
at 1/2012

Methoden

Auto-Tuning of Multivariable PID

Controllers Using Iterative

Feedback Tuning
Auto-Tuning von PID-Mehrgrößenreglern mit Hilfe von Iterative Feedback Tuning

Steffen Sommer, Achim Kienle, Otto-von-Guericke-Universität Magdeburg

Herrn Prof. Dr.- Ing. habil. Ulrich Korn zum 70. Geburtstag gewidmet

Summary A new auto-tuning approach for centralized
MIMO PID controllers and unknown process models is pre-
sented. Classical multivariable PID controller tuning methods
are combined with iterative feedback tuning (IFT) to develop
an auto-tuning method with a bounded number of tuning
parameters. The method is demonstrated and validated with
a steam generator example. Very good simulation results
are obtained. ◮◮◮ Zusammenfassung Im vorliegen-

den Beitrag wird eine neue Auto-Tuning-Methode für zentrale
PID-Mehrgrößenregler und unbekannte Prozessmodelle vorge-
stellt. Klassische Tuning-Methoden für zentrale PID-Mehrgrö-
ßenregler werden mit Hilfe des Iterative Feedback Tuning (IFT)
auf eine Auto-Tuning-Methode mit einer begrenzten Anzahl von
zu ermittelnden Reglerparametern erweitert. Die vorgeschla-
gene Methode wird in einer Simulationsstudie demonstriert
und validiert. Die Ergebnisse sind sehr vielversprechend.

Keywords Auto-tuning, MIMO, PID, iterative feedback tuning, IFT ◮◮◮ Schlagwörter Auto-tuning, MIMO, PID, iterative
feedback tuning, IFT

1 Introduction
A centralized (fully cross coupled) multivariable con-
troller is necessary for systems with significant interac-
tions where the control objective cannot be achieved by
decentralized control.

Different classical model-free tuning methods for
centralized multivariable PID controllers are available.
An Overview of such tuning methods can be found
in [13; 18]. Multivariable PI controllers are discussed in
the text books [14; 15].

But the mentioned classical tuning approaches were
not developed as auto-tuning methods. The controller
tuning is based only on plant experiments. It is also an
automated design procedure which can be implemented
in process control systems. Auto-tuning methods are ex-
tremely popular in industry. Most published work on
PID auto-tuning is restricted to SISO systems.

Typical auto-tuning methods for SISO processes in-
clude iterative feedback tuning (IFT) and relay feedback
(RF) tuning. Both IFT and RF tuning are closed loop
techniques. That is, it is not required to open the feed-
back loop for the tuning experiments.

Relay feedback tuning was introduced in [1]. A relay
is implemented in the control loop as a controller to gen-
erate sustained oscillations. The corresponding ultimate
gain and ultimate period are determined automatically
and used for the controller parameterization with em-
pirical rules. An overview of this technique is given
in [2; 10; 21]. The RF method can be extended to the
multivariable case for auto-tuning of centralized MIMO
PID controllers [20].

The IFT method was originally suggested in [8].
Overviews are presented in [6; 7]. The advantage of
the IFT technique is that it is an optimization based
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approach, where no empirical rules are needed. The con-
troller parameters are computed by minimizing an input
and error based quadratic cost function, which is done
by means of closed loop experiments. IFT can also be ex-
tended to the multivariable case to design multivariable
controllers [5].

One problem occurs when dealing with auto-tuning
of centralized MIMO PID controllers. The number of
parameters can be very large. In this contribution, a new
PID auto-tuning approach based on IFT with a fixed and
reduced number of tuning parameters, independently
from the process dimensions, is presented.

The outline of the article is as follows. Section 2
provides background on classical tuning methods for
multivariable PID controllers. In Sect. 3, a brief introduc-
tion to IFT design for MIMO processes is given. Section 4
describes how to apply the IFT method for the PID con-
troller tuning. The proposed method is validated and
demonstrated in Sect. 5. Finally, a conclusion is given.

