action might arrive too late. Therefore, proactive or prediction-based resource
scaling is required in order to deal with the ever fluctuating resource usage pattern, and be-
ing able to scale in advance. Among the categories in the classification, time-series analysis
covers a wide range of methods that follow a proactive approach and seems to be a promising
research area. This category considers all auto-scaling approaches that use the past history
of a time-series to predict future values.

The rest of the auto-scaling techniques (control theory, reinforcement learning and queu-
ing theory) cannot be clearly classified into a reactive or proactive approach. Classic queuing
theory requires modeling each application VM (or even application tier) as a queue of re-
quests, and there are established methods to estimate performance metrics for every scenario.
In contrast, some reinforcement learning algorithms are able to cope with the auto-scaling
task, without any a priori knowledge or system model, but the time for the method to
converge to an optimal policy can be unfeasibly long. The last auto-scaling type included
in the classification is the control theory area. It involves creating a reactive or proactive
controller to automatically adjust the required resources to the application demand.

13

Each of the auto-scaling techniques will be discussed in the current section, also consid-
ering their limitations when applied to the scaling task.

5.1 Static Threshold-based Rules

Threshold-based rules or policies are very popular among cloud providers such as Amazon
EC2, and third-party tools like RightScale [28]. The simplicity and intuitive nature of these
policies make them very appealing to users. However, setting thresholds is a per-application
task, and requires a deep understanding of workload trends.

5.1.1 Definition of the Technique

The number of VMs in the target application (defined in Section 2) will vary according to a
set of rules, typically two: one for scaling up and one for scaling down. Those rules can use
one or more performance metrics, such as the request rate, CPU load or average response
time. Each rule or policy involves several parameters defined by the user: an upper threshold
thrUp; a lower threshold thrDown; two time values vUp and vDown that define how long
the condition must be met to trigger a scaling action, and (optionally) two inertia durations:
inUp for scaling up and inDown for scaling down. The upper and lower thresholds must
be defined for each performance metric x. The scaling actions differ depending on the type
of scaling. For horizontal scaling, the user should define a fixed amount s of VMs to be
allocated or deallocated, but for vertical scaling, the same variable s refers to the amount
of resource that will be added (CPU, RAM,...). The parameters vUp, vDown, inUp and
inDown are optional and not included in all models. The resulting rules will have a structure
similar to these:

if x >thrUp for vUp seconds then

n = n+ s and

do nothing for inUp seconds

(1)

if x <thrDown for vDown seconds then

n = n− s and

do nothing for inDown seconds

(2)

The best way to understand static threshold-based rules is by means of an example: add
2 small instances when the average CPU is above 70% for more than 5 minutes.

Focusing on horizontal scaling, the user can define a maximum nMax and a minimum
nMin number of VMs, both to control the overall cost and to guarantee a minimum level of
availability. At each iteration, if the performance metric x violates thrUp for vUp seconds,
s VMs are requested and added to the pool of application servers. Then, the auto-scaling
system inhibits itself for inUp seconds. If the performance metric x goes below thrDown for
vDown seconds, s VMs are removed and their resources released. Again, the system inhibits
itself for inDown seconds.

14

5.1.2 Review of Proposals

Threshold-based rules can easily manage the amount of resources assigned to an application
hosted in a cloud platform, and perform auto-scaling actions to adapt resources to the input
demand (e.g. [54], [70], [58], [59]). However, setting the rules requires an extra effort from
the user, who needs to select the suitable performance variable or logical combination of
variables, and also to set several parameters. Among those parameters, the upper and lower
thresholds for the performance variable (e.g. 30% and 70% of CPU load) are the key for
the correct working of the rules. In particular, Dutreilh et al. [54] remark that thresholds
need to be carefully tuned in order to avoid oscillations in the system (e.g. in the number
of VMs or in the amount of CPU assigned). To prevent this problem, it is also advisable
to set an inertia, cooldown or calm period, a time during which no scaling decisions can be
committed.

Most authors and cloud providers use only two thresholds per performance metric. How-
ever, Hasan et al. [59] have considered using a set of four thresholds and two durations: ThrU,
the upper threshold; ThrbU, which is slightly below the upper threshold; ThrL, the lower
threshold; ThroL, which is slightly above the lower threshold; and two durations (in seconds)
used for checking persistence of metric value above/below ThrU /ThrL and ThrbU /ThroL.
This parameter configuration better tracks the metric value trends: trending up or down with
persistence, trending down from above,... The system can then perform finer auto-scaling
decisions than using only the two common thresholds.

Conditions in the rules are usually based on one or at most two performance metrics,
being the most popular the average CPU load of the VMs, the response time, or the input
request rate. Both Dutreilh et al. [54] and Han et al. [58] use the average response time of
the application. On the contrary, Hasan et al. [59] prefer using performance metrics from
multiple domains (compute, storage and network) or even a correlation of some of them, for
example:

• Add a new VM when both CPU Load and the response time from a customer edge
router are high (above certain thresholds)

• Increase the bandwidth of the network link resource when both the response time and
the network link load are high.

A complement to reactive rules is RightScale’s auto-scaling algorithm [29]. It is a simple
democratic voting process whereby, if a majority of the VMs agree that they should scale
up or down, that action is taken; otherwise no action occurs. Each VM votes to scale
up or down based on a set of rules. After each scaling action, there is a period called
the resize calm time (equivalent to the inertia or cooldown time), where no action can be
performed. It prevents the algorithm from continually allocating resources as new instances
boot. RightScale recommends 15 minute-period of calm time because new machines generally
take between 5 to 10 minutes to start.

This auto-scaling technique that combines rules and a voting system has been adopted
by several authors (Kupferman et al. [65], Chieu et al. [51], Ghanbari et al. [56], Simmons

15

et al. [81]). Chieu et al. [51] initially proposed a set of reactive rules based on the number
of active sessions, but this work was extended in Chieu et al. [52] following the RightScale
approach: if all instances have active sessions above the given upper threshold, a new instance
is provisioned; if there are instances with active sessions below a given lower threshold and
with at least one instance that has no active session, the idle instance will be shut down.

As RightScale’s voting system is based on rules, it has the same disadvantage: the algo-
rithm is highly dependent on user-defined threshold values, and therefore, to the workload
characteristics. This was the conclusion reached by Kupferman et al. [65] after comparing
RightScale with other algorithms. Simmons et al. [81] try to overcome this problem with
a strategy-tree, a tool that evaluates the deployed policy set, and switches among alterna-
tive strategies over time, in a hierarchical manner. Authors created three different elasticity
policies, customized to different input workloads, and the strategy-tree would switch among
them based on the workload trend (analyzed with a regression-based technique).

In order to save costs, Kupferman et al. [65] come up with an interesting idea called
smart kill : There is no reason to terminate a VM before the hour is over, even if the load is
low, because usually partial hours are charged as full hours.

Before finishing this section, it is worth-mentioning the idea of using dynamic thresholds
depending on the application conditions. Beloglazov and Buyya [44] propose a technique
for dynamic consolidation of VMs based on adaptive utilization thresholds. Authors collect
the CPU utilization of each VM allocated in a host. They try to determine the probability
distribution of the CPU utilization for a host Ui, that is the sum of utilizations by m Vms
allocated to that host. Then, it is possible to find out an interval of the CPU utilization,
which will be reached with a low probability (for example > 90% and < 20%), and therefore,
set the corresponding thresholds. In the same line of dynamic thresholds, Lim et al. [67]
described a proportional thresholding technique, based on an integral controller.

Table 1 shows a summary of the articles cited in this section.

5.2 Reinforcement Learning (Q-Learning)

Reinforcement Learning (RL) is a type of automatic decision-making approach that can be
applied for auto-scaling. It online captures the performance model of a target application
and its policy without any a priori knowledge. We will describe the problem modeling as a
Markov Decision Process, and the Q-learning algorithm, which is one of the existing methods
to solve RL problems.

5.2.1 Definition of the Technique

Reinforcement learning is a computational approach to understanding and automating goal-
directed learning and decision-making. It focuses on learning through direct interaction
between an agent and its environment (see Figure 3). The decision-maker is called the
agent, that will learn from experience (trial-and-error method) the best action to execute
for each state of the environment, always trying to maximize the returned reward. In terms
of our problem, the auto-scaler is the agent that interacts with the scalable application

16

Ref Auto-scaling
Techniques

H/V
Scal.

Target
tier

Metric Workloads Experimental Platform

[54] Rules + RL H BT Response time Synthetic. Made up of 5 sinu-
soidal oscillations

Custom testbed + RUBiS

[58] Rules Both All
tiers

Response time Synthetic. Browsing and or-
dering behavior of customers.

Custom testbed (called IC
Cloud) + TPC

[59] Rules Both LB
+
BT

CPU load, re-
sponse time,
network link load,
jitter and delay.

Only algorithm is described, no
experimentation is carried out.

[52] RightScale
+ MA to
performance
metric

H BT Number of active
sessions

Synthetic. Different number of
HTTP clients

Custom testbed. Xen + cus-
tom collaborative web applica-
tion

[65] RightScale +
Time-series:
LR and AR(1)

H BT CPU load Synthetic. Three traffic pat-
terns: weekly oscillation, large
spike and random

Custom simulator, tuned after
some real experiments.

[56] RightScale H BT CPU load Real. World Cup 98 Real provider. Amazon EC2 +
RightScale (PaaS) + a simple
web application

[81] RightScale +
Strategy-tree

H BT CPU load Real. World Cup 98 Real provider. Amazon EC2 +
RightScale (PaaS) + a simple
web application.

