Auto-Tuning Distributed-Memory
3-Dimensional Fast Fourier Transforms
on the Cray XT4

M. Gajbe * A. Canning, b1-w. Wang, b J. Shalf,? H. Wasserman, ? and R. Vuduc, ®

& Georgia Institute of Technology, Atlanta, Georgia, USA
b Lawrence Berkeley National Laboratory, Berkeley, California, USA

Abstract.

We present auto tuning, optimization, and performance modeling of 3 Dimen-
sional Fast Fourier Transforms on Cray XT4 (Franklin) system. Spectral methods
involving FFTs are a commonly used numerical technique with applications in en-
gineering, chemistry, geosciences, and other areas of scientific computing. In the
case of materials science the wavefunction of the electrons are expanded in spatial
frequency components which is a natural basis since the wavefunction for a free
electron is a plane wave. In this paper we study the performance of a 3D FFT specif-
ically written for materials science applications. The problem with a parallel 3d
FFT is that for a grid of N points the computational work involved is O(NlogN)
while the amount of communication is O(N). This means that for small values of
N (64 x 64 x 64 3D FFTs), the communication costs rapidly overwhelm the parallel
computation savings. A distributed 3D FFT represents a considerable challenge for
the communications infrastructure of a parallel machine because of the all-to-all
nature of the distributed transposes required, and it stresses aspects of the machine
that complement those addressed by other benchmark kernels, such as Linpack,
that solves system of linear equations, Az = b. Auto tuning can play a vital role
in optimizing 3D FFT kernels for a diverse platforms as it can exploit features of
the system-specific configuration characteristics to improve performance. We also
depend on analytic performance models as a tool for predicting the idealized per-
formance for the 3-dimensional Fast Fourier Transforms to set performance expec-
tations for the target computational system. Overall, our methodology is able to
achieve a substantial improvement in performance over conventional approaches to
tuning 3D FFT performance.

Keywords. Fast Fourier Transform, Parallel Computing, Materials Science, Auto
Tuning

Introduction

In electronic structure calculations in materials science first-principles methods based on
Density Functional Theory (DFT) in the Kohn-Sham (KS) formalism [1] are the most
widely used approach. In this approach the wave functions are usually expanded in plane
waves (Fourier components) and pseudopotentials replace the nucleus and core electrons.
This implementation requires parallel 3d FFTs to transform the electronic wavefunctions

Cray User Group 2009 Proceedings

from Fourier space to real space to construct the charge density. This gives a computa-
tionally very efficient approach with a full quantum mechanical treatment for the valence
electrons, allowing the study of systems containing hundreds of atoms on modest-sized
parallel computers. Taken as a method DFT-based codes are one of the largest consumers
of scientific computer cycles around the world with theoretical chemists, biologists, ex-
perimentalists etc. now becoming users of this approach. Parallel 3d FFTs are very de-
manding on the communication network of parallel computers as they require global
transpositions of the FFT grid across the machine. The ratio of calculations to commu-
nications for 3d FFTs is of order log N where N is the grid dimension (compared to
a ratio of N for a distributed matrix multiply of matrix size /N') which makes it one of
the most demanding algorithms to scale on a parallel machine. A scalable parallel 3d
FFT is critical to the overall scaling of plane wave DFT codes. In this work we have
implemented five different versions of the communications routines used in the 3d FFT
to determine which is the most efficient for different processor counts and different grid
sizes.

In plane wave codes we have many electronic wavefunctions where each one is rep-
resented in fourier space so unlike spectral type codes we are typically performing many
moderate sized 3d FFTs rather than one large 3d FFT. This has the disadvantage from
the scaling point of view that it is difficult to efficiently scale up a moderate sized 3d
FFT on a large number of processors but it has the advantage that for all-band codes we
can perform many 3d FFTs at the same time to aggregate the message sizes and avoid
latency issues. The wavefunctions are also represented by a sphere of points in Fourier
space and a standard grid in real space where the sphere typically has a diameter about
half the size of the grid. This means we can also reduce the amount of message passing
and calculations required compared to using a standard 3d FFT where the number of grid
points is the same in Fourier and real space. We have therefore written our own special-
ized 3d FFTs for plane wave codes that can run faster than using any public domain 3d
FFT libraries such as FFTW or P3DFFT and have no restrictions on what grid sizes can
be run. Our specialized 3d FFTs are used in many widely used materials science codes
such as PARATEC, PeTOT, ESCAN [3].