2 Multivariable PID Controller Tuning Basics
To develop an auto-tuning approach, classical multivari-
able PID controller tuning is considered. It is assumed
that the process is stable and a square system (number
of outputs r is equal to the number of inputs m). The
state-space representation is given by:

ẋ(t)= Ax(t) +
(

Bu Bd

)

(

u(t)
d(t)

)

(1)

y(t)= Cx(t) (2)

with the state vector x(t), the manipulated input vector
u(t), the output vector y(t), and the vector of disturbance
inputs d(t). A, Bu, Bd, and C are appropriate state-space
matrices. The process can also be described by the transfer
function matrix G(s):

Y(s)= G(s)

(

U(s)
D(s)

)

=
(

Gu(s) Gd(s)
)

(

U(s)
D(s)

)

(3)

with:

Gu(s)= C
(

sI – A
)–1

Bu , (4)

Gd(s)= C
(

sI – A
)–1

Bd . (5)

The control law of the PID controller in the time domain
is given as follows:

u(t)= KP e(t) + KI

t
∫

0

e(τ) dτ + KD
de(t)

dt
(6)

with the control error

e(t)= r(t) – y(t) , (7)

where r(t) is the vector of reference inputs. KP, KI , KD

are controller parameter matrices (matrix gains) regard-
ing the proportional, integral, and derivative action. In

the Laplace-domain, the control law with the controller
transfer function CPID(s) and the control error is given
by:

U(s)=

(

KP + KI
1

s
+ KDs

)

E(s)= CPID(s)E(s) , (8)

E(s)= R(s) – Y(s) . (9)

Consider the basic approach for the matrix gains defined
by:

KI = αK̃I , (10)

KP = βK̃P , (11)

KD = δK̃D . (12)

The matrix gains are divided into a scalar and a matrix.
The scalars α, β, and δ are called fine tuning parameters.
The matrices K̃I , K̃P, and K̃D are the rough tuning ma-
trices, obtained by simple experiments. Basic approaches
for their computation will be discussed subsequently.

An appropriate choice for a pure integral controller
was presented in [4]:

K̃I = G–1
u (0)=

(

– C A–1Bu

)–1
. (13)

K̃I (13) is the inverse of the static gain Gu(0) of the
process. The reason for that approach is as follows. If A is
stable and rank Gu(0)= r then there exists an α > 0 such
that the closed loop system is stable. There is a secondary
effect. The process is decoupled at steady-state.

In order to improve the dynamic behavior of the
feedback system, i. e. improve the speed of the response,
a proportional gain can be added. A PI controller is ob-
tained. If the I-controlled system is stable, an arbitrary
proportional matrix K̃P and a sufficiently small β provide
a stable closed loop. One approach for the P-term [3] is
given as

K̃P = G–1
u (0) (14)

which is the same as in the integral gain, where the process
is decoupled by the controller at steady-state. Another
approach which allows to decouple the control loop be-
tween y(t) and r(t) for small time values is presented
in [16], namely:

K̃P =
(

C Bu

)–1
. (15)

K̃P (15) represents the inverse of the impulse response
matrix of the process (1) at t = 0. CBu can also be identi-
fied by measuring the slopes of the process step response
at t = 0. If the inverse of the impulse response matrix
at t = 0 does not exist, the impulse response or slopes of
the step response, respectively, can be evaluated at a small
t0 > 0 instead of t = 0 [12]:

K̃P =
(

CeAt0 Bu

)–1
. (16)
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An alternative approach, when (15) cannot be determined
correctly or does not exist, is Thompson’s [19] propor-
tional gain

K̃P =
[

CA–1
(

eAte – 1
)

Bu

]–1
(17)

that decouples the process over its midrange of frequen-
cies. te is the average e-folding time and represents the
dominant time constant of the process. (17) is the inverse
of the unit step response matrix

H(t)= CA–1
(

eAt – 1
)

Bu (18)

of the process (1) at t = te.
For the derivative gain, the same matrix as in the pro-

portional gain (15) can be used [11] to decouple the
control loop between y(t) and r(t) for small time values
if ||KD|| is kept relatively small:

K̃D =
(

C Bu

)–1
. (19)

If (19) does not exist, the problem is solved as for the
proportional gain (16)

K̃D =
(

CeAt0 Bu

)–1
(20)

with a small t0 > 0. It is suggested in [19] to apply the
derivative action only to each main loop. The appropriate
rough tuning matrix is given by:

K̃D = I . (21)

In this contribution the rough tuning approach for the
integral and proportional gain (13), (14) is also used for
the derivative term to follow the concept of the static
decoupling of the process:

K̃D = G–1
u (0) . (22)

As mentioned above, the rough tuning matrices can be
determined by means of simple open loop experiments.
For example, the static gain of a process is usually known.
The assignment of the fine tuning parameters is an heuris-
tic approach. The basic idea in this article is to determine
the fine tuning parameters α, β, δ using IFT. There-
fore, a new auto-tuning method for the MIMO PID
controller design is obtained. The advantage is that only
three parameters have to be tuned, independently from r

and m.
If more degrees of freedom are required, the ap-

proaches for the proportional and derivative action can
be extended as follows:

KP = K̃P

⎛

⎜

⎝

β1 0
. . .