[70] Rules V BT Cpu, memory,
bandwidth, storage

Synthetic traffic Custom simulator + Java rule
engine Drools

Table 1: Summary of references about static threshold-based rules.

environment defined in Section 2. It will decide whether to add or remove resources to the
application (actions), depending on the current input workload, performance or other set
of variables (state), and always trying to minimize the application response time (or other
scalar reward).

Figure 3: The agent-environment interaction in reinforcement learning2.

More formally, at each time step t, where t = 0, 1, 2, . . . is a sequence of discrete time
steps, the agent receives some representation of the environment’s state st ∈ S, where S is
the set of possible states, and on that basis selects an action, at ∈ A(st), where A(st) is the
set of actions available in state st. One time step later, as a consequence of its action, the
agent receives a numerical reward, rt+1, and finds itself in a new state st+1. At each time
step, the agent implements a mapping from states to probabilities of selecting each possible
action. This mapping is called the agent’s policy and is denoted πt, where πt(s, a) is the
probability that at = a if st = s.

2Figure taken from http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node28.html

17

RL environments can be thought of as memoryless, in the sense that future states can
be determined only with the current state, regardless of the past history. This is called
the Markov property, which states that the probability of a transition to a new state st+1

only depends on the current state st and the decision maker’s action a; it is conditionally
independent of all previous states and actions:

P {st−1 = s′, rt+1 = r|st, at} = P {st−1 = s′, rt+1 = r|st, at, rt, st−1, at−1, . . . , r1, s0, a0} (3)

A stochastic process that satisfies the Markov property is called a Markov Decision Pro-
cess (MDP). It provides a mathematical framework for modeling decision making problems,
and is typically used to formulate reinforcement learning scenarios. A MPD is represented
as a 4-tuple consisting of states, actions, transitions probabilities and rewards.

• S, represents the environmental state space

• A, represents the action space

• R : S × A → R defines the reward for each state-action pair. R(s, a) is the reward
received after executing action a from state s.

• T : S ×A→ P (S), for each state s and action a, it specifies a probability distribution
over the S set. It defines the probability P (s′|s, a) of a transition to state s′, given
current state s and execution of action a.

The core problem of MDPs (and also of reinforcement learning) is to find a policy for
the decision maker or agent: a function π : S → A that maps every state s with the best
action a, trying to maximize the cumulative future rewards. A parameter called discount rate
γ is introduced to avoid infinite reward values in continued tasks such as the auto-scaling
problem. The agent’s policy should maximize the expected discounted rewards obtained in
the long run:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞
∑

0

γkrt+k+1 (4)

In order to find the optimal policy π∗, the RL algorithm should estimate an utility value
for each state s. The utility is the sum of the expected discounted rewards for that state.
Once the agent has learned all the estimated values, given the current state st, it will choose
the action that leads to the state st+1 with the highest utility value. The value-state function
V π(s) is used to represent the estimated utility values for each state, where V π(s), is the
expected return when starting in s and following π thereafter.

V π(s) = Eπ {Rt|st = s} = Eπ

{

∞
∑

0

γkrt+k+1|st = s

}

(5)

18

However, in order to determine the value-state function, we need to know the transition
probabilities T for each state-action pair. In order to solve this problem, some RL algorithms
focus on estimating a action-value function Qπ. We define the utility value of taking action
a in state s under a policy π, denoted Qπ(s, a), as the expected return starting from s, taking
the action a, and thereafter following policy π:

Qπ(s, a) = Eπ {Rt|st = s, at = a} = Eπ

{

∞
∑

0

γkrt+k+1|st = s, at = a

}

(6)

The relationship between the value-state function V and the action-value function Q is
defined as:

V π(s) = max
a∈A

Qπ(s, a) (7)

As explained above, π∗ will choose the action that leads to the state with the highest
utility value, given that all the state-action values are known in either the V ∗(s) or the
Q∗(s, a) functions. In this case, we will focus on the action-value function:

Q∗(s, a) = max
π

Qπ(s, a)∀s ∈ S, ∀a ∈ A

π∗(s) = arga∈A maxQ∗π(s, a)
(8)

Almost all reinforcement learning algorithms are based on estimating value function of
states (or of state-action pairs) from experience. There are three main classes of methods:
dynamic programming, Monte Carlo methods, and temporal-difference learning. Dynamic
programming require the model (both transition probabilities T and rewards R) to be known,
whilst the other two are model-free. Temporal-difference (TD) methods are adequate for
step-by-step learning, and the most suitable for the auto-scaling scenario. Indeed, Q-learning
is a one-step TD algorithm used in the literature for this type of environments. It is based on
learning the action-value function Q that directly approximates the optimal Q∗, independent
of the policy being followed. For this reason, it is called an off-policy method: the optimal
policy π∗ can be derived at any time, considering the action with the highest Q-function
value for each state.

At each iteration step, the function Q(st, at) is updated with the immediate reward R for
making an action at, plus the best utility value Q(st+1, a) for the resulting state st+1. The
update formula is defined as follows:

Q(st, at)← Q(st, at) + α[Rt+1 + γmax
a

Q(st+1, a))−Q(st, at)] (9)

Two parameters need to be set: the learning rate α and the discount factor γ. α defines
the impact of the new data on the Q function, while γ adjusts the importance given to future
rewards.

Typically, the Q(s, a) values are stored in a lookup table, that maps all system states
st to their best action at and can be initialized with chosen values or based on a specific,
but simple, performance model. Another important task related to the Q-learning algorithm
is the action selection, that must balance both exploration and exploitation. In order to

19

obtain a higher reward, a reinforcement learning agent will choose those previously explored
actions that have been found to be effective in producing a reward. However, to discover
these actions, the agent will have to execute actions that have not been previously picked.
A typical strategy is called ǫ-greedy: most of the time (with probability ǫ), the action with
the best reward will be executed (arga maxQ(s, a)); and a random action will be selected
with a low probability 1− ǫ, in order to explore non-visited actions.

5.2.2 Review of Proposals

The basic elements of a MDP, specifically, the action set A, the state space S, and the reward
function R, can be defined in a number of ways even for the same problem. Authors have
proposed different definitions for the auto-scaling scenario. For example, in case of horizontal
scaling, we could consider a state s defined as (w, u, p), where w is the total number of user
requests observed per time period, u is the number of VMs allocated to the application, and
p is the performance in terms of average response time to requests, bounded by a value Pmax

chosen from experimental observations [55]. Another approach focused on vertical scaling
could consider that the state is given by the memory and CPU usage for each VM [78].
The possible set of actions A depends on the type of scaling: add, remove or maintain the
number of VMs, in horizontal scaling; or increase or reduce the amount of assigned CPU
and memory. Regarding the reward function, it usually takes into account both the cost of
the resources (renting VMs, bandwidth, ...), and the cost derived from SLO violations [43],
[55], [78].

Although RL seems a promising technique for auto-scaling, it presents several problems,
that have been addressed in a number of ways [54], [55] [43], [83], [78]:

• Bad initial performance and large training time: The performance obtained during live
online training may be unacceptably poor, both initially and during an unfeasibly long
training period.

• Large state-space: It is often called curse of dimensionality problem. The number of
states grows exponentially with the number of state variables, which leads to scalability
problems. In the simplest form, a lookup table is used to store a separate value for
every possible state-action pair. As the size of such a table increases, the performance
worsens.

In order to improve the bad performance in early steps, a different initial function could
be used. For example, Dutreilh et al. [55] propose an initial approximation of the Q-function,
that updates the value for all states at each iteration, and also speeds up the convergence
to the optimal policy. Reducing this training time can also be addressed with a policy that
visits several states at each step [78] or using parallel learning agents [43]. In the latter,
each agent does not need to visit every state and action; instead, it can learn the value of
non-visited states from neighboring agents. A radically different approach to avoid the poor
performance in online training consists of using an alternative model (e.g. a queuing model)
to control the system, whilst the RL model is trained offline on collected data.

20

In order to cope with larger state spaces, other nonlinear function approximators can
be used, instead of lookup tables, such as neural networks, regression trees, support vector
machines, wavelets and regression splines. For example, neural networks [83], [78] take the
state-action pairs as input and output the approximated Q-value. They are also able to
predict the value for non-visited states.

As we have said previously, the action selection policy used by the Q-learning algorithm
has a great impact in the learning stages. ǫ-greedy is a commonly used strategy for this
purpose, in which random actions are selected with a low probability 1− ǫ. This allows the
RL algorithm to adapt the optimal policy to relatively smooth changes in the behavior of
the application, but not to sudden burst in the input workload. This is still a problem that
should be addressed in order to apply RL in production systems.

Table 2 shows a summary of the articles cited in this section:

Ref Auto-scaling
Techniques

H/V
Scal.

Target
tier

Metric Workloads Experimental Platform

[43] RL H BT Number of user re-
quests, and number
of VMs

Synthetic (Poisson distribu-
tion)

Custom simulator (Matlab)

[55] RL H BT Number of user
requests, number
of VMs, and per-
formance (response
time)

Synthetic. With sinusoidal
pattern

Custom testbed. Olio applica-
tion + Custom decision agent
(VirtRL)

[83] RL(+ANN) +
Queuing model

H BT Arrival rate, Re-
sponse time, num-
ber of servers

Synthetic. Poisson distri-
bution (open-loop), different
number of users and exponen-
tially distributed think times
(closed-loop)

Custom testbed (shared data-
center). Trade3 application (a
realistic simulation of an elec-
tronic trading platform)

[78] RL(+ANN) V BT CPU and memory
usage

Synthetic: 3 workload mixes
(browsing, shopping and order-
ing)

Custom testbed. Xen + 3
applications (TPC-C, TPC-W,
SpecWeb)

Table 2: Summary of references about reinforcement learning.