DFT using the Local Density Approximation (LDA) for the exchange-correlation
potential requires that the wavefunctions of the electrons {t;} satisfy the Kohn-Sham
equations

1 /
AR MR [B oo =

|r
where v;,,, () is the ionic pseudopotential, p(r) is the charge density and pi,..(p(r)) is the

LDA exchange-correlation potential. We use periodic boundary conditions, expanding
the wavefunctions in plane waves (Fourier components),

ZZ}j’k(I‘) = Z aj7k(g)€i(g+k)'r) @
g

The selection of the number of plane waves is determined by a cutoff E,; in the plane-
wave kinetic energy 1|g -+ k|? where {g} are reciprocal lattice vectors. This means that

Cray User Group 2009 Proceedings

the representation of the wavefunctions in Fourier space is a sphere or ellipsoid with
each g vector corresponding to a Fourier component (see Figure 1). The k’s are vec-
tors sampling the first Brillouin Zone (BZ) of the chosen unit cell (or supercell). The
Kohn-Sham equations are usually solved by minimizing the total energy with an iterative
scheme, such as conjugate gradient (CG), for a fixed charge density and then updating
the charge density until self-consistency is achieved (for a review of this approach see
reference [2]). Some parts of the calculation are done in Fourier space and some in real
space transforming between the two using 3d FFTs.

1. Parallel Data Decomposition 3d FFT

A 3d FFT consists of three sets of 1d FFTs in the X,y and z directions with transpositions
of the data between each set of 1d FFTs. Only two transposes are needed if the final data
layout is not required to have the same x,y,z order in both spaces. Since the g vectors
(Fourier coefficients) are distributed across the processors these two transposes can re-
quire global communications across the parallel computer.

As mentioned in the previous section the data for a given wavefunction forms a
sphere of points in Fourier space and a standard grid in real space (see Figure 1). The
data distribution for the sphere is driven by 1) the need to have complete columns of data
on a given processor to perform the first set of 1d FFTs 2) other parts of the code require
intensive calculations related to the number of Fourier components each processor holds
so to load balance this part of the calculation we require a similar number of Fourier
components on each processor. The data layout we use in Fourier space is to order the
columns of the sphere in descending order and then to give out the individual columns to
the processors such that each new column is given to the processor with the fewest num-
ber of fourier components. In this way each processor holds sets of complete columns
and approximately the same number of fourier components (see Figure 1 for an example
of the layout on three processors). In real space we consider the grid as a one dimensional
set of columns with (x,y,z) ordering and then give out contiguous sets of columns to each
processor giving as closely as possible the same number of columns to each processor.
In this way each processor will hold complete planes or sections of planes of the three
dimensional grid (see 1). With this data layout we have no restrictions on the number of
processors required for a given sphere or grid size. Also this data layout means that the
first transpose in the 3d FFT typically requires all processors communicating with every
other processor while the second transpose may require no communications (if the each
processor has complete planes) or limited local communications if each processor has a
section of a plane. In the case of SMP nodes complete planes can still reside on a node
even if each processor is performing calculations on sections of a plane. A more detailed
description of each step in our specialized 3d FFT can be found in reference [5].

2. Parallel Communication Structure for 3d FFT

In order to have a scalable parallel 3d FFT we therefore need to have as efficient as
possible an implementation of the communications in the two parallel transposes. As

Cray User Group 2009 Proceedings

Figure 1. A three processor example of the parallel data layout for the wavefunctions of each electron in
Fourier space (left) and real space (right). The different colors correspond to the data held by processors PO,
P1 and P2.

mentioned above it is the first transpose that typically involves almost all the processors
communicating with each other while the second transpose will typically involve limited
local communications. We have implemented two basic types of MPI communications
in our transposes. The first one uses MPI_ISEND and MPI_RECV and the second uses
MPI_ALLTOALLV which is a collective operation allowing all processors to send dis-
tinct messages of different lengths to all the other processors. In the case of the ISEND
and RECV version we have implemented different communication structures. In the first
case all the processors send to processor one then processor two etc. at the same time
while in the second case each processor sends to its processor number plus one, then plus
two etc. as if in a ring, to avoid contention in communications. We also have what we will
refer to as blocked versions of these 3d FFTs where we perform a number of 3d FFTs
at the same time (typically 40) and so can aggregate the message sizes to avoid latency
problems. In our particular application we are performing a large number of moderate
sized 3d FFTs (our strong scaling tests will be for 5123 grid) so it is important to take
advantage of this blocking to avoid latency issues on large processor counts.