0 βr

⎞

⎟

⎠
, (23)

KD = K̃D

⎛

⎜

⎝

δ1 0
. . .

0 δr

⎞

⎟

⎠
. (24)

3 Iterative Feedback Tuning
for Linear Multivariable Systems

Iterative feedback tuning is an optimization based model-
free method for finding controller parameters only by
means of closed loop experiments. In this section, the
IFT method is described for multivariable linear time
invariant processes based on [5]. Compared to [5], an
input and error based deterministic cost function and
the unity feedback control system (Fig. 1) are considered.

Controller parameters which have to be determined
are collected in a vector

p=

⎛

⎜

⎝

p1

...
pnp

⎞

⎟

⎠
∈ R

np , (25)

where np is the number of parameters. Because of the pa-
rameter dependent controller C(s, p) the control signals
E(s, p), U(s, p), and Y(s, p) are also parameter dependent.
The parameters are determined by solving the optimiza-
tion problem

min
w.r.t. p∈Rnp

J(p) (26)

subject to C(s, p) stabilizing the closed loop. The deter-
ministic cost function

J(p)=
1

2Tf

Tf
∫

0

{

eT(t, p) Q e(t, p) + uT(t, p) R u(t, p)
}

dt

(27)

is a quadratic criterion of the control error vector e(t, p)
and the manipulated variable vector u(t, p). Here, Tf is
the considered time interval or the duration of the tuning
experiment respectively. Q and R are diagonal weighting
matrices. In order to find the optimal controller param-
eters, the following set of equations has to be solved:

0=
∂J(p)

∂p
=

1

Tf

Tf
∫

0

{

[

∂e(t, p)

∂p

]T

Q e(t, p) + · · ·

· · ·+

[

∂u(t, p)

∂p

]T

R u(t, p)

}

dt . (28)

(28) represents the necessary condition for optimality of
the unconstrained problem (26). The solution of (28) can
be computed iteratively by:

pk+1 = pk – γk H–1
k

∂J(pk)

∂p
. (29)

Figure 1 Unity feedback control system.
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k denotes the current iteration step. γk is a positive real
scalar and represents the step size. Hk is a positive definite
matrix.

The gradient ∂J(p)/∂p (28) can be determined exper-
imentally as demonstrated below. e(t, p) and u(t, p) are
measured directly (see Fig. 1). ∂e(t, p)/∂p and ∂u(t, p)/∂p

can be recorded by doing some additional experiments.
For convenience, the derivation is done in the Laplace

domain. The derivatives of the control law

U(s, p)= C(s, p)E(s, p) , (30)

the control error

E(s, p)= R(s) – Y(s, p) , (31)

and the process output

Y(s, p)= G(s)

(

U(s, p)
D(s)

)

(32)

with respect to the parameter vector p are:

Y ′(s, p)= G

(

U ′(s, p)
0

)

, (33)

U ′(s, p)= C(s, p)E′(s, p) + C′(s, p)E(s, p) , (34)

E′(s, p)= 0 – Y ′(s, p) . (35)

′ denotes ∂/∂p. The obtained equations are presented as
a block diagram in Fig. 2.

It can be seen that the gradients are measured in a con-
trol loop where the error of the first experiment (see
Fig. 1) is the input signal. Because of the block C′(s, p),
np additional experiments related to the derivatives of the
controller with respect to each parameter ∂C(s, p)/∂pi ,
i= 1, ...np have to be conducted. All in all, 1 + np tests
have to be performed per iteration.

Figure 2 Gradient experiment.

Figure 3 Approximated gradient experiment.

It is suggested in [9] to use an approximated gradient
to reduce the number of additional experiments. The
number of such tests can be reduced when moving the
block C′(s, p) in Fig. 2 to the outputs (see Fig. 3).

Only one additional gradient experiment has to be per-
formed per iteration. Therefore, 1 +1= 2 experiments are
necessary per iteration independently from the number
of parameters np. The disadvantage of that strategy is that
a commutation error occurs.