5.3 Queuing Theory

Classical queuing theory has been extensively used to model Internet applications and tra-
ditional servers, in order to estimate performance metrics such as the queue length or the
average waiting time for requests. In the current section, we will describe the main charac-
teristics of a queuing model and how they can be applied to scalable scenarios.

5.3.1 Definition of the Technique

Queuing theory makes reference to the mathematical study of waiting lines, or queues. The
basic structure of a model is depicted in Figure 4. Client requests arrive to the system at a
mean arrival rate λ, and are enqueued until they are processed. As the figure shows, one or
more servers may be available in the model, that will attend requests at a mean service rate
µ.

Kendall’s notation is the standard system used to describe and classify queuing models.
A queue is described in shorthand notation by A/B/C/K/N/D or the more concise A/B/C.

21

Figure 4: A simple queuing model with one server (left) and multiple servers (right).

The elements K, N and D are optional; if not present, it is assumed K = ∞, N = ∞ and
D =FIFO. This is the description for each element in notation:

• A, Inter-arrival time distribution

• B, Service time distribution

• C, Number of servers

• K, System capacity or queue length: It refers to the maximum number of customers
allowed in the system including those in service. When the number is at this maximum,
further arrivals are turned away. If this number is omitted, the capacity is assumed to
be unlimited, or infinite.

• N , Calling population: The size of the population from which the customers come. If
this number is omitted, the population is assumed to be unlimited, or infinite. When
the requests come from an infinite population of customers, we have an open queuing
model, whereas a closed queuing model is based on a finite population of customers.

• D, Service discipline or priority order : The service discipline or priority order that jobs
in the queue are served. The most typical one is FIFO/FCFS (First In First Out/First
Come First Served), in which the requests are served in the order they arrived in. There
are alternatives such as LIFO/LCFS (Last in First Out/Last Come First Served) and
PS (Processor Sharing).

The most typical values for both inter-arrival A and service B times, are M , D and G.
M value stands for Markovian and it refers to a Poisson process, which is characterized by
a parameter λ that indicates the number of arrivals (requests) per time unit. Besides, the
inter-arrival or the service time will follow an exponential distribution. In case of D value,
those times are deterministic or constant all the time. Another commonly used value is G,
that corresponds to a general distribution with a known mean and variance.

The cloud application scenario described in Section 2 can be formulated using a simple
queuing model, considering a single queue for the load balancer, that distributes the requests
among n VMs (see Figure 4). Usually, several queues are combined in the same model (a
queuing network). More complex, realistic system can be formulated as a queuing network,
such as multi-tier applications. For example, each tier can be modeled as a queue with one
or n servers (see Figure 5).

22

Figure 5: A queuing network modeling a 3-tier application, with one queue per tier3.

Queuing theory is intended for systems with a stationary nature, characterized by con-
stant arrival and service rates. In case of scenarios with changing conditions, such as our
target, scalable application, the parameters of the queuing model have to be periodically re-
calculated. Based on a stationary queuing model, several useful performance metrics can be
estimated, including the arrival rate λ, the inter-arrival time, the average number of requests
in the queue or in the whole system, the average time waiting in the queue, and the service
time. There are two main approaches to obtain those metrics: analytic methods (usually
valid for simple models), and simulation (that can be applied to more complex scenarios).

Analytic methods are only available for relatively simple queuing models, with well-
defined distributions for arrival and service process (e.g. standard statistical distributions
such as Poisson or Normal). A typical formula in this context is the Little’s Law. It states
that the average number of customers (or requests) E[N] in the system is equal to the
average customer arrival rate λ multiplied by the average duration of each customer E[T].
The formula is as follows: E[N] = λ × E[T]. A similar definition for the Little’s Law says
that the average queue length can be calculated as the product of the mean arrival rate and
the average waiting time in queue.

There is a limited set of queuing models that can be solved using analytic methods,
including M/M/1 and the G/G/1 processes. The easiest case are Poisson-based models,
where both the inter-arrival times and the service times follow the exponential distribution.
For example, the mean response time R of a M/M/1 model can be calculated as R = 1

µ−λ
,

given a service rate µ and an arrival rate λ. Another simple queuing model is G/G/1, in
which the system’s inter-arrival and service times are governed by a general distribution with
known means and variances. The behavior of a G/G/1 system can be captured using the

following formula: λ ≥
[

s+
σ2
a+σ2

b

2(R−s)

]

−1

, where R is the mean response time, s is the average

service time for a request, σ2
a and σ2

b are the variance of inter-arrival time and the variance
of service time, respectively. All those values can be monitored online.

The clear drawback of analytic methods are the imposed assumptions that are not usually
valid for real scenarios. Furthermore, as the complexity of the system grows, the analytic
formulas become less and less tractable. The alternative to analytic methods are discrete-
event simulation (DES) techniques. They are free from assumptions about the particular
type of the arrival process (Poisson or not), as well as about the service time (exponential
or not), and can be applied to complex systems composed of several queues. A DES model

3Figure taken from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4273121&tag=1

23

is a computer model that mimics the dynamic behavior of a real process as it evolves with
time in order to visualize and quantitatively analyze its performance.

5.3.2 Review of Proposals

In the literature, both simple queuing models and queuing networks have been used to model
applications. For example, general Internet applications have been usually formulated using
simple queuing models, and even a cloud infrastructure can be modeled as a G/G/N queue,
in which the number of servers N is variable [41]. The model is used to estimate different
parameters, for example, the necessary resources required for a given input workload λ, or the
mean response time for requests. Then, this information is included in different techniques,
such as a predictive controller [41] or to solve an optimization problem (e.g. distributing
servers among different applications, while maximizing the revenue [85]).

Due to the limitation of models with a single queue, we will focus on the use of queuing
networks to formulate a single application tier as n parallel servers [83], [85], or a whole
multi-tier application [84], [89]. The first approach is adopted by Tesauro et al. [83], who
considered both open and closed-loop models with the following specifications:

• Open Queuing Network Model : Given an application with an overall demand λ dis-
tributed on a round-robin basis among n servers, the system can be modeled as n
independent and identical parallel open networks each with one server and a demand
level of λ/n. Authors used a parallel M/M/1 queuing formulation to model the mean
response time characteristics of an application, along with exponential smoothing for
estimates of µ.

• Closed-Loop Queuing Network Model : In this case, the application has a finite number
of customers M . Thus, it can be model as n independent parallel closed networks each
with one server and M/n customers. Mean Value Analysis (MVA) formulation [71] is
used to model the mean response time characteristics of the application, defined by
two parameters: the average think time Z and the average service time at the server,
1/µ.

Similarly, Villela et al. [85] focus on the application tier of e-commerce systems, and model
each server as a M/GI/1/PS queue. They characterized the arrival process of requests to
an application, using a real trace of an e-commerce system, and found that for their horizon
time of interest, this arrival process is adequately described by a Poisson process (M or
Markovian). The arrival rate of request is uniformly split among the servers allocated.

Multi-tier applications can also be addressed using queuing networks, either considering
a queue per server [84], or just a queue per tier [89]. The first approach is adopted by
Urgaonkar et al. [84], who use a network of G/G/1 queues (one per server). Based on this
model, they combine the formula for λ (previously defined) in a G/G/1 system, and the
Little’s Law in order to determine the peak workload and the number of servers needed on
each tier to satisfy the demand. This peak workload is predicted using histograms, and
corrected using reactive methods. The clear drawback is that provisioning for peak load

24

drives to high under-utilization of resources. The other mentioned approach is to model
each tier with a single queue. Zhang et al. [89] considered a limited number of users, and
thus, they used a closed system with a network of queues. This model can be efficiently
solved using Mean-Value Analysis (MVA) [71].

The information required for a queuing model, such as the input workload (number of
requests, transactions) or service time can be obtained by online monitoring [84] or estimated
using different methods. For example, Zhang et al. [89] used a regression-based approxima-
tion in order to estimate the CPU demand on client transactions.

Table 3 shows a summary of the articles cited in this section:

Ref Auto-scaling
Techniques

H/V
Scal.

Target
tier

Metric Workloads Experimental Platform

[84] QT + His-
togram +
Thresholds

H All PEAK workload Synthetic and Real (World
Cup 98)

Custom testbed. Xen + 2 ap-
plications (RUBiS and RUB-
BOS)

[85] QT H BT Arrival rate Real. E-commerce website
(2001) + Synthetic traces

Custom simulator (Monte-
Carlo)

[89] QT + Regres-
sion (Predict
CPU load)

- All Number and type
of transactions (re-
quests)

Synthetic (browsing, ordering
and shopping)

Custom simulator, based on
C++Sim. + Data collected
from TPC-W

[83] RL(+ANN) +
QT

H BT Arrival rate, Re-
sponse time, num-
ber of servers

Synthetic. Poisson distri-
bution (open-loop), different
number of users and exponen-
tially distributed think times
(closed-loop)

Custom testbed (shared data-
center). Trade3 application (a
realistic simulation of an elec-
tronic trading platform)

Table 3: Summary of references about reinforcement learning.

5.4 Control Theory

Control theory has been applied to automate the management of web server systems, storage
systems, data centers/server clusters, and other systems, and it also shows interesting results
on cloud computing platforms. Control systems are mainly reactive, but there are also some
proactive approximations such as Model Predictive Control, or even combining a control
system with a predictive model.