3. Motivation for Auto-Tuning

Achieving close to peak performance is important for all scientific applications. The per-
formance is largely dependent upon computation kernels such as dense or sparse matrix
operations, Fast Fourier Transforms, stencil computations etc. In general to obtain good
performance on a specific platform these kernels require machine-dependent tuning by
hand or using highly optimized machine specific scientific and mathematical libraries
and compilers. A number of automatic tuning systems have been developed that typically
uses - (i): Selecting an optimal implementation of a kernel (ii): developing multiple ma-
chine specific implementations of kernels (iii): Use of optimized system configurations.

However, conventional performance tuning by hand is time consuming, and can be

error-prone. Moreover, the kernel should be tuned for a specific system configuration
and processor. Another problem is that the hardware, system software, microprocessors

Cray User Group 2009 Proceedings

are continuously evolving. Even with intimate knowledge of the architecture, compilers
and libraries, performance of a kernel is hard to predict. Modern high level compilers
also face difficulty in optimizing the kernels for general use as they are not able to use
the physics behind the computational kernel. Even performance of the best algorithms is
dependent on problem size that is usually only determined at execution time.

Therefore, auto tuning plays a vital role in optimizing these kernels for a specific
platform as it can make use of the domain or kernel specific knowledge as well as the sys-
tem configuration. The best approach that can be taken towards auto tuning is, to identify
a set of algorithms or methods and then find the fastest method for a given platform and
problem size by collecting performance data. For testing, portability and maintenance
of a code a modular design approach is required. Using such modular designs one can
focus on the performance of a key subroutine or kernel. Tuning these kernels on several
platforms automatically improves performance of an application that uses it.

4. Motivation for Studying 3D FFTs

One of the widely used kernels is 3 Dimensional FFT. It is a commonly used numerical
technique in computational physics, engineering, chemistry, geosciences, and other areas
of high performance computing. The 3D FFT is built on top of highly optimized versions
of 1D FFT that are available on most modern systems. However, there is no optimized
3D FFT library or kernel available on today’s modern supercomputers.

The most successful attempt to autotune FFTs are (i): FFTW [4](ii): Spiral [9].
4.1. FFTW :

The FFTW package [4] produces highly optimized Discrete Fourier Transform (DFT)
kernels using a family of FFT algorithms. It is a C subroutine library for computing the
discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and
of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine
transforms or DCT/DST). All fftw_mpi transforms are in-place. In particular, the data is
divided according to the rows (first dimension) of the data: each process gets a subset of
the rows of the data. (This is called a "slab decomposition.") One consequence of this is
that you can’t take advantage of more processors than you have rows (e.g. 64 x 64 x 64
matrix can at most use 64 processors). Hence, the 3D MPI FFT subroutine is not scalable
as the maximum number of processors or cores that can be used is N foran N x N x N
problem size.

4.2. SPIRAL :

Spiral generates platform-tuned implementations of digital signal processing (DSP) al-
gorithms such as the discrete Fourier transform, discrete cosine transform, and many
other numerical kernels. Spiral focuses on how to achieve optimal performance on nu-
merical kernels using coding efforts. A high abstraction level for automation is used in
Spiral that uses knowledge about available algorithms and algorithm optimizations to

Cray User Group 2009 Proceedings

generate a computer program.

Both FFTW and SPIRAL do not address automatic performance tuning of 3D MPI
FFTs. FFTW is not scalable beyond the maximum of any of the 3 dimensions of 3D
grid. In todays high performance world, 3 Dimensional FFT computations are widely
used in various scientific applications and benchmarks. Hence, we decided to focus on
automating this computational kernel.

4.3. Approach for Auto-tuning

In general, to auto tune a kernel involves two steps. (i): Identification of set of methods
to perform 3D FFT. (ii): Identification of the fastest method after analyzing the collected
data.