4 Multivariable PID Controller Auto-Tuning
Using IFT

In order to determine the fine tuning parameters α, β,
and δ in an auto-tuning way, the IFT method is applied
to the classical PID controller tuning approach. For that
purpose, the PID controller is parameterized as follows:

u(t)= p1K̃P e(t) + p2K̃I

t
∫

0

e(τ) dτ + p3K̃D

de(t)

dt
, (36)

CPID(s, p)= p1K̃P + p2K̃I

1

s
+ p3K̃D s . (37)

The parameters are collected in a vector with np = 3 elem-
ents:

p=

⎛

⎝

p1

p2

p3

⎞

⎠=

⎛

⎝

β

α

δ

⎞

⎠ . (38)

The experimental setup for finding the values of the pa-
rameter vector p (38) results from the general gradient
experiment (Fig. 2), and is demonstrated in Fig. 4.

In a first experiment, the feedback control system is
operated with an initial PID controller and a convenient
input test signal (see Fig. 4, upper control loop). The

Figure 4 PID auto-tuning: the complete experiment.
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resulting time responses e(t, p) and u(t, p) are recorded.
The error signal e(t, p) is then used as an input signal for
np = 3 additional closed loop experiments. The deriva-
tives of the vectors e(t, p) and u(t, p) with respect to each
parameter can be measured as time responses in these
experiments:

∂e(t, p)

∂pi

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂e1(t, p)

∂pi
...

∂em(t, p)

∂pi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, i= 1, ..., 3 (39)

∂u(t, p)

∂pi

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂u1(t, p)

∂pi
...

∂um(t, p)

∂pi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, i= 1, ..., 3 . (40)

The recorded individual derivatives ∂ej(t, p)/∂pi and
∂uj(t, p)/∂pi with j= 1, ..., m and i= 1, ..., 3 in (39) and
(40) are elements of the m ×3 matrices ∂e(t, p)/∂p and
∂u(t, p)/∂p which are necessary to calculate the gradient
∂J(p)/∂p (28). All in all, 1 + np = 1 + 3= 4 experiments
have to be performed per iteration. After that number of
tests the parameters of the multivariable PID controller
(36), (37) are updated using (29).

The partial derivatives of the controller transfer func-
tion matrix C(s, p) (37) with respect to the parameters
are needed for the additional gradient experiments. They
are given by:

C′
PID(s, p)=

∂CPID(s, p)

∂p
=

⎛

⎝

K̃P

K̃I
1
s

K̃D s

⎞

⎠ . (41)

The number of experiments can be reduced when using
the approximated gradient as discussed in Sect. 2. The
corresponding experiment is described in Fig. 5. Only
1 + 1= 2 experiments are necessary per iteration.

Figure 5 PID auto-tuning: the approximated gradient experiment.

The introduced design procedure can be summarized
as follows.
1. Initialization phase (k= 0): choose initial parameter

vector p(k= 0), weighting matrices Q and R, time in-
terval Tf , and convergence tolerance ǫ.

2. Compute gradient ∂J(pk)/∂p (28) by means of experi-
ments (see Fig. 4 or Fig. 5), if |∂J(pk)/∂p| < ǫ then stop

3. Parameter update: determine γk and Hk, compute pk+1

(29), k = k + 1, go to 2.

5 Design Example
The introduced method is demonstrated with the fol-
lowing simulation example. A steam generator [17] that
produces steam of high pressure and temperature to
drive a steam turbine for the generation of electricity in
a thermal power station is considered. The manipulated
variables u1(t) and u2(t) are fuel feed and water supply.
The controlled variables y1(t) and y2(t) are the steam
pressure and the steam enthalpy. The disturbance d(t)
includes the heating value of the fuel and the slagging of
the boiler. The dynamic behavior of the steam generator
can be described by a linearized state-space system with
the following matrices:

A=
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

–15 0 0 0 0 0 0 0 0
22.5 0 –3.06 0 0 0 0 0 0

14.505 5 –6.246 0 0 0 0 0 0
0 0 0 –4.5 0 0 0 0 0
0 0 0 15 –16.4835 0 0 0 0
0 0 0 0 2.19 0 –18.12 0 0
0 0 0 0 37.155 15 –32.967 0 0

14.505 5 0.7728 0 2.478 1 –1.7299 –1.8183 0
18.4095 0 0 0 0 0 0 0 –5.4546

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Bu =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

10 0
0 0
0 0
0 60
0 0
0 0
0 0
0 0
0 –19.092

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Bd =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
15

9.67
0
0
0
0

9.67
12.273

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

C =

(

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

)

. (42)

All state variables represent deviations from their oper-
ating points. The model contains a scaling of time. One
time unit represents a five minute interval. A controller is
needed that compensates a step change in the disturbance
signal after one time unit.