5.4.1 Definition of the Technique

There are three types of control systems: open loop, feedback and feed-forward. Open-loop
controllers, also referred as non-feedback, compute the input to the target system using
only the current state and its model of the system. They do not use feedback to determine
whether the system output has achieved the desired goal. In contrast, feedback controllers
observe the output of the system, and are able to correct any deviations from the desired
value. Feed-forward controllers try to anticipate to errors in the output. They predict the
behavior of the system, based on a model, and react before the error actually occurs. The
prediction may fail, and for this reason, feedback and feed-forward controllers are usually
combined.

25

In the context of scalable applications (see Section 2), both feedback and feed-forward
types seem the most suitable approaches. Indeed, authors have used feedback controllers to
address the auto-scaling task. The main objective of the controller is to maintain the output
(e.g. performance) of the target system (the application) to the desired level (e.g. response
time below 2 seconds), by adjusting the control input (e.g. resource allocation, number of
VM).

Figure 6: Block diagram of a feedback control system4.

The basic structure of a feedback controller is shown in Figure 6. These controllers can
be divided into four categories [76]:

• Fixed gain controllers : They are very popular due to their simplicity. However, after
selecting the tuning parameters, they remain fixed during the time the controller is in
operation. An example is the Proportional Integral Derivative (PID) controller. An
Integral controller can be represented as:

uk+1 = uk +Ki(yref − yk) (10)

where uk+1 is the new actuator value (e.g. new number of VM), uk is the current
actuator value (e.g. current number of VM), Ki is the integral gain parameter, yk is
the current sensor measurement (e.g. CPU load); and yref is the target value for the
variable.

And this is the formula for a Proportional-Integral (PI) controller:

uk+1 = uk + (Kp +KI)Ek −KpEk−1 (11)

It includes two new parameters: Ek, that refers to an error (reference minus measured
actuator value), and Kp, which is a proportional term that determines the ratio of out-
put response to the error in the previous cycle. KI is an integral term that determines
the throttling for accumulated errors in previous cycles.

• Adaptive control : Adaptive control addresses some of the limitations of fixed gain
controllers, by adjusting the controller tuning parameters online. On each sampling
step, a dynamic model of the system is constructed. Examples of adaptive controllers

4Figure taken from http://www.ict.swin.edu.au/personal/tpatikirikorala/docs/Tharindu_

Cloudworkshop2010.pdf

26

are self-tuning PID controllers, gain-scheduling and self-tuning regulators. They are
suitable for slowly varying workload conditions, but not for sudden bursts; in that case,
the online model estimation process may fail to capture the dynamics of the system.

• Reconfiguring control : In adaptive control, the parameters are derived online, but the
controller remains the same. The reconfiguring controllers remove this limitation by
allowing the controller to be changed at run time depending on the conditions. Some
examples are Model-Switching and Tuning adaptive control. They can be suitable to
handle both predictable and unpredictable bursts in workload.

• Model predictive control (MPC): In contrast to purely feedback controllers, MPC uses
a proactive approach and predicts future behavior of the system. This may be an
interesting feature in cloud platforms.

The number of input and output variables of a feedback controller can be just one, yielding
a Single-input single-output (SISO) controller; or more than one, yielding a Multiple-input
multiple-output (MIMO) controller.

Before designing a control system, a formal relationship between the control input and
the output has to be modeled, that is called the transfer function. Basic controllers usually
consider linear approaches for this problem (e.g. Linear Time Invariant algorithm), but
there are alternatives that are able to capture this input-output mapping more accurately.
In the literature, several approaches have been followed to create a performance model of
the system, such as ARMA model [74] (see Section 5.5), smoothing splines [45], fuzzy logic
[88], [86], [66] and Kalman filters [63].

• Smoothing spline: It is a method of smoothing (i.e fitting a smooth curve to a set of
noisy observations) using a spline. This term refers to a polynomial function, defined
by multiple subfunctions.

• Kalman filter : It is a well-established technique in control systems for noise filtering
and state prediction. A Kalman filter is a recursive estimator for a new state st+1,
based on both the current measurement zt and the estimation of the previous state st.

• Fuzzy model : Fuzzy logic is a tool to deal with uncertain, imprecise, or qualitative
decision-making problems. Unlike in Boolean logic, where an element either belongs or
does not belong to a set A, the membership of x in A has a degree value in a continuous
interval between 0 and 1.

5.4.2 Review of Proposals

The first type of controllers are fixed gain type, that include the PID controller. Different
variants of this one have been used in the literature. An Integral controller is able to adjust
the number of VMs based on average CPU usage [67], [68]. The PI controller has been
applied to control the resources required by batch jobs, based on their execution progress
[75]. Kp and KI parameters can be set manually, based on trial-and-error [67] or using a

27

model for the application. Park and Humphrey [75] construct a model for the progress of a
job with respect to provisioned resources.

Many papers discuss adaptive control techniques [74], [77], [41] [45]. Ali-Eldin et al.
[41] propose combining two proactive, adaptive controllers for scaling down with dynamic
gain parameters based on input workload, and a reactive approach for scaling up. Padala
et al. [74] propose a MIMO adaptive controller that uses a second-order ARMA to model the
non-linear and time-varying relationship between the resource allocation and its normalized
performance. The controller is able to adjust the CPU and disk I/O usage. A different
approach to create a performance model is based on smoothing splines, that can be trained
to map the workload and number of servers to the application performance. Bod́ık et al. [45]
combine this performance model with a gain-scheduling (adaptive controller), with α and β
parameters, that controlled the scaling rate. Kalyvianaki et al. [63] designed different SISO
and MIMO controllers to determine the CPU allocation of VMs, relying on Kalman filters.

Finally, fuzzy models are also used as a complement to control systems to map the
workload (input variable) and the required resources (output variable). First, both input
and output variables of the system are mapped into fuzzy sets. This mapping is defined by
a membership function that determines a value within the interval [0,1]. A fuzzy model is
based on a set of rules, that relate the input variables (pre-condition of the rule), to the
output variables (consequence of the rule). The process of translating input values into
one or more fuzzy sets is called fuzzification. Defuzzification is the inverse transformation
which derives a single numeric value that best represents the inferred fuzzy values of the
output variables. A control system that relies on a rule-based fuzzy model is called a fuzzy
controller. Typically, the rule set and membership functions of a fuzzy model are fixed at
the design time, and thus, the controller is unable to adapt to a highly dynamic workload.
An adaptive approach can be used, in which the fuzzy model is repeatedly updated based on
online monitored information [88], [86]. Xu et al. [88] applied an adaptive fuzzy controller to
the business-logic tier of an application, and estimated the required CPU load for the input
workload. A similar approach is followed by [86], but here authors focus on the database
tier. They claim that they use the fuzzy model to predict the future resource needs; however,
they use the workload of the current time step t, to calculate the resource needs rt+1 of the
time step t+1, based on the assumption that no sudden change happened within one period
of time. The same authors [87] have also used a Fuzzy Model Predictive Controller, that
again combines control theory and fuzzy rules.

A further improvement is the neural fuzzy controller, which utilizes a four-layer neural
network (see Section 5.5) to represent the fuzzy model. Each node in the first layer corre-
sponds to one input variable. The second layer determines the membership of each input
variable to the fuzzy set (the fuzzification process). Each node in layer 3 represents the
precondition part of one fuzzy logic rule. An finally, the output layer acts as a defuzzifier,
which converts fuzzy conclusions from layer 3 into numeric output in terms of resource ad-
justment. At early steps, the neural network only contains the input and output layers.
The membership and the rule nodes are generated dynamically through the structure and
parameters learning. Lama and Zhou [66] relied on a neural fuzzy controller, that is capable

28

of self-constructing its structure (both the fuzzy rules and the membership functions) and
adapting its parameters through fast online learning (a reconfiguring controller type).

Table 4 shows a summary of the articles cited in this section:

Ref Auto-scaling Tech-
niques

H/V
Scal.

Target
tier

Metric Workloads Experimental Platform

[76] Control Theory: Feed-
back controllers classi-
fication

[75] Control Theory: PI
controller

V Batch
jobs

CPU usage and job
progress

Batch jobs Custom testbed. HyperV
+ 5 applications (ADCIRC,
OpenLB, WRF, BLAST and
Montage) + Sensor library (to
get progress of the application)

[67] Control Theory: PI
controller (Propor-
tional thresholding) +
Exponential Smooth-
ing for performance
variable

H BT Cpu utilization Synthetic. Different
number of threads.

Custom testbed. Xen + simple
web service

[68] Control Theory: PI
controller (Propor-
tional thresholding)

H ST Cpu utilization Synthetic. Custom testbed. Xen + Modi-
fied CloudStone (using Hadoop
Distributed File System) +
Hyperic as monitor

[74] Control Theory:
MIMO adaptive con-
troller + ARMA
(performance model)

V BT Cpu usage and disk
I/O

Synthetic and real-
istic (generated with
MediSyn)

Custom testbed. Xen + 2 ap-
plications (RUBiS and TPC-
W)

[41] Control Theory: Adap-
tive controllers + QT

H BT Number of re-
quests, service
rate

Real. World Cup 98. Custom simulator in Python

[45] Control Theory: Gain-
scheduler (adaptive)
+ Smoothing splines
(performance model)
+ Linear Regression

H BT Number of requests Synthetic (Faban gen-
erator)

Real provider. Amazon EC2 +
CloudStone benchmark

[88] Controller Theory:
fuzzy controller)

V BT Number of re-
quests, CPU load

Real (World Cup
98) and Synthetic
(Httperf)

Custom testbed. VMware
ESX Server + Java Pet Store.