We have also chosen different methods to perform the transpose operation that
is at the heart of 3D FFT. This is achieved using MPI library calls MPI_ISEND and
MPI_RECYV and MPI_ALLTOALLYV as well as different techniques to perform the trans-
pose operation as discussed above.

The steps involved in the auto tuning process are :

1. Overlapping of communication and computation using MPI_ISEND and MPI_RECV
library calls.

2. The communications are staggered rather than all just sending to the same pro-
cessor at the same time. The source and destination processors are used in a cir-
cular mechanism.

e Process ¢ will receive data from mod(MyRank—i—14+NoNodes, NoNodes).
e Process ¢ will send data to mod(MyRank + i — 1, NoNodes).

W

. An optimal set of columns are packaged together and communicated.
4. The number of columns that are packaged together depends upon the optimal
bandwidth of the network during the computation.

The domain decomposition of the 3D FFT’s into component 1D FFTs is shown in
figure 2. The results with the above tuning method and its comparison with different
methods to perform the transpose operation are shown in table 1 and in the graph 3.

4.4. Performance Model of 3D FFT

The total execution time of an application on a platform is estimated as a linear com-
bination of time spent by the processor, memory, communication subsystem, and I/O
subsystem. The total estimated wallclock time is given by

ﬂot = ,-rinit + Tcomp + Tcomm + Toverhaad

Where the wallclock time is composed of the computation time, communication
time, time required for I/O and the overhead time, respectively. To estimate these terms,
several executions of the application on the existing hardware platform are performed.

Cray User Group 2009 Proceedings

=
"

\\

i

]

]

i

]

i

]

mae]
L e b)

Chunks
By
(a) (b) (<)
Decomposition of 3D grid Decomposition of Block C number of chunks
On N nodes (P« X Py) in into M number of chunks. packaged together for
blocks. Be=Ns/Px By= Ny/Py computation and

transmission

Figure 2. Pictorial representation of 3D FFT Auto tuning

0.7

—4— isenrec

—il— isenrec_bl

—&— alltoallv

—— alltoallv_bl
—4— Auto (4C)
—&— Auto (2C)

Auto (1C)

P3DFFT (Default)

128 256 512

Figure 3. Auto tuning method and its comparison with different methods to perform a forward and reverse 3d
FFT operation on a 5123 grid. See Table 1 and text for an explanation of the different communication schemes.
P3DFFT corresponds to the 3D FFT library version 2.2 developed by SDSC. It should be noted that this is for
areal to complex 3d FFT so cannot be directly compared to our complex to complex 3d FFT which involves a
dataset of double the size and over twice as many floating point operations

The performance data generated from these executions is used to estimate time required
for each quantity.

The performance model of 3D FFT consists of 3 major components : problem size,
computation, internode communication. The time for an iteration of 3D FFT can be given

Cray User Group 2009 Proceedings

by :
Tt e(N, P,Chunks) = Teomp(N, P) + Teomm (Chunks, P)

where
Teomp(N, P) : Computation Time
Teomm(Chunks, P) : Communication Time

Note that we excluded the data initialization time and data arrangement time from
the actual 3D FFT computation.

4.5. Parallel Complexity

The parallel complexity for the block or cyclic FFT algorithm is :

2mlogm 1m
— +t(at+=—
p B p

2mlogm 1 ml
= 7g+al0gp+—m0gp
p B

T}l)ylock/cyclic _)lng

The parallel complexity of transpose FFT algorithm is :

transpose __ leogm _ e
T, T +a(p 1)+5p »

From the parallel complexity it shows that the block/cyclic algorithm is better than
the transpose algorithms. Hence we can assume that in case of 3D MPI FFT instead
of using alltoall operation to achieve transpose, non-blocking I Send and Recv would
give more performance. We have observed the similar behavior after execution of the
kernel. The results are shown in table ?? and 1. It is also observed that the overlapping
of computation and communication further improves the performance of 3D FFT when
certain the number of 1D FFTs performed together that fully utilise the bandwidth of the
network.