The rough tuning matrices are chosen as the inverse
of the static gain matrix of the process (13):

K̃P = K̃I = K̃D = G–1
u (0)=

(

18.922 0.384
2.25 –3.5002

)–1

=

(

0.0522 0.0057
0.0335 –0.282

)

. (43)
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Figure 6 Closed loop disturbance responses, initial MIMO PID con-
troller.

The initial fine tuning parameters are determined as:

α0 = 15, β0 = 10, δ0 = 1 . (44)

For the derivative action the filter GF(s)= 1/(0.01s + 1) is
applied. The disturbance step responses using the initial
controller are shown in Fig. 6.

Now, the iteration procedure is described. In this
theoretical study, the IFT experiments are simulation
experiments. During the first experiment a step change
in the disturbance d(t)= σ(t) is considered. The ref-
erence input of the feedback system does not change:
r(t)=

(

0 0
)T

. The duration of one tuning experiment
is Tf = 4, because after that duration the closed loop
variables reach their steady-state values with the initial
controller (see Fig. 6). Q and R are set to identity. An
approximation of the Hessian of J(p) is used for Hk. It
contains only the first derivatives of e(t, p) and u(t, p)
with respect to p. The second derivatives are neglected.
Therefore, the matrix Hk can also be computed by means
of the measured gradients. A step size of γ = 1 is taken
for the iterative computation of the parameter vector
(29). All integrals are approximated using a summation.
After 11 iterations, the cost function is reduced from

J0 = 0.6605 to its minimum of J = 0.5243. The optimal
fine tuning parameter values are found to be

α= 197.272, β = 42.7738, δ= 3.5509 . (45)

Approximately the same minimum, J = 0.5245, was
achieved after 11 iterations with the approximated gradi-
ent. The tuning parameters change a little:

α= 223.5653, β = 43.9733, δ= 3.0591 . (46)

To compare the results, two reference control systems
are considered. At first, two decentralized PID controllers
are designed. The controller parameters are determined
using sequential relay feedback with Tyreus-Luyben tun-
ing rules. The controller parameters are given by:

KP1 = 1.429, KI1 = 2.3198, KD1 = 0.0635 ,

KP2 = 7.145, KI2 = 231.9805, KD2 = 0.0158 . (47)

The second reference controller is a MIMO PI controller
designed using a pole placement (i. e. model based) design
approach from [17]. The controller matrix gains are:

KP =

(

2.828 13.51
0.145 –3.167

)

, KI =

(

10.86 51.3
1.459 –5.890

)

. (48)

Figure 7 Closed loop disturbance responses, controlled variables.
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Figure 8 Closed loop disturbance responses, manipulated variables.

The simulation results of the disturbance responses are
presented in Figs. 7 and 8.

Compared to the decentralized reference control
scheme, the disturbance is rejected after one time unit as
desired with the multivariable PID controllers designed
using IFT. The controller computed with the approx-
imated gradient provides only slightly different results.
The reference MIMO PI controller gives similar results re-
garding the output response y1(t) with a larger amplitude
in the curve of the manipulated variable u1(t) when com-
pared with the MIMO PID control results. The MIMO PI
controller provides less positive results concerning y2(t)
with smaller amplitudes in u2(t) when compared to both
MIMO PID control and decentralized PID control.

6 Conclusion
A new model-free auto-tuning approach for centralized
PID controllers based on IFT is presented. It is shown
that IFT can be successfully applied to the tuning of clas-
sical multivariable PID controllers. Only three parameters
have to be determined during the auto-tuning procedure
independently from the number of process inputs and
outputs. The number of experiments can be decreased by
using an approximated gradient.

The method is demonstrated and validated with
a steam generator example. It confirms the benefit of
the proposed strategy. Very good simulation results are
obtained.

As a future work, the convergence of the method using
the approximated gradient, especially for the considered
controller structure, has to be proved. Furthermore, the
introduced new auto-tuning procedure has to be tested
with a real plant.
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