[86] Fuzzy model V DT Number of queries,
CPU load, disk I/O
bandwidth

Synthetic and realistic
(based on World Cup
98)

Custom testbed. Xen + 2 ap-
plications (RUBiS and TPC-
H)

[66] Control Theory: Re-
configuring control +
Fuzzy model (+ ANN)

V All Number of re-
quests, resource
usage

Synthetic. (Pareto dis-
tribution)

Simulation

[63] Control Theory: Adap-
tive SISO and MIMO
controllers + Kalman
filter

V All CPU usage Synthetic (Browsing
and bidding mix)

Custom testbed. Xen + RU-
BiS application

Table 4: Summary of references about control theory techniques.

5.5 Time-series Analysis

Time series are used in many domains including finance, engineering, economics and bioin-
formatics, generally to represent the change of a measurement over time. A time-series is
a sequence of data points, measured typically at successive time instants spaced at uniform
time intervals. An example is the number of requests that reaches an application, taken at
one-minute intervals. The time-series analysis could be used to find repeating patterns in
the input workload or to try to forecast future values.

29

5.5.1 Definition of the Technique

The general scenario has already been described in Section 2. In this case, a certain perfor-
mance metric, such as average CPU load or the input workload, will be periodically sampled
at fixed intervals (e.g. each minute). The result will be a time-series X containing a sequence
of the last w observations:

X = xt, xt−1, xt−2, ..., xt−w+1 (12)

The auto-scaling problem can be divided into two parts: prediction of a future value
(using time-series analysis) and decision making. Time-series analysis is only applied in the
first part, that involves making an estimation of the future workload or resource usage. Based
on this predicted value, the second step consists of deciding the suitable scaling action to
take. Several approaches can be used in decision making such as a set of predefined rules [64]
or solving an optimization problem for the resource allocation [79]. In the current section
we will focus on the first step that uses time-series based techniques.

As stated before, there are two main goals of time-series analysis: (1) forecasting fu-
ture values of the time-series, based on the last observations, (2) identifying the pattern (if
present) that follows the time-series, and then extrapolate it to predict future values. In
both cases, the required information is a list of the last w observations of the time-series,
that we will denote as input window or history window.

Forecasting techniques can be applied either to resource usage or workload prediction.
Based on the last w consecutive observations (xt, xt−1, xt−2, ..., xt−w+1), a future value yt+r

is predicted, which is r intervals ahead of the input window. Some of the techniques used
for this purpose in the literature are Moving Average, Auto-regression, ARMA (combining
both), exponential smoothing and different approaches based on machine learning.

• Averaging methods: They can be used to smooth a time-series in order to remove noise
or to make predictions. The forecast value yt+1 is calculated as the weighted average of
the last w consecutive values. The general formula is as follows: yt+r = a1xt+a2xt−1, ...,
where a1, a2, ..., aw are a set of positive weighting factors that must sum 1. Depending
on the way of determining those weights, several methods are defined:

– Moving average MA(q): Simple MA is the arithmetic mean of the last q or w
values, i.e., it assigns equal weights 1

w
to all observations.

– Weighted moving average WMA(q): Different weights are assigned to each ob-
servation. Typically, more weight is given to the most recent terms in the time
series, and less weight to older data.

– Exponential smoothing: It assigns exponentially decreasing weights over time. A
new parameter is introduced, a smoothing factor α that weakens the influence of
past data. The predictor formula for single exponential smoothing is:

30

yt+1 =αxt + (1− α)yt

=αxt + (1− α)[αxt−1 + (1− α)yt−1]

=αxt + α(1− α)xt−1 + (1− α)2[αxt−2 + (1− α)yt−2]

...

=αxt + α(1− α)xt−1 + (1− α)2xt−2 + . . .+ (1− α)w−1xt−w+1

(13)

where yt+1 represents prediction value for the period t+1, xt is the value at time t,
and yt is the forecast made for period t. Simple exponential smoothing is suitable
for time-series that have no significant trend changes, whereas double smoothing
can be applied to time-series with an existing linear trend. Triple exponential
smoothing can be used for time-series with trend and seasonality. Double and
triple exponential smoothing are derived by applying exponential smoothing to
the already smoothed data.

• Auto-regression of order p, AR(p): In this case, the weighting factors a1, a2, ... are
determined by calculating auto-correlation coefficients and solving linear equations:
∑w

i=1 aiR(i− j) = −R(j), for 1 ≤ j ≤ w, where R is the auto-correlation coefficients
of the time series, and p or w is the length of the sample.

• Auto-regressive Moving Average, ARMA(p,q): It combines both auto-regression (of
order p) and moving average (of order q). The predicted output yt+1 is based on the
previous outputs yt−1, yt−2, ... and the inputs xt, xt−1, xt−1. The general formula is:

yt+1 = a1yt−1 + a2yt−2 + . . .+ b0xt + b1xt−1 + . . . (14)

• Machine Learning-based techniques :

– Regression is a statistical method used to determine the polynomial function that
is closest to a set of points (in this case, the w values of the history window).
Linear regression refers to the particular case of a polynomial of order 1. The
objective is to find a polynomial such that the distance from each of the points
to the polynomial curve is as small as possible and therefore fits the data best.
When the number of input variables is more than one, it is referred as the Multiple
Linear Regression.

– Neural networks: They consist of an interconnected group of artificial neurons,
disposed on several layers: an input layer with several input neurons; an output
layer with one or more output neurons; and one or more hidden layers in between.
For this particular problem, the input layer will contain one neuron for each value
in the history window, and one neuron for the predicted value in the output
layer. During the training phase, it is fed with input vectors and random weights.
Those weights will be adapted until the given input shows the desired output, at
a learning rate ρ.

31

As previously described, another goal in time-series analysis is identifying the pattern
that the series follows, and then extrapolate it to predict future values. Time series patterns
can be described in terms of four classes of components: trend, seasonality, cyclical and
randomness. The general trend (e.g. increasing or decreasing pattern), together with the
seasonal variations that appear repeated over a specific period (e.g. day, week, month,
or season), are the most common components in a time-series. As explained in Section
3, input workloads of internet servers and different cloud applications may show different
periodic components. The trend identifies the overall slope of load to the application, whereas
seasonality and cyclical determines the peeks at specific point of time in a short term and
in a long term basis, respectively.

A wide diversity of methods can be used to find repetitive patterns in time-series, includ-
ing pattern matching, signal processing techniques and auto-correlation.

• Pattern matching : Pattern matching consists on searching for similar patterns on the
history time-series, that are similar to the present pattern. It is very close to the string
matching problem, that has already been explored and several efficient algorithms are
available (e.g. Knuth-Morris-Prat [53]).

• Signal processing techniques : Fast Fourier Transform (FFT) is a technique that decom-
poses the signal time-series into components of different frequencies. The dominant
frequencies (if any) will correspond to the repeating pattern in the time-series.

• Auto-correlation: In auto-correlation, the input time-series is repeatedly shifted (up
to half the total window length), and the correlation is calculated between the shifted
time-series and the original one. If the correlation is higher than a fixed threshold (e.g.
0.9) after s shifts, a repeating pattern is declared, with duration s steps.

A basic technique for time-series representation is an histogram. It involves dividing the
time-series into several equal-width bins, and representing the frequency for each bins. It
has been used in the literature to represent the resource usage pattern or distribution, and
then predict future values (see next Section).

5.5.2 Review of Proposals

In the literature, time-series techniques have been applied mostly to workload or resource
usage prediction. A simple moving average could be used for this purpose, but with poor
results [57]. For this reason, authors have applied this method only to remove noise from
the time-series [75], [67], or just to have a comparison yardstick. For example, Huang
et al. [60] present a resource prediction model (for CPU and memory utilization) based
on double exponential smoothing, and compare it with simple mean and weighted moving
average (WMA). Exponential smoothing clearly obtained better results, because it takes into
account both the current data and the history records for the prediction. Mi et al. [72] also
used a quadratic exponential smoothing against real workload traces (World Cup 98 and

32

ClarkNet), and showed good accurate results, with a small amount of error (a mean relative
error of 0.064 for the best case).

The auto-regression method has been largely used ([65], [50], [57], [49], [64]). Kupferman
et al. [65] applied auto-regression of order 1 to predict the request rate (requests per second)
and found that its performance depends largely on several user-defined parameters: the
monitoring-interval length, the size of the history window and the size of the adaptation
window. The history window determines the sensitivity of the algorithm to local versus
global trends, while the size of the adaptation window determines how far into the future
the model extends.

Combining moving average (MA) and auto-regression (AR), the resulting algorithm is
called auto-regressive moving average method (ARMA). Roy et al. [79] use a second order
ARMA for workload prediction, based on the last three observations. The predicted value
is then used to estimate the response time. An optimization controller takes this response
time as an input and computes the best resource allocation, taking into account the cost of
SLO violations, cost of leasing resources and reconfiguration cost.

The history window values can also be the input for a neural network [62] or a multiple
linear regression equation [65], [45], [62]. The accuracy of both methods depends on the
input window size. Indeed, [62] obtained better results when using more than one past value
for prediction. Kupferman et al. [65] further investigated the topic and found that it is
necessary to balance the size of each sample in the window, to avoid overreaction, but also
to maintain a correct level of sensitivity to workload changes. They propose regressing over
windows of different sizes, and then using the mean of all predictions. Another important
point is the prediction interval r that should be considered. Islam et al. [62] propose using a
12-minute interval, because the setup time of VM instances in the cloud is typically around
5-15 min.