Proc | isenrec | isenrec_bl | alltoallv | alltoallv_bl Auto Auto Auto
(4¢0) (2¢) (1c)
128 | 0.6175 0.5560 0.39052 | 0.2961 0.2653

256 | 0.3752 0.3292 0.3033 0.3013 0.23993 | 0.1798 | 0.16033
512 | 0.3417 0.1770 0.2007 0.1609 0.2057 | 0.1466 | 0.1222
1024 | 6.3045 0.1913 0.1992 0.0772 1.65

Table 1. Strong scaling test for 3d FFT on Cray XT4. Time given in seconds for one forward and reverse 3d
FFT on a 5122 grid. isenrec corresponds to the implementation using isend and recv for the communications.
isenrec_bl is the same as isenrec except that it performs many 3d FFTs at the same time (40 unless otherwise
stated) and aggregates the messages for all of them. alltoallv uses the MPI alltoallv collective routine for the
communications and alltoallv_bl is a blocked version of that performing 40 3d FFTs at the same time and
aggregating the message sizes by 40. Auto corresponds to the implementation for auto tuning. All tests were
done using all four cores except isenrec and Auto where 2c and 1c corresponds to running in dual core and
single core mode. The Cray XT4 has quad core 2.3GHz Opteron processors, where each node is one quad core
processor and the nodes are connected in a 3d torus.

Cray User Group 2009 Proceedings

5. Future Research and Challenges

In this paper we have present an efficient implementation of a parallel 3D FFT specifi-
cally designed for plane wave electronic structure code. The limiting factor to scaling to
larger processor count is the communications in the 3D FFT. The overlapping of com-
putation and communication give good performance over alltoall communication prim-
itives on moderate processor counts. The limiting factor to scaling to larger processor
counts is the communications in the 3d FFTs and we are investigating different commu-
nication schemes. In future we would like to use one sided communication. We will also
develop a robust performance model which can be useful in prediction of performance of
application on future systems. We will also have performance results on different parallel
computing platforms in order to make the model very robust.

In future, we are interested in autotuning of the 3D FFT so that it would be useful
on different parallel systems as well as future computing platforms. We are also inter-
ested in developing a 3D FFT kernel that can be used in other scientific applications
and benchmarks in which 3D FFT is the important computational and time consuming
kernel.

Achieving peak performance from the computational kernels that dominate appli-
cation performance often requires extensive machine-dependent tuning by hand. Auto-
matic tuning of an application on a system typically performed by (1) generating a large
number of possible, reasonable implementations of a kernel which produces best per-
formance on the given system, and (2) selecting the fastest implementation by a com-
bination of various machine dependent parameters, heuristic modeling etc (i.e. actually
running the code).

One major challenge is finding efficient ways to select implementations at run-time
when several known implementations are available. Our aim has been to discuss a pos-
sible framework, using sampling and statistical classification, for attacking this problem
in the context of automatic tuning systems as well as development of performance model
to predict the performance of scientific applications on the upcoming parallel systems.

We are facing a paradigm shift to multicore and manycore computing, and this
paradigm shift imposes difficult challenges on application developers and algorithm de-
signers. Another challenge is, portability of this kernel on the future parallel system that
will be based on multicore and manycore architecture.

Acknowledgements

This research used resources of the National Energy Research Scientific Computing Cen-
ter, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

References

[1] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

[2] M. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

[3] PARATEC (PARAllel Total Energy Code) www.nersc.gov/projects/paratec/ by B. Pfrommer, D.
Raczkowski, A. Canning, S.G. Louie, Lawrence Berkeley National Laboratory (with contributions from
F. Mauri, M. C6té, Y. Yoon, C. Pickard and P. Haynes).

Cray User Group 2009 Proceedings

(4]

(3]
(6]

(71
(8]

[9]

Matteo Frigo and Steven G. Johnson, "The Design and Implementation of FFTW3," Proceedings of the
IEEE 93 (2), 216-231 (2005). http://www.fftw.org/

A. Canning, L.W. Wang, A. Williamson and A. Zunger, J. of Comput. Phys. 160, 29 (2000).

V. Kumar, A. Grama, A. Gupta, G. Karypis "Introduction to Paralle] Computing”, Publisher: Benjamin
Cummings.

www.sdsc.edu/us/resources/p3dftt.php

A. Canning, High Performance Computing for Computational Science, Springer, J.M.L.M Palma et. al.
(Eds.) proceedings of VECPAR 2008, p280 (2008).

http://www.spiral.net/

Cray User Group 2009 Proceedings