Time-series forecasting can be combined with reactive techniques. Iqbal et al. [61] pro-
posed a hybrid scaling technique that utilizes reactive rules for scaling up (based on CPU
usage) and a regression-based approach for scaling down. After a fixed number of inter-
vals in which response time is satisfied, they calculate the number of application-tier and
database-tier instances using polynomial regression (of degree two).

Apart from those techniques that deal with time-series forecasting, a number of authors
have focused on identifying repeated patterns in the input workload [47], [48], [57], [80].
The most complete comparison of this class of techniques is done by Gong et al. [57]. They
propose using FFT to identify repeating patterns in resource usage (CPU, memory, I/O
and network), and compare it with auto-correlation, auto-regression and histogram. Pattern
matching, proposed by Caron et al. [47], [48], has two main drawbacks: the large number of
parameters in the algorithm (such as the maximum number of matches or the length of the
predicted sequence), that highly affect the performance of algorithm, and the time required
to explore the past history trace.

The last technique considered in this section is the histogram, that has been used by
some authors to predict the resource usage of applications, considering the mean of the
distribution [49], or the mean of the bin with highest frequency [57].

33

Table 5 shows a summary of the articles cited in this section.

Ref Auto-scaling
Techniques

H/V
Scal.

Target
tier

Metric Workloads Experimental Platform

[47] Time series:
Pattern match-
ing

H BT Total number of
CPUs in 100-
seconds interval

Real. A cloud application (An-
imoto), and from Grid systems
(LCG, NorduGrid, SHARCNET)

Analytical models

[48] Time series:
Pattern match-
ing

H BT Total number of
CPUs in 100-
seconds interval

Real cloud workloads: from An-
imato and 7 IBM cloud applica-
tions

Analytical models

[57] Time series:
FFT and Dis-
crete Markov
Chains. Com-
pared with auto-
regression, auto-
correlation,
histogram, max
and min.

V BT CPU load, memory,
I/O and network

Real. World Cup 98 and
ClarkNet. Also Synthetic trace

Custom testbed. Xen + RUBiS
+ part of Google Cluster Data
trace for CPU usage.

[80] Time series:
FFT

V
(CPU
&
Mem-
ory)

BT CPU load, memory
usage

Synthetic. RUBiS generator Custom tesbed. Xen + RUBiS

[79] Time series:
second order
ARMA

H All
tiers

Number of users in
the system

Real. World Cup 98 No experimentation on systems

[60] Time series:
Double Expo-
nential Smooth-
ing

Only resource pred. CPU load, memory
usage

Synthetic traffic generated with
simulator

CloudSim simulator

[72] Time series:
Brown’s
Quadratic
exponential
Smoothing.

Only resource pred. Number of requests
per VM

Real. World Cup 98 and
ClarkNet. Synthetic. Poisson
distribution)

Custom testbed. TPC-W. 3 VM
roles: Browsing, Shopping and
Ordering

[50] Time series: AR H BT CPU load Real. From Windows Live Mes-
senger (login rate, number of ac-
tive connections)

Custom testbed, with real traces

[62] Time-series:
ML – Neural
Network and
(Multiple) LR +
Sliding window

H BT CPU load (aggre-
gated value for all
VMs)

Synthetic. TPC-W generator,
constant growing

Real provider. Amazon EC2
and TPC-W application to gen-
erate the dataset. Prediction
models are only evaluated using
cross-validation and several ac-
curacy metrics. Experiments in
R-Project.

[61] Threshold-
based rules
(scale up) +
Time series,
polynomial re-
gression (scale
down)

H BT,
ST

CPU load (scale up)
/ Response time
(scale down)

Synthetic. Httperf Custom testbed. Eucalyptus +
RUBiS

[46] Time series:
Histogram

CPU load (and
other resources)

Nodes with similar resource us-
age distribution are grouped in
the same resource bundle.

[49] Time series:
AR(1) and
Histogram +
Queuing theory

H BT Request rate and
service demand

Synthetic (Poisson distribution)
and Real (World Cup 98).

Custom simulator + algorithms
in Matlab

Table 5: Summary of references about time-series techniques.

6 Discussion and Open Research Lines

The current review has described different reactive and proactive auto-scaling methods.
Threshold-based rules follow a simple reactive approach. They are the most popular auto-
scaling technique, even in commercial systems, probably due to their apparent simplicity.
However, we have seen that setting the suitable thresholds is a very tricky task, and may
lead to instability in the system. Besides, static thresholds become invalid if the application

34

behavior changes. Little research has been done in the use of dynamic threshold, including
the proportional thresholding proposed Lim et al. [67] or the adaptive thresholds introduced
by Beloglazov and Buyya [44], and it could be interesting to improve this technique.

The main drawback of reactive techniques is that they not anticipate to unexpected
changes in the workload, and therefore, resources cannot be provisioned in advance. Fur-
thermore, it is important to take into account that adding a new VM in real cloud providers
might take up to 15 minutes, and the effect of a scaling-up action might arrive too late.
Therefore, research on auto-scaling techniques should focus on proactive approaches. Time-
series analysis already includes a number of methods to predict future values of a metric,
based on its past history. However, the prediction accuracy highly depends on the his-
tory window size (the number of past values considered) and the adaptation window (the
prediction interval).

Apart from threshold-based rules and time-series analysis, three other categories have
been defined that can be used with a reactive or proactive approach: reinforcement learning,
control theory and queuing theory. Reinforcement learning is able to learn an auto-scaling
policy from experience, without any a priori knowledge, but in addition to the long time
required during the learning step, this technique adapts only to slowly changing conditions.
Therefore, it cannot be applied to real applications that usually suffer from sudden traffic
bursts. Queuing theory models impose hard assumptions that may not be valid for real,
complex systems. Besides, as they are intended for stationary scenarios, the models need to
be recalculated when the conditions of the application change. Indeed, the input workload
rate is varying constantly. Finally, controllers are able to maintain the output (performance)
of the application at the desired level, depending on the input (e.g. workload). However,
setting the gain parameters can be a difficult task, and as in the case of threshold-based
rules, it may cause oscillations in the assigned resources (e.g. the number of VMs).

Another, more general issue regarding these techniques is the lack of a formal evaluation
methodology, including a scoring metric for comparison and a widely accepted evaluation
scenario. Due to the heterogeneity of existing auto-scaling methods, it would be interesting
to define a scoring metric to objectively determine whether one algorithm performs better
than another. Kupferman et al. [65] proposed a scoring algorithm for comparing heteroge-
neous auto-scaling techniques, that considers availability and cost. However, the cost model
considered for this scoring metric is quite limited, as it does not take into account the VM
types, bandwidth used and other elements that are also charged to the user. Besides, several
parameters have to be set based on experimentation.

Additionally, a common evaluation scenario (or scenarios) should be defined to efficiently
compare different auto-scaling algorithms. Developing a cloud simulator would be an indis-
pensable tool for this purpose, avoiding the burden of setting a whole virtualized cluster or
the leasing costs of the real cloud provider.

35

7 Conclusions and Future Work

The present study has focused on the problem of auto-scaling applications in cloud environ-
ments. Cloud computing is a widely used technology, characterized by offering resources in
an elastic manner. Users can acquire and release resources on demand, and pay only for
the required resources (this is often called a pay-as-you-go scheme). The scaling task can be
done manually, but to really take advantage of these facilities, an automatic scaling system
is needed. This element should be able to adapt the amount of required resources (typically,
VMs) to the input workload, always trying to avoid under-utilization in order to minimize
the cost, but maintaining the service level objective (for example, a pre-defined response
time).

We have proposed a clear definition of the auto-scaling problem, and explained the differ-
ent experimental platforms used to test auto-scaling algorithms, together with the different
input workloads and evaluation benchmarks available. Then, we have focused on the different
auto-scaling methodologies that have appeared throughout the literature. Those techniques
come from a variety of many knowledge areas and present different performance character-
istics. A classification has been proposed, including five main categories: threshold-based
rules, reinforcement learning, queuing theory, control theory and time-series analysis. Each
technique has been described separately, including a review of some relevant references.

The general conclusion extracted from this study is the need to develop an efficient
auto-scaling approach, able to cope with the varying conditions of applications derived from
unanticipated changes in traffic. To continue this work, we propose using a predictive auto-
scaling technique based on time-series forecasting algorithms. We have seen that the accuracy
of these algorithms depend on different parameters such as the history window size and the
adaptation window. Optimization techniques could be used to adjust this values, in order
to tune the parameters for the given scenario.

We have also pointed out the lack of a formal testing and comparison framework for
auto-scaling in the cloud. Each proposal found in the literature has been applied to different
scenarios, from batch jobs to e-commerce applications, either focusing on the business-logic
tier or considering the 3-tier architecture as a whole. Besides, authors have tested their
proposal under very different conditions, considering a simulator, custom testbed or real
provider as the testing platform; real or synthetic workloads; and also different metrics
to evaluate the performance of the algorithms. Given such heterogeneity in the testing
methodology, we cannot give an answer to the question of what is the best auto-scaling
technique. We plan to propose a testing environment, including a cloud simulator and
workloads based on different patterns. Currently, we are developing a simulator based on
CloudSim [7], that will be the common workbench to compare the different auto-scaling
techniques and the new ones that will for sure appear in the future.

36

References

[1] RUBiS: Rice University Bidding System. http://rubis.ow2.org/, 2009. [Online;
accessed 13-September-2012].

[2] Cloud Computing Powers Groupon: The Fastest Growing Com-
pany Ever. http://cloud-computing.learningtree.com/2011/03/24/

cloud-computing-powers-fastest-growing-company-ever/, 2011. [Online;
accessed 13-September-2012].

[3] Amazon Elastic Compute Cloud (Amazon EC2). http://http://aws.amazon.com/

ec2/, 2012. [Online; accessed 13-September-2012].

[4] AWS Elastic Beanstalk (beta). Easy to begin, Impossible to outgrow. http://aws.

amazon.com/elasticbeanstalk/, 2012. [Online; accessed 13-September-2012].

[5] Customer Success. Powered by the AWS Cloud. http://aws.amazon.com/solutions/
case-studies/, 2012. [Online; accessed 13-September-2012].

[6] ClarkNet HTTP Trace (From the Internet Traffic Archive). http://ita.ee.lbl.gov/
html/contrib/ClarkNet-HTTP.html, 2012. [Online; accessed 13-September-2012].

[7] CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastruc-
tures and Services. http://www.cloudbus.org/cloudsim/, 2012. [Online; accessed
18-September-2012].

[8] CloudStone Project by Rad Lab Group. http://radlab.cs.berkeley.edu/wiki/

Projects/Cloudstone/, 2012. [Online; accessed 13-September-2012].

[9] Eucalyptus Cloud. http://www.eucalyptus.com/, 2012. [Online; accessed 18-
September-2012].

[10] Greencloud - The green cloud simulator. http://greencloud.gforge.uni.lu/, 2012.
[Online; accessed 18-September-2012].

[11] force.com (salesforce). http://www.force.com/, 2012. [Online; accessed 13-September-
2012].

[12] Google App Engine. http://cloud.google.com/products/, 2012. [Online; accessed
13-September-2012].

[13] Google Apps for Business. http://www.google.com/intl/es/enterprise/apps/

business/products.html, 2012. [Online; accessed 13-September-2012].

[14] Google Cluster Data. Traces of Google workloads. /, 2012. [Online; accessed 13-
September-2012].

37

[15] Google Cluster Data. Trace Version 1. 7 hours of usage data. http://code.

google.com/p/googleclusterdata/wiki/TraceVersion1/, 2012. [Online; accessed
13-September-2012].

[16] Google Cluster Data. Trace Version 2. Second format of cluster-usage traces. http://
code.google.com/p/googleclusterdata/wiki/TraceVersion2/, 2012. [Online; ac-
cessed 13-September-2012].

[17] Google Compute Engine. http://cloud.google.com/products/compute-engine.

html/, 2012. [Online; accessed 13-September-2012].

[18] Greencloud - The green cloud simulator. http://greencloud.gforge.uni.lu/, 2012.
[Online; accessed 18-September-2012].

[19] Groupon. http://www.groupon.es/deals/bilbao/, 2012. [Online; accessed 13-
September-2012].

[20] Heroku. Cloud application platform. http://www.heroku.com/, 2012. [Online; accessed
13-September-2012].

[21] The httperf HTTP load generator. http://code.google.com/p/httperf/, 2012. [On-
line; accessed 18-September-2012].

[22] Apache JMeter. http://jmeter.apache.org/, 2012. [Online; accessed 18-September-
2012].

[23] Kernel Based Virtual Machine. http://www.linux-kvm.org/, 2012. [Online; accessed
18-September-2012].

[24] Microsoft Office 365. http://www.microsoft.com/en-us/office365/

online-software.aspx, 2012. [Online; accessed 13-September-2012].

[25] OpenStack Cloud Software. Open source software for building private and public clouds.
http://www.openstack.org/, 2012. [Online; accessed 18-September-2012].

[26] Rackspace. The open cloud company. http://www.rackspace.com/, 2012. [Online;
accessed 13-September-2012].

[27] Rain Workload Toolkit. https://github.com/yungsters/rain-workload-toolkit/

wiki, 2012. [Online; accessed 13-September-2012].

[28] RightScale Cloud Management). http://www.rightscale.com/, 2012. [Online; ac-
cessed 13-September-2012].

[29] RightScale. Set up Autoscaling using Voting Tags. http://support.rightscale.com/
03-Tutorials/02-AWS/02-Website_Edition/Set_up_Autoscaling_using_Voting_

Tags, 2012. [Online; accessed 13-September-2012].

38

[30] RUBBoS: Bulletin Board Benchmark. http://jmob.ow2.org/rubbos.html/, 2012.
[Online; accessed 18-September-2012].

[31] Salesforce.com. http://www.salesforce.com/, 2012. [Online; accessed 13-September-
2012].

[32] SPEC forms cloud benchmarking group. http://www.spec.org/osgcloud/press/

cloudannouncement20120613.html, 2012. [Online; accessed 18-September-2012].

[33] TPC. Transaction Processing Performance Council. http://www.tpc.org/default.

asp, 2012. [Online; accessed 13-September-2012].

[34] TPC-C. http://www.tpc.org/tpcc/default.asp/, 2012. [Online; accessed 18-
September-2012].

[35] TPC-W. http://www.tpc.org/tpcw/default.asp, 2012. [Online; accessed 13-
September-2012].

[36] VMware vCloud Director. Deliver Complete Virtual Datacenters for Consumption in
Minutes. http://www.eucalyptus.com/, 2012. [Online; accessed 18-September-2012].

[37] VMware vSphere ESX and ESXi Info Center. http://www.vmware.com/es/products/
datacenter-virtualization/vsphere/esxi-and-esx/overview.html, 2012. [On-
line; accessed 18-September-2012].

[38] Microsoft Windows Azure. https://www.windowsazure.com/en-us/, 2012. [Online;
accessed 13-September-2012].

[39] World Cup 98 Trace (From the Internet Traffic Archive). http://ita.ee.lbl.gov/

html/contrib/WorldCup.html, 2012. [Online; accessed 13-September-2012].

[40] Xen hypervisor. http://http://www.xen.org/, 2012. [Online; accessed 18-September-
2012].

[41] A Ali-Eldin, J Tordsson, and E Elmroth. An adaptive hybrid elasticity controller for
cloud infrastructures. In Network Operations and Management Symposium (NOMS),
2012 IEEE, pages 204–212. IEEE, 2012.

[42] A Andrzejak, D Kondo, and S Yi. Decision model for cloud computing under sla
constraints. In Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE International Symposium on, pages 257–266. IEEE,
2010.

[43] E Barrett, E Howley, and J Duggan. Applying reinforcement learning towards au-
tomating resource allocation and application scalability in the cloud. Concurrency and
Computation: Practice and Experience, 2012.

39

[44] A Beloglazov and R Buyya. Adaptive threshold-based approach for energy-efficient
consolidation of virtual machines in cloud data centers. In Proceedings of the 8th In-
ternational Workshop on Middleware for Grids, Clouds and e-Science, page 4. ACM,
2010.

[45] Peter Bod́ık, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan, and David
Patterson. Statistical machine learning makes automatic control practical for inter-
net datacenters. page 12, June 2009. URL http://dl.acm.org/citation.cfm?id=

1855533.1855545.

[46] Michael Cardosa and Abhishek Chandra. Resource Bundles: Using Aggregation for
Statistical Large-Scale Resource Discovery and Management. IEEE Transactions on
Parallel and Distributed Systems, 21(8):1089–1102, August 2010. ISSN 1045-9219. doi:
10.1109/TPDS.2009.143. URL http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=5226621.

[47] Eddy Caron, Frédéric Desprez, and Adrian Muresan. Forecasting for Cloud computing
on-demand resources based on pattern matching. Research Report RR-7217, INRIA,
2010. URL http://hal.inria.fr/inria-00460393.

[48] Eddy Caron, Frédéric Desprez, and Adrian Muresan. Pattern Matching Based Forecast
of Non-periodic Repetitive Behavior for Cloud Clients. Journal of Grid Computing,
9(1):49–64, January 2011. ISSN 1570-7873. doi: 10.1007/s10723-010-9178-4. URL
http://www.springerlink.com/content/5371210671434mkk/.

[49] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic resource allocation for
shared data centers using online measurements. Proceedings of the 11th international
conference on Quality of service, pages 381–398, June 2003. URL http://dl.acm.org/

citation.cfm?id=1784037.1784065.

[50] G Chen, W He, J Liu, S Nath, L Rigas, L Xiao, and F Zhao. Energy-aware server
provisioning and load dispatching for connection-intensive internet services. In Proceed-
ings of the 5th USENIX Symposium on Networked Systems Design and Implementation,
volume 8, pages 337–350. USENIX Association, 2008.

[51] T C Chieu, A Mohindra, A A Karve, and A Segal. Dynamic scaling of web applica-
tions in a virtualized cloud computing environment. In e-Business Engineering, 2009.
ICEBE’09. IEEE International Conference on, pages 281–286. Ieee, 2009.

[52] T C Chieu, A Mohindra, and A A Karve. Scalability and Performance of Web Ap-
plications in a Compute Cloud. In e-Business Engineering (ICEBE), 2011 IEEE 8th
International Conference on, pages 317–323. IEEE, 2011.

[53] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Intro-
duction to Algorithms, Chapter 32: String Matching. McGraw-Hill Higher Education,
July 2001. ISBN 0070131511. URL http://dl.acm.org/citation.cfm?id=580470.

40

[54] X Dutreilh, A Moreau, J Malenfant, N Rivierre, and I Truck. From data center resource
allocation to control theory and back. In Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pages 410–417. IEEE, 2010.

[55] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas Rivierre,
and Isis Truck. Using Reinforcement Learning for Autonomic Resource Allocation in
Clouds: towards a fully automated workflow. In Seventh International Conference on
Autonomic and Autonomous Systems, ICAS 2011, pages 67–74. IEEE, May 2011. ISBN
978-1-61208-006-2.

[56] H Ghanbari, B Simmons, M Litoiu, and G Iszlai. Exploring Alternative Approaches to
Implement an Elasticity Policy. In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 716–723. IEEE, 2011.

[57] Z Gong, X Gu, and J Wilkes. Press: Predictive elastic resource scaling for cloud systems.
In Network and Service Management (CNSM), 2010 International Conference on, pages
9–16. IEEE, 2010.

[58] R Han, L Guo, M.M Ghanem, and Y Han, R. and Guo, L. and Ghanem, M.M. and
Guo. Lightweight Resource Scaling for Cloud Applications. Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on, 2012. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6217477.

[59] M Z Hasan, E Magana, A Clemm, L Tucker, and S L D Gudreddi. Integrated and
autonomic cloud resource scaling. In Network Operations and Management Symposium
(NOMS), 2012 IEEE, pages 1327–1334. IEEE, 2012.

[60] J Huang, C Li, and J Yu. Resource prediction based on double exponential smoothing in
cloud computing. In Consumer Electronics, Communications and Networks (CECNet),
2012 2nd International Conference on, pages 2056–2060. IEEE, 2012.

[61] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Future Generation
Computer Systems, 27(6):871–879, June 2011. ISSN 0167739X. doi: 10.1016/j.future.
2010.10.016. URL http://dl.acm.org/citation.cfm?id=1967762.1967921.

[62] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction models
for adaptive resource provisioning in the cloud. Future Gener. Comput. Syst., 28(1):
155–162, 2012. ISSN 0167-739X. doi: 10.1016/j.future.2011.05.027. URL http://dx.

doi.org/10.1016/j.future.2011.05.027.

[63] E Kalyvianaki, T Charalambous, and S Hand. Self-adaptive and self-configured cpu
resource provisioning for virtualized servers using kalman filters. In Proceedings of the
6th international conference on Autonomic computing, pages 117–126. ACM, 2009.

41

[64] Sunirmal Khatua, Anirban Ghosh, and Nandini Mukherjee. Optimizing the utiliza-
tion of virtual resources in Cloud environment. In 2010 IEEE International Confer-
ence on Virtual Environments, Human-Computer Interfaces and Measurement Systems,
pages 82–87. IEEE, September 2010. ISBN 978-1-4244-5904-9. doi: 10.1109/VECIMS.
2010.5609349. URL http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=

5609349\&contentType=Conference+Publications.

[65] Jonathan Kupferman, Jeff Silverman, Patricio Jara, and Jeff Browne. Scaling into
the cloud. Technical report, University of California, Santa Barbara; CS270 - Ad-
vanced Operating Systems, 2009. URL http://cs.ucsb.edu/~jkupferman/docs/

ScalingIntoTheClouds.pdf.

[66] Palden Lama and Xiaobo Zhou. Autonomic Provisioning with Self-Adaptive Neural
Fuzzy Control for End-to-end Delay Guarantee. In 2010 IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pages 151–160. IEEE, August 2010. ISBN 978-1-4244-8181-1. doi: 10.1109/MASCOTS.
2010.24. URL http://dl.acm.org/citation.cfm?id=1906481.1906523.

[67] Harold C Lim, Shivnath Babu, Jeffrey S Chase, and Sujay S Parekh. Automated control
in cloud computing: challenges and opportunities. In Proceedings of the 1st workshop
on Automated control for datacenters and clouds, ACDC ’09, pages 13–18, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-585-7. doi: 10.1145/1555271.1555275. URL
http://doi.acm.org/10.1145/1555271.1555275.

[68] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. Automated control for elas-
tic storage. In Proceeding of the 7th international conference on Autonomic comput-
ing - ICAC ’10, page 1, New York, New York, USA, June 2010. ACM Press. ISBN
9781450300742. doi: 10.1145/1809049.1809051. URL http://dl.acm.org/citation.

cfm?id=1809049.1809051.

[69] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis on - SC ’11, page 1, New
York, New York, USA, November 2011. ACM Press. ISBN 9781450307710. doi: 10.1145/
2063384.2063449. URL http://dl.acm.org/citation.cfm?id=2063384.2063449.

[70] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Enacting SLAs in clouds us-
ing rules. pages 455–466, August 2011. URL http://dl.acm.org/citation.cfm?id=

2033345.2033393.

[71] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. Performance by
Design: Computer Capacity Planning By Example. Upper Saddle River, NJ: Prentice
Hall, January 2004. ISBN 0130906735. URL http://dl.acm.org/citation.cfm?id=

995032.

42

[72] H Mi, H Wang, G Yin, Y Zhou, D Shi, and L Yuan. Online self-reconfiguration with
performance guarantee for energy-efficient large-scale cloud computing data centers. In
Services Computing (SCC), 2010 IEEE International Conference on, pages 514–521.
IEEE, 2010.

[73] Simon Ostermann, Kassian Plankensteiner, Radu Prodan, and Thomas Fahringer.
GroudSim: an event-based simulation framework for computational grids and clouds.
pages 305–313, August 2010. URL http://dl.acm.org/citation.cfm?id=2031978.

2032020.

[74] P Padala, K Y Hou, K G Shin, X Zhu, M Uysal, Z Wang, S Singhal, and A Merchant.
Automated control of multiple virtualized resources. In Proceedings of the 4th ACM
European conference on Computer systems, pages 13–26. ACM, 2009.

[75] Sang-Min Park and Marty Humphrey. Self-Tuning Virtual Machines for Predictable
eScience. In 2009 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, pages 356–363. IEEE, May 2009. ISBN 978-1-4244-3935-5. doi: 10.1109/
CCGRID.2009.84. URL http://www.computer.org/portal/web/csdl/doi/10.1109/

CCGRID.2009.84.

[76] T Patikirikorala and A Colman. Feedback controllers in the cloud. APSEC 2010, Cloud
workshop, 2010.

[77] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A multi-model
framework to implement self-managing control systems for QoS management. In
Proceedings of the 6th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS ’11, pages 218–227, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0575-4. doi: 10.1145/1988008.1988040. URL http:

//doi.acm.org/10.1145/1988008.1988040.

[78] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin. VCONF: a
reinforcement learning approach to virtual machines auto-configuration. In Proceedings
of the 6th international conference on Autonomic computing, ICAC ’09, pages 137–146,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-564-2. doi: 10.1145/1555228.
1555263. URL http://doi.acm.org/10.1145/1555228.1555263.

[79] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient Autoscaling in the
Cloud Using Predictive Models for Workload Forecasting. In 2011 IEEE 4th Interna-
tional Conference on Cloud Computing, pages 500–507. IEEE, July 2011. ISBN 978-
1-4577-0836-7. doi: 10.1109/CLOUD.2011.42. URL http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=6008748.

[80] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale: Elastic
resource scaling for multi-tenant cloud systems. Proceedings of the 2nd ACM Symposium
on Cloud Computing, 2011. URL http://dl.acm.org/citation.cfm?id=2038921.

43

[81] B Simmons, H Ghanbari, M Litoiu, and G Iszlai. Managing a SaaS application in the
cloud using PaaS policy sets and a strategy-tree. In Network and Service Management
(CNSM), 2011 7th International Conference on, pages 1–5, 2011.

[82] SPECweb2009. The httperf HTTP load generator. http://www.spec.org/web2009/,
2012. [Online; accessed 18-September-2012].

[83] G Tesauro, N K Jong, R Das, and M N Bennani. A Hybrid Reinforcement Learning
Approach to Autonomic Resource Allocation. In Proceedings of the 2006 IEEE Interna-
tional Conference on Autonomic Computing, ICAC ’06, pages 65–73, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 1-4244-0175-5. doi: 10.1109/ICAC.2006.
1662383. URL http://dx.doi.org/10.1109/ICAC.2006.1662383.

[84] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and Tim-
othy Wood. Agile dynamic provisioning of multi-tier Internet applications. ACM
Transactions on Autonomous and Adaptive Systems, 3(1):1–39, March 2008. ISSN
15564665. doi: 10.1145/1342171.1342172. URL http://dl.acm.org/citation.cfm?

id=1342171.1342172.

[85] D Villela, P Pradhan, and D Rubenstein. Provisioning servers in the application tier
for e-commerce systems. In Quality of Service, 2004. IWQOS 2004. Twelfth IEEE
International Workshop on, pages 57–66. IEEE, 2004.

[86] L Wang, J Xu, M Zhao, Y Tu, and J A B Fortes. Fuzzy Modeling Based Resource
Management for Virtualized Database Systems. In Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International
Symposium on, pages 32–42. IEEE, 2011.

[87] Lixi Wang, Jing Xu, Ming Zhao, and José Fortes. Adaptive virtual resource manage-
ment with fuzzy model predictive control. In Proceedings of the 8th ACM international
conference on Autonomic computing - ICAC ’11, page 191, New York, New York, USA,
June 2011. ACM Press. ISBN 9781450306072. doi: 10.1145/1998582.1998623. URL
http://dl.acm.org/citation.cfm?id=1998582.1998623.

[88] Jing Xu, Ming Zhao, Jose Fortes, Robert Carpenter, and Mazin Yousif. On the Use
of Fuzzy Modeling in Virtualized Data Center Management. In Proceedings of the
Fourth International Conference on Autonomic Computing, ICAC ’07, pages 25—-,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2779-5. doi: 10.
1109/ICAC.2007.28. URL http://dx.doi.org/10.1109/ICAC.2007.28.

[89] Q Zhang, L Cherkasova, and E Smirni. A regression-based analytic model for dy-
namic resource provisioning of multi-tier applications. In Autonomic Computing, 2007.
ICAC’07. Fourth International Conference on, page 27. IEEE, 2007.

44